tools/linguist/shared/simtexth.cpp
changeset 0 1918ee327afb
child 4 3b1da2848fc7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/tools/linguist/shared/simtexth.cpp	Mon Jan 11 14:00:40 2010 +0000
@@ -0,0 +1,277 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** All rights reserved.
+** Contact: Nokia Corporation (qt-info@nokia.com)
+**
+** This file is part of the Qt Linguist of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the Technology Preview License Agreement accompanying
+** this package.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file.  Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain additional
+** rights.  These rights are described in the Nokia Qt LGPL Exception
+** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
+**
+** If you have questions regarding the use of this file, please contact
+** Nokia at qt-info@nokia.com.
+**
+**
+**
+**
+**
+**
+**
+**
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+
+#include "simtexth.h"
+#include "translator.h"
+
+#include <QtCore/QByteArray>
+#include <QtCore/QString>
+#include <QtCore/QList>
+
+
+QT_BEGIN_NAMESPACE
+
+typedef QList<TranslatorMessage> TML;
+
+/*
+  How similar are two texts?  The approach used here relies on co-occurrence
+  matrices and is very efficient.
+
+  Let's see with an example: how similar are "here" and "hither"?  The
+  co-occurrence matrix M for "here" is M[h,e] = 1, M[e,r] = 1, M[r,e] = 1, and 0
+  elsewhere; the matrix N for "hither" is N[h,i] = 1, N[i,t] = 1, ...,
+  N[h,e] = 1, N[e,r] = 1, and 0 elsewhere.  The union U of both matrices is the
+  matrix U[i,j] = max { M[i,j], N[i,j] }, and the intersection V is
+  V[i,j] = min { M[i,j], N[i,j] }.  The score for a pair of texts is
+
+      score = (sum of V[i,j] over all i, j) / (sum of U[i,j] over all i, j),
+
+  a formula suggested by Arnt Gulbrandsen.  Here we have
+
+      score = 2 / 6,
+
+  or one third.
+
+  The implementation differs from this in a few details.  Most importantly,
+  repetitions are ignored; for input "xxx", M[x,x] equals 1, not 2.
+*/
+
+/*
+  Every character is assigned to one of 20 buckets so that the co-occurrence
+  matrix requires only 20 * 20 = 400 bits, not 256 * 256 = 65536 bits or even
+  more if we want the whole Unicode.  Which character falls in which bucket is
+  arbitrary.
+
+  The second half of the table is a replica of the first half, because of
+  laziness.
+*/
+static const int indexOf[256] = {
+    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
+    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
+//      !   "   #   $   %   &   '   (   )   *   +   ,   -   .   /
+    0,  2,  6,  7,  10, 12, 15, 19, 2,  6,  7,  10, 12, 15, 19, 0,
+//  0   1   2   3   4   5   6   7   8   9   :   ;   <   =   >   ?
+    1,  3,  4,  5,  8,  9,  11, 13, 14, 16, 2,  6,  7,  10, 12, 15,
+//  @   A   B   C   D   E   F   G   H   I   J   K   L   M   N   O
+    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  6,  10, 11, 12, 13, 14,
+//  P   Q   R   S   T   U   V   W   X   Y   Z   [   \   ]   ^   _
+    15, 12, 16, 17, 18, 19, 2,  10, 15, 7,  19, 2,  6,  7,  10, 0,
+//  `   a   b   c   d   e   f   g   h   i   j   k   l   m   n   o
+    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  6,  10, 11, 12, 13, 14,
+//  p   q   r   s   t   u   v   w   x   y   z   {   |   }   ~
+    15, 12, 16, 17, 18, 19, 2,  10, 15, 7,  19, 2,  6,  7,  10, 0,
+
+    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
+    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
+    0,  2,  6,  7,  10, 12, 15, 19, 2,  6,  7,  10, 12, 15, 19, 0,
+    1,  3,  4,  5,  8,  9,  11, 13, 14, 16, 2,  6,  7,  10, 12, 15,
+    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  6,  10, 11, 12, 13, 14,
+    15, 12, 16, 17, 18, 19, 2,  10, 15, 7,  19, 2,  6,  7,  10, 0,
+    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  6,  10, 11, 12, 13, 14,
+    15, 12, 16, 17, 18, 19, 2,  10, 15, 7,  19, 2,  6,  7,  10, 0
+};
+
+/*
+  The entry bitCount[i] (for i between 0 and 255) is the number of bits used to
+  represent i in binary.
+*/
+static const int bitCount[256] = {
+    0,  1,  1,  2,  1,  2,  2,  3,  1,  2,  2,  3,  2,  3,  3,  4,
+    1,  2,  2,  3,  2,  3,  3,  4,  2,  3,  3,  4,  3,  4,  4,  5,
+    1,  2,  2,  3,  2,  3,  3,  4,  2,  3,  3,  4,  3,  4,  4,  5,
+    2,  3,  3,  4,  3,  4,  4,  5,  3,  4,  4,  5,  4,  5,  5,  6,
+    1,  2,  2,  3,  2,  3,  3,  4,  2,  3,  3,  4,  3,  4,  4,  5,
+    2,  3,  3,  4,  3,  4,  4,  5,  3,  4,  4,  5,  4,  5,  5,  6,
+    2,  3,  3,  4,  3,  4,  4,  5,  3,  4,  4,  5,  4,  5,  5,  6,
+    3,  4,  4,  5,  4,  5,  5,  6,  4,  5,  5,  6,  5,  6,  6,  7,
+    1,  2,  2,  3,  2,  3,  3,  4,  2,  3,  3,  4,  3,  4,  4,  5,
+    2,  3,  3,  4,  3,  4,  4,  5,  3,  4,  4,  5,  4,  5,  5,  6,
+    2,  3,  3,  4,  3,  4,  4,  5,  3,  4,  4,  5,  4,  5,  5,  6,
+    3,  4,  4,  5,  4,  5,  5,  6,  4,  5,  5,  6,  5,  6,  6,  7,
+    2,  3,  3,  4,  3,  4,  4,  5,  3,  4,  4,  5,  4,  5,  5,  6,
+    3,  4,  4,  5,  4,  5,  5,  6,  4,  5,  5,  6,  5,  6,  6,  7,
+    3,  4,  4,  5,  4,  5,  5,  6,  4,  5,  5,  6,  5,  6,  6,  7,
+    4,  5,  5,  6,  5,  6,  6,  7,  5,  6,  6,  7,  6,  7,  7,  8
+};
+
+struct CoMatrix
+{
+    /*
+      The matrix has 20 * 20 = 400 entries.  This requires 50 bytes, or 13
+      words.  Some operations are performed on words for more efficiency.
+    */
+    union {
+        quint8 b[52];
+        quint32 w[13];
+    };
+
+    CoMatrix() { memset( b, 0, 52 ); }
+
+    CoMatrix(const QString &str)
+    {
+        QByteArray ba = str.toUtf8();
+        const char *text = ba.constData();
+        char c = '\0', d;
+        memset( b, 0, 52 );
+        /*
+          The Knuth books are not in the office only for show; they help make
+          loops 30% faster and 20% as readable.
+        */
+        while ( (d = *text) != '\0' ) {
+            setCoOccurence( c, d );
+            if ( (c = *++text) != '\0' ) {
+                setCoOccurence( d, c );
+                text++;
+            }
+        }
+    }
+
+    void setCoOccurence( char c, char d ) {
+        int k = indexOf[(uchar) c] + 20 * indexOf[(uchar) d];
+        b[k >> 3] |= (1 << (k & 0x7));
+    }
+
+    int worth() const {
+        int w = 0;
+        for ( int i = 0; i < 50; i++ )
+            w += bitCount[b[i]];
+        return w;
+    }
+};
+
+static inline CoMatrix reunion(const CoMatrix &m, const CoMatrix &n)
+{
+    CoMatrix p;
+    for (int i = 0; i < 13; ++i)
+        p.w[i] = m.w[i] | n.w[i];
+    return p;
+}
+
+static inline CoMatrix intersection(const CoMatrix &m, const CoMatrix &n)
+{
+    CoMatrix p;
+    for (int i = 0; i < 13; ++i)
+        p.w[i] = m.w[i] & n.w[i];
+    return p;
+}
+
+StringSimilarityMatcher::StringSimilarityMatcher(const QString &stringToMatch)
+{
+    m_cm = new CoMatrix(stringToMatch);
+    m_length = stringToMatch.length();
+}
+
+int StringSimilarityMatcher::getSimilarityScore(const QString &strCandidate)
+{
+    CoMatrix cmTarget(strCandidate);
+    int delta = qAbs(m_length - strCandidate.size());
+    int score = ( (intersection(*m_cm, cmTarget).worth() + 1) << 10 ) /
+        ( reunion(*m_cm, cmTarget).worth() + (delta << 1) + 1 );
+    return score;
+}
+
+StringSimilarityMatcher::~StringSimilarityMatcher()
+{
+    delete m_cm;
+}
+
+/**
+ * Checks how similar two strings are.
+ * The return value is the score, and a higher score is more similar
+ * than one with a low score.
+ * Linguist considers a score over 190 to be a good match.
+ * \sa StringSimilarityMatcher
+ */
+int getSimilarityScore(const QString &str1, const QString &str2)
+{
+    CoMatrix cmTarget(str2);
+    CoMatrix cm(str1);
+    int delta = qAbs(str1.size() - str2.size());
+
+    int score = ( (intersection(cm, cmTarget).worth() + 1) << 10 )
+        / ( reunion(cm, cmTarget).worth() + (delta << 1) + 1 );
+
+    return score;
+}
+
+CandidateList similarTextHeuristicCandidates(const Translator *tor,
+    const QString &text, int maxCandidates)
+{
+    QList<int> scores;
+    CandidateList candidates;
+
+    TML all = tor->translatedMessages();
+
+    foreach (const TranslatorMessage &mtm, all) {
+        if (mtm.type() == TranslatorMessage::Unfinished
+            || mtm.translation().isEmpty())
+            continue;
+
+        QString s = mtm.sourceText();
+        int score = getSimilarityScore(s, text);
+
+        if (candidates.size() == maxCandidates && score > scores[maxCandidates - 1] )
+            candidates.removeLast();
+
+        if (candidates.size() < maxCandidates && score >= textSimilarityThreshold) {
+            Candidate cand( s, mtm.translation() );
+
+            int i;
+            for (i = 0; i < candidates.size(); i++) {
+                if (score >= scores.at(i)) {
+                    if (score == scores.at(i)) {
+                        if (candidates.at(i) == cand)
+                            goto continue_outer_loop;
+                    } else {
+                        break;
+                    }
+                }
+            }
+            scores.insert(i, score);
+            candidates.insert(i, cand);
+        }
+        continue_outer_loop:
+        ;
+    }
+    return candidates;
+}
+
+QT_END_NAMESPACE