tests/auto/qquaternion/tst_qquaternion.cpp
changeset 0 1918ee327afb
child 4 3b1da2848fc7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tests/auto/qquaternion/tst_qquaternion.cpp	Mon Jan 11 14:00:40 2010 +0000
@@ -0,0 +1,888 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** All rights reserved.
+** Contact: Nokia Corporation (qt-info@nokia.com)
+**
+** This file is part of the test suite of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the Technology Preview License Agreement accompanying
+** this package.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file.  Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain additional
+** rights.  These rights are described in the Nokia Qt LGPL Exception
+** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
+**
+** If you have questions regarding the use of this file, please contact
+** Nokia at qt-info@nokia.com.
+**
+**
+**
+**
+**
+**
+**
+**
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+
+#include <QtTest/QtTest>
+#include <QtCore/qmath.h>
+#include <QtGui/qquaternion.h>
+
+class tst_QQuaternion : public QObject
+{
+    Q_OBJECT
+public:
+    tst_QQuaternion() {}
+    ~tst_QQuaternion() {}
+
+private slots:
+    void create();
+
+    void length_data();
+    void length();
+
+    void normalized_data();
+    void normalized();
+
+    void normalize_data();
+    void normalize();
+
+    void compare();
+
+    void add_data();
+    void add();
+
+    void subtract_data();
+    void subtract();
+
+    void multiply_data();
+    void multiply();
+
+    void multiplyFactor_data();
+    void multiplyFactor();
+
+    void divide_data();
+    void divide();
+
+    void negate_data();
+    void negate();
+
+    void conjugate_data();
+    void conjugate();
+
+    void fromAxisAndAngle_data();
+    void fromAxisAndAngle();
+
+    void slerp_data();
+    void slerp();
+
+    void nlerp_data();
+    void nlerp();
+
+    void properties();
+    void metaTypes();
+};
+
+// QVector3D uses float internally, which can lead to some precision
+// issues when using it with the qreal-based QQuaternion.
+static bool fuzzyCompare(qreal x, qreal y)
+{
+    return qFuzzyIsNull(float(x - y));
+}
+
+// Test the creation of QQuaternion objects in various ways:
+// construct, copy, and modify.
+void tst_QQuaternion::create()
+{
+    QQuaternion identity;
+    QCOMPARE(identity.x(), (qreal)0.0f);
+    QCOMPARE(identity.y(), (qreal)0.0f);
+    QCOMPARE(identity.z(), (qreal)0.0f);
+    QCOMPARE(identity.scalar(), (qreal)1.0f);
+    QVERIFY(identity.isIdentity());
+
+    QQuaternion v1(34.0f, 1.0f, 2.5f, -89.25f);
+    QCOMPARE(v1.x(), (qreal)1.0f);
+    QCOMPARE(v1.y(), (qreal)2.5f);
+    QCOMPARE(v1.z(), (qreal)-89.25f);
+    QCOMPARE(v1.scalar(), (qreal)34.0f);
+    QVERIFY(!v1.isNull());
+
+    QQuaternion v1i(34, 1, 2, -89);
+    QCOMPARE(v1i.x(), (qreal)1.0f);
+    QCOMPARE(v1i.y(), (qreal)2.0f);
+    QCOMPARE(v1i.z(), (qreal)-89.0f);
+    QCOMPARE(v1i.scalar(), (qreal)34.0f);
+    QVERIFY(!v1i.isNull());
+
+    QQuaternion v2(v1);
+    QCOMPARE(v2.x(), (qreal)1.0f);
+    QCOMPARE(v2.y(), (qreal)2.5f);
+    QCOMPARE(v2.z(), (qreal)-89.25f);
+    QCOMPARE(v2.scalar(), (qreal)34.0f);
+    QVERIFY(!v2.isNull());
+
+    QQuaternion v4;
+    QCOMPARE(v4.x(), (qreal)0.0f);
+    QCOMPARE(v4.y(), (qreal)0.0f);
+    QCOMPARE(v4.z(), (qreal)0.0f);
+    QCOMPARE(v4.scalar(), (qreal)1.0f);
+    QVERIFY(v4.isIdentity());
+    v4 = v1;
+    QCOMPARE(v4.x(), (qreal)1.0f);
+    QCOMPARE(v4.y(), (qreal)2.5f);
+    QCOMPARE(v4.z(), (qreal)-89.25f);
+    QCOMPARE(v4.scalar(), (qreal)34.0f);
+    QVERIFY(!v4.isNull());
+
+    QQuaternion v9(34, QVector3D(1.0f, 2.5f, -89.25f));
+    QCOMPARE(v9.x(), (qreal)1.0f);
+    QCOMPARE(v9.y(), (qreal)2.5f);
+    QCOMPARE(v9.z(), (qreal)-89.25f);
+    QCOMPARE(v9.scalar(), (qreal)34.0f);
+    QVERIFY(!v9.isNull());
+
+    v1.setX(3.0f);
+    QCOMPARE(v1.x(), (qreal)3.0f);
+    QCOMPARE(v1.y(), (qreal)2.5f);
+    QCOMPARE(v1.z(), (qreal)-89.25f);
+    QCOMPARE(v1.scalar(), (qreal)34.0f);
+    QVERIFY(!v1.isNull());
+
+    v1.setY(10.5f);
+    QCOMPARE(v1.x(), (qreal)3.0f);
+    QCOMPARE(v1.y(), (qreal)10.5f);
+    QCOMPARE(v1.z(), (qreal)-89.25f);
+    QCOMPARE(v1.scalar(), (qreal)34.0f);
+    QVERIFY(!v1.isNull());
+
+    v1.setZ(15.5f);
+    QCOMPARE(v1.x(), (qreal)3.0f);
+    QCOMPARE(v1.y(), (qreal)10.5f);
+    QCOMPARE(v1.z(), (qreal)15.5f);
+    QCOMPARE(v1.scalar(), (qreal)34.0f);
+    QVERIFY(!v1.isNull());
+
+    v1.setScalar(6.0f);
+    QCOMPARE(v1.x(), (qreal)3.0f);
+    QCOMPARE(v1.y(), (qreal)10.5f);
+    QCOMPARE(v1.z(), (qreal)15.5f);
+    QCOMPARE(v1.scalar(), (qreal)6.0f);
+    QVERIFY(!v1.isNull());
+
+    v1.setVector(2.0f, 6.5f, -1.25f);
+    QCOMPARE(v1.x(), (qreal)2.0f);
+    QCOMPARE(v1.y(), (qreal)6.5f);
+    QCOMPARE(v1.z(), (qreal)-1.25f);
+    QCOMPARE(v1.scalar(), (qreal)6.0f);
+    QVERIFY(!v1.isNull());
+    QVERIFY(v1.vector() == QVector3D(2.0f, 6.5f, -1.25f));
+
+    v1.setVector(QVector3D(-2.0f, -6.5f, 1.25f));
+    QCOMPARE(v1.x(), (qreal)-2.0f);
+    QCOMPARE(v1.y(), (qreal)-6.5f);
+    QCOMPARE(v1.z(), (qreal)1.25f);
+    QCOMPARE(v1.scalar(), (qreal)6.0f);
+    QVERIFY(!v1.isNull());
+    QVERIFY(v1.vector() == QVector3D(-2.0f, -6.5f, 1.25f));
+
+    v1.setX(0.0f);
+    v1.setY(0.0f);
+    v1.setZ(0.0f);
+    v1.setScalar(0.0f);
+    QCOMPARE(v1.x(), (qreal)0.0f);
+    QCOMPARE(v1.y(), (qreal)0.0f);
+    QCOMPARE(v1.z(), (qreal)0.0f);
+    QCOMPARE(v1.scalar(), (qreal)0.0f);
+    QVERIFY(v1.isNull());
+
+    QVector4D v10 = v9.toVector4D();
+    QCOMPARE(v10.x(), (qreal)1.0f);
+    QCOMPARE(v10.y(), (qreal)2.5f);
+    QCOMPARE(v10.z(), (qreal)-89.25f);
+    QCOMPARE(v10.w(), (qreal)34.0f);
+}
+
+// Test length computation for quaternions.
+void tst_QQuaternion::length_data()
+{
+    QTest::addColumn<qreal>("x");
+    QTest::addColumn<qreal>("y");
+    QTest::addColumn<qreal>("z");
+    QTest::addColumn<qreal>("w");
+    QTest::addColumn<qreal>("len");
+
+    QTest::newRow("null") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
+    QTest::newRow("1x") << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f;
+    QTest::newRow("1y") << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f;
+    QTest::newRow("1z") << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)1.0f;
+    QTest::newRow("1w") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)1.0f;
+    QTest::newRow("-1x") << (qreal)-1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f;
+    QTest::newRow("-1y") << (qreal)0.0f << (qreal)-1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f;
+    QTest::newRow("-1z") << (qreal)0.0f << (qreal)0.0f << (qreal)-1.0f << (qreal)0.0f << (qreal)1.0f;
+    QTest::newRow("-1w") << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)-1.0f << (qreal)1.0f;
+    QTest::newRow("two") << (qreal)2.0f << (qreal)-2.0f << (qreal)2.0f << (qreal)2.0f << (qreal)qSqrt(16.0f);
+}
+void tst_QQuaternion::length()
+{
+    QFETCH(qreal, x);
+    QFETCH(qreal, y);
+    QFETCH(qreal, z);
+    QFETCH(qreal, w);
+    QFETCH(qreal, len);
+
+    QQuaternion v(w, x, y, z);
+    QCOMPARE(v.length(), len);
+    QCOMPARE(v.lengthSquared(), x * x + y * y + z * z + w * w);
+}
+
+// Test the unit vector conversion for quaternions.
+void tst_QQuaternion::normalized_data()
+{
+    // Use the same test data as the length test.
+    length_data();
+}
+void tst_QQuaternion::normalized()
+{
+    QFETCH(qreal, x);
+    QFETCH(qreal, y);
+    QFETCH(qreal, z);
+    QFETCH(qreal, w);
+    QFETCH(qreal, len);
+
+    QQuaternion v(w, x, y, z);
+    QQuaternion u = v.normalized();
+    if (v.isNull())
+        QVERIFY(u.isNull());
+    else
+        QCOMPARE(u.length(), qreal(1.0f));
+    QCOMPARE(u.x() * len, v.x());
+    QCOMPARE(u.y() * len, v.y());
+    QCOMPARE(u.z() * len, v.z());
+    QCOMPARE(u.scalar() * len, v.scalar());
+}
+
+// Test the unit vector conversion for quaternions.
+void tst_QQuaternion::normalize_data()
+{
+    // Use the same test data as the length test.
+    length_data();
+}
+void tst_QQuaternion::normalize()
+{
+    QFETCH(qreal, x);
+    QFETCH(qreal, y);
+    QFETCH(qreal, z);
+    QFETCH(qreal, w);
+
+    QQuaternion v(w, x, y, z);
+    bool isNull = v.isNull();
+    v.normalize();
+    if (isNull)
+        QVERIFY(v.isNull());
+    else
+        QCOMPARE(v.length(), qreal(1.0f));
+}
+
+// Test the comparison operators for quaternions.
+void tst_QQuaternion::compare()
+{
+    QQuaternion v1(8, 1, 2, 4);
+    QQuaternion v2(8, 1, 2, 4);
+    QQuaternion v3(8, 3, 2, 4);
+    QQuaternion v4(8, 1, 3, 4);
+    QQuaternion v5(8, 1, 2, 3);
+    QQuaternion v6(3, 1, 2, 4);
+
+    QVERIFY(v1 == v2);
+    QVERIFY(v1 != v3);
+    QVERIFY(v1 != v4);
+    QVERIFY(v1 != v5);
+    QVERIFY(v1 != v6);
+}
+
+// Test addition for quaternions.
+void tst_QQuaternion::add_data()
+{
+    QTest::addColumn<qreal>("x1");
+    QTest::addColumn<qreal>("y1");
+    QTest::addColumn<qreal>("z1");
+    QTest::addColumn<qreal>("w1");
+    QTest::addColumn<qreal>("x2");
+    QTest::addColumn<qreal>("y2");
+    QTest::addColumn<qreal>("z2");
+    QTest::addColumn<qreal>("w2");
+    QTest::addColumn<qreal>("x3");
+    QTest::addColumn<qreal>("y3");
+    QTest::addColumn<qreal>("z3");
+    QTest::addColumn<qreal>("w3");
+
+    QTest::newRow("null")
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
+
+    QTest::newRow("xonly")
+        << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
+        << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
+        << (qreal)3.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
+
+    QTest::newRow("yonly")
+        << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f
+        << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f
+        << (qreal)0.0f << (qreal)3.0f << (qreal)0.0f << (qreal)0.0f;
+
+    QTest::newRow("zonly")
+        << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f
+        << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f
+        << (qreal)0.0f << (qreal)0.0f << (qreal)3.0f << (qreal)0.0f;
+
+    QTest::newRow("wonly")
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)3.0f;
+
+    QTest::newRow("all")
+        << (qreal)1.0f << (qreal)2.0f << (qreal)3.0f << (qreal)8.0f
+        << (qreal)4.0f << (qreal)5.0f << (qreal)-6.0f << (qreal)9.0f
+        << (qreal)5.0f << (qreal)7.0f << (qreal)-3.0f << (qreal)17.0f;
+}
+void tst_QQuaternion::add()
+{
+    QFETCH(qreal, x1);
+    QFETCH(qreal, y1);
+    QFETCH(qreal, z1);
+    QFETCH(qreal, w1);
+    QFETCH(qreal, x2);
+    QFETCH(qreal, y2);
+    QFETCH(qreal, z2);
+    QFETCH(qreal, w2);
+    QFETCH(qreal, x3);
+    QFETCH(qreal, y3);
+    QFETCH(qreal, z3);
+    QFETCH(qreal, w3);
+
+    QQuaternion v1(w1, x1, y1, z1);
+    QQuaternion v2(w2, x2, y2, z2);
+    QQuaternion v3(w3, x3, y3, z3);
+
+    QVERIFY((v1 + v2) == v3);
+
+    QQuaternion v4(v1);
+    v4 += v2;
+    QVERIFY(v4 == v3);
+
+    QCOMPARE(v4.x(), v1.x() + v2.x());
+    QCOMPARE(v4.y(), v1.y() + v2.y());
+    QCOMPARE(v4.z(), v1.z() + v2.z());
+    QCOMPARE(v4.scalar(), v1.scalar() + v2.scalar());
+}
+
+// Test subtraction for quaternions.
+void tst_QQuaternion::subtract_data()
+{
+    // Use the same test data as the add test.
+    add_data();
+}
+void tst_QQuaternion::subtract()
+{
+    QFETCH(qreal, x1);
+    QFETCH(qreal, y1);
+    QFETCH(qreal, z1);
+    QFETCH(qreal, w1);
+    QFETCH(qreal, x2);
+    QFETCH(qreal, y2);
+    QFETCH(qreal, z2);
+    QFETCH(qreal, w2);
+    QFETCH(qreal, x3);
+    QFETCH(qreal, y3);
+    QFETCH(qreal, z3);
+    QFETCH(qreal, w3);
+
+    QQuaternion v1(w1, x1, y1, z1);
+    QQuaternion v2(w2, x2, y2, z2);
+    QQuaternion v3(w3, x3, y3, z3);
+
+    QVERIFY((v3 - v1) == v2);
+    QVERIFY((v3 - v2) == v1);
+
+    QQuaternion v4(v3);
+    v4 -= v1;
+    QVERIFY(v4 == v2);
+
+    QCOMPARE(v4.x(), v3.x() - v1.x());
+    QCOMPARE(v4.y(), v3.y() - v1.y());
+    QCOMPARE(v4.z(), v3.z() - v1.z());
+    QCOMPARE(v4.scalar(), v3.scalar() - v1.scalar());
+
+    QQuaternion v5(v3);
+    v5 -= v2;
+    QVERIFY(v5 == v1);
+
+    QCOMPARE(v5.x(), v3.x() - v2.x());
+    QCOMPARE(v5.y(), v3.y() - v2.y());
+    QCOMPARE(v5.z(), v3.z() - v2.z());
+    QCOMPARE(v5.scalar(), v3.scalar() - v2.scalar());
+}
+
+// Test quaternion multiplication.
+void tst_QQuaternion::multiply_data()
+{
+    QTest::addColumn<qreal>("x1");
+    QTest::addColumn<qreal>("y1");
+    QTest::addColumn<qreal>("z1");
+    QTest::addColumn<qreal>("w1");
+    QTest::addColumn<qreal>("x2");
+    QTest::addColumn<qreal>("y2");
+    QTest::addColumn<qreal>("z2");
+    QTest::addColumn<qreal>("w2");
+
+    QTest::newRow("null")
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
+
+    QTest::newRow("unitvec")
+        << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f
+        << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)1.0f;
+
+    QTest::newRow("complex")
+        << (qreal)1.0f << (qreal)2.0f << (qreal)3.0f << (qreal)7.0f
+        << (qreal)4.0f << (qreal)5.0f << (qreal)6.0f << (qreal)8.0f;
+
+    for (qreal w = -1.0f; w <= 1.0f; w += 0.5f)
+        for (qreal x = -1.0f; x <= 1.0f; x += 0.5f)
+            for (qreal y = -1.0f; y <= 1.0f; y += 0.5f)
+                for (qreal z = -1.0f; z <= 1.0f; z += 0.5f) {
+                    QTest::newRow("exhaustive")
+                        << x << y << z << w
+                        << z << w << y << x;
+                }
+}
+void tst_QQuaternion::multiply()
+{
+    QFETCH(qreal, x1);
+    QFETCH(qreal, y1);
+    QFETCH(qreal, z1);
+    QFETCH(qreal, w1);
+    QFETCH(qreal, x2);
+    QFETCH(qreal, y2);
+    QFETCH(qreal, z2);
+    QFETCH(qreal, w2);
+
+    QQuaternion q1(w1, x1, y1, z1);
+    QQuaternion q2(w2, x2, y2, z2);
+
+    // Use the simple algorithm at:
+    // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q53
+    // to calculate the answer we expect to get.
+    QVector3D v1(x1, y1, z1);
+    QVector3D v2(x2, y2, z2);
+    qreal scalar = w1 * w2 - QVector3D::dotProduct(v1, v2);
+    QVector3D vector = w1 * v2 + w2 * v1 + QVector3D::crossProduct(v1, v2);
+    QQuaternion result(scalar, vector);
+
+    QVERIFY((q1 * q2) == result);
+}
+
+// Test multiplication by a factor for quaternions.
+void tst_QQuaternion::multiplyFactor_data()
+{
+    QTest::addColumn<qreal>("x1");
+    QTest::addColumn<qreal>("y1");
+    QTest::addColumn<qreal>("z1");
+    QTest::addColumn<qreal>("w1");
+    QTest::addColumn<qreal>("factor");
+    QTest::addColumn<qreal>("x2");
+    QTest::addColumn<qreal>("y2");
+    QTest::addColumn<qreal>("z2");
+    QTest::addColumn<qreal>("w2");
+
+    QTest::newRow("null")
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
+        << (qreal)100.0f
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
+
+    QTest::newRow("xonly")
+        << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f
+        << (qreal)2.0f
+        << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
+
+    QTest::newRow("yonly")
+        << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f
+        << (qreal)2.0f
+        << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f << (qreal)0.0f;
+
+    QTest::newRow("zonly")
+        << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f
+        << (qreal)2.0f
+        << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f << (qreal)0.0f;
+
+    QTest::newRow("wonly")
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f
+        << (qreal)2.0f
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)2.0f;
+
+    QTest::newRow("all")
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)4.0f
+        << (qreal)2.0f
+        << (qreal)2.0f << (qreal)4.0f << (qreal)-6.0f << (qreal)8.0f;
+
+    QTest::newRow("allzero")
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)4.0f
+        << (qreal)0.0f
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
+}
+void tst_QQuaternion::multiplyFactor()
+{
+    QFETCH(qreal, x1);
+    QFETCH(qreal, y1);
+    QFETCH(qreal, z1);
+    QFETCH(qreal, w1);
+    QFETCH(qreal, factor);
+    QFETCH(qreal, x2);
+    QFETCH(qreal, y2);
+    QFETCH(qreal, z2);
+    QFETCH(qreal, w2);
+
+    QQuaternion v1(w1, x1, y1, z1);
+    QQuaternion v2(w2, x2, y2, z2);
+
+    QVERIFY((v1 * factor) == v2);
+    QVERIFY((factor * v1) == v2);
+
+    QQuaternion v3(v1);
+    v3 *= factor;
+    QVERIFY(v3 == v2);
+
+    QCOMPARE(v3.x(), v1.x() * factor);
+    QCOMPARE(v3.y(), v1.y() * factor);
+    QCOMPARE(v3.z(), v1.z() * factor);
+    QCOMPARE(v3.scalar(), v1.scalar() * factor);
+}
+
+// Test division by a factor for quaternions.
+void tst_QQuaternion::divide_data()
+{
+    // Use the same test data as the multiply test.
+    multiplyFactor_data();
+}
+void tst_QQuaternion::divide()
+{
+    QFETCH(qreal, x1);
+    QFETCH(qreal, y1);
+    QFETCH(qreal, z1);
+    QFETCH(qreal, w1);
+    QFETCH(qreal, factor);
+    QFETCH(qreal, x2);
+    QFETCH(qreal, y2);
+    QFETCH(qreal, z2);
+    QFETCH(qreal, w2);
+
+    QQuaternion v1(w1, x1, y1, z1);
+    QQuaternion v2(w2, x2, y2, z2);
+
+    if (factor == (qreal)0.0f)
+        return;
+
+    QVERIFY((v2 / factor) == v1);
+
+    QQuaternion v3(v2);
+    v3 /= factor;
+    QVERIFY(v3 == v1);
+
+    QCOMPARE(v3.x(), v2.x() / factor);
+    QCOMPARE(v3.y(), v2.y() / factor);
+    QCOMPARE(v3.z(), v2.z() / factor);
+    QCOMPARE(v3.scalar(), v2.scalar() / factor);
+}
+
+// Test negation for quaternions.
+void tst_QQuaternion::negate_data()
+{
+    // Use the same test data as the add test.
+    add_data();
+}
+void tst_QQuaternion::negate()
+{
+    QFETCH(qreal, x1);
+    QFETCH(qreal, y1);
+    QFETCH(qreal, z1);
+    QFETCH(qreal, w1);
+
+    QQuaternion v1(w1, x1, y1, z1);
+    QQuaternion v2(-w1, -x1, -y1, -z1);
+
+    QVERIFY(-v1 == v2);
+}
+
+// Test quaternion conjugate calculations.
+void tst_QQuaternion::conjugate_data()
+{
+    // Use the same test data as the add test.
+    add_data();
+}
+void tst_QQuaternion::conjugate()
+{
+    QFETCH(qreal, x1);
+    QFETCH(qreal, y1);
+    QFETCH(qreal, z1);
+    QFETCH(qreal, w1);
+
+    QQuaternion v1(w1, x1, y1, z1);
+    QQuaternion v2(w1, -x1, -y1, -z1);
+
+    QVERIFY(v1.conjugate() == v2);
+}
+
+// Test quaternion creation from an axis and an angle.
+void tst_QQuaternion::fromAxisAndAngle_data()
+{
+    QTest::addColumn<qreal>("x1");
+    QTest::addColumn<qreal>("y1");
+    QTest::addColumn<qreal>("z1");
+    QTest::addColumn<qreal>("angle");
+
+    QTest::newRow("null")
+        << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f << (qreal)0.0f;
+
+    QTest::newRow("xonly")
+        << (qreal)1.0f << (qreal)0.0f << (qreal)0.0f << (qreal)90.0f;
+
+    QTest::newRow("yonly")
+        << (qreal)0.0f << (qreal)1.0f << (qreal)0.0f << (qreal)180.0f;
+
+    QTest::newRow("zonly")
+        << (qreal)0.0f << (qreal)0.0f << (qreal)1.0f << (qreal)270.0f;
+
+    QTest::newRow("complex")
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)45.0f;
+}
+void tst_QQuaternion::fromAxisAndAngle()
+{
+    QFETCH(qreal, x1);
+    QFETCH(qreal, y1);
+    QFETCH(qreal, z1);
+    QFETCH(qreal, angle);
+
+    // Use a straight-forward implementation of the algorithm at:
+    // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
+    // to calculate the answer we expect to get.
+    QVector3D vector = QVector3D(x1, y1, z1).normalized();
+    qreal sin_a = qSin((angle * M_PI / 180.0) / 2.0);
+    qreal cos_a = qCos((angle * M_PI / 180.0) / 2.0);
+    QQuaternion result((qreal)cos_a,
+                       (qreal)(vector.x() * sin_a),
+                       (qreal)(vector.y() * sin_a),
+                       (qreal)(vector.z() * sin_a));
+    result = result.normalized();
+
+    QQuaternion answer = QQuaternion::fromAxisAndAngle(QVector3D(x1, y1, z1), angle);
+    QVERIFY(fuzzyCompare(answer.x(), result.x()));
+    QVERIFY(fuzzyCompare(answer.y(), result.y()));
+    QVERIFY(fuzzyCompare(answer.z(), result.z()));
+    QVERIFY(fuzzyCompare(answer.scalar(), result.scalar()));
+
+    answer = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle);
+    QVERIFY(fuzzyCompare(answer.x(), result.x()));
+    QVERIFY(fuzzyCompare(answer.y(), result.y()));
+    QVERIFY(fuzzyCompare(answer.z(), result.z()));
+    QVERIFY(fuzzyCompare(answer.scalar(), result.scalar()));
+}
+
+// Test spherical interpolation of quaternions.
+void tst_QQuaternion::slerp_data()
+{
+    QTest::addColumn<qreal>("x1");
+    QTest::addColumn<qreal>("y1");
+    QTest::addColumn<qreal>("z1");
+    QTest::addColumn<qreal>("angle1");
+    QTest::addColumn<qreal>("x2");
+    QTest::addColumn<qreal>("y2");
+    QTest::addColumn<qreal>("z2");
+    QTest::addColumn<qreal>("angle2");
+    QTest::addColumn<qreal>("t");
+    QTest::addColumn<qreal>("x3");
+    QTest::addColumn<qreal>("y3");
+    QTest::addColumn<qreal>("z3");
+    QTest::addColumn<qreal>("angle3");
+
+    QTest::newRow("first")
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f
+        << (qreal)0.0f
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f;
+    QTest::newRow("first2")
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f
+        << (qreal)-0.5f
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f;
+    QTest::newRow("second")
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f
+        << (qreal)1.0f
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f;
+    QTest::newRow("second2")
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f
+        << (qreal)1.5f
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f;
+    QTest::newRow("middle")
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)90.0f
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)180.0f
+        << (qreal)0.5f
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)135.0f;
+    QTest::newRow("wide angle")
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)0.0f
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)270.0f
+        << (qreal)0.5f
+        << (qreal)1.0f << (qreal)2.0f << (qreal)-3.0f << (qreal)-45.0f;
+}
+void tst_QQuaternion::slerp()
+{
+    QFETCH(qreal, x1);
+    QFETCH(qreal, y1);
+    QFETCH(qreal, z1);
+    QFETCH(qreal, angle1);
+    QFETCH(qreal, x2);
+    QFETCH(qreal, y2);
+    QFETCH(qreal, z2);
+    QFETCH(qreal, angle2);
+    QFETCH(qreal, t);
+    QFETCH(qreal, x3);
+    QFETCH(qreal, y3);
+    QFETCH(qreal, z3);
+    QFETCH(qreal, angle3);
+
+    QQuaternion q1 = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle1);
+    QQuaternion q2 = QQuaternion::fromAxisAndAngle(x2, y2, z2, angle2);
+    QQuaternion q3 = QQuaternion::fromAxisAndAngle(x3, y3, z3, angle3);
+
+    QQuaternion result = QQuaternion::slerp(q1, q2, t);
+
+    QVERIFY(fuzzyCompare(result.x(), q3.x()));
+    QVERIFY(fuzzyCompare(result.y(), q3.y()));
+    QVERIFY(fuzzyCompare(result.z(), q3.z()));
+    QVERIFY(fuzzyCompare(result.scalar(), q3.scalar()));
+}
+
+// Test normalized linear interpolation of quaternions.
+void tst_QQuaternion::nlerp_data()
+{
+    slerp_data();
+}
+void tst_QQuaternion::nlerp()
+{
+    QFETCH(qreal, x1);
+    QFETCH(qreal, y1);
+    QFETCH(qreal, z1);
+    QFETCH(qreal, angle1);
+    QFETCH(qreal, x2);
+    QFETCH(qreal, y2);
+    QFETCH(qreal, z2);
+    QFETCH(qreal, angle2);
+    QFETCH(qreal, t);
+
+    QQuaternion q1 = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle1);
+    QQuaternion q2 = QQuaternion::fromAxisAndAngle(x2, y2, z2, angle2);
+
+    QQuaternion result = QQuaternion::nlerp(q1, q2, t);
+
+    qreal resultx, resulty, resultz, resultscalar;
+    if (t <= 0.0f) {
+        resultx = q1.x();
+        resulty = q1.y();
+        resultz = q1.z();
+        resultscalar = q1.scalar();
+    } else if (t >= 1.0f) {
+        resultx = q2.x();
+        resulty = q2.y();
+        resultz = q2.z();
+        resultscalar = q2.scalar();
+    } else if (qAbs(angle1 - angle2) <= 180.f) {
+        resultx = q1.x() * (1 - t) + q2.x() * t;
+        resulty = q1.y() * (1 - t) + q2.y() * t;
+        resultz = q1.z() * (1 - t) + q2.z() * t;
+        resultscalar = q1.scalar() * (1 - t) + q2.scalar() * t;
+    } else {
+        // Angle greater than 180 degrees: negate q2.
+        resultx = q1.x() * (1 - t) - q2.x() * t;
+        resulty = q1.y() * (1 - t) - q2.y() * t;
+        resultz = q1.z() * (1 - t) - q2.z() * t;
+        resultscalar = q1.scalar() * (1 - t) - q2.scalar() * t;
+    }
+
+    QQuaternion q3 = QQuaternion(resultscalar, resultx, resulty, resultz).normalized();
+
+    QVERIFY(fuzzyCompare(result.x(), q3.x()));
+    QVERIFY(fuzzyCompare(result.y(), q3.y()));
+    QVERIFY(fuzzyCompare(result.z(), q3.z()));
+    QVERIFY(fuzzyCompare(result.scalar(), q3.scalar()));
+}
+
+class tst_QQuaternionProperties : public QObject
+{
+    Q_OBJECT
+    Q_PROPERTY(QQuaternion quaternion READ quaternion WRITE setQuaternion)
+public:
+    tst_QQuaternionProperties(QObject *parent = 0) : QObject(parent) {}
+
+    QQuaternion quaternion() const { return q; }
+    void setQuaternion(const QQuaternion& value) { q = value; }
+
+private:
+    QQuaternion q;
+};
+
+// Test getting and setting quaternion properties via the metaobject system.
+void tst_QQuaternion::properties()
+{
+    tst_QQuaternionProperties obj;
+
+    obj.setQuaternion(QQuaternion(6.0f, 7.0f, 8.0f, 9.0f));
+
+    QQuaternion q = qVariantValue<QQuaternion>(obj.property("quaternion"));
+    QCOMPARE(q.scalar(), (qreal)6.0f);
+    QCOMPARE(q.x(), (qreal)7.0f);
+    QCOMPARE(q.y(), (qreal)8.0f);
+    QCOMPARE(q.z(), (qreal)9.0f);
+
+    obj.setProperty("quaternion",
+                    qVariantFromValue(QQuaternion(-6.0f, -7.0f, -8.0f, -9.0f)));
+
+    q = qVariantValue<QQuaternion>(obj.property("quaternion"));
+    QCOMPARE(q.scalar(), (qreal)-6.0f);
+    QCOMPARE(q.x(), (qreal)-7.0f);
+    QCOMPARE(q.y(), (qreal)-8.0f);
+    QCOMPARE(q.z(), (qreal)-9.0f);
+}
+
+void tst_QQuaternion::metaTypes()
+{
+    QVERIFY(QMetaType::type("QQuaternion") == QMetaType::QQuaternion);
+
+    QCOMPARE(QByteArray(QMetaType::typeName(QMetaType::QQuaternion)),
+             QByteArray("QQuaternion"));
+
+    QVERIFY(QMetaType::isRegistered(QMetaType::QQuaternion));
+
+    QVERIFY(qMetaTypeId<QQuaternion>() == QMetaType::QQuaternion);
+}
+
+QTEST_APPLESS_MAIN(tst_QQuaternion)
+
+#include "tst_qquaternion.moc"