|
1 /**************************************************************************** |
|
2 ** |
|
3 ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). |
|
4 ** All rights reserved. |
|
5 ** Contact: Nokia Corporation (qt-info@nokia.com) |
|
6 ** |
|
7 ** This file is part of the QtXmlPatterns module of the Qt Toolkit. |
|
8 ** |
|
9 ** $QT_BEGIN_LICENSE:LGPL$ |
|
10 ** No Commercial Usage |
|
11 ** This file contains pre-release code and may not be distributed. |
|
12 ** You may use this file in accordance with the terms and conditions |
|
13 ** contained in the Technology Preview License Agreement accompanying |
|
14 ** this package. |
|
15 ** |
|
16 ** GNU Lesser General Public License Usage |
|
17 ** Alternatively, this file may be used under the terms of the GNU Lesser |
|
18 ** General Public License version 2.1 as published by the Free Software |
|
19 ** Foundation and appearing in the file LICENSE.LGPL included in the |
|
20 ** packaging of this file. Please review the following information to |
|
21 ** ensure the GNU Lesser General Public License version 2.1 requirements |
|
22 ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. |
|
23 ** |
|
24 ** In addition, as a special exception, Nokia gives you certain additional |
|
25 ** rights. These rights are described in the Nokia Qt LGPL Exception |
|
26 ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. |
|
27 ** |
|
28 ** If you have questions regarding the use of this file, please contact |
|
29 ** Nokia at qt-info@nokia.com. |
|
30 ** |
|
31 ** |
|
32 ** |
|
33 ** |
|
34 ** |
|
35 ** |
|
36 ** |
|
37 ** |
|
38 ** $QT_END_LICENSE$ |
|
39 ** |
|
40 ****************************************************************************/ |
|
41 |
|
42 /** |
|
43 * @file |
|
44 * @short This file is included by qabstractfloat_p.h. |
|
45 * If you need includes in this file, put them in qabstractfloat_p.h, outside of the namespace. |
|
46 */ |
|
47 |
|
48 template <const bool isDouble> |
|
49 AbstractFloat<isDouble>::AbstractFloat(const xsDouble num) : m_value(num) |
|
50 { |
|
51 } |
|
52 |
|
53 template <const bool isDouble> |
|
54 Numeric::Ptr AbstractFloat<isDouble>::fromValue(const xsDouble num) |
|
55 { |
|
56 return Numeric::Ptr(new AbstractFloat<isDouble>(num)); |
|
57 } |
|
58 |
|
59 template <const bool isDouble> |
|
60 AtomicValue::Ptr AbstractFloat<isDouble>::fromLexical(const QString &strNumeric) |
|
61 { |
|
62 /* QString::toDouble() handles the whitespace facet. */ |
|
63 |
|
64 if(strNumeric == QLatin1String("NaN")) |
|
65 return isDouble ? CommonValues::DoubleNaN : CommonValues::FloatNaN; |
|
66 else if(strNumeric == QLatin1String("-INF")) |
|
67 return isDouble ? CommonValues::NegativeInfDouble : CommonValues::NegativeInfFloat; |
|
68 else if(strNumeric == QLatin1String("INF")) |
|
69 return isDouble ? CommonValues::InfDouble : CommonValues::InfFloat; |
|
70 |
|
71 /* QString::toDouble() supports any case as well as +INF, but we don't. */ |
|
72 const QString toUpper(strNumeric.toUpper()); |
|
73 if(toUpper == QLatin1String("-INF") || |
|
74 toUpper == QLatin1String("INF") || |
|
75 toUpper == QLatin1String("+INF") || |
|
76 toUpper == QLatin1String("NAN")) |
|
77 { |
|
78 return ValidationError::createError(); |
|
79 } |
|
80 |
|
81 bool conversionOk = false; |
|
82 const xsDouble num = strNumeric.toDouble(&conversionOk); |
|
83 |
|
84 if(conversionOk) |
|
85 return AtomicValue::Ptr(new AbstractFloat<isDouble>(num)); |
|
86 else |
|
87 return ValidationError::createError(); |
|
88 } |
|
89 |
|
90 template <const bool isDouble> |
|
91 int AbstractFloat<isDouble>::internalSignbit(const xsDouble num) |
|
92 { |
|
93 Q_ASSERT_X(sizeof(xsDouble) == 8 || sizeof(xsDouble) == 4, Q_FUNC_INFO, |
|
94 "This implementation of signbit assumes xsDouble, that is qreal, is 64 bits large."); |
|
95 |
|
96 union |
|
97 { |
|
98 xsDouble asDouble; |
|
99 qint64 asInt; |
|
100 } value; |
|
101 |
|
102 value.asDouble = num; |
|
103 |
|
104 /* The highest bit, the 64'th for those who have 64bit floats, is the sign bit. So we pull it down until that bit is the |
|
105 * only one left. */ |
|
106 if(sizeof(xsDouble) == 8) |
|
107 return value.asInt >> 63; |
|
108 else |
|
109 return value.asInt >> 31; |
|
110 } |
|
111 |
|
112 template <const bool isDouble> |
|
113 bool AbstractFloat<isDouble>::isEqual(const xsDouble a, const xsDouble b) |
|
114 { |
|
115 if(qIsInf(a)) |
|
116 return qIsInf(b) && internalSignbit(a) == internalSignbit(b); |
|
117 else if(qIsInf(b)) |
|
118 return qIsInf(a) && internalSignbit(a) == internalSignbit(b); |
|
119 else |
|
120 { |
|
121 /* Preferrably, we would use std::numeric_limits<xsDouble>::espilon(), but |
|
122 * we cannot since we cannot depend on the STL. The small xs:double value below, |
|
123 * was extracted by printing the std::numeric_limits<xsDouble>::epsilon() using |
|
124 * gdb. */ |
|
125 return qAbs(a - b) <= 2.2204460492503131e-16 * qAbs(a); |
|
126 } |
|
127 } |
|
128 |
|
129 template <const bool isDouble> |
|
130 bool AbstractFloat<isDouble>::isZero() const |
|
131 { |
|
132 return AbstractFloat<isDouble>::isEqual(m_value, 0.0); |
|
133 } |
|
134 |
|
135 template <const bool isDouble> |
|
136 bool AbstractFloat<isDouble>::evaluateEBV(const QExplicitlySharedDataPointer<DynamicContext> &) const |
|
137 { |
|
138 if(isZero() || qIsNaN(m_value)) |
|
139 return false; |
|
140 else |
|
141 return true; |
|
142 } |
|
143 |
|
144 template <const bool isDouble> |
|
145 QString AbstractFloat<isDouble>::stringValue() const |
|
146 { |
|
147 if(qIsNaN(m_value)) |
|
148 return QLatin1String("NaN"); |
|
149 else if(qIsInf(m_value)) |
|
150 return internalSignbit(m_value) == 0 ? QLatin1String("INF") : QLatin1String("-INF"); |
|
151 /* |
|
152 * If SV has an absolute value that is greater than or equal to 0.000001 |
|
153 * (one millionth) and less than 1000000 (one million), |
|
154 * then the value is converted to an xs:decimal and the resulting xs:decimal |
|
155 * is converted to an xs:string according to the rules above. |
|
156 */ |
|
157 else if(0.000001 <= qAbs(m_value) && qAbs(m_value) < 1000000.0) |
|
158 return Decimal::toString(toDecimal()); |
|
159 /* |
|
160 * If SV has the value positive or negative zero, TV is "0" or "-0" respectively. |
|
161 */ |
|
162 else if(isZero()) |
|
163 return internalSignbit(m_value) == 0 ? QLatin1String("0") : QLatin1String("-0"); |
|
164 else |
|
165 { |
|
166 /* |
|
167 * Besides these special values, the general form of the canonical form for |
|
168 * xs:float and xs:double is a mantissa, which is a xs:decimal, followed by |
|
169 * the letter "E", followed by an exponent which is an xs:integer. |
|
170 */ |
|
171 int sign; |
|
172 int decimalPoint; |
|
173 char *result = 0; |
|
174 static_cast<void>(qdtoa(m_value, -1, 0, &decimalPoint, &sign, 0, &result)); |
|
175 |
|
176 /* If the copy constructor is used instead of QString::operator=(), |
|
177 * it doesn't compile. I have no idea why. */ |
|
178 const QString qret(QString::fromLatin1(result)); |
|
179 |
|
180 /* We use free() instead of delete here, because qlocale.cpp use malloc(). Spotted |
|
181 * by valgrind. */ |
|
182 free(result); |
|
183 |
|
184 QString valueAsString; |
|
185 |
|
186 if(sign) |
|
187 valueAsString += QLatin1Char('-'); |
|
188 |
|
189 valueAsString += qret.at(0); |
|
190 valueAsString += QLatin1Char('.'); |
|
191 |
|
192 if(1 == qret.size()) |
|
193 valueAsString += QLatin1Char('0'); |
|
194 else |
|
195 valueAsString += qret.mid(1); |
|
196 |
|
197 valueAsString += QLatin1Char('E'); |
|
198 decimalPoint--; |
|
199 valueAsString += QString::number(decimalPoint); |
|
200 return valueAsString; |
|
201 } |
|
202 } |
|
203 |
|
204 template <const bool isDouble> |
|
205 xsDouble AbstractFloat<isDouble>::toDouble() const |
|
206 { |
|
207 return m_value; |
|
208 } |
|
209 |
|
210 template <const bool isDouble> |
|
211 xsInteger AbstractFloat<isDouble>::toInteger() const |
|
212 { |
|
213 return static_cast<xsInteger>(m_value); |
|
214 } |
|
215 |
|
216 template <const bool isDouble> |
|
217 xsFloat AbstractFloat<isDouble>::toFloat() const |
|
218 { |
|
219 /* No cast, since xsFloat and xsDouble are typedef'ed with the same type. */ |
|
220 return m_value; |
|
221 } |
|
222 |
|
223 template <const bool isDouble> |
|
224 xsDecimal AbstractFloat<isDouble>::toDecimal() const |
|
225 { |
|
226 return static_cast<xsDecimal>(m_value); |
|
227 } |
|
228 |
|
229 template <const bool isDouble> |
|
230 Numeric::Ptr AbstractFloat<isDouble>::round() const |
|
231 { |
|
232 return AbstractFloat<isDouble>::fromValue(static_cast<xsDouble>(roundFloat(m_value))); |
|
233 } |
|
234 |
|
235 template <const bool isDouble> |
|
236 Numeric::Ptr AbstractFloat<isDouble>::roundHalfToEven(const xsInteger precision) const |
|
237 { |
|
238 if(isNaN() || isInf() || isZero()) |
|
239 return Numeric::Ptr(const_cast<AbstractFloat<isDouble> *>(this)); |
|
240 else |
|
241 { |
|
242 /* The cast to double helps finding the correct pow() version on irix-cc. */ |
|
243 const xsDouble powered = pow(double(10), double(precision)); |
|
244 xsDouble val = powered * m_value; |
|
245 bool isHalf = false; |
|
246 |
|
247 if(val - 0.5 == ::floor(val)) |
|
248 isHalf = true; |
|
249 |
|
250 val = m_value * powered + 0.5; |
|
251 val = ::floor(val); |
|
252 |
|
253 if(isHalf /*&& isOdd(val) or? TODO */) |
|
254 val -= 1; |
|
255 |
|
256 val /= powered; |
|
257 |
|
258 return fromValue(val); |
|
259 } |
|
260 } |
|
261 |
|
262 template <const bool isDouble> |
|
263 Numeric::Ptr AbstractFloat<isDouble>::floor() const |
|
264 { |
|
265 return AbstractFloat<isDouble>::fromValue(static_cast<xsDouble>(::floor(m_value))); |
|
266 } |
|
267 |
|
268 template <const bool isDouble> |
|
269 Numeric::Ptr AbstractFloat<isDouble>::ceiling() const |
|
270 { |
|
271 return AbstractFloat<isDouble>::fromValue(static_cast<xsDouble>(ceil(m_value))); |
|
272 } |
|
273 |
|
274 template <const bool isDouble> |
|
275 Numeric::Ptr AbstractFloat<isDouble>::abs() const |
|
276 { |
|
277 /* We must use fabs() instead of qAbs() because qAbs() |
|
278 * doesn't return 0 for -0.0. */ |
|
279 return AbstractFloat<isDouble>::fromValue(static_cast<xsDouble>(fabs(m_value))); |
|
280 } |
|
281 |
|
282 template <const bool isDouble> |
|
283 bool AbstractFloat<isDouble>::isNaN() const |
|
284 { |
|
285 return qIsNaN(m_value); |
|
286 } |
|
287 |
|
288 template <const bool isDouble> |
|
289 bool AbstractFloat<isDouble>::isInf() const |
|
290 { |
|
291 return qIsInf(m_value); |
|
292 } |
|
293 |
|
294 template <const bool isDouble> |
|
295 ItemType::Ptr AbstractFloat<isDouble>::type() const |
|
296 { |
|
297 return isDouble ? BuiltinTypes::xsDouble : BuiltinTypes::xsFloat; |
|
298 } |
|
299 |
|
300 template <const bool isDouble> |
|
301 Item AbstractFloat<isDouble>::toNegated() const |
|
302 { |
|
303 return fromValue(-m_value).data(); |
|
304 } |
|
305 |
|
306 template <const bool isDouble> |
|
307 bool AbstractFloat<isDouble>::isSigned() const |
|
308 { |
|
309 Q_ASSERT_X(false, Q_FUNC_INFO, |
|
310 "It makes no sense to call this function, see Numeric::isSigned()."); |
|
311 return false; |
|
312 } |
|
313 |
|
314 template <const bool isDouble> |
|
315 qulonglong AbstractFloat<isDouble>::toUnsignedInteger() const |
|
316 { |
|
317 Q_ASSERT_X(false, Q_FUNC_INFO, |
|
318 "It makes no sense to call this function, see Numeric::toUnsignedInteger()."); |
|
319 return 0; |
|
320 } |
|
321 |