src/opengl/qpaintengine_opengl.cpp
author Alex Gilkes <alex.gilkes@nokia.com>
Mon, 11 Jan 2010 14:00:40 +0000
changeset 0 1918ee327afb
child 3 41300fa6a67c
permissions -rw-r--r--
Revision: 200952

/****************************************************************************
**
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtOpenGL module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file.  Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights.  These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include <qdebug.h>
#include <private/qfontengine_p.h>
#include <qmath.h>
#include <private/qmath_p.h>
#include <private/qdrawhelper_p.h>
#include <private/qpaintengine_p.h>
#include "qapplication.h"
#include "qbrush.h"
#include "qgl.h"
#include <private/qgl_p.h>
#include <private/qglpaintdevice_p.h>
#include <private/qpainter_p.h>
#include "qmap.h"
#include <private/qpaintengine_opengl_p.h>
#include <private/qdatabuffer_p.h>
#include "qpen.h"
#include "qvarlengtharray.h"
#include <private/qpainter_p.h>
#include <private/qglpixelbuffer_p.h>
#include <private/qbezier_p.h>
#include <qglframebufferobject.h>

#include "private/qtessellator_p.h"

#include "util/fragmentprograms_p.h"

#ifdef Q_WS_QWS
#include "private/qglwindowsurface_qws_p.h"
#include "qwsmanager_qws.h"
#include "private/qwsmanager_p.h"
#endif

#ifdef QT_OPENGL_ES_1_CL
#include "qgl_cl_p.h"
#endif

#define QGL_FUNC_CONTEXT QGLContext *ctx = const_cast<QGLContext *>(device->context());

#include <stdlib.h>
#include "qpaintengine_opengl_p.h"

QT_BEGIN_NAMESPACE

extern QImage qt_imageForBrush(int brushStyle, bool invert); //in qbrush.cpp
#ifdef QT_MAC_USE_COCOA
extern void *qt_current_nsopengl_context(); // qgl_mac.mm
#endif

#define QREAL_MAX 9e100
#define QREAL_MIN -9e100

extern int qt_next_power_of_two(int v);

#define DISABLE_DEBUG_ONCE

//#define DEBUG_DISPLAY_MASK_TEXTURE

#ifdef DISABLE_DEBUG_ONCE
#define DEBUG_OVERRIDE(state) ;
#define DEBUG_ONCE_STR(str) ;
#define DEBUG_ONCE if (0)
#else
static int DEBUG_OVERRIDE_FLAG = 0;
static bool DEBUG_TEMP_FLAG;
#define DEBUG_OVERRIDE(state) { state ? ++DEBUG_OVERRIDE_FLAG : --DEBUG_OVERRIDE_FLAG; }
#define DEBUG_ONCE if ((DEBUG_TEMP_FLAG = DEBUG_OVERRIDE_FLAG) && 0) ; else for (static int DEBUG_ONCE_FLAG = false; !DEBUG_ONCE_FLAG || DEBUG_TEMP_FLAG; DEBUG_ONCE_FLAG = true, DEBUG_TEMP_FLAG = false)
#define DEBUG_ONCE_STR(str) DEBUG_ONCE qDebug() << (str);
#endif

static inline void qt_glColor4ubv(unsigned char *col)
{
#ifdef QT_OPENGL_ES
        glColor4f(col[0]/255.0, col[1]/255.0, col[2]/255.0, col[3]/255.0);
#else
        glColor4ubv(col);
#endif
}

struct QT_PointF {
    qreal x;
    qreal y;
};

struct QGLTrapezoid
{
    QGLTrapezoid()
    {}

    QGLTrapezoid(qreal top_, qreal bottom_, qreal topLeftX_, qreal topRightX_, qreal bottomLeftX_, qreal bottomRightX_)
        : top(top_),
          bottom(bottom_),
          topLeftX(topLeftX_),
          topRightX(topRightX_),
          bottomLeftX(bottomLeftX_),
          bottomRightX(bottomRightX_)
    {}

    const QGLTrapezoid translated(const QPointF &delta) const;

    qreal top;
    qreal bottom;
    qreal topLeftX;
    qreal topRightX;
    qreal bottomLeftX;
    qreal bottomRightX;
};

const QGLTrapezoid QGLTrapezoid::translated(const QPointF &delta) const
{
    QGLTrapezoid trap(*this);
    trap.top += delta.y();
    trap.bottom += delta.y();
    trap.topLeftX += delta.x();
    trap.topRightX += delta.x();
    trap.bottomLeftX += delta.x();
    trap.bottomRightX += delta.x();
    return trap;
}


class QOpenGLImmediateModeTessellator;
class QGLMaskGenerator;
class QGLOffscreen;

class QGLMaskTextureCache
{
public:
    void setOffscreenSize(const QSize &offscreenSize);
    void setDrawableSize(const QSize &drawableSize);

    struct CacheLocation {
        QRect rect;
        int channel;

        QRect screen_rect;
    };

    struct CacheInfo {
        inline CacheInfo(const QPainterPath &p, const QTransform &m, qreal w = -1) :
            path(p), matrix(m), stroke_width(w), age(0) {}

        QPainterPath path;
        QTransform matrix;
        qreal stroke_width;

        CacheLocation loc;

        int age;
    };

    struct QuadTreeNode {
        quint64 key;

        int largest_available_block;
        int largest_used_block;
    };

    CacheLocation getMask(QGLMaskGenerator &maskGenerator, QOpenGLPaintEnginePrivate *engine);

    typedef QMultiHash<quint64, CacheInfo> QGLTextureCacheHash;

    enum {block_size = 64};

    // throw out keys that are too old
    void maintainCache();
    void clearCache();

private:
    quint64 hash(const QPainterPath &p, const QTransform &m, qreal w);

    void createMask(quint64 key, CacheInfo &info, QGLMaskGenerator &maskGenerator);

    QSize offscreenSize;
    QSize drawableSize;

    QGLTextureCacheHash cache;

    QVector<QuadTreeNode> occupied_quadtree[4];

    void quadtreeUpdate(int channel, int node, int current_block_size);
    void quadtreeAllocate(quint64 key, const QSize &size, QRect *rect, int *channel);

    bool quadtreeFindAvailableLocation(const QSize &size, QRect *rect, int *channel);
    void quadtreeFindExistingLocation(const QSize &size, QRect *rect, int *channel);

    void quadtreeInsert(int channel, quint64 key, const QRect &rect, int node = 0);
    void quadtreeClear(int channel, const QRect &rect, int node = 0);

    int quadtreeBlocksize(int node);
    QPoint quadtreeLocation(int node);

    QOpenGLPaintEnginePrivate *engine;
};

Q_GLOBAL_STATIC(QGLMaskTextureCache, qt_mask_texture_cache)

class QGLOffscreen : public QObject
{
    Q_OBJECT
public:
    QGLOffscreen()
        : QObject(),
          offscreen(0),
          ctx(0),
          mask_dim(0),
          activated(false),
          bound(false)
    {
        connect(QGLSignalProxy::instance(),
                SIGNAL(aboutToDestroyContext(const QGLContext *)),
                SLOT(cleanupGLContextRefs(const QGLContext *)));
    }

    inline void setDevice(QPaintDevice *pdev);

    void begin();
    void end();

    inline void bind();
    inline void release();

    inline bool isBound() const;

    inline QSize drawableSize() const;
    inline QSize offscreenSize() const;

    inline GLuint offscreenTexture() const;

    QGLContext *context() const;

    static bool isSupported();

    inline void initialize();

    inline bool isValid() const;

public Q_SLOTS:
    void cleanupGLContextRefs(const QGLContext *context) {
        if (context == ctx) {
            delete offscreen;
            ctx = 0;
            offscreen = 0;
            mask_dim = 0;
        }
    }

private:
    QGLPaintDevice* device;

    QGLFramebufferObject *offscreen;
    QGLContext *ctx;

    // dimensions of mask texture (square)
    int mask_dim;
    QSize last_failed_size;

    bool drawable_fbo;

    bool activated;
    bool initialized;

    bool bound;
};

inline void QGLOffscreen::setDevice(QPaintDevice *pdev)
{
    if (pdev->devType() == QInternal::OpenGL)
        device = static_cast<QGLPaintDevice*>(pdev);
    else
        device = QGLPaintDevice::getDevice(pdev);

    if (!device)
        return;

    drawable_fbo = (pdev->devType() == QInternal::FramebufferObject);
}

void QGLOffscreen::begin()
{
#ifndef QT_OPENGL_ES
    initialized = false;

    if (activated)
        initialize();
#endif
}

void QGLOffscreen::initialize()
{
#ifndef QT_OPENGL_ES
    if (initialized)
        return;

    activated = true;
    initialized = true;

    int dim = qMax(2048, static_cast<int>(qt_next_power_of_two(qMax(device->size().width(), device->size().height()))));

    bool shared_context = QGLContext::areSharing(device->context(), ctx);
    bool would_fail = last_failed_size.isValid() &&
                      (device->size().width() >= last_failed_size.width() ||
                       device->size().height() >= last_failed_size.height());
    bool needs_refresh = dim > mask_dim || !shared_context;

    if (needs_refresh && !would_fail) {
        DEBUG_ONCE qDebug() << "QGLOffscreen::initialize(): creating offscreen of size" << dim;
        delete offscreen;
        offscreen = new QGLFramebufferObject(dim, dim, GLenum(GL_TEXTURE_2D));
        mask_dim = dim;

        if (!offscreen->isValid()) {
            qWarning("QGLOffscreen: Invalid offscreen fbo (size %dx%d)", mask_dim, mask_dim);
            delete offscreen;
            offscreen = 0;
            mask_dim = 0;
            last_failed_size = device->size();
        }
    }

    qt_mask_texture_cache()->setOffscreenSize(offscreenSize());
    qt_mask_texture_cache()->setDrawableSize(device->size());
    ctx = device->context();
#endif
}

inline bool QGLOffscreen::isValid() const
{
    return offscreen;
}

void QGLOffscreen::end()
{
    if (bound)
        release();
#ifdef DEBUG_DISPLAY_MASK_TEXTURE
    glReadBuffer(GL_BACK);
    glDrawBuffer(GL_BACK);
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    glColor4f(1, 1, 1, 1);
    glDisable(GL_DEPTH_TEST);
    glBlendFunc(GL_ONE, GL_ZERO);
    glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
    glEnable(GL_TEXTURE_2D);
    glBindTexture(GL_TEXTURE_2D, offscreen->texture());

    glBegin(GL_QUADS);
    glTexCoord2f(0.0, 1.0); glVertex2f(0.0, 0.0);
    glTexCoord2f(1.0, 1.0); glVertex2f(drawable.size().width(), 0.0);
    glTexCoord2f(1.0, 0.0); glVertex2f(drawable.size().width(), drawable.size().height());
    glTexCoord2f(0.0, 0.0); glVertex2f(0.0, drawable.size().height());
    glEnd();

    glBindTexture(GL_TEXTURE_2D, 0);
    glDisable(GL_TEXTURE_2D);
#endif
}

inline void QGLOffscreen::bind()
{
#ifndef QT_OPENGL_ES
    Q_ASSERT(initialized);

    if (!offscreen || bound)
        return;

    DEBUG_ONCE qDebug() << "QGLOffscreen: binding offscreen";
    offscreen->bind();

    bound = true;

    glViewport(0, 0, offscreenSize().width(), offscreenSize().height());

    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    glOrtho(0, offscreenSize().width(), offscreenSize().height(), 0, -999999, 999999);
    glMatrixMode(GL_MODELVIEW);
#endif
}

inline void QGLOffscreen::release()
{
#ifndef QT_OPENGL_ES
    if (!offscreen || !bound)
        return;

#ifdef Q_WS_X11
    // workaround for bug in nvidia driver versions 9x.xx
    if (QGLExtensions::nvidiaFboNeedsFinish)
        glFinish();
#endif

    DEBUG_ONCE_STR("QGLOffscreen: releasing offscreen");

    if (drawable_fbo)
        device->ensureActiveTarget(); //###
    else
        offscreen->release();

    QSize sz(device->size());
    glViewport(0, 0, sz.width(), sz.height());

    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
#ifndef QT_OPENGL_ES
    glOrtho(0, sz.width(), sz.height(), 0, -999999, 999999);
#else
    glOrthof(0, sz.width(), sz.height(), 0, -999999, 999999);
#endif
    glMatrixMode(GL_MODELVIEW);

    bound = false;
#endif
}

inline bool QGLOffscreen::isBound() const
{
    return bound;
}

inline QSize QGLOffscreen::drawableSize() const
{
    return device->size();
}

inline QSize QGLOffscreen::offscreenSize() const
{
    return QSize(mask_dim, mask_dim);
}

inline GLuint QGLOffscreen::offscreenTexture() const
{
    return offscreen ? offscreen->texture() : 0;
}

inline QGLContext *QGLOffscreen::context() const
{
    return ctx;
}

bool QGLOffscreen::isSupported()
{
    return (QGLExtensions::glExtensions & QGLExtensions::FramebufferObject); // for fbo
}

struct QDrawQueueItem
{
    QDrawQueueItem(qreal _opacity,
                   QBrush _brush,
                   const QPointF &_brush_origion,
                   QPainter::CompositionMode _composition_mode,
                   const QTransform &_matrix,
                   QGLMaskTextureCache::CacheLocation _location)
        : opacity(_opacity),
          brush(_brush),
          brush_origin(_brush_origion),
          composition_mode(_composition_mode),
          matrix(_matrix),
          location(_location) {}
    qreal opacity;
    QBrush brush;
    QPointF brush_origin;
    QPainter::CompositionMode composition_mode;

    QTransform matrix;
    QGLMaskTextureCache::CacheLocation location;
};

////////// GL program cache: start

typedef struct {
    int brush; // brush index or mask index
    int mode;  // composition mode index
    bool mask;
    GLuint program;
} GLProgram;

typedef QMultiHash<const QGLContext *, GLProgram> QGLProgramHash;

class QGLProgramCache : public QObject
{
    Q_OBJECT
public:
    QGLProgramCache() {
        // we have to know when a context is deleted so we can free
        // any program handles it holds
        connect(QGLSignalProxy::instance(), SIGNAL(aboutToDestroyContext(const QGLContext *)),
                SLOT(cleanupPrograms(const QGLContext *)));

    }
    ~QGLProgramCache() {
        // at this point the cache should contain 0 elements
        // Q_ASSERT(program.size() == 0);
    }

    GLuint getProgram(const QGLContext *ctx, int brush, int mode, bool mask_mode)
    {
        // 1. see if we have an entry for the ctx context
        QList<GLProgram> progs = programs.values(ctx);
        for (int i=0; i<progs.size(); ++i) {
            const GLProgram &prg = progs.at(i);
            if (mask_mode) {
                if (prg.mask && prg.brush == brush)
                    return prg.program;
            } else {
                if (!prg.mask && prg.brush == brush && prg.mode == mode)
                    return prg.program;
            }
        }

        // 2. try to find a match in a shared context, and update the
        // hash with the entry found
        QList<const QGLContext *> contexts = programs.uniqueKeys();
        for (int i=0; i<contexts.size(); ++i) {
            const QGLContext *cx = contexts.at(i);
            if (cx != ctx && QGLContext::areSharing(cx, ctx)) {
                QList<GLProgram> progs = programs.values(cx);
                for (int k=0; k<progs.size(); ++k) {
                    const GLProgram &prg = progs.at(k);
                    if (mask_mode) {
                        if (prg.mask && prg.brush == brush) {
                            programs.insert(ctx, prg);
                            return prg.program;
                        }
                    } else {
                        if (!prg.mask && prg.brush == brush && prg.mode == mode) {
                            programs.insert(ctx, prg);
                            return prg.program;
                        }
                    }
                }
            }
        }

        // 3. compile a new program and place it into the cache
        // NB! assumes ctx is the current GL context
        GLProgram prg;
        prg.brush = brush;
        prg.mode = mode;
        prg.mask = mask_mode;
        glGenProgramsARB(1, &prg.program);
        glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, prg.program);
        const char *src = mask_mode
                          ? mask_fragment_program_sources[brush]
                          : painter_fragment_program_sources[brush][mode];
        // necessary for .NET 2002, apparently
        const GLbyte *gl_src = reinterpret_cast<const GLbyte *>(src);

        while (glGetError() != GL_NO_ERROR) {} // reset error state
        glProgramStringARB(GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB,
                           int(strlen(src)), gl_src);
        if (glGetError() != GL_NO_ERROR) {
//            qDebug() << "QGLProgramCache: Unable to compile fragment program.";
            glDeleteProgramsARB(1, &prg.program);
            return 0;
        }

//        qDebug() << "QGLProgramCache: Creating GL program:" << prg.program << hex << ctx;
        programs.insert(ctx, prg);
        return prg.program;
    }

public Q_SLOTS:
    void cleanupPrograms(const QGLContext *context)
    {
        QGLProgramHash::iterator it = programs.begin();
        while (it != programs.end()) {
            if (it.key() == context) {
                if (!context->isSharing()) {
                    // the ctx variable below is needed for the glDeleteProgramARB call
                    // since it is resolved from our extension system
                    // NB! assumes context is the current GL context
                    const QGLContext *ctx = context;
                    // qDebug() << "QGLProgramHash: Deleting GL program:" << it.value().program << hex << it.key();
                    glDeleteProgramsARB(1, &it.value().program);
                }
                it = programs.erase(it);
            } else {
                ++it;
            }
        }
    }

private:
    QGLProgramHash programs;
};

Q_GLOBAL_STATIC(QGLProgramCache, qt_gl_program_cache)

////////// GL program cache: end

class QOpenGLPaintEnginePrivate;
class QGLPrivateCleanup : public QObject
{
    Q_OBJECT
public:
    QGLPrivateCleanup(QOpenGLPaintEnginePrivate *priv)
        : p(priv)
    {
        connect(QGLSignalProxy::instance(),
                SIGNAL(aboutToDestroyContext(const QGLContext *)),
                SLOT(cleanupGLContextRefs(const QGLContext *)));
    }

public Q_SLOTS:
    void cleanupGLContextRefs(const QGLContext *context);

private:
    QOpenGLPaintEnginePrivate *p;
};

class QOpenGLPaintEnginePrivate : public QPaintEngineExPrivate
{
    Q_DECLARE_PUBLIC(QOpenGLPaintEngine)
public:
    QOpenGLPaintEnginePrivate()
        : opacity(1)
        , composition_mode(QPainter::CompositionMode_SourceOver)
        , has_fast_pen(false)
        , use_stencil_method(false)
        , dirty_drawable_texture(false)
        , has_stencil_face_ext(false)
        , use_fragment_programs(false)
        , high_quality_antialiasing(false)
        , use_smooth_pixmap_transform(false)
        , use_emulation(false)
        , txop(QTransform::TxNone)
        , inverseScale(1)
        , moveToCount(0)
        , last_created_state(0)
        , shader_ctx(0)
        , grad_palette(0)
        , drawable_texture(0)
        , ref_cleaner(this)
        {}

    inline void setGLPen(const QColor &c) {
        uint alpha = qRound(c.alpha() * opacity);
        pen_color[0] = qt_div_255(c.red() * alpha);
        pen_color[1] = qt_div_255(c.green() * alpha);
        pen_color[2] = qt_div_255(c.blue() * alpha);
        pen_color[3] = alpha;
    }

    inline void setGLBrush(const QColor &c) {
        uint alpha = qRound(c.alpha() * opacity);
        brush_color[0] = qt_div_255(c.red() * alpha);
        brush_color[1] = qt_div_255(c.green() * alpha);
        brush_color[2] = qt_div_255(c.blue() * alpha);
        brush_color[3] = alpha;
    }

    inline void setGradientOps(const QBrush &brush, const QRectF &bounds);
    void createGradientPaletteTexture(const QGradient& g);

    void updateGradient(const QBrush &brush, const QRectF &bounds);

    inline void lineToStencil(qreal x, qreal y);
    inline void curveToStencil(const QPointF &cp1, const QPointF &cp2, const QPointF &ep);
    void pathToVertexArrays(const QPainterPath &path);
    void fillVertexArray(Qt::FillRule fillRule);
    void drawVertexArrays();
    void fillPath(const QPainterPath &path);
    void fillPolygon_dev(const QPointF *polygonPoints, int pointCount,
                         Qt::FillRule fill);

    void drawFastRect(const QRectF &rect);
    void strokePath(const QPainterPath &path, bool use_cache);
    void strokePathFastPen(const QPainterPath &path, bool needsResolving);
    void strokeLines(const QPainterPath &path);

    void updateDepthClip();
    void systemStateChanged();

    void cleanupGLContextRefs(const QGLContext *context) {
        if (context == shader_ctx)
            shader_ctx = 0;
    }

    inline void updateFastPen() {
        qreal pen_width = cpen.widthF();
        has_fast_pen =
            ((pen_width == 0 || (pen_width <= 1 && matrix.type() <= QTransform::TxTranslate))
             || cpen.isCosmetic())
            && cpen.style() == Qt::SolidLine
            && cpen.isSolid();

    }

    void disableClipping();
    void enableClipping();
    void ensureDrawableTexture();

    QPen cpen;
    QBrush cbrush;
    Qt::BrushStyle brush_style;
    QPointF brush_origin;
    Qt::BrushStyle pen_brush_style;
    qreal opacity;
    QPainter::CompositionMode composition_mode;

    Qt::BrushStyle current_style;

    uint has_pen : 1;
    uint has_brush : 1;
    uint has_fast_pen : 1;
    uint use_stencil_method : 1;
    uint dirty_drawable_texture : 1;
    uint has_stencil_face_ext : 1;
    uint use_fragment_programs : 1;
    uint high_quality_antialiasing : 1;
    uint has_antialiasing : 1;
    uint has_fast_composition_mode : 1;
    uint use_smooth_pixmap_transform : 1;
    uint use_system_clip : 1;
    uint use_emulation : 1;

    QRegion dirty_stencil;

    void updateUseEmulation();

    QTransform matrix;
    GLubyte pen_color[4];
    GLubyte brush_color[4];
    QTransform::TransformationType txop;
    QGLPaintDevice* device;
    QGLOffscreen offscreen;

    qreal inverseScale;

    int moveToCount;
    QPointF path_start;

    bool isFastRect(const QRectF &r);

    void drawImageAsPath(const QRectF &r, const QImage &img, const QRectF &sr);
    void drawTiledImageAsPath(const QRectF &r, const QImage &img, qreal sx, qreal sy, const QPointF &offset);

    void drawOffscreenPath(const QPainterPath &path);

    void composite(const QRectF &rect, const QPoint &maskOffset = QPoint());
    void composite(GLuint primitive, const q_vertexType *vertexArray, int vertexCount, const QPoint &maskOffset = QPoint());

    bool createFragmentPrograms();
    void deleteFragmentPrograms();
    void updateFragmentProgramData(int locations[]);

    void cacheItemErased(int channel, const QRect &rect);

    void addItem(const QGLMaskTextureCache::CacheLocation &location);
    void drawItem(const QDrawQueueItem &item);
    void flushDrawQueue();

    void copyDrawable(const QRectF &rect);

    void updateGLMatrix() const;

    mutable QPainterState *last_created_state;

    QGLContext *shader_ctx;
    GLuint grad_palette;

    GLuint painter_fragment_programs[num_fragment_brushes][num_fragment_composition_modes];
    GLuint mask_fragment_programs[num_fragment_masks];

    float inv_matrix_data[3][4];
    float fmp_data[4];
    float fmp2_m_radius2_data[4];
    float angle_data[4];
    float linear_data[4];

    float porterduff_ab_data[4];
    float porterduff_xyz_data[4];

    float mask_offset_data[4];
    float mask_channel_data[4];

    FragmentBrushType fragment_brush;
    FragmentCompositionModeType fragment_composition_mode;

    void setPorterDuffData(float a, float b, float x, float y, float z);
    void setInvMatrixData(const QTransform &inv_matrix);

    qreal max_x;
    qreal max_y;
    qreal min_x;
    qreal min_y;

    QDataBuffer<QPointF> tess_points;
    QVector<int> tess_points_stops;

    GLdouble projection_matrix[4][4];

#if defined(QT_OPENGL_ES_1) || defined(QT_OPENGL_ES_2)
    GLfloat mv_matrix[4][4];
#else
    GLdouble mv_matrix[4][4];
#endif

    QList<QDrawQueueItem> drawQueue;

    GLuint drawable_texture;
    QSize drawable_texture_size;

    int max_texture_size;

    QGLPrivateCleanup ref_cleaner;
    friend class QGLMaskTextureCache;
};

class QOpenGLCoordinateOffset
{
public:
    QOpenGLCoordinateOffset(QOpenGLPaintEnginePrivate *d);
    ~QOpenGLCoordinateOffset();

    static void enableOffset(QOpenGLPaintEnginePrivate *d);
    static void disableOffset(QOpenGLPaintEnginePrivate *d);

private:
    QOpenGLPaintEnginePrivate *d;
};

QOpenGLCoordinateOffset::QOpenGLCoordinateOffset(QOpenGLPaintEnginePrivate *d_)
    : d(d_)
{
    enableOffset(d);
}

void QOpenGLCoordinateOffset::enableOffset(QOpenGLPaintEnginePrivate *d)
{
    if (!d->has_antialiasing) {
        glMatrixMode(GL_MODELVIEW);
        glPushMatrix();
        d->mv_matrix[3][0] += 0.5;
        d->mv_matrix[3][1] += 0.5;
        d->updateGLMatrix();
    }
}

QOpenGLCoordinateOffset::~QOpenGLCoordinateOffset()
{
    disableOffset(d);
}

void QOpenGLCoordinateOffset::disableOffset(QOpenGLPaintEnginePrivate *d)
{
    if (!d->has_antialiasing) {
        glMatrixMode(GL_MODELVIEW);
        glPopMatrix();
        d->mv_matrix[3][0] -= 0.5;
        d->mv_matrix[3][1] -= 0.5;
    }
}

void QGLPrivateCleanup::cleanupGLContextRefs(const QGLContext *context)
{
    p->cleanupGLContextRefs(context);
}


static inline void updateTextureFilter(GLenum target, GLenum wrapMode, bool smoothPixmapTransform)
{
    if (smoothPixmapTransform) {
        glTexParameterf(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
        glTexParameterf(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    } else {
        glTexParameterf(target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
        glTexParameterf(target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
    }
    glTexParameterf(target, GL_TEXTURE_WRAP_S, wrapMode);
    glTexParameterf(target, GL_TEXTURE_WRAP_T, wrapMode);
}

static inline QPainterPath strokeForPath(const QPainterPath &path, const QPen &cpen) {
    QPainterPathStroker stroker;
    if (cpen.style() == Qt::CustomDashLine)
        stroker.setDashPattern(cpen.dashPattern());
    else
        stroker.setDashPattern(cpen.style());

    stroker.setCapStyle(cpen.capStyle());
    stroker.setJoinStyle(cpen.joinStyle());
    stroker.setMiterLimit(cpen.miterLimit());

    qreal width = cpen.widthF();
    if (width == 0)
        stroker.setWidth(1);
    else
        stroker.setWidth(width);

    QPainterPath stroke = stroker.createStroke(path);
    stroke.setFillRule(Qt::WindingFill);
    return stroke;
}

class QGLStrokeCache
{
    struct CacheInfo
    {
        inline CacheInfo(QPainterPath p, QPainterPath sp, QPen stroke_pen) :
            path(p), stroked_path(sp), pen(stroke_pen) {}
        QPainterPath path;
        QPainterPath stroked_path;
        QPen pen;
    };

    typedef QMultiHash<quint64, CacheInfo> QGLStrokeTableHash;

public:
    inline QPainterPath getStrokedPath(const QPainterPath &path, const QPen &pen) {
        quint64 hash_val = 0;

        for (int i = 0; i < path.elementCount() && i <= 2; i++) {
            hash_val += quint64(path.elementAt(i).x);
            hash_val += quint64(path.elementAt(i).y);
        }

        QGLStrokeTableHash::const_iterator it = cache.constFind(hash_val);

        if (it == cache.constEnd())
            return addCacheElement(hash_val, path, pen);
        else {
            do {
                const CacheInfo &cache_info = it.value();
                if (cache_info.path == path && cache_info.pen == pen)
                    return cache_info.stroked_path;
                ++it;
            } while (it != cache.constEnd() && it.key() == hash_val);
            // an exact match for this path was not found, create new cache element
            return addCacheElement(hash_val, path, pen);
        }
    }

protected:
    inline int maxCacheSize() const { return 500; }
    QPainterPath addCacheElement(quint64 hash_val, QPainterPath path, const QPen &pen) {
        if (cache.size() == maxCacheSize()) {
            int elem_to_remove = qrand() % maxCacheSize();
            cache.remove(cache.keys()[elem_to_remove]); // may remove more than 1, but OK
        }
        QPainterPath stroke = strokeForPath(path, pen);
        CacheInfo cache_entry(path, stroke, pen);
        return cache.insert(hash_val, cache_entry).value().stroked_path;
    }

    QGLStrokeTableHash cache;
};

Q_GLOBAL_STATIC(QGLStrokeCache, qt_opengl_stroke_cache)

class QGLGradientCache : public QObject
{
    Q_OBJECT
    struct CacheInfo
    {
        inline CacheInfo(QGradientStops s, qreal op, QGradient::InterpolationMode mode) :
            stops(s), opacity(op), interpolationMode(mode) {}

        GLuint texId;
        QGradientStops stops;
        qreal opacity;
        QGradient::InterpolationMode interpolationMode;
    };

    typedef QMultiHash<quint64, CacheInfo> QGLGradientColorTableHash;

public:
    QGLGradientCache() : QObject(), buffer_ctx(0)
    {
        connect(QGLSignalProxy::instance(),
                SIGNAL(aboutToDestroyContext(const QGLContext *)),
                SLOT(cleanupGLContextRefs(const QGLContext *)));
    }

    inline GLuint getBuffer(const QGradient &gradient, qreal opacity, QGLContext *ctx) {
        if (buffer_ctx && !QGLContext::areSharing(buffer_ctx, ctx))
            cleanCache();

        buffer_ctx = ctx;

        quint64 hash_val = 0;

        QGradientStops stops = gradient.stops();
        for (int i = 0; i < stops.size() && i <= 2; i++)
            hash_val += stops[i].second.rgba();

        QGLGradientColorTableHash::const_iterator it = cache.constFind(hash_val);

        if (it == cache.constEnd())
            return addCacheElement(hash_val, gradient, opacity);
        else {
            do {
                const CacheInfo &cache_info = it.value();
                if (cache_info.stops == stops && cache_info.opacity == opacity && cache_info.interpolationMode == gradient.interpolationMode()) {
                    return cache_info.texId;
                }
                ++it;
            } while (it != cache.constEnd() && it.key() == hash_val);
            // an exact match for these stops and opacity was not found, create new cache
            return addCacheElement(hash_val, gradient, opacity);
        }
    }

    inline int paletteSize() const { return 1024; }

protected:
    inline int maxCacheSize() const { return 60; }
    inline void generateGradientColorTable(const QGradient& g,
                                           uint *colorTable,
                                           int size, qreal opacity) const;
    GLuint addCacheElement(quint64 hash_val, const QGradient &gradient, qreal opacity) {
        if (cache.size() == maxCacheSize()) {
            int elem_to_remove = qrand() % maxCacheSize();
            quint64 key = cache.keys()[elem_to_remove];

            // need to call glDeleteTextures on each removed cache entry:
            QGLGradientColorTableHash::const_iterator it = cache.constFind(key);
            do {
                glDeleteTextures(1, &it.value().texId);
            } while (++it != cache.constEnd() && it.key() == key);
            cache.remove(key); // may remove more than 1, but OK
        }
        CacheInfo cache_entry(gradient.stops(), opacity, gradient.interpolationMode());
        uint buffer[1024];
        generateGradientColorTable(gradient, buffer, paletteSize(), opacity);
        glGenTextures(1, &cache_entry.texId);
#ifndef QT_OPENGL_ES
        glBindTexture(GL_TEXTURE_1D, cache_entry.texId);
        glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA, paletteSize(),
                     0, GL_BGRA, GL_UNSIGNED_BYTE, buffer);
#else
        // create 2D one-line texture instead. This requires an impl of manual GL_TEXGEN for all primitives
#endif
        return cache.insert(hash_val, cache_entry).value().texId;
    }

    void cleanCache() {
        QGLShareContextScope scope(buffer_ctx);
        QGLGradientColorTableHash::const_iterator it = cache.constBegin();
        for (; it != cache.constEnd(); ++it) {
            const CacheInfo &cache_info = it.value();
            glDeleteTextures(1, &cache_info.texId);
        }
        cache.clear();
    }

    QGLGradientColorTableHash cache;

    QGLContext *buffer_ctx;

public Q_SLOTS:
    void cleanupGLContextRefs(const QGLContext *context) {
        if (context == buffer_ctx) {
            cleanCache();
            buffer_ctx = 0;
        }
    }
};

static inline uint endianColor(uint c)
{
#if Q_BYTE_ORDER == Q_LITTLE_ENDIAN
    return c;
#else
    return ( (c << 24) & 0xff000000)
           | ((c >> 24) & 0x000000ff)
           | ((c << 8) & 0x00ff0000)
           | ((c >> 8) & 0x0000ff00);
#endif // Q_BYTE_ORDER
}

void QGLGradientCache::generateGradientColorTable(const QGradient& gradient, uint *colorTable, int size, qreal opacity) const
{
    int pos = 0;
    QGradientStops s = gradient.stops();
    QVector<uint> colors(s.size());

    for (int i = 0; i < s.size(); ++i)
        colors[i] = s[i].second.rgba();

    bool colorInterpolation = (gradient.interpolationMode() == QGradient::ColorInterpolation);

    uint alpha = qRound(opacity * 256);
    uint current_color = ARGB_COMBINE_ALPHA(colors[0], alpha);
    qreal incr = 1.0 / qreal(size);
    qreal fpos = 1.5 * incr;
    colorTable[pos++] = endianColor(PREMUL(current_color));

    while (fpos <= s.first().first) {
        colorTable[pos] = colorTable[pos - 1];
        pos++;
        fpos += incr;
    }

    if (colorInterpolation)
        current_color = PREMUL(current_color);

    for (int i = 0; i < s.size() - 1; ++i) {
        qreal delta = 1/(s[i+1].first - s[i].first);
        uint next_color = ARGB_COMBINE_ALPHA(colors[i+1], alpha);
        if (colorInterpolation)
            next_color = PREMUL(next_color);

        while (fpos < s[i+1].first && pos < size) {
            int dist = int(256 * ((fpos - s[i].first) * delta));
            int idist = 256 - dist;
            if (colorInterpolation)
                colorTable[pos] = endianColor(INTERPOLATE_PIXEL_256(current_color, idist, next_color, dist));
            else
                colorTable[pos] = endianColor(PREMUL(INTERPOLATE_PIXEL_256(current_color, idist, next_color, dist)));
            ++pos;
            fpos += incr;
        }
        current_color = next_color;
    }

    Q_ASSERT(s.size() > 0);

    uint last_color = endianColor(PREMUL(ARGB_COMBINE_ALPHA(colors[s.size() - 1], alpha)));
    for (;pos < size; ++pos)
        colorTable[pos] = last_color;

    // Make sure the last color stop is represented at the end of the table
    colorTable[size-1] = last_color;
}

#ifndef Q_WS_QWS
Q_GLOBAL_STATIC(QGLGradientCache, qt_opengl_gradient_cache)
#endif

void QOpenGLPaintEnginePrivate::createGradientPaletteTexture(const QGradient& g)
{
#ifdef QT_OPENGL_ES //###
    Q_UNUSED(g);
#else
    GLuint texId = qt_opengl_gradient_cache()->getBuffer(g, opacity, device->context());
    glBindTexture(GL_TEXTURE_1D, texId);
    grad_palette = texId;
    if (g.spread() == QGradient::RepeatSpread || g.type() == QGradient::ConicalGradient)
        glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    else if (g.spread() == QGradient::ReflectSpread)
        glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT_IBM);
    else
        glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

    glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

#endif
}


inline void QOpenGLPaintEnginePrivate::setGradientOps(const QBrush &brush, const QRectF &bounds)
{
    current_style = brush.style();

    if (current_style < Qt::LinearGradientPattern || current_style > Qt::ConicalGradientPattern) {
        setGLBrush(brush.color());
        qt_glColor4ubv(brush_color);
    }

    updateGradient(brush, bounds);

#ifndef QT_OPENGL_ES //### GLES does not have GL_TEXTURE_GEN_ so we are falling back for gradients
    glDisable(GL_TEXTURE_GEN_S);
    glDisable(GL_TEXTURE_1D);

    if (current_style == Qt::LinearGradientPattern) {
        if (high_quality_antialiasing || !has_fast_composition_mode) {
            fragment_brush = FRAGMENT_PROGRAM_BRUSH_LINEAR;
        } else {
            glEnable(GL_TEXTURE_GEN_S);
            glEnable(GL_TEXTURE_1D);
        }
    } else {
        if (use_fragment_programs) {
            if (current_style == Qt::RadialGradientPattern)
                fragment_brush = FRAGMENT_PROGRAM_BRUSH_RADIAL;
            else if (current_style == Qt::ConicalGradientPattern)
                fragment_brush = FRAGMENT_PROGRAM_BRUSH_CONICAL;
            else if (current_style == Qt::SolidPattern)
                fragment_brush = FRAGMENT_PROGRAM_BRUSH_SOLID;
            else if (current_style == Qt::TexturePattern && !brush.texture().isQBitmap())
                fragment_brush = FRAGMENT_PROGRAM_BRUSH_TEXTURE;
            else
                fragment_brush = FRAGMENT_PROGRAM_BRUSH_PATTERN;
        }
    }
#endif
}

QOpenGLPaintEngine::QOpenGLPaintEngine()
    : QPaintEngineEx(*(new QOpenGLPaintEnginePrivate))
{
}

QOpenGLPaintEngine::~QOpenGLPaintEngine()
{
}

bool QOpenGLPaintEngine::begin(QPaintDevice *pdev)
{
    Q_D(QOpenGLPaintEngine);

    if (pdev->devType() == QInternal::OpenGL)
        d->device = static_cast<QGLPaintDevice*>(pdev);
    else
        d->device = QGLPaintDevice::getDevice(pdev);

    if (!d->device)
        return false;

    d->offscreen.setDevice(pdev);
    d->has_fast_pen = false;
    d->inverseScale = 1;
    d->opacity = 1;
    d->device->beginPaint();
    d->matrix = QTransform();
    d->has_antialiasing = false;
    d->high_quality_antialiasing = false;

    QSize sz(d->device->size());
    d->dirty_stencil = QRect(0, 0, sz.width(), sz.height());

    d->use_emulation = false;

    for (int i = 0; i < 4; ++i)
        for (int j = 0; j < 4; ++j)
            d->mv_matrix[i][j] = (i == j ? qreal(1) : qreal(0));

    bool has_frag_program = (QGLExtensions::glExtensions & QGLExtensions::FragmentProgram)
                            && (pdev->devType() != QInternal::Pixmap);

    QGLContext *ctx = const_cast<QGLContext *>(d->device->context());
    if (!ctx) {
        qWarning() << "QOpenGLPaintEngine: paint device doesn't have a valid GL context.";
        return false;
    }

    if (has_frag_program)
        has_frag_program = qt_resolve_frag_program_extensions(ctx) && qt_resolve_version_1_3_functions(ctx);

    d->use_stencil_method = d->device->format().stencil()
                            && (QGLExtensions::glExtensions & QGLExtensions::StencilWrap);
    if (d->device->format().directRendering()
        && (d->use_stencil_method && QGLExtensions::glExtensions & QGLExtensions::StencilTwoSide))
        d->has_stencil_face_ext = qt_resolve_stencil_face_extension(ctx);

#ifndef QT_OPENGL_ES
    if (!ctx->d_ptr->internal_context) {
        glGetDoublev(GL_PROJECTION_MATRIX, &d->projection_matrix[0][0]);
        glPushClientAttrib(GL_CLIENT_ALL_ATTRIB_BITS);
        glPushAttrib(GL_ALL_ATTRIB_BITS);

        glDisableClientState(GL_EDGE_FLAG_ARRAY);
        glDisableClientState(GL_INDEX_ARRAY);
        glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
        glDisable(GL_TEXTURE_1D);
        glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
        glPixelTransferi(GL_MAP_COLOR, false);
        glPixelTransferi(GL_MAP_STENCIL, false);
        glDisable(GL_TEXTURE_GEN_S);

        glPixelStorei(GL_PACK_SWAP_BYTES, false);
        glPixelStorei(GL_PACK_LSB_FIRST, false);
        glPixelStorei(GL_PACK_ROW_LENGTH, 0);
        glPixelStorei(GL_PACK_SKIP_ROWS, 0);
        glPixelStorei(GL_PACK_SKIP_PIXELS, 0);
        glPixelStorei(GL_PACK_ALIGNMENT, 4);

        glPixelStorei(GL_UNPACK_SWAP_BYTES, false);
        glPixelStorei(GL_UNPACK_LSB_FIRST, false);
        glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
        glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
        glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);
        glPixelStorei(GL_UNPACK_ALIGNMENT, 4);

        if (QGLFormat::openGLVersionFlags() & QGLFormat::OpenGL_Version_1_2) {
            glPixelStorei(GL_PACK_IMAGE_HEIGHT, 0);
            glPixelStorei(GL_PACK_SKIP_IMAGES, 0);
            glPixelStorei(GL_UNPACK_IMAGE_HEIGHT, 0);
            glPixelStorei(GL_UNPACK_SKIP_IMAGES, 0);
        }
    }
#endif

    if (!ctx->d_ptr->internal_context) {
        glMatrixMode(GL_MODELVIEW);
        glPushMatrix();
        glMatrixMode(GL_TEXTURE);
        glPushMatrix();
        glLoadIdentity();
        glDisableClientState(GL_COLOR_ARRAY);
        glDisableClientState(GL_NORMAL_ARRAY);
        glDisableClientState(GL_TEXTURE_COORD_ARRAY);
        glDisableClientState(GL_VERTEX_ARRAY);

        if (QGLExtensions::glExtensions & QGLExtensions::SampleBuffers)
            glDisable(GL_MULTISAMPLE);
        glDisable(GL_TEXTURE_2D);
        if (QGLExtensions::glExtensions & QGLExtensions::TextureRectangle)
            glDisable(GL_TEXTURE_RECTANGLE_NV);
        glDisable(GL_STENCIL_TEST);
        glDisable(GL_CULL_FACE);
        glDisable(GL_LIGHTING);
        glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
    }

    d->offscreen.begin();

    glViewport(0, 0, sz.width(), sz.height()); // XXX (Embedded): We need a solution for GLWidgets that draw in a part or a bigger surface...
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
#ifdef QT_OPENGL_ES
    glOrthof(0, sz.width(), sz.height(), 0, -999999, 999999);
#else
    glOrtho(0, sz.width(), sz.height(), 0, -999999, 999999);
#endif
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    glEnable(GL_BLEND);
    d->composition_mode = QPainter::CompositionMode_SourceOver;

#ifdef QT_OPENGL_ES
    d->max_texture_size = ctx->d_func()->maxTextureSize();
#else
    bool shared_ctx = QGLContext::areSharing(d->device->context(), d->shader_ctx);

    if (shared_ctx) {
        d->max_texture_size = d->shader_ctx->d_func()->maxTextureSize();
    } else {
        d->max_texture_size = ctx->d_func()->maxTextureSize();

        if (d->shader_ctx) {
            d->shader_ctx->makeCurrent();
            glBindTexture(GL_TEXTURE_1D, 0);
            glDeleteTextures(1, &d->grad_palette);

            if (has_frag_program && d->use_fragment_programs)
                glDeleteTextures(1, &d->drawable_texture);
            ctx->makeCurrent();
        }
        d->shader_ctx = d->device->context();
        glGenTextures(1, &d->grad_palette);

        qt_mask_texture_cache()->clearCache();
        d->use_fragment_programs = has_frag_program;
    }

    if (d->use_fragment_programs && (!shared_ctx || sz.width() > d->drawable_texture_size.width()
                                     || sz.height() > d->drawable_texture_size.height()))
    {
        // delete old texture if size has increased, otherwise it was deleted earlier
        if (shared_ctx)
            glDeleteTextures(1, &d->drawable_texture);

        d->dirty_drawable_texture = true;
        d->drawable_texture_size = QSize(qt_next_power_of_two(sz.width()),
                                         qt_next_power_of_two(sz.height()));
    }
#endif

    updateClipRegion(QRegion(), Qt::NoClip);
    penChanged();
    brushChanged();
    opacityChanged();
    compositionModeChanged();
    renderHintsChanged();
    transformChanged();
    return true;
}

bool QOpenGLPaintEngine::end()
{
    Q_D(QOpenGLPaintEngine);
    d->flushDrawQueue();
    d->offscreen.end();
    QGLContext *ctx = const_cast<QGLContext *>(d->device->context());
    if (!ctx->d_ptr->internal_context) {
        glMatrixMode(GL_TEXTURE);
        glPopMatrix();
        glMatrixMode(GL_MODELVIEW);
        glPopMatrix();
    }
#ifndef QT_OPENGL_ES
    if (ctx->d_ptr->internal_context) {
        glDisable(GL_SCISSOR_TEST);
    } else {
        glMatrixMode(GL_PROJECTION);
        glLoadMatrixd(&d->projection_matrix[0][0]);
        glPopAttrib();
        glPopClientAttrib();
    }
#endif
    d->device->endPaint();
    qt_mask_texture_cache()->maintainCache();

    return true;
}

void QOpenGLPaintEngine::updateState(const QPaintEngineState &state)
{
    Q_D(QOpenGLPaintEngine);
    QPaintEngine::DirtyFlags flags = state.state();

    bool update_fast_pen = false;

    if (flags & DirtyOpacity) {
        update_fast_pen = true;
        d->opacity = state.opacity();
        if (d->opacity > 1.0f)
            d->opacity = 1.0f;
        if (d->opacity < 0.f)
            d->opacity = 0.f;
        // force update
        flags |= DirtyPen;
        flags |= DirtyBrush;
    }

    if (flags & DirtyTransform) {
        update_fast_pen = true;
        updateMatrix(state.transform());
        // brush setup depends on transform state
        if (state.brush().style() != Qt::NoBrush)
            flags |= DirtyBrush;
    }

    if (flags & DirtyPen) {
        update_fast_pen = true;
        updatePen(state.pen());
    }

    if (flags & (DirtyBrush | DirtyBrushOrigin)) {
        updateBrush(state.brush(), state.brushOrigin());
    }

    if (flags & DirtyFont) {
        updateFont(state.font());
    }

    if (state.state() & DirtyClipEnabled) {
        if (state.isClipEnabled())
            updateClipRegion(painter()->clipRegion(), Qt::ReplaceClip);
        else
            updateClipRegion(QRegion(), Qt::NoClip);
    }

    if (flags & DirtyClipPath) {
        updateClipRegion(QRegion(state.clipPath().toFillPolygon().toPolygon(),
                                 state.clipPath().fillRule()),
                         state.clipOperation());
    }

    if (flags & DirtyClipRegion) {
        updateClipRegion(state.clipRegion(), state.clipOperation());
    }

    if (flags & DirtyHints) {
        updateRenderHints(state.renderHints());
    }

    if (flags & DirtyCompositionMode) {
        updateCompositionMode(state.compositionMode());
    }

    if (update_fast_pen) {
        Q_D(QOpenGLPaintEngine);
        qreal pen_width = d->cpen.widthF();
        d->has_fast_pen =
            ((pen_width == 0 || (pen_width <= 1 && d->txop <= QTransform::TxTranslate))
             || d->cpen.isCosmetic())
            && d->cpen.style() == Qt::SolidLine
            && d->cpen.isSolid();
    }
}


void QOpenGLPaintEnginePrivate::setInvMatrixData(const QTransform &inv_matrix)
{
    inv_matrix_data[0][0] = inv_matrix.m11();
    inv_matrix_data[1][0] = inv_matrix.m21();
    inv_matrix_data[2][0] = inv_matrix.m31();

    inv_matrix_data[0][1] = inv_matrix.m12();
    inv_matrix_data[1][1] = inv_matrix.m22();
    inv_matrix_data[2][1] = inv_matrix.m32();

    inv_matrix_data[0][2] = inv_matrix.m13();
    inv_matrix_data[1][2] = inv_matrix.m23();
    inv_matrix_data[2][2] = inv_matrix.m33();
}


void QOpenGLPaintEnginePrivate::updateGradient(const QBrush &brush, const QRectF &)
{
#ifdef QT_OPENGL_ES
    Q_UNUSED(brush);
#else
    bool has_mirrored_repeat = QGLExtensions::glExtensions & QGLExtensions::MirroredRepeat;
    Qt::BrushStyle style = brush.style();

    QTransform m = brush.transform();

    if (has_mirrored_repeat && style == Qt::LinearGradientPattern) {
        const QLinearGradient *g = static_cast<const QLinearGradient *>(brush.gradient());
        QTransform m = brush.transform();
        QPointF realStart = g->start();
        QPointF realFinal = g->finalStop();
        QPointF start = m.map(realStart);
        QPointF stop;

        if (qFuzzyCompare(m.m11(), m.m22()) && m.m12() == 0.0 && m.m21() == 0.0) {
            // It is a simple uniform scale and/or translation
            stop = m.map(realFinal);
        } else {
            // It is not enough to just transform the endpoints.
            // We have to make sure the _pattern_ is transformed correctly.

            qreal odx = realFinal.x() - realStart.x();
            qreal ody = realFinal.y() - realStart.y();

            // nx, ny and dx, dy are normal and gradient direction after transform:
            qreal nx = m.m11()*ody - m.m21()*odx;
            qreal ny = m.m12()*ody - m.m22()*odx;

            qreal dx = m.m11()*odx + m.m21()*ody;
            qreal dy = m.m12()*odx + m.m22()*ody;

            qreal lx = 1 / (dx - dy*nx/ny);
            qreal ly = 1 / (dy - dx*ny/nx);
            qreal l = 1 / qSqrt(lx*lx+ly*ly);

            stop = start + QPointF(-ny, nx) * l/qSqrt(nx*nx+ny*ny);
        }

        float tr[4], f;
        tr[0] = stop.x() - start.x();
        tr[1] = stop.y() - start.y();
        f = 1.0 / (tr[0]*tr[0] + tr[1]*tr[1]);
        tr[0] *= f;
        tr[1] *= f;
        tr[2] = 0;
        tr[3] = -(start.x()*tr[0] + start.y()*tr[1]);
        brush_color[0] = brush_color[1] = brush_color[2] = brush_color[3] = 255;
        qt_glColor4ubv(brush_color);
        glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
        glTexGenfv(GL_S, GL_OBJECT_PLANE, tr);
    }

    if (use_fragment_programs) {
        if (style == Qt::RadialGradientPattern) {
            const QRadialGradient *g = static_cast<const QRadialGradient *>(brush.gradient());
            QPointF realCenter = g->center();
            QPointF realFocal  = g->focalPoint();
            qreal   realRadius = g->radius();
            QTransform translate(1, 0, 0, 1, -realFocal.x(), -realFocal.y());
            QTransform gl_to_qt(1, 0, 0, -1, 0, pdev->height());
            QTransform m = QTransform(matrix).translate(brush_origin.x(), brush_origin.y());
            QTransform inv_matrix = gl_to_qt * (brush.transform() * m).inverted() * translate;

            setInvMatrixData(inv_matrix);

            fmp_data[0] = realCenter.x() - realFocal.x();
            fmp_data[1] = realCenter.y() - realFocal.y();

            fmp2_m_radius2_data[0] = -fmp_data[0] * fmp_data[0] - fmp_data[1] * fmp_data[1] + realRadius * realRadius;
        } else if (style == Qt::ConicalGradientPattern) {
            const QConicalGradient *g = static_cast<const QConicalGradient *>(brush.gradient());
            QPointF realCenter = g->center();
            QTransform translate(1, 0, 0, 1, -realCenter.x(), -realCenter.y());
            QTransform gl_to_qt(1, 0, 0, -1, 0, pdev->height());
            QTransform m = QTransform(matrix).translate(brush_origin.x(), brush_origin.y());
            QTransform inv_matrix = gl_to_qt * (brush.transform() * m).inverted() * translate;

            setInvMatrixData(inv_matrix);

            angle_data[0] = -(g->angle() * 2 * Q_PI) / 360.0;
        } else if (style == Qt::LinearGradientPattern) {
            const QLinearGradient *g = static_cast<const QLinearGradient *>(brush.gradient());

            QPointF realStart = g->start();
            QPointF realFinal = g->finalStop();
            QTransform translate(1, 0, 0, 1, -realStart.x(), -realStart.y());
            QTransform gl_to_qt(1, 0, 0, -1, 0, pdev->height());
            QTransform m = QTransform(matrix).translate(brush_origin.x(), brush_origin.y());
            QTransform inv_matrix = gl_to_qt * (brush.transform() * m).inverted() * translate;

            setInvMatrixData(inv_matrix);

            QPointF l = realFinal - realStart;

            linear_data[0] = l.x();
            linear_data[1] = l.y();

            linear_data[2] = 1.0f / (l.x() * l.x() + l.y() * l.y());
        } else if (style != Qt::SolidPattern) {
            QTransform gl_to_qt(1, 0, 0, -1, 0, pdev->height());
            QTransform m = QTransform(matrix).translate(brush_origin.x(), brush_origin.y());
            QTransform inv_matrix = gl_to_qt * (brush.transform() * m).inverted();

            setInvMatrixData(inv_matrix);
        }
    }

    if (style >= Qt::LinearGradientPattern && style <= Qt::ConicalGradientPattern) {
        createGradientPaletteTexture(*brush.gradient());
    }
#endif
}


class QOpenGLTessellator : public QTessellator
{
public:
    QOpenGLTessellator() {}
    ~QOpenGLTessellator() { }
    QGLTrapezoid toGLTrapezoid(const Trapezoid &trap);
};

QGLTrapezoid QOpenGLTessellator::toGLTrapezoid(const Trapezoid &trap)
{
    QGLTrapezoid t;

    t.top = Q27Dot5ToDouble(trap.top);
    t.bottom = Q27Dot5ToDouble(trap.bottom);

    Q27Dot5 y = trap.topLeft->y - trap.bottomLeft->y;

    qreal topLeftY = Q27Dot5ToDouble(trap.topLeft->y);

    qreal tx = Q27Dot5ToDouble(trap.topLeft->x);
    qreal m = (-tx + Q27Dot5ToDouble(trap.bottomLeft->x)) / Q27Dot5ToDouble(y);
    t.topLeftX = tx + m * (topLeftY - t.top);
    t.bottomLeftX = tx + m * (topLeftY - t.bottom);

    y = trap.topRight->y - trap.bottomRight->y;

    qreal topRightY = Q27Dot5ToDouble(trap.topRight->y);

    tx = Q27Dot5ToDouble(trap.topRight->x);
    m = (-tx + Q27Dot5ToDouble(trap.bottomRight->x)) / Q27Dot5ToDouble(y);

    t.topRightX = tx + m * (topRightY - Q27Dot5ToDouble(trap.top));
    t.bottomRightX = tx + m * (topRightY - Q27Dot5ToDouble(trap.bottom));

    return t;
}

class QOpenGLImmediateModeTessellator : public QOpenGLTessellator
{
public:
    void addTrap(const Trapezoid &trap);
    void tessellate(const QPointF *points, int nPoints, bool winding) {
        trapezoids.reserve(trapezoids.size() + nPoints);
        setWinding(winding);
        QTessellator::tessellate(points, nPoints);
    }

    QVector<QGLTrapezoid> trapezoids;
};

void QOpenGLImmediateModeTessellator::addTrap(const Trapezoid &trap)
{
    trapezoids.append(toGLTrapezoid(trap));
}

#ifndef QT_OPENGL_ES
static void drawTrapezoid(const QGLTrapezoid &trap, const qreal offscreenHeight, QGLContext *ctx)
{
    qreal minX = qMin(trap.topLeftX, trap.bottomLeftX);
    qreal maxX = qMax(trap.topRightX, trap.bottomRightX);

    if (qFuzzyCompare(trap.top, trap.bottom) || qFuzzyCompare(minX, maxX) ||
        (qFuzzyCompare(trap.topLeftX, trap.topRightX) && qFuzzyCompare(trap.bottomLeftX, trap.bottomRightX)))
        return;

    const qreal xpadding = 1.0;
    const qreal ypadding = 1.0;

    qreal topDist = offscreenHeight - trap.top;
    qreal bottomDist = offscreenHeight - trap.bottom;

    qreal reciprocal = bottomDist / (bottomDist - topDist);

    qreal leftB = trap.bottomLeftX + (trap.topLeftX - trap.bottomLeftX) * reciprocal;
    qreal rightB = trap.bottomRightX + (trap.topRightX - trap.bottomRightX) * reciprocal;

    const bool topZero = qFuzzyIsNull(topDist);

    reciprocal = topZero ? 1.0 / bottomDist : 1.0 / topDist;

    qreal leftA = topZero ? (trap.bottomLeftX - leftB) * reciprocal : (trap.topLeftX - leftB) * reciprocal;
    qreal rightA = topZero ? (trap.bottomRightX - rightB) * reciprocal : (trap.topRightX - rightB) * reciprocal;

    qreal invLeftA = qFuzzyIsNull(leftA) ? 0.0 : 1.0 / leftA;
    qreal invRightA = qFuzzyIsNull(rightA) ? 0.0 : 1.0 / rightA;

    // fragment program needs the negative of invRightA as it mirrors the line
    glTexCoord4f(topDist, bottomDist, invLeftA, -invRightA);
    glMultiTexCoord4f(GL_TEXTURE1, leftA, leftB, rightA, rightB);

    qreal topY = trap.top - ypadding;
    qreal bottomY = trap.bottom + ypadding;

    qreal bounds_bottomLeftX = leftA * (offscreenHeight - bottomY) + leftB;
    qreal bounds_bottomRightX = rightA * (offscreenHeight - bottomY) + rightB;
    qreal bounds_topLeftX = leftA * (offscreenHeight - topY) + leftB;
    qreal bounds_topRightX = rightA * (offscreenHeight - topY) + rightB;

    QPointF leftNormal(1, -leftA);
    leftNormal /= qSqrt(leftNormal.x() * leftNormal.x() + leftNormal.y() * leftNormal.y());
    QPointF rightNormal(1, -rightA);
    rightNormal /= qSqrt(rightNormal.x() * rightNormal.x() + rightNormal.y() * rightNormal.y());

    qreal left_padding = xpadding / qAbs(leftNormal.x());
    qreal right_padding = xpadding / qAbs(rightNormal.x());

    glVertex2d(bounds_topLeftX - left_padding, topY);
    glVertex2d(bounds_topRightX + right_padding, topY);
    glVertex2d(bounds_bottomRightX + right_padding, bottomY);
    glVertex2d(bounds_bottomLeftX - left_padding, bottomY);

    glTexCoord4f(0.0f, 0.0f, 0.0f, 1.0f);
}
#endif // !Q_WS_QWS

class QOpenGLTrapezoidToArrayTessellator : public QOpenGLTessellator
{
public:
    QOpenGLTrapezoidToArrayTessellator() : vertices(0), allocated(0), size(0) {}
    ~QOpenGLTrapezoidToArrayTessellator() { free(vertices); }
    q_vertexType *vertices;
    int allocated;
    int size;
    QRectF bounds;
    void addTrap(const Trapezoid &trap);
    void tessellate(const QPointF *points, int nPoints, bool winding) {
        size = 0;
        setWinding(winding);
        bounds = QTessellator::tessellate(points, nPoints);
    }
};

void QOpenGLTrapezoidToArrayTessellator::addTrap(const Trapezoid &trap)
{
    // On OpenGL ES we convert the trap to 2 triangles
#ifndef QT_OPENGL_ES
    if (size > allocated - 8) {
#else
    if (size > allocated - 12) {
#endif
        allocated = qMax(2*allocated, 512);
        vertices = (q_vertexType *)realloc(vertices, allocated * sizeof(q_vertexType));
    }

    QGLTrapezoid t = toGLTrapezoid(trap);

#ifndef QT_OPENGL_ES
    vertices[size++] = f2vt(t.topLeftX);
    vertices[size++] = f2vt(t.top);
    vertices[size++] = f2vt(t.topRightX);
    vertices[size++] = f2vt(t.top);
    vertices[size++] = f2vt(t.bottomRightX);
    vertices[size++] = f2vt(t.bottom);
    vertices[size++] = f2vt(t.bottomLeftX);
    vertices[size++] = f2vt(t.bottom);
#else
    // First triangle
    vertices[size++] = f2vt(t.topLeftX);
    vertices[size++] = f2vt(t.top);
    vertices[size++] = f2vt(t.topRightX);
    vertices[size++] = f2vt(t.top);
    vertices[size++] = f2vt(t.bottomRightX);
    vertices[size++] = f2vt(t.bottom);

    // Second triangle
    vertices[size++] = f2vt(t.bottomLeftX);
    vertices[size++] = f2vt(t.bottom);
    vertices[size++] = f2vt(t.topLeftX);
    vertices[size++] = f2vt(t.top);
    vertices[size++] = f2vt(t.bottomRightX);
    vertices[size++] = f2vt(t.bottom);
#endif
}


void QOpenGLPaintEnginePrivate::fillPolygon_dev(const QPointF *polygonPoints, int pointCount,
                                                Qt::FillRule fill)
{
    QOpenGLTrapezoidToArrayTessellator tessellator;
    tessellator.tessellate(polygonPoints, pointCount, fill == Qt::WindingFill);

    DEBUG_ONCE qDebug() << "QOpenGLPaintEnginePrivate: Drawing polygon with" << pointCount << "points using fillPolygon_dev";

    setGradientOps(cbrush, tessellator.bounds);

    bool fast_style = current_style == Qt::LinearGradientPattern
                      || current_style == Qt::SolidPattern;

#ifndef QT_OPENGL_ES
    GLenum geometry_mode = GL_QUADS;
#else
    GLenum geometry_mode = GL_TRIANGLES;
#endif

    if (use_fragment_programs && !(fast_style && has_fast_composition_mode)) {
        composite(geometry_mode, tessellator.vertices, tessellator.size / 2);
    } else {
        glVertexPointer(2, q_vertexTypeEnum, 0, tessellator.vertices);
        glEnableClientState(GL_VERTEX_ARRAY);
        glDrawArrays(geometry_mode, 0, tessellator.size/2);
        glDisableClientState(GL_VERTEX_ARRAY);
    }
}


inline void QOpenGLPaintEnginePrivate::lineToStencil(qreal x, qreal y)
{
    tess_points.add(QPointF(x, y));

    if (x > max_x)
        max_x = x;
    else if (x < min_x)
        min_x = x;
    if (y > max_y)
        max_y = y;
    else if (y < min_y)
        min_y = y;
}

inline void QOpenGLPaintEnginePrivate::curveToStencil(const QPointF &cp1, const QPointF &cp2, const QPointF &ep)
{
    qreal inverseScaleHalf = inverseScale / 2;

    QBezier beziers[32];
    beziers[0] = QBezier::fromPoints(tess_points.last(), cp1, cp2, ep);
    QBezier *b = beziers;
    while (b >= beziers) {
        // check if we can pop the top bezier curve from the stack
        qreal l = qAbs(b->x4 - b->x1) + qAbs(b->y4 - b->y1);
        qreal d;
        if (l > inverseScale) {
            d = qAbs( (b->x4 - b->x1)*(b->y1 - b->y2) - (b->y4 - b->y1)*(b->x1 - b->x2) )
                + qAbs( (b->x4 - b->x1)*(b->y1 - b->y3) - (b->y4 - b->y1)*(b->x1 - b->x3) );
            d /= l;
        } else {
            d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
                qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
        }
        if (d < inverseScaleHalf || b == beziers + 31) {
            // good enough, we pop it off and add the endpoint
            lineToStencil(b->x4, b->y4);
            --b;
        } else {
            // split, second half of the polygon goes lower into the stack
            b->split(b+1, b);
           ++b;
        }
    }
}


void QOpenGLPaintEnginePrivate::pathToVertexArrays(const QPainterPath &path)
{
    const QPainterPath::Element &first = path.elementAt(0);
    min_x = max_x = first.x;
    min_y = max_y = first.y;

    tess_points.reset();
    tess_points_stops.clear();
    lineToStencil(first.x, first.y);

    for (int i=1; i<path.elementCount(); ++i) {
        const QPainterPath::Element &e = path.elementAt(i);
        switch (e.type) {
        case QPainterPath::MoveToElement:
            tess_points_stops.append(tess_points.size());
            lineToStencil(e.x, e.y);
            break;
        case QPainterPath::LineToElement:
            lineToStencil(e.x, e.y);
            break;
        case QPainterPath::CurveToElement:
            curveToStencil(e, path.elementAt(i+1), path.elementAt(i+2));
            i+=2;
            break;
        default:
            break;
        }
    }
    lineToStencil(first.x, first.y);
    tess_points_stops.append(tess_points.size());
}


void QOpenGLPaintEnginePrivate::drawVertexArrays()
{
    glEnableClientState(GL_VERTEX_ARRAY);
    glVertexPointer(2, GL_DOUBLE, 0, tess_points.data());
    int previous_stop = 0;
    foreach(int stop, tess_points_stops) {
        glDrawArrays(GL_TRIANGLE_FAN, previous_stop, stop-previous_stop);
        previous_stop = stop;
    }
    glDisableClientState(GL_VERTEX_ARRAY);
}

void QOpenGLPaintEnginePrivate::fillVertexArray(Qt::FillRule fillRule)
{
    Q_Q(QOpenGLPaintEngine);

    QRect rect = dirty_stencil.boundingRect();

    if (use_system_clip)
        rect = q->systemClip().intersected(dirty_stencil).boundingRect();

    glStencilMask(~0);

    if (!rect.isEmpty()) {
        disableClipping();

        glEnable(GL_SCISSOR_TEST);

        const int left = rect.left();
        const int width = rect.width();
        const int bottom = device->size().height() - (rect.bottom() + 1);
        const int height = rect.height();

        glScissor(left, bottom, width, height);

        glClearStencil(0);
        glClear(GL_STENCIL_BUFFER_BIT);
        dirty_stencil -= rect;

        glDisable(GL_SCISSOR_TEST);

        enableClipping();
    }

    // Enable stencil.
    glEnable(GL_STENCIL_TEST);

    // Disable color writes.
    glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);

    GLuint stencilMask = 0;

    if (fillRule == Qt::OddEvenFill) {
        stencilMask = 1;

        // Enable stencil writes.
        glStencilMask(stencilMask);

        // Set stencil xor mode.
        glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT);

        // Disable stencil func.
        glStencilFunc(GL_ALWAYS, 0, ~0);

        drawVertexArrays();
    } else if (fillRule == Qt::WindingFill) {
        stencilMask = ~0;

        if (has_stencil_face_ext) {
            QGL_FUNC_CONTEXT;
            glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);

            glActiveStencilFaceEXT(GL_BACK);
            glStencilOp(GL_KEEP, GL_KEEP, GL_DECR_WRAP_EXT);
            glStencilFunc(GL_ALWAYS, 0, ~0);

            glActiveStencilFaceEXT(GL_FRONT);
            glStencilOp(GL_KEEP, GL_KEEP, GL_INCR_WRAP_EXT);
            glStencilFunc(GL_ALWAYS, 0, ~0);

            drawVertexArrays();

            glDisable(GL_STENCIL_TEST_TWO_SIDE_EXT);
        } else {
            glStencilFunc(GL_ALWAYS, 0, ~0);
            glEnable(GL_CULL_FACE);

            glCullFace(GL_BACK);
            glStencilOp(GL_KEEP, GL_KEEP, GL_INCR_WRAP_EXT);
            drawVertexArrays();

            glCullFace(GL_FRONT);
            glStencilOp(GL_KEEP, GL_KEEP, GL_DECR_WRAP_EXT);
            drawVertexArrays();

            glDisable(GL_CULL_FACE);
        }
    }

    // Enable color writes.
    glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
    glStencilMask(stencilMask);

    setGradientOps(cbrush, QRectF(QPointF(min_x, min_y), QSizeF(max_x - min_x, max_y - min_y)));

    bool fast_fill = has_fast_composition_mode && (current_style == Qt::LinearGradientPattern || current_style == Qt::SolidPattern);

    if (use_fragment_programs && !fast_fill) {
        DEBUG_ONCE qDebug() << "QOpenGLPaintEnginePrivate: Drawing polygon using stencil method (fragment programs)";
        QRectF rect(QPointF(min_x, min_y), QSizeF(max_x - min_x, max_y - min_y));

        // Enable stencil func.
        glStencilFunc(GL_NOTEQUAL, 0, stencilMask);
        glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
        composite(rect);
    } else {
        DEBUG_ONCE qDebug() << "QOpenGLPaintEnginePrivate: Drawing polygon using stencil method (no fragment programs)";

        // Enable stencil func.
        glStencilFunc(GL_NOTEQUAL, 0, stencilMask);
        glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
#ifndef QT_OPENGL_ES
        glBegin(GL_QUADS);
        glVertex2f(min_x, min_y);
        glVertex2f(max_x, min_y);
        glVertex2f(max_x, max_y);
        glVertex2f(min_x, max_y);
        glEnd();
#endif
    }

    // Disable stencil writes.
    glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
    glStencilMask(0);
    glDisable(GL_STENCIL_TEST);
}

void QOpenGLPaintEnginePrivate::fillPath(const QPainterPath &path)
{
    if (path.isEmpty())
        return;

    if (use_stencil_method && !high_quality_antialiasing) {
        pathToVertexArrays(path);
        fillVertexArray(path.fillRule());
        return;
    }

    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();

    if (high_quality_antialiasing)
        drawOffscreenPath(path);
    else {
        QPolygonF poly = path.toFillPolygon(matrix);
        fillPolygon_dev(poly.data(), poly.count(),
                        path.fillRule());
    }

    updateGLMatrix();
}


static inline bool needsEmulation(Qt::BrushStyle style)
{
    return !(style == Qt::SolidPattern
             || (style == Qt::LinearGradientPattern
                 && (QGLExtensions::glExtensions & QGLExtensions::MirroredRepeat)));
}

void QOpenGLPaintEnginePrivate::updateUseEmulation()
{
    use_emulation = !use_fragment_programs
                    && ((has_pen && needsEmulation(pen_brush_style))
                        || (has_brush && needsEmulation(brush_style)));
}

void QOpenGLPaintEngine::updatePen(const QPen &pen)
{
    Q_D(QOpenGLPaintEngine);
    Qt::PenStyle pen_style = pen.style();
    d->pen_brush_style = pen.brush().style();
    d->cpen = pen;
    d->has_pen = (pen_style != Qt::NoPen) && (d->pen_brush_style != Qt::NoBrush);
    d->updateUseEmulation();

    if (pen.isCosmetic()) {
        GLfloat width = pen.widthF() == 0.0f ? 1.0f : pen.widthF();
        glLineWidth(width);
        glPointSize(width);
    }

    if (d->pen_brush_style >= Qt::LinearGradientPattern
        && d->pen_brush_style <= Qt::ConicalGradientPattern)
    {
        d->setGLPen(Qt::white);
    } else {
        d->setGLPen(pen.color());
    }

    d->updateFastPen();
}

void QOpenGLPaintEngine::updateBrush(const QBrush &brush, const QPointF &origin)
{
    Q_D(QOpenGLPaintEngine);
    d->cbrush = brush;
    d->brush_style = brush.style();
    d->brush_origin = origin;
    d->has_brush = (d->brush_style != Qt::NoBrush);
    d->updateUseEmulation();
}

void QOpenGLPaintEngine::updateFont(const QFont &)
{
}

void QOpenGLPaintEngine::updateMatrix(const QTransform &mtx)
{
    Q_D(QOpenGLPaintEngine);

    d->matrix = mtx;

    d->mv_matrix[0][0] = mtx.m11();
    d->mv_matrix[0][1] = mtx.m12();
    d->mv_matrix[0][2] = 0;
    d->mv_matrix[0][3] = mtx.m13();

    d->mv_matrix[1][0] = mtx.m21();
    d->mv_matrix[1][1] = mtx.m22();
    d->mv_matrix[1][2] = 0;
    d->mv_matrix[1][3] = mtx.m23();

    d->mv_matrix[2][0] = 0;
    d->mv_matrix[2][1] = 0;
    d->mv_matrix[2][2] = 1;
    d->mv_matrix[2][3] = 0;

    d->mv_matrix[3][0] = mtx.dx();
    d->mv_matrix[3][1] = mtx.dy();
    d->mv_matrix[3][2] = 0;
    d->mv_matrix[3][3] = mtx.m33();

    d->txop = mtx.type();

    // 1/10000 == 0.0001, so we have good enough res to cover curves
    // that span the entire widget...
    d->inverseScale = qMax(1 / qMax( qMax(qAbs(mtx.m11()), qAbs(mtx.m22())),
                                     qMax(qAbs(mtx.m12()), qAbs(mtx.m21())) ),
                           qreal(0.0001));

    d->updateGLMatrix();
    d->updateFastPen();
}

void QOpenGLPaintEnginePrivate::updateGLMatrix() const
{
    glMatrixMode(GL_MODELVIEW);
#ifndef QT_OPENGL_ES
    glLoadMatrixd(&mv_matrix[0][0]);
#else
    glLoadMatrixf(&mv_matrix[0][0]);
#endif
}

void QOpenGLPaintEnginePrivate::disableClipping()
{
    glDisable(GL_DEPTH_TEST);
    glDisable(GL_SCISSOR_TEST);
}

void QOpenGLPaintEnginePrivate::enableClipping()
{
    Q_Q(QOpenGLPaintEngine);
    if (!q->state()->hasClipping)
        return;

    if (q->state()->fastClip.isEmpty())
        glEnable(GL_DEPTH_TEST);
    else
        updateDepthClip(); // this will enable the scissor test
}

void QOpenGLPaintEnginePrivate::updateDepthClip()
{
    Q_Q(QOpenGLPaintEngine);

    ++q->state()->depthClipId;

    glDisable(GL_DEPTH_TEST);
    glDisable(GL_SCISSOR_TEST);

    if (!q->state()->hasClipping)
        return;

    QRect fastClip;
    if (q->state()->clipEnabled) {
        fastClip = q->state()->fastClip;
    } else if (use_system_clip && q->systemClip().rects().count() == 1) {
        fastClip = q->systemClip().rects().at(0);
    }

    if (!fastClip.isEmpty()) {
        glEnable(GL_SCISSOR_TEST);

        const int left = fastClip.left();
        const int width = fastClip.width();
        const int bottom = device->size().height() - (fastClip.bottom() + 1);
        const int height = fastClip.height();

        glScissor(left, bottom, width, height);
        return;
    }

#if defined(QT_OPENGL_ES_1) || defined(QT_OPENGL_ES_2) || defined(QT_OPENGL_ES_1_CL)
    glClearDepthf(0.0f);
#else
    glClearDepth(0.0f);
#endif

    glEnable(GL_DEPTH_TEST);
    glDepthMask(GL_TRUE);
    glClear(GL_DEPTH_BUFFER_BIT);

    glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
    glDepthFunc(GL_ALWAYS);

    const QVector<QRect> rects = q->state()->clipEnabled ? q->state()->clipRegion.rects() : q->systemClip().rects();

    // rectangle count * 2 (triangles) * vertex count * component count (Z omitted)
    QDataBuffer<q_vertexType> clipVertex(rects.size()*2*3*2);
    for (int i = 0; i < rects.size(); ++i) {
        q_vertexType x = i2vt(rects.at(i).left());
        q_vertexType w = i2vt(rects.at(i).width());
        q_vertexType h = i2vt(rects.at(i).height());
        q_vertexType y = i2vt(rects.at(i).top());

        // First triangle
        clipVertex.add(x);
        clipVertex.add(y);

        clipVertex.add(x);
        clipVertex.add(y + h);

        clipVertex.add(x + w);
        clipVertex.add(y);

        // Second triangle
        clipVertex.add(x);
        clipVertex.add(y + h);

        clipVertex.add(x + w);
        clipVertex.add(y + h);

        clipVertex.add (x + w);
        clipVertex.add(y);
    }

    if (rects.size()) {
        glMatrixMode(GL_MODELVIEW);
        glLoadIdentity();

        glEnableClientState(GL_VERTEX_ARRAY);
        glVertexPointer(2, q_vertexTypeEnum, 0, clipVertex.data());

        glDrawArrays(GL_TRIANGLES, 0, rects.size()*2*3);
        glDisableClientState(GL_VERTEX_ARRAY);
        updateGLMatrix();
    }

    glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
    glDepthMask(GL_FALSE);
    glDepthFunc(GL_LEQUAL);
}

void QOpenGLPaintEnginePrivate::systemStateChanged()
{
    Q_Q(QOpenGLPaintEngine);
    if (q->painter()->hasClipping())
        q->updateClipRegion(q->painter()->clipRegion(), Qt::ReplaceClip);
    else
        q->updateClipRegion(QRegion(), Qt::NoClip);
}

void QOpenGLPaintEngine::updateClipRegion(const QRegion &clipRegion, Qt::ClipOperation op)
{
    Q_D(QOpenGLPaintEngine);

    // clipping is only supported when a stencil or depth buffer is
    // available
    if (!d->device->format().depth())
        return;

    d->use_system_clip = false;
    QRegion sysClip = systemClip();
    if (!sysClip.isEmpty()) {
        if (d->pdev->devType() != QInternal::Widget) {
            d->use_system_clip = true;
        } else {
#ifndef Q_WS_QWS
            // Only use the system clip if we're currently rendering a widget with a GL painter.
            if (d->currentClipWidget) {
                QWidgetPrivate *widgetPrivate = qt_widget_private(d->currentClipWidget->window());
                d->use_system_clip = widgetPrivate->extra && widgetPrivate->extra->inRenderWithPainter;
            }
#endif
        }
    }

    d->flushDrawQueue();

    if (op == Qt::NoClip && !d->use_system_clip) {
        state()->hasClipping = false;
        state()->clipRegion = QRegion();
        d->updateDepthClip();
        return;
    }

    bool isScreenClip = false;
    if (!d->use_system_clip) {
        QVector<QRect> untransformedRects = clipRegion.rects();

        if (untransformedRects.size() == 1) {
            QPainterPath path;
            path.addRect(untransformedRects[0]);
            path = d->matrix.map(path);

            if (path.contains(QRectF(QPointF(), d->device->size())))
                isScreenClip = true;
        }
    }

    QRegion region = isScreenClip ? QRegion() : clipRegion * d->matrix;
    switch (op) {
    case Qt::NoClip:
        if (!d->use_system_clip)
            break;
        state()->clipRegion = sysClip;
        break;
    case Qt::IntersectClip:
        if (isScreenClip)
            return;
        if (state()->hasClipping) {
            state()->clipRegion &= region;
            break;
        }
        // fall through
    case Qt::ReplaceClip:
        if (d->use_system_clip)
            state()->clipRegion = region & sysClip;
        else
            state()->clipRegion = region;
        break;
    case Qt::UniteClip:
        state()->clipRegion |= region;
        if (d->use_system_clip)
            state()->clipRegion &= sysClip;
        break;
    default:
        break;
    }

    if (isScreenClip) {
        state()->hasClipping = false;
        state()->clipRegion = QRegion();
    } else {
        state()->hasClipping = op != Qt::NoClip || d->use_system_clip;
    }

    if (state()->hasClipping && state()->clipRegion.rects().size() == 1)
        state()->fastClip = state()->clipRegion.rects().at(0);
    else
        state()->fastClip = QRect();

    d->updateDepthClip();
}

void QOpenGLPaintEngine::updateRenderHints(QPainter::RenderHints hints)
{
    Q_D(QOpenGLPaintEngine);

    d->flushDrawQueue();
    d->use_smooth_pixmap_transform = bool(hints & QPainter::SmoothPixmapTransform);
    if ((hints & QPainter::Antialiasing) || (hints & QPainter::HighQualityAntialiasing)) {
        if (d->use_fragment_programs && QGLOffscreen::isSupported()
            && (hints & QPainter::HighQualityAntialiasing)) {
            d->high_quality_antialiasing = true;
        } else {
            d->high_quality_antialiasing = false;
            if (QGLExtensions::glExtensions & QGLExtensions::SampleBuffers)
                glEnable(GL_MULTISAMPLE);
        }
    } else {
        d->high_quality_antialiasing = false;
        if (QGLExtensions::glExtensions & QGLExtensions::SampleBuffers)
            glDisable(GL_MULTISAMPLE);
    }

    if (d->high_quality_antialiasing) {
        d->offscreen.initialize();

        if (!d->offscreen.isValid()) {
            DEBUG_ONCE_STR("Unable to initialize offscreen, disabling high quality antialiasing");
            d->high_quality_antialiasing = false;
            if (QGLExtensions::glExtensions & QGLExtensions::SampleBuffers)
                glEnable(GL_MULTISAMPLE);
        }
    }

    d->has_antialiasing = d->high_quality_antialiasing
                          || ((hints & QPainter::Antialiasing)
                              && (QGLExtensions::glExtensions & QGLExtensions::SampleBuffers));
}


void QOpenGLPaintEnginePrivate::setPorterDuffData(float a, float b, float x, float y, float z)
{
    porterduff_ab_data[0] = a;
    porterduff_ab_data[1] = b;

    porterduff_xyz_data[0] = x;
    porterduff_xyz_data[1] = y;
    porterduff_xyz_data[2] = z;
}


void QOpenGLPaintEngine::updateCompositionMode(QPainter::CompositionMode composition_mode)
{
    Q_D(QOpenGLPaintEngine);

    if (!d->use_fragment_programs && composition_mode > QPainter::CompositionMode_Plus)
        composition_mode = QPainter::CompositionMode_SourceOver;

    d->composition_mode = composition_mode;

    d->has_fast_composition_mode = (!d->high_quality_antialiasing && composition_mode <= QPainter::CompositionMode_Plus)
                                   || composition_mode == QPainter::CompositionMode_SourceOver
                                   || composition_mode == QPainter::CompositionMode_Destination
                                   || composition_mode == QPainter::CompositionMode_DestinationOver
                                   || composition_mode == QPainter::CompositionMode_DestinationOut
                                   || composition_mode == QPainter::CompositionMode_SourceAtop
                                   || composition_mode == QPainter::CompositionMode_Xor
                                   || composition_mode == QPainter::CompositionMode_Plus;

    if (d->has_fast_composition_mode)
        d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODE_BLEND_MODE_MASK : COMPOSITION_MODE_BLEND_MODE_NOMASK;
    else if (composition_mode <= QPainter::CompositionMode_Plus)
        d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_SIMPLE_PORTER_DUFF : COMPOSITION_MODES_SIMPLE_PORTER_DUFF_NOMASK;
    else
        switch (composition_mode) {
        case QPainter::CompositionMode_Multiply:
            d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_MULTIPLY : COMPOSITION_MODES_MULTIPLY_NOMASK;
            break;
        case QPainter::CompositionMode_Screen:
            d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_SCREEN : COMPOSITION_MODES_SCREEN_NOMASK;
            break;
        case QPainter::CompositionMode_Overlay:
            d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_OVERLAY : COMPOSITION_MODES_OVERLAY_NOMASK;
            break;
        case QPainter::CompositionMode_Darken:
            d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_DARKEN : COMPOSITION_MODES_DARKEN_NOMASK;
            break;
        case QPainter::CompositionMode_Lighten:
            d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_LIGHTEN : COMPOSITION_MODES_LIGHTEN_NOMASK;
            break;
        case QPainter::CompositionMode_ColorDodge:
            d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_COLORDODGE : COMPOSITION_MODES_COLORDODGE_NOMASK;
            break;
        case QPainter::CompositionMode_ColorBurn:
            d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_COLORBURN : COMPOSITION_MODES_COLORBURN_NOMASK;
            break;
        case QPainter::CompositionMode_HardLight:
            d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_HARDLIGHT : COMPOSITION_MODES_HARDLIGHT_NOMASK;
            break;
        case QPainter::CompositionMode_SoftLight:
            d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_SOFTLIGHT : COMPOSITION_MODES_SOFTLIGHT_NOMASK;
            break;
        case QPainter::CompositionMode_Difference:
            d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_DIFFERENCE : COMPOSITION_MODES_DIFFERENCE_NOMASK;
            break;
        case QPainter::CompositionMode_Exclusion:
            d->fragment_composition_mode = d->high_quality_antialiasing ? COMPOSITION_MODES_EXCLUSION : COMPOSITION_MODES_EXCLUSION_NOMASK;
            break;
        default:
            Q_ASSERT(false);
        }

    switch(composition_mode) {
    case QPainter::CompositionMode_DestinationOver:
        glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ONE);
        d->setPorterDuffData(0, 1, 1, 1, 1);
        break;
    case QPainter::CompositionMode_Clear:
        glBlendFunc(GL_ZERO, GL_ZERO);
        d->setPorterDuffData(0, 0, 0, 0, 0);
        break;
    case QPainter::CompositionMode_Source:
        glBlendFunc(GL_ONE, GL_ZERO);
        d->setPorterDuffData(1, 0, 1, 1, 0);
        break;
    case QPainter::CompositionMode_Destination:
        glBlendFunc(GL_ZERO, GL_ONE);
        d->setPorterDuffData(0, 1, 1, 0, 1);
        break;
    case QPainter::CompositionMode_SourceIn:
        glBlendFunc(GL_DST_ALPHA, GL_ZERO);
        d->setPorterDuffData(1, 0, 1, 0, 0);
        break;
    case QPainter::CompositionMode_DestinationIn:
        glBlendFunc(GL_ZERO, GL_SRC_ALPHA);
        d->setPorterDuffData(0, 1, 1, 0, 0);
        break;
    case QPainter::CompositionMode_SourceOut:
        glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ZERO);
        d->setPorterDuffData(0, 0, 0, 1, 0);
        break;
    case QPainter::CompositionMode_DestinationOut:
        glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_ALPHA);
        d->setPorterDuffData(0, 0, 0, 0, 1);
        break;
    case QPainter::CompositionMode_SourceAtop:
        glBlendFunc(GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
        d->setPorterDuffData(1, 0, 1, 0, 1);
        break;
    case QPainter::CompositionMode_DestinationAtop:
        glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA);
        d->setPorterDuffData(0, 1, 1, 1, 0);
        break;
    case QPainter::CompositionMode_Xor:
        glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
        d->setPorterDuffData(0, 0, 0, 1, 1);
        break;
    case QPainter::CompositionMode_SourceOver:
        glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
        d->setPorterDuffData(1, 0, 1, 1, 1);
        break;
    case QPainter::CompositionMode_Plus:
        glBlendFunc(GL_ONE, GL_ONE);
        d->setPorterDuffData(1, 1, 1, 1, 1);
        break;
    default:
        break;
    }
}

class QGLMaskGenerator
{
public:
    QGLMaskGenerator(const QPainterPath &path, const QTransform &matrix, qreal stroke_width = -1)
        : p(path),
          m(matrix),
          w(stroke_width)
    {
    }

    virtual QRect screenRect() = 0;
    virtual void drawMask(const QRect &rect) = 0;

    QPainterPath path() const { return p; }
    QTransform matrix() const { return m; }
    qreal strokeWidth() const { return w; }

    virtual ~QGLMaskGenerator() {}

private:
    QPainterPath p;
    QTransform m;
    qreal w;
};

void QGLMaskTextureCache::setOffscreenSize(const QSize &sz)
{
    Q_ASSERT(sz.width() == sz.height());

    if (offscreenSize != sz) {
        offscreenSize = sz;
        clearCache();
    }
}

void QGLMaskTextureCache::clearCache()
{
    cache.clear();

    int quad_tree_size = 1;

    for (int i = block_size; i < offscreenSize.width(); i *= 2)
        quad_tree_size += quad_tree_size * 4;

    for (int i = 0; i < 4; ++i) {
        occupied_quadtree[i].resize(quad_tree_size);

        occupied_quadtree[i][0].key = 0;
        occupied_quadtree[i][0].largest_available_block = offscreenSize.width();
        occupied_quadtree[i][0].largest_used_block = 0;

        DEBUG_ONCE qDebug() << "QGLMaskTextureCache:: created quad tree of size" << quad_tree_size;
    }
}

void QGLMaskTextureCache::setDrawableSize(const QSize &sz)
{
    drawableSize = sz;
}

void QGLMaskTextureCache::maintainCache()
{
    QGLTextureCacheHash::iterator it = cache.begin();
    QGLTextureCacheHash::iterator end = cache.end();

    while (it != end) {
        CacheInfo &cache_info = it.value();
        ++cache_info.age;

        if (cache_info.age > 1) {
            quadtreeInsert(cache_info.loc.channel, 0, cache_info.loc.rect);
            it = cache.erase(it);
        } else {
            ++it;
        }
    }
}

//#define DISABLE_MASK_CACHE

QGLMaskTextureCache::CacheLocation QGLMaskTextureCache::getMask(QGLMaskGenerator &maskGenerator, QOpenGLPaintEnginePrivate *e)
{
#ifndef DISABLE_MASK_CACHE
    engine = e;

    quint64 key = hash(maskGenerator.path(), maskGenerator.matrix(), maskGenerator.strokeWidth());

    if (key == 0)
        key = 1;

    CacheInfo info(maskGenerator.path(), maskGenerator.matrix(), maskGenerator.strokeWidth());

    QGLTextureCacheHash::iterator it = cache.find(key);

    while (it != cache.end() && it.key() == key) {
        CacheInfo &cache_info = it.value();
        if (info.stroke_width == cache_info.stroke_width && info.matrix == cache_info.matrix && info.path == cache_info.path) {
            DEBUG_ONCE_STR("QGLMaskTextureCache::getMask(): Using cached mask");

            cache_info.age = 0;
            return cache_info.loc;
        }
        ++it;
    }

    // mask was not found, create new mask

    DEBUG_ONCE_STR("QGLMaskTextureCache::getMask(): Creating new mask...");

    createMask(key, info, maskGenerator);

    cache.insert(key, info);

    return info.loc;
#else
    CacheInfo info(maskGenerator.path(), maskGenerator.matrix());
    createMask(0, info, maskGenerator);
    return info.loc;
#endif
}

#ifndef FloatToQuint64
#define FloatToQuint64(i) (quint64)((i) * 32)
#endif

quint64 QGLMaskTextureCache::hash(const QPainterPath &p, const QTransform &m, qreal w)
{
    Q_ASSERT(sizeof(quint64) == 8);

    quint64 h = 0;

    for (int i = 0; i < p.elementCount(); ++i) {
        h += FloatToQuint64(p.elementAt(i).x) << 32;
        h += FloatToQuint64(p.elementAt(i).y);
        h += p.elementAt(i).type;
    }

    h += FloatToQuint64(m.m11());
#ifndef Q_OS_WINCE    //  ###
    //Compiler crashes for arm on WinCE
    h += FloatToQuint64(m.m12()) << 4;
    h += FloatToQuint64(m.m13()) << 8;
    h += FloatToQuint64(m.m21()) << 12;
    h += FloatToQuint64(m.m22()) << 16;
    h += FloatToQuint64(m.m23()) << 20;
    h += FloatToQuint64(m.m31()) << 24;
    h += FloatToQuint64(m.m32()) << 28;
#endif
    h += FloatToQuint64(m.m33()) << 32;

    h += FloatToQuint64(w);

    return h;
}

void QGLMaskTextureCache::createMask(quint64 key, CacheInfo &info, QGLMaskGenerator &maskGenerator)
{
    info.loc.screen_rect = maskGenerator.screenRect();

    if (info.loc.screen_rect.isEmpty()) {
        info.loc.channel = 0;
        info.loc.rect = QRect();
        return;
    }

    quadtreeAllocate(key, info.loc.screen_rect.size(), &info.loc.rect, &info.loc.channel);

    int ch = info.loc.channel;
    glColorMask(ch == 0, ch == 1, ch == 2, ch == 3);

    maskGenerator.drawMask(info.loc.rect);

    glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
}

int QGLMaskTextureCache::quadtreeBlocksize(int node)
{
    DEBUG_ONCE qDebug() << "Offscreen size:" << offscreenSize.width();

    int blocksize = offscreenSize.width();

    while (node) {
        node = (node - 1) / 4;
        blocksize /= 2;
    }

    return blocksize;
}

QPoint QGLMaskTextureCache::quadtreeLocation(int node)
{
    QPoint location;
    int blocksize = quadtreeBlocksize(node);

    while (node) {
        --node;

        if (node & 1)
            location.setX(location.x() + blocksize);

        if (node & 2)
            location.setY(location.y() + blocksize);

        node /= 4;
        blocksize *= 2;
    }

    return location;
}

void QGLMaskTextureCache::quadtreeUpdate(int channel, int node, int current_block_size)
{
    while (node) {
        node = (node - 1) / 4;

        int first_child = node * 4 + 1;

        int largest_available = 0;
        int largest_used = 0;

        bool all_empty = true;

        for (int i = 0; i < 4; ++i) {
            largest_available = qMax(largest_available, occupied_quadtree[channel][first_child + i].largest_available_block);
            largest_used = qMax(largest_used, occupied_quadtree[channel][first_child + i].largest_used_block);

            if (occupied_quadtree[channel][first_child + i].largest_available_block < current_block_size)
                all_empty = false;
        }

        current_block_size *= 2;

        if (all_empty) {
            occupied_quadtree[channel][node].largest_available_block = current_block_size;
            occupied_quadtree[channel][node].largest_used_block = 0;
        } else {
            occupied_quadtree[channel][node].largest_available_block = largest_available;
            occupied_quadtree[channel][node].largest_used_block = largest_used;
        }
    }
}

void QGLMaskTextureCache::quadtreeInsert(int channel, quint64 key, const QRect &rect, int node)
{
    int current_block_size = quadtreeBlocksize(node);
    QPoint location = quadtreeLocation(node);
    QRect relative = rect.translated(-location);

    if (relative.left() >= current_block_size || relative.top() >= current_block_size
        || relative.right() < 0 || relative.bottom() < 0)
        return;

    if (current_block_size == block_size // no more refining possible
        || (relative.top() < block_size && relative.bottom() >= (current_block_size - block_size)
            && relative.left() < block_size && relative.right() >= (current_block_size - block_size)))
    {
        if (key != 0) {
            occupied_quadtree[channel][node].largest_available_block = 0;
            occupied_quadtree[channel][node].largest_used_block = rect.width() * rect.height();
        } else {
            occupied_quadtree[channel][node].largest_available_block = current_block_size;
            occupied_quadtree[channel][node].largest_used_block = 0;
        }

        occupied_quadtree[channel][node].key = key;

        quadtreeUpdate(channel, node, current_block_size);
    } else {
        if (key && occupied_quadtree[channel][node].largest_available_block == current_block_size) {
            // refining the quad tree, initialize child nodes
            int half_block_size = current_block_size / 2;

            int temp = node * 4 + 1;
            for (int sibling = 0; sibling < 4; ++sibling) {
                occupied_quadtree[channel][temp + sibling].largest_available_block = half_block_size;
                occupied_quadtree[channel][temp + sibling].largest_used_block = 0;
                occupied_quadtree[channel][temp + sibling].key = 0;
            }
        }

        node = node * 4 + 1;

        for (int sibling = 0; sibling < 4; ++sibling)
            quadtreeInsert(channel, key, rect, node + sibling);
    }
}

void QGLMaskTextureCache::quadtreeClear(int channel, const QRect &rect, int node)
{
    const quint64 &key = occupied_quadtree[channel][node].key;

    int current_block_size = quadtreeBlocksize(node);
    QPoint location = quadtreeLocation(node);

    QRect relative = rect.translated(-location);

    if (relative.left() >= current_block_size || relative.top() >= current_block_size
        || relative.right() < 0 || relative.bottom() < 0)
        return;

    if (key != 0) {
        QGLTextureCacheHash::iterator it = cache.find(key);

        Q_ASSERT(it != cache.end());

        while (it != cache.end() && it.key() == key) {
            const CacheInfo &cache_info = it.value();

            if (cache_info.loc.channel == channel
                && cache_info.loc.rect.left() <= location.x()
                && cache_info.loc.rect.top() <= location.y()
                && cache_info.loc.rect.right() >= location.x()
                && cache_info.loc.rect.bottom() >= location.y())
            {
                quadtreeInsert(channel, 0, cache_info.loc.rect);
                engine->cacheItemErased(channel, cache_info.loc.rect);
                cache.erase(it);
                goto found;
            } else {
                ++it;
            }
        }

        // if we don't find the key there's an error in the quadtree
        Q_ASSERT(false);
found:
        Q_ASSERT(occupied_quadtree[channel][node].key == 0);
    } else if (occupied_quadtree[channel][node].largest_available_block < current_block_size) {
        Q_ASSERT(current_block_size >= block_size);

        node = node * 4 + 1;

        for (int sibling = 0; sibling < 4; ++sibling)
            quadtreeClear(channel, rect, node + sibling);
    }
}

bool QGLMaskTextureCache::quadtreeFindAvailableLocation(const QSize &size, QRect *rect, int *channel)
{
    int needed_block_size = qMax(1, qMax(size.width(), size.height()));

    for (int i = 0; i < 4; ++i) {
        int current_block_size = offscreenSize.width();

        if (occupied_quadtree[i][0].largest_available_block >= needed_block_size) {
            int node = 0;

            while (current_block_size != occupied_quadtree[i][node].largest_available_block) {
                Q_ASSERT(current_block_size > block_size);
                Q_ASSERT(current_block_size > occupied_quadtree[i][node].largest_available_block);

                node = node * 4 + 1;
                current_block_size /= 2;

                int sibling = 0;

                while (occupied_quadtree[i][node + sibling].largest_available_block < needed_block_size)
                    ++sibling;

                Q_ASSERT(sibling < 4);
                node += sibling;
            }

            *channel = i;
            *rect = QRect(quadtreeLocation(node), size);

            return true;
        }
    }

    return false;
}

void QGLMaskTextureCache::quadtreeFindExistingLocation(const QSize &size, QRect *rect, int *channel)
{
    // try to pick small masks to throw out, as large masks are more expensive to recompute
    *channel = qrand() % 4;
    for (int i = 0; i < 4; ++i)
        if (occupied_quadtree[i][0].largest_used_block < occupied_quadtree[*channel][0].largest_used_block)
            *channel = i;

    int needed_block_size = qt_next_power_of_two(qMax(1, qMax(size.width(), size.height())));

    int node = 0;
    int current_block_size = offscreenSize.width();

    while (current_block_size > block_size
           && current_block_size >= needed_block_size * 2
           && occupied_quadtree[*channel][node].key == 0)
    {
        node = node * 4 + 1;

        int sibling = 0;

        for (int i = 1; i < 4; ++i) {
            if (occupied_quadtree[*channel][node + i].largest_used_block
                <= occupied_quadtree[*channel][node + sibling].largest_used_block)
            {
                sibling = i;
            }
        }

        node += sibling;
        current_block_size /= 2;
    }

    *rect = QRect(quadtreeLocation(node), size);
}

void QGLMaskTextureCache::quadtreeAllocate(quint64 key, const QSize &size, QRect *rect, int *channel)
{
#ifndef DISABLE_MASK_CACHE
    if (!quadtreeFindAvailableLocation(size, rect, channel)) {
        quadtreeFindExistingLocation(size, rect, channel);
        quadtreeClear(*channel, *rect);
    }

    quadtreeInsert(*channel, key, *rect);
#else
    *channel = 0;
    *rect = QRect(QPoint(), size);
#endif
}

class QGLTrapezoidMaskGenerator : public QGLMaskGenerator
{
public:
    QGLTrapezoidMaskGenerator(const QPainterPath &path, const QTransform &matrix, QGLOffscreen &offscreen, GLuint maskFragmentProgram, qreal strokeWidth = -1.0);

    QRect screenRect();
    void drawMask(const QRect &rect);

private:
    QRect screen_rect;
    bool has_screen_rect;

    QGLOffscreen *offscreen;

    GLuint maskFragmentProgram;

    virtual QVector<QGLTrapezoid> generateTrapezoids() = 0;
    virtual QRect computeScreenRect() = 0;
};

class QGLPathMaskGenerator : public QGLTrapezoidMaskGenerator
{
public:
    QGLPathMaskGenerator(const QPainterPath &path, const QTransform &matrix, QGLOffscreen &offscreen, GLuint maskFragmentProgram);

private:
    QVector<QGLTrapezoid> generateTrapezoids();
    QRect computeScreenRect();

    QPolygonF poly;
};

class QGLLineMaskGenerator : public QGLTrapezoidMaskGenerator
{
public:
    QGLLineMaskGenerator(const QPainterPath &path, const QTransform &matrix, qreal width, QGLOffscreen &offscreen, GLuint maskFragmentProgram);

private:
    QVector<QGLTrapezoid> generateTrapezoids();
    QRect computeScreenRect();

    QPainterPath transformedPath;
};

class QGLRectMaskGenerator : public QGLTrapezoidMaskGenerator
{
public:
    QGLRectMaskGenerator(const QPainterPath &path, const QTransform &matrix, QGLOffscreen &offscreen, GLuint maskFragmentProgram);

private:
    QVector<QGLTrapezoid> generateTrapezoids();
    QRect computeScreenRect();

    QPainterPath transformedPath;
};

class QGLEllipseMaskGenerator : public QGLMaskGenerator
{
public:
    QGLEllipseMaskGenerator(const QRectF &rect, const QTransform &matrix, QGLOffscreen &offscreen, GLuint maskFragmentProgram, int *maskVariableLocations);

    QRect screenRect();
    void drawMask(const QRect &rect);

private:
    QRect screen_rect;

    QRectF ellipseRect;

    QGLOffscreen *offscreen;

    GLuint maskFragmentProgram;

    int *maskVariableLocations;

    float vertexArray[4 * 2];
};

QGLTrapezoidMaskGenerator::QGLTrapezoidMaskGenerator(const QPainterPath &path, const QTransform &matrix, QGLOffscreen &offs, GLuint program, qreal stroke_width)
    : QGLMaskGenerator(path, matrix, stroke_width)
    ,  has_screen_rect(false)
    ,  offscreen(&offs)
    ,  maskFragmentProgram(program)
{
}

extern void qt_add_rect_to_array(const QRectF &r, q_vertexType *array);
extern void qt_add_texcoords_to_array(qreal x1, qreal y1, qreal x2, qreal y2, q_vertexType *array);

void QGLTrapezoidMaskGenerator::drawMask(const QRect &rect)
{
#ifdef QT_OPENGL_ES
    Q_UNUSED(rect);
#else
    glMatrixMode(GL_MODELVIEW);
    glPushMatrix();
    glLoadIdentity();

    QGLContext *ctx = offscreen->context();
    offscreen->bind();

    glDisable(GL_TEXTURE_GEN_S);
    glDisable(GL_TEXTURE_1D);

    GLfloat vertexArray[4 * 2];
    qt_add_rect_to_array(rect, vertexArray);

    bool needs_scissor = rect != screen_rect;

    if (needs_scissor) {
        glEnable(GL_SCISSOR_TEST);
        glScissor(rect.left(), offscreen->offscreenSize().height() - rect.bottom() - 1, rect.width(), rect.height());
    }

    QVector<QGLTrapezoid> trapezoids = generateTrapezoids();

    // clear mask
    glBlendFunc(GL_ZERO, GL_ZERO); // clear
    glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
    glEnableClientState(GL_VERTEX_ARRAY);
    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
    glDisableClientState(GL_VERTEX_ARRAY);

    glBlendFunc(GL_ONE, GL_ONE); // add mask
    glEnable(GL_FRAGMENT_PROGRAM_ARB);
    glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, maskFragmentProgram);

    QPoint delta = rect.topLeft() - screen_rect.topLeft();
    glBegin(GL_QUADS);
    for (int i = 0; i < trapezoids.size(); ++i)
        drawTrapezoid(trapezoids[i].translated(delta), offscreen->offscreenSize().height(), ctx);
    glEnd();

    if (needs_scissor)
        glDisable(GL_SCISSOR_TEST);

    glDisable(GL_FRAGMENT_PROGRAM_ARB);

    glMatrixMode(GL_MODELVIEW);
    glPopMatrix();
#endif
}

QRect QGLTrapezoidMaskGenerator::screenRect()
{
    if (!has_screen_rect) {
        screen_rect = computeScreenRect();
        has_screen_rect = true;
    }

    screen_rect = screen_rect.intersected(QRect(QPoint(), offscreen->drawableSize()));

    return screen_rect;
}

QGLPathMaskGenerator::QGLPathMaskGenerator(const QPainterPath &path, const QTransform &matrix, QGLOffscreen &offs, GLuint program)
    : QGLTrapezoidMaskGenerator(path, matrix, offs, program)
{
}

QRect QGLPathMaskGenerator::computeScreenRect()
{
    poly = path().toFillPolygon(matrix());
    return poly.boundingRect().toAlignedRect();
}

QVector<QGLTrapezoid> QGLPathMaskGenerator::generateTrapezoids()
{
    QOpenGLImmediateModeTessellator tessellator;
    tessellator.tessellate(poly.data(), poly.count(), path().fillRule() == Qt::WindingFill);
    return tessellator.trapezoids;
}

QGLRectMaskGenerator::QGLRectMaskGenerator(const QPainterPath &path, const QTransform &matrix, QGLOffscreen &offs, GLuint program)
    : QGLTrapezoidMaskGenerator(path, matrix, offs, program)
{
}

QGLLineMaskGenerator::QGLLineMaskGenerator(const QPainterPath &path, const QTransform &matrix, qreal width, QGLOffscreen &offs, GLuint program)
    : QGLTrapezoidMaskGenerator(path, matrix, offs, program, width)
{
}

QRect QGLRectMaskGenerator::computeScreenRect()
{
    transformedPath = matrix().map(path());

    return transformedPath.controlPointRect().adjusted(-1, -1, 1, 1).toAlignedRect();
}

QRect QGLLineMaskGenerator::computeScreenRect()
{
    transformedPath = matrix().map(path());

    return transformedPath.controlPointRect().adjusted(-1, -1, 1, 1).toAlignedRect();
}

QVector<QGLTrapezoid> QGLLineMaskGenerator::generateTrapezoids()
{
    QOpenGLImmediateModeTessellator tessellator;
    QPointF last;
    for (int i = 0; i < transformedPath.elementCount(); ++i) {
        QPainterPath::Element element = transformedPath.elementAt(i);

        Q_ASSERT(!element.isCurveTo());

        if (element.isLineTo())
            tessellator.tessellateRect(last, element, strokeWidth());

        last = element;
    }

    return tessellator.trapezoids;
}

QVector<QGLTrapezoid> QGLRectMaskGenerator::generateTrapezoids()
{
    Q_ASSERT(transformedPath.elementCount() == 5);

    QOpenGLImmediateModeTessellator tessellator;
    if (matrix().type() <= QTransform::TxScale) {
        QPointF a = transformedPath.elementAt(0);
        QPointF b = transformedPath.elementAt(1);
        QPointF c = transformedPath.elementAt(2);
        QPointF d = transformedPath.elementAt(3);

        QPointF first = (a + d) * 0.5;
        QPointF last = (b + c) * 0.5;

        QPointF delta = a - d;

        // manhattan distance (no rotation)
        qreal width = qAbs(delta.x()) + qAbs(delta.y());

        Q_ASSERT(qFuzzyIsNull(delta.x()) || qFuzzyIsNull(delta.y()));

        tessellator.tessellateRect(first, last, width);
    } else {
        QPointF points[5];

        for (int i = 0; i < 5; ++i)
            points[i] = transformedPath.elementAt(i);

        tessellator.tessellateConvex(points, 5);
    }
    return tessellator.trapezoids;
}

static QPainterPath ellipseRectToPath(const QRectF &rect)
{
    QPainterPath path;
    path.addEllipse(rect);
    return path;
}

QGLEllipseMaskGenerator::QGLEllipseMaskGenerator(const QRectF &rect, const QTransform &matrix, QGLOffscreen &offs, GLuint program, int *locations)
    : QGLMaskGenerator(ellipseRectToPath(rect), matrix),
      ellipseRect(rect),
      offscreen(&offs),
      maskFragmentProgram(program),
      maskVariableLocations(locations)
{
}

QRect QGLEllipseMaskGenerator::screenRect()
{
    QPointF center = ellipseRect.center();

    QPointF points[] = {
        QPointF(ellipseRect.left(), center.y()),
        QPointF(ellipseRect.right(), center.y()),
        QPointF(center.x(), ellipseRect.top()),
        QPointF(center.x(), ellipseRect.bottom())
    };

    qreal min_screen_delta_len = QREAL_MAX;

    for (int i = 0; i < 4; ++i) {
        QPointF delta = points[i] - center;

        // normalize
        delta /= qSqrt(delta.x() * delta.x() + delta.y() * delta.y());

        QPointF screen_delta(matrix().m11() * delta.x() + matrix().m21() * delta.y(),
                             matrix().m12() * delta.x() + matrix().m22() * delta.y());

        min_screen_delta_len = qMin(min_screen_delta_len,
                                    qreal(qSqrt(screen_delta.x() * screen_delta.x() + screen_delta.y() * screen_delta.y())));
    }

    const qreal padding = 2.0f;

    qreal grow = padding / min_screen_delta_len;

    QRectF boundingRect = ellipseRect.adjusted(-grow, -grow, grow, grow);

    boundingRect = matrix().mapRect(boundingRect);

    QPointF p(0.5, 0.5);

    screen_rect = QRect((boundingRect.topLeft() - p).toPoint(),
                        (boundingRect.bottomRight() + p).toPoint());

    return screen_rect;
}

void QGLEllipseMaskGenerator::drawMask(const QRect &rect)
{
#ifdef QT_OPENGL_ES
    Q_UNUSED(rect);
#else
    QGLContext *ctx = offscreen->context();
    offscreen->bind();

    glDisable(GL_TEXTURE_GEN_S);
    glDisable(GL_TEXTURE_1D);

    // fragment program needs the inverse radii of the ellipse
    glTexCoord2f(1.0f / (ellipseRect.width() * 0.5f),
                 1.0f / (ellipseRect.height() * 0.5f));

    QTransform translate(1, 0, 0, 1, -ellipseRect.center().x(), -ellipseRect.center().y());
    QTransform gl_to_qt(1, 0, 0, -1, 0, offscreen->drawableSize().height());
    QTransform inv_matrix = gl_to_qt * matrix().inverted() * translate;

    float m[3][4] = { { inv_matrix.m11(), inv_matrix.m12(), inv_matrix.m13() },
                      { inv_matrix.m21(), inv_matrix.m22(), inv_matrix.m23() },
                      { inv_matrix.m31(), inv_matrix.m32(), inv_matrix.m33() } };

    QPoint offs(screen_rect.left() - rect.left(), (offscreen->drawableSize().height() - screen_rect.top())
                                                - (offscreen->offscreenSize().height() - rect.top()));

    // last component needs to be 1.0f to avoid Nvidia bug on linux
    float ellipse_offset[4] = { offs.x(), offs.y(), 0.0f, 1.0f };

    GLfloat vertexArray[4 * 2];
    qt_add_rect_to_array(rect, vertexArray);

    glBlendFunc(GL_ONE, GL_ZERO); // set mask
    glEnable(GL_FRAGMENT_PROGRAM_ARB);
    glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, maskFragmentProgram);

    glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, maskVariableLocations[VAR_INV_MATRIX_M0], m[0]);
    glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, maskVariableLocations[VAR_INV_MATRIX_M1], m[1]);
    glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, maskVariableLocations[VAR_INV_MATRIX_M2], m[2]);

    glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, maskVariableLocations[VAR_ELLIPSE_OFFSET], ellipse_offset);

    glEnableClientState(GL_VERTEX_ARRAY);
    glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
    glDisableClientState(GL_VERTEX_ARRAY);
    glDisable(GL_FRAGMENT_PROGRAM_ARB);
#endif
}

void QOpenGLPaintEnginePrivate::drawOffscreenPath(const QPainterPath &path)
{
#ifdef Q_WS_QWS
    Q_UNUSED(path);
#else
    DEBUG_ONCE_STR("QOpenGLPaintEnginePrivate::drawOffscreenPath()");

    disableClipping();

    GLuint program = qt_gl_program_cache()->getProgram(device->context(),
                                                       FRAGMENT_PROGRAM_MASK_TRAPEZOID_AA, 0, true);
    QGLPathMaskGenerator maskGenerator(path, matrix, offscreen, program);
    addItem(qt_mask_texture_cache()->getMask(maskGenerator, this));

    enableClipping();
#endif
}

void QOpenGLPaintEnginePrivate::drawFastRect(const QRectF &r)
{
    Q_Q(QOpenGLPaintEngine);
    DEBUG_ONCE_STR("QOpenGLPaintEngine::drawRects(): drawing fast rect");

    q_vertexType vertexArray[10];
    qt_add_rect_to_array(r, vertexArray);

    if (has_pen)
        QOpenGLCoordinateOffset::enableOffset(this);

    if (has_brush) {
        flushDrawQueue();

        bool temp = high_quality_antialiasing;
        high_quality_antialiasing = false;

        q->updateCompositionMode(composition_mode);

        setGradientOps(cbrush, r);

        bool fast_style = current_style == Qt::LinearGradientPattern
                          || current_style == Qt::SolidPattern;

        if (fast_style && has_fast_composition_mode) {
            glEnableClientState(GL_VERTEX_ARRAY);
            glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
            glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
            glDisableClientState(GL_VERTEX_ARRAY);
        } else {
            composite(r);
        }

        high_quality_antialiasing = temp;

        q->updateCompositionMode(composition_mode);
    }

    if (has_pen) {
        if (has_fast_pen && !high_quality_antialiasing) {
            setGradientOps(cpen.brush(), r);

            vertexArray[8] = vertexArray[0];
            vertexArray[9] = vertexArray[1];

            glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
            glEnableClientState(GL_VERTEX_ARRAY);
            glDrawArrays(GL_LINE_STRIP, 0, 5);
            glDisableClientState(GL_VERTEX_ARRAY);
        } else {
            QPainterPath path;
            path.setFillRule(Qt::WindingFill);

            qreal left = r.left();
            qreal right = r.right();
            qreal top = r.top();
            qreal bottom = r.bottom();

            path.moveTo(left, top);
            path.lineTo(right, top);
            path.lineTo(right, bottom);
            path.lineTo(left, bottom);
            path.lineTo(left, top);

            strokePath(path, false);
        }

        QOpenGLCoordinateOffset::disableOffset(this);
    }
}

bool QOpenGLPaintEnginePrivate::isFastRect(const QRectF &rect)
{
    if (matrix.type() < QTransform::TxRotate) {
        QRectF r = matrix.mapRect(rect);
        return r.topLeft().toPoint() == r.topLeft()
            && r.bottomRight().toPoint() == r.bottomRight();
    }

    return false;
}

void QOpenGLPaintEngine::drawRects(const QRect *rects, int rectCount)
{
    struct RectF {
        qreal x;
        qreal y;
        qreal w;
        qreal h;
    };
    Q_ASSERT(sizeof(RectF) == sizeof(QRectF));
    RectF fr[256];
    while (rectCount) {
        int i = 0;
        while (i < rectCount && i < 256) {
            fr[i].x = rects[i].x();
            fr[i].y = rects[i].y();
            fr[i].w = rects[i].width();
            fr[i].h = rects[i].height();
            ++i;
        }
        drawRects((QRectF *)(void *)fr, i);
        rects += i;
        rectCount -= i;
    }
}

void QOpenGLPaintEngine::drawRects(const QRectF *rects, int rectCount)
{
    Q_D(QOpenGLPaintEngine);

    if (d->use_emulation) {
        QPaintEngineEx::drawRects(rects, rectCount);
        return;
    }

    for (int i=0; i<rectCount; ++i) {
        const QRectF &r = rects[i];

        // optimization for rects which can be drawn aliased
        if (!d->high_quality_antialiasing || d->isFastRect(r)) {
            d->drawFastRect(r);
        } else {
            QPainterPath path;
            path.addRect(r);

            if (d->has_brush) {
                d->disableClipping();
                GLuint program = qt_gl_program_cache()->getProgram(d->device->context(),
                                                                   FRAGMENT_PROGRAM_MASK_TRAPEZOID_AA, 0, true);

                if (d->matrix.type() >= QTransform::TxProject) {
                    QGLPathMaskGenerator maskGenerator(path, d->matrix, d->offscreen, program);
                    d->addItem(qt_mask_texture_cache()->getMask(maskGenerator, d));
                } else {
                    QGLRectMaskGenerator maskGenerator(path, d->matrix, d->offscreen, program);
                    d->addItem(qt_mask_texture_cache()->getMask(maskGenerator, d));
                }

                d->enableClipping();
            }

            if (d->has_pen) {
                if (d->has_fast_pen)
                    d->strokeLines(path);
                else
                    d->strokePath(path, false);
            }
        }
    }
}

static void addQuadAsTriangle(q_vertexType *quad, q_vertexType *triangle)
{
    triangle[0] = quad[0];
    triangle[1] = quad[1];

    triangle[2] = quad[2];
    triangle[3] = quad[3];

    triangle[4] = quad[4];
    triangle[5] = quad[5];

    triangle[6] = quad[4];
    triangle[7] = quad[5];

    triangle[8] = quad[6];
    triangle[9] = quad[7];

    triangle[10] = quad[0];
    triangle[11] = quad[1];
}

void QOpenGLPaintEngine::drawPoints(const QPoint *points, int pointCount)
{
    Q_ASSERT(sizeof(QT_PointF) == sizeof(QPointF));
    QT_PointF fp[256];
    while (pointCount) {
        int i = 0;
        while (i < pointCount && i < 256) {
            fp[i].x = points[i].x();
            fp[i].y = points[i].y();
            ++i;
        }
        drawPoints((QPointF *)(void *)fp, i);
        points += i;
        pointCount -= i;
    }
}

void QOpenGLPaintEngine::drawPoints(const QPointF *points, int pointCount)
{
    Q_D(QOpenGLPaintEngine);

    if (d->use_emulation) {
        QPaintEngineEx::drawPoints(points, pointCount);
        return;
    }

    d->setGradientOps(d->cpen.brush(), QRectF());

    if (!d->cpen.isCosmetic() || d->high_quality_antialiasing) {
        Qt::PenCapStyle capStyle = d->cpen.capStyle();
        if (capStyle == Qt::FlatCap)
            d->cpen.setCapStyle(Qt::SquareCap);
        QPaintEngine::drawPoints(points, pointCount);
        d->cpen.setCapStyle(capStyle);
        return;
    }

    d->flushDrawQueue();

    if (d->has_fast_pen) {
        QVarLengthArray<q_vertexType> vertexArray(6 * pointCount);

        glMatrixMode(GL_MODELVIEW);
        glPushMatrix();
        glLoadIdentity();

        int j = 0;
        for (int i = 0; i < pointCount; ++i) {
            QPointF mapped = d->matrix.map(points[i]);

            qreal xf = qRound(mapped.x());
            qreal yf = qRound(mapped.y());

            q_vertexType x = f2vt(xf);
            q_vertexType y = f2vt(yf);

            vertexArray[j++] = x;
            vertexArray[j++] = y - f2vt(0.5);

            vertexArray[j++] = x + f2vt(1.5);
            vertexArray[j++] = y + f2vt(1.0);

            vertexArray[j++] = x;
            vertexArray[j++] = y + f2vt(1.0);
        }

        glEnableClientState(GL_VERTEX_ARRAY);

        glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray.constData());
        glDrawArrays(GL_TRIANGLES, 0, pointCount*3);

        glDisableClientState(GL_VERTEX_ARRAY);

        glPopMatrix();
        return;
    }

    const qreal *vertexArray = reinterpret_cast<const qreal*>(&points[0]);

    if (sizeof(qreal) == sizeof(double)) {
        Q_ASSERT(sizeof(QPointF) == 16);
        glVertexPointer(2, GL_DOUBLE, 0, vertexArray);
    }
    else {
        Q_ASSERT(sizeof(QPointF) == 8);
        glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
    }

    glEnableClientState(GL_VERTEX_ARRAY);
    glDrawArrays(GL_POINTS, 0, pointCount);
    glDisableClientState(GL_VERTEX_ARRAY);
}

void QOpenGLPaintEngine::drawLines(const QLine *lines, int lineCount)
{
    struct PointF {
        qreal x;
        qreal y;
    };
    struct LineF {
        PointF p1;
        PointF p2;
    };
    Q_ASSERT(sizeof(PointF) == sizeof(QPointF));
    Q_ASSERT(sizeof(LineF) == sizeof(QLineF));
    LineF fl[256];
    while (lineCount) {
        int i = 0;
        while (i < lineCount && i < 256) {
            fl[i].p1.x = lines[i].x1();
            fl[i].p1.y = lines[i].y1();
            fl[i].p2.x = lines[i].x2();
            fl[i].p2.y = lines[i].y2();
            ++i;
        }
        drawLines((QLineF *)(void *)fl, i);
        lines += i;
        lineCount -= i;
    }
}

void QOpenGLPaintEngine::drawLines(const QLineF *lines, int lineCount)
{
    Q_D(QOpenGLPaintEngine);

    if (d->use_emulation) {
        QPaintEngineEx::drawLines(lines, lineCount);
        return;
    }

    if (d->has_pen) {
        QOpenGLCoordinateOffset offset(d);
        if (d->has_fast_pen && !d->high_quality_antialiasing) {
            //### gradient resolving on lines isn't correct
            d->setGradientOps(d->cpen.brush(), QRectF());

            bool useRects = false;
            // scale or 90 degree rotation?
            if (d->matrix.type() <= QTransform::TxTranslate
                || (!d->cpen.isCosmetic()
                    && (d->matrix.type() <= QTransform::TxScale
                        || (d->matrix.type() == QTransform::TxRotate
                            && d->matrix.m11() == 0 && d->matrix.m22() == 0)))) {
                useRects = true;
                for (int i = 0; i < lineCount; ++i) {
                    if (lines[i].p1().x() != lines[i].p2().x()
                        && lines[i].p1().y() != lines[i].p2().y()) {
                        useRects = false;
                        break;
                    }
                }
            }

            q_vertexType endCap = f2vt(d->cpen.capStyle() == Qt::FlatCap ? 0 : 0.5);
            if (useRects) {
                QVarLengthArray<q_vertexType> vertexArray(12 * lineCount);

                q_vertexType quad[8];
                for (int i = 0; i < lineCount; ++i) {
                    q_vertexType x1 = f2vt(lines[i].x1());
                    q_vertexType x2 = f2vt(lines[i].x2());
                    q_vertexType y1 = f2vt(lines[i].y1());
                    q_vertexType y2 = f2vt(lines[i].y2());

                    if (x1 == x2) {
                        if (y1 > y2)
                            qSwap(y1, y2);

                        quad[0] = x1 - f2vt(0.5);
                        quad[1] = y1 - endCap;

                        quad[2] = x1 + f2vt(0.5);
                        quad[3] = y1 - endCap;

                        quad[4] = x1 + f2vt(0.5);
                        quad[5] = y2 + endCap;

                        quad[6] = x1 - f2vt(0.5);
                        quad[7] = y2 + endCap;
                    } else {
                        if (x1 > x2)
                            qSwap(x1, x2);

                        quad[0] = x1 - endCap;
                        quad[1] = y1 + f2vt(0.5);

                        quad[2] = x1 - endCap;
                        quad[3] = y1 - f2vt(0.5);

                        quad[4] = x2 + endCap;
                        quad[5] = y1 - f2vt(0.5);

                        quad[6] = x2 + endCap;
                        quad[7] = y1 + f2vt(0.5);
                    }

                    addQuadAsTriangle(quad, &vertexArray[12*i]);
                }

                glEnableClientState(GL_VERTEX_ARRAY);

                glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray.constData());
                glDrawArrays(GL_TRIANGLES, 0, lineCount*6);

                glDisableClientState(GL_VERTEX_ARRAY);
            } else {
                QVarLengthArray<q_vertexType> vertexArray(4 * lineCount);
                for (int i = 0; i < lineCount; ++i) {
                    const QPointF a = lines[i].p1();
                    vertexArray[4*i]   = f2vt(lines[i].x1());
                    vertexArray[4*i+1] = f2vt(lines[i].y1());
                    vertexArray[4*i+2] = f2vt(lines[i].x2());
                    vertexArray[4*i+3] = f2vt(lines[i].y2());
                }

                glEnableClientState(GL_VERTEX_ARRAY);

                glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray.constData());
                glDrawArrays(GL_LINES, 0, lineCount*2);

                glVertexPointer(2, q_vertexTypeEnum, 4*sizeof(q_vertexType), vertexArray.constData() + 2);
                glDrawArrays(GL_POINTS, 0, lineCount);

                glDisableClientState(GL_VERTEX_ARRAY);
            }
        } else {
            QPainterPath path;
            path.setFillRule(Qt::WindingFill);
            for (int i=0; i<lineCount; ++i) {
                const QLineF &l = lines[i];

                if (l.p1() == l.p2()) {
                    if (d->cpen.capStyle() != Qt::FlatCap) {
                        QPointF p = l.p1();
                        drawPoints(&p, 1);
                    }
                    continue;
                }

                path.moveTo(l.x1(), l.y1());
                path.lineTo(l.x2(), l.y2());
            }

            if (d->has_fast_pen && d->high_quality_antialiasing)
                d->strokeLines(path);
            else
                d->strokePath(path, false);
        }
    }
}

void QOpenGLPaintEngine::drawPolygon(const QPoint *points, int pointCount, PolygonDrawMode mode)
{
    Q_ASSERT(sizeof(QT_PointF) == sizeof(QPointF));
    QVarLengthArray<QT_PointF> p(pointCount);
    for (int i=0; i<pointCount; ++i) {
        p[i].x = points[i].x();
        p[i].y = points[i].y();
    }
    drawPolygon((QPointF *)p.data(), pointCount, mode);
}

void QOpenGLPaintEngine::drawPolygon(const QPointF *points, int pointCount, PolygonDrawMode mode)
{
    Q_D(QOpenGLPaintEngine);
    if(pointCount < 2)
        return;

    if (d->use_emulation) {
        QPaintEngineEx::drawPolygon(points, pointCount, mode);
        return;
    }

    QRectF bounds;
    if ((mode == ConvexMode && !d->high_quality_antialiasing && state()->brushNeedsResolving()) ||
        ((d->has_fast_pen && !d->high_quality_antialiasing) && state()->penNeedsResolving())) {
        qreal minx = points[0].x(), miny = points[0].y(),
              maxx = points[0].x(), maxy = points[0].y();
        for (int i = 1; i < pointCount; ++i) {
            const QPointF &pt = points[i];
            if (minx > pt.x())
                minx = pt.x();
            if (miny > pt.y())
                miny = pt.y();
            if (maxx < pt.x())
                maxx = pt.x();
            if (maxy < pt.y())
                maxy = pt.y();
        }
        bounds = QRectF(minx, maxx, maxx-minx, maxy-miny);
    }

    QOpenGLCoordinateOffset offset(d);

    if (d->has_brush && mode != PolylineMode) {
        if (mode == ConvexMode && !d->high_quality_antialiasing) {
            //### resolving on polygon from points isn't correct
            d->setGradientOps(d->cbrush, bounds);

            const qreal *vertexArray = reinterpret_cast<const qreal*>(&points[0]);

            if (sizeof(qreal) == sizeof(double)) {
                Q_ASSERT(sizeof(QPointF) == 16);
                glVertexPointer(2, GL_DOUBLE, 0, vertexArray);
            }
            else {
                Q_ASSERT(sizeof(QPointF) == 8);
                glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
            }

            glEnableClientState(GL_VERTEX_ARRAY);
            glDrawArrays(GL_TRIANGLE_FAN, 0, pointCount);
            glDisableClientState(GL_VERTEX_ARRAY);
        } else {
            QPainterPath path;
            path.setFillRule(mode == WindingMode ? Qt::WindingFill : Qt::OddEvenFill);
            path.moveTo(points[0]);
            for (int i=1; i<pointCount; ++i)
                path.lineTo(points[i]);
            d->fillPath(path);
        }
    }

    if (d->has_pen) {
        if (d->has_fast_pen && !d->high_quality_antialiasing) {
            d->setGradientOps(d->cpen.brush(), bounds);
            QVarLengthArray<q_vertexType> vertexArray(pointCount*2 + 2);
            glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray.constData());
            int i;
            for (i=0; i<pointCount; ++i) {
                vertexArray[i*2] = f2vt(points[i].x());
                vertexArray[i*2+1] = f2vt(points[i].y());
            }

            glEnableClientState(GL_VERTEX_ARRAY);
            if (mode != PolylineMode) {
                vertexArray[i*2] = vertexArray[0];
                vertexArray[i*2+1] = vertexArray[1];
                glDrawArrays(GL_LINE_STRIP, 0, pointCount+1);
            } else {
                glDrawArrays(GL_LINE_STRIP, 0, pointCount);
                glDrawArrays(GL_POINTS, pointCount-1, 1);
            }
            glDisableClientState(GL_VERTEX_ARRAY);
        } else {
            QPainterPath path(points[0]);
            for (int i = 1; i < pointCount; ++i)
                path.lineTo(points[i]);
            if (mode != PolylineMode)
                path.lineTo(points[0]);

            if (d->has_fast_pen)
                d->strokeLines(path);
            else
                d->strokePath(path, true);
        }
    }
}

void QOpenGLPaintEnginePrivate::strokeLines(const QPainterPath &path)
{
    DEBUG_ONCE_STR("QOpenGLPaintEnginePrivate::strokeLines()");

    qreal penWidth = cpen.widthF();

    GLuint program = qt_gl_program_cache()->getProgram(device->context(),
                                                       FRAGMENT_PROGRAM_MASK_TRAPEZOID_AA, 0, true);
    QGLLineMaskGenerator maskGenerator(path, matrix, penWidth == 0 ? 1.0 : penWidth,
                                       offscreen, program);

    disableClipping();

    QBrush temp = cbrush;
    QPointF origin = brush_origin;

    cbrush = cpen.brush();
    brush_origin = QPointF();

    addItem(qt_mask_texture_cache()->getMask(maskGenerator, this));

    cbrush = temp;
    brush_origin = origin;

    enableClipping();
}

extern bool qt_scaleForTransform(const QTransform &transform, qreal *scale); // qtransform.cpp

void QOpenGLPaintEnginePrivate::strokePath(const QPainterPath &path, bool use_cache)
{
    QBrush old_brush = cbrush;
    cbrush = cpen.brush();

    qreal txscale = 1;
    if (cpen.isCosmetic() || (qt_scaleForTransform(matrix, &txscale) && txscale != 1)) {
        QTransform temp = matrix;
        matrix = QTransform();
        glPushMatrix();

        if (has_antialiasing) {
            glLoadIdentity();
        } else {
            float offs_matrix[] =
              { 1, 0, 0, 0,
                0, 1, 0, 0,
                0, 0, 1, 0,
                0.5, 0.5, 0, 1 };
            glLoadMatrixf(offs_matrix);
        }

        QPen pen = cpen;
        if (txscale != 1)
            pen.setWidthF(pen.widthF() * txscale);
        if (use_cache)
            fillPath(qt_opengl_stroke_cache()->getStrokedPath(temp.map(path), pen));
        else
            fillPath(strokeForPath(temp.map(path), pen));

        glPopMatrix();
        matrix = temp;
    } else if (use_cache) {
        fillPath(qt_opengl_stroke_cache()->getStrokedPath(path, cpen));
    } else {
        fillPath(strokeForPath(path, cpen));
    }

    cbrush = old_brush;
}

void QOpenGLPaintEnginePrivate::strokePathFastPen(const QPainterPath &path, bool needsResolving)
{
#ifndef QT_OPENGL_ES
    QRectF bounds;
    if (needsResolving)
        bounds = path.controlPointRect();
    setGradientOps(cpen.brush(), bounds);

    QBezier beziers[32];
    for (int i=0; i<path.elementCount(); ++i) {
        const QPainterPath::Element &e = path.elementAt(i);
        switch (e.type) {
        case QPainterPath::MoveToElement:
            if (i != 0)
                glEnd(); // GL_LINE_STRIP
            glBegin(GL_LINE_STRIP);
            glVertex2d(e.x, e.y);

            break;
        case QPainterPath::LineToElement:
            glVertex2d(e.x, e.y);
            break;

        case QPainterPath::CurveToElement:
        {
            QPointF sp = path.elementAt(i-1);
            QPointF cp2 = path.elementAt(i+1);
            QPointF ep = path.elementAt(i+2);
            i+=2;

            qreal inverseScaleHalf = inverseScale / 2;
            beziers[0] = QBezier::fromPoints(sp, e, cp2, ep);
            QBezier *b = beziers;
            while (b >= beziers) {
                // check if we can pop the top bezier curve from the stack
                qreal l = qAbs(b->x4 - b->x1) + qAbs(b->y4 - b->y1);
                qreal d;
                if (l > inverseScale) {
                    d = qAbs( (b->x4 - b->x1)*(b->y1 - b->y2)
                              - (b->y4 - b->y1)*(b->x1 - b->x2) )
                        + qAbs( (b->x4 - b->x1)*(b->y1 - b->y3)
                                - (b->y4 - b->y1)*(b->x1 - b->x3) );
                    d /= l;
                } else {
                    d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
                        qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
                }
                if (d < inverseScaleHalf || b == beziers + 31) {
                    // good enough, we pop it off and add the endpoint
                    glVertex2d(b->x4, b->y4);
                    --b;
                } else {
                    // split, second half of the polygon goes lower into the stack
                    b->split(b+1, b);
                    ++b;
                }
            }
        } // case CurveToElement
        default:
            break;
        } // end of switch
    }
    glEnd(); // GL_LINE_STRIP
#else
    // have to use vertex arrays on embedded
    QRectF bounds;
    if (needsResolving)
        bounds = path.controlPointRect();
    setGradientOps(cpen.brush(), bounds);

    glEnableClientState(GL_VERTEX_ARRAY);
    tess_points.reset();
    QBezier beziers[32];
    for (int i=0; i<path.elementCount(); ++i) {
        const QPainterPath::Element &e = path.elementAt(i);
        switch (e.type) {
        case QPainterPath::MoveToElement:
            if (i != 0) {
                glVertexPointer(2, q_vertexTypeEnum, 0, tess_points.data());
                glDrawArrays(GL_LINE_STRIP, 0, tess_points.size());
                tess_points.reset();
            }
            tess_points.add(QPointF(e.x, e.y));

            break;
        case QPainterPath::LineToElement:
            tess_points.add(QPointF(e.x, e.y));
            break;

        case QPainterPath::CurveToElement:
        {
            QPointF sp = path.elementAt(i-1);
            QPointF cp2 = path.elementAt(i+1);
            QPointF ep = path.elementAt(i+2);
            i+=2;

            qreal inverseScaleHalf = inverseScale / 2;
            beziers[0] = QBezier::fromPoints(sp, e, cp2, ep);
            QBezier *b = beziers;
            while (b >= beziers) {
                // check if we can pop the top bezier curve from the stack
                qreal l = qAbs(b->x4 - b->x1) + qAbs(b->y4 - b->y1);
                qreal d;
                if (l > inverseScale) {
                    d = qAbs( (b->x4 - b->x1)*(b->y1 - b->y2)
                              - (b->y4 - b->y1)*(b->x1 - b->x2) )
                        + qAbs( (b->x4 - b->x1)*(b->y1 - b->y3)
                                - (b->y4 - b->y1)*(b->x1 - b->x3) );
                    d /= l;
                } else {
                    d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
                        qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
                }
                if (d < inverseScaleHalf || b == beziers + 31) {
                    // good enough, we pop it off and add the endpoint
                    tess_points.add(QPointF(b->x4, b->y4));
                    --b;
                } else {
                    // split, second half of the polygon goes lower into the stack
                    b->split(b+1, b);
                    ++b;
                }
            }
        } // case CurveToElement
        default:
            break;
        } // end of switch
    }
    glVertexPointer(2, q_vertexTypeEnum, 0, tess_points.data());
    glDrawArrays(GL_LINE_STRIP, 0, tess_points.size());
    glDisableClientState(GL_VERTEX_ARRAY);
#endif
}

static bool pathClosed(const QPainterPath &path)
{
    QPointF lastMoveTo = path.elementAt(0);
    QPointF lastPoint = lastMoveTo;

    for (int i = 1; i < path.elementCount(); ++i) {
        const QPainterPath::Element &e = path.elementAt(i);
        switch (e.type) {
        case QPainterPath::MoveToElement:
            if (lastMoveTo != lastPoint)
                return false;
            lastMoveTo = lastPoint = e;
            break;
        case QPainterPath::LineToElement:
            lastPoint = e;
            break;
        case QPainterPath::CurveToElement:
            lastPoint = path.elementAt(i + 2);
            i+=2;
            break;
        default:
            break;
        }
    }

    return lastMoveTo == lastPoint;
}

void QOpenGLPaintEngine::drawPath(const QPainterPath &path)
{
    Q_D(QOpenGLPaintEngine);

    if (path.isEmpty())
        return;

    if (d->use_emulation) {
        QPaintEngineEx::drawPath(path);
        return;
    }

    QOpenGLCoordinateOffset offset(d);

    if (d->has_brush) {
        bool path_closed = pathClosed(path);

        bool has_thick_pen =
            path_closed
            && d->has_pen
            && d->cpen.style() == Qt::SolidLine
            && d->cpen.isSolid()
            && d->cpen.color().alpha() == 255
            && d->txop < QTransform::TxProject
            && d->cpen.widthF() >= 2 / qSqrt(qMin(d->matrix.m11() * d->matrix.m11()
                                                  + d->matrix.m21() * d->matrix.m21(),
                                                  d->matrix.m12() * d->matrix.m12()
                                                  + d->matrix.m22() * d->matrix.m22()));

        if (has_thick_pen) {
            DEBUG_ONCE qDebug() << "QOpenGLPaintEngine::drawPath(): Using thick pen optimization, style:" << d->cbrush.style();

            d->flushDrawQueue();

            bool temp = d->high_quality_antialiasing;
            d->high_quality_antialiasing = false;

            updateCompositionMode(d->composition_mode);

            d->fillPath(path);

            d->high_quality_antialiasing = temp;
            updateCompositionMode(d->composition_mode);
        } else {
            d->fillPath(path);
        }
    }

    if (d->has_pen) {
        if (d->has_fast_pen && !d->high_quality_antialiasing)
            d->strokePathFastPen(path, state()->penNeedsResolving());
        else
            d->strokePath(path, true);
    }
}

void QOpenGLPaintEnginePrivate::drawImageAsPath(const QRectF &r, const QImage &img, const QRectF &sr)
{
    QBrush old_brush = cbrush;
    QPointF old_brush_origin = brush_origin;

    qreal scaleX = r.width() / sr.width();
    qreal scaleY = r.height() / sr.height();

    QTransform brush_matrix = QTransform::fromTranslate(r.left(), r.top());
    brush_matrix.scale(scaleX, scaleY);
    brush_matrix.translate(-sr.left(), -sr.top());

    cbrush = QBrush(img);
    cbrush.setTransform(brush_matrix);
    brush_origin = QPointF();

    QPainterPath p;
    p.addRect(r);
    fillPath(p);

    cbrush = old_brush;
    brush_origin = old_brush_origin;
}

void QOpenGLPaintEnginePrivate::drawTiledImageAsPath(const QRectF &r, const QImage &img, qreal sx, qreal sy,
                                                     const QPointF &offset)
{
    QBrush old_brush = cbrush;
    QPointF old_brush_origin = brush_origin;

    QTransform brush_matrix = QTransform::fromTranslate(r.left(), r.top());
    brush_matrix.scale(sx, sy);
    brush_matrix.translate(-offset.x(), -offset.y());

    cbrush = QBrush(img);
    cbrush.setTransform(brush_matrix);
    brush_origin = QPointF();

    QPainterPath p;
    p.addRect(r);
    fillPath(p);

    cbrush = old_brush;
    brush_origin = old_brush_origin;
}

static const QRectF scaleRect(const QRectF &r, qreal sx, qreal sy)
{
    return QRectF(r.x() * sx, r.y() * sy, r.width() * sx, r.height() * sy);
}

template <typename T>
static const T qSubImage(const T &image, const QRectF &src, QRectF *srcNew)
{
    const int sx1 = qMax(0, qFloor(src.left()));
    const int sy1 = qMax(0, qFloor(src.top()));
    const int sx2 = qMin(image.width(), qCeil(src.right()));
    const int sy2 = qMin(image.height(), qCeil(src.bottom()));

    const T sub = image.copy(sx1, sy1, sx2 - sx1, sy2 - sy1);

    if (srcNew)
        *srcNew = src.translated(-sx1, -sy1);

    return sub;
}

void QOpenGLPaintEngine::drawPixmap(const QRectF &r, const QPixmap &pm, const QRectF &sr)
{
    Q_D(QOpenGLPaintEngine);
    if (pm.depth() == 1) {
        QPixmap tpx(pm.size());
        tpx.fill(Qt::transparent);
        QPainter p(&tpx);
        p.setPen(d->cpen);
        p.drawPixmap(0, 0, pm);
        p.end();
        drawPixmap(r, tpx, sr);
        return;
    }

    const int sz = d->max_texture_size;
    if (pm.width() > sz || pm.height() > sz) {
        QRectF subsr;
        const QPixmap sub = qSubImage(pm, sr, &subsr);

        if (sub.width() <= sz && sub.height() <= sz) {
            drawPixmap(r, sub, subsr);
        } else {
            const QPixmap scaled = sub.scaled(sz, sz, Qt::KeepAspectRatio);
            const qreal sx = scaled.width() / qreal(sub.width());
            const qreal sy = scaled.height() / qreal(sub.height());

            drawPixmap(r, scaled, scaleRect(subsr, sx, sy));
        }
        return;
    }


    if (d->composition_mode > QPainter::CompositionMode_Plus || (d->high_quality_antialiasing && !d->isFastRect(r)))
        d->drawImageAsPath(r, pm.toImage(), sr);
    else {
        GLenum target = qt_gl_preferredTextureTarget();
        d->flushDrawQueue();
        QGLTexture *tex =
            d->device->context()->d_func()->bindTexture(pm, target, GL_RGBA,
                                                        QGLContext::InternalBindOption);
        drawTextureRect(pm.width(), pm.height(), r, sr, target, tex);
    }
}

void QOpenGLPaintEngine::drawTiledPixmap(const QRectF &r, const QPixmap &pm, const QPointF &offset)
{
    Q_D(QOpenGLPaintEngine);
    if (pm.depth() == 1) {
        QPixmap tpx(pm.size());
        tpx.fill(Qt::transparent);
        QPainter p(&tpx);
        p.setPen(d->cpen);
        p.drawPixmap(0, 0, pm);
        p.end();
        drawTiledPixmap(r, tpx, offset);
        return;
    }

    QImage scaled;
    const int sz = d->max_texture_size;
    if (pm.width() > sz || pm.height() > sz) {
        int rw = qCeil(r.width());
        int rh = qCeil(r.height());
        if (rw < pm.width() && rh < pm.height()) {
            drawTiledPixmap(r, pm.copy(0, 0, rw, rh), offset);
            return;
        }

        scaled = pm.toImage().scaled(sz, sz, Qt::KeepAspectRatio);
    }

    if (d->composition_mode > QPainter::CompositionMode_Plus || (d->high_quality_antialiasing && !d->isFastRect(r))) {
        if (scaled.isNull())
            d->drawTiledImageAsPath(r, pm.toImage(), 1, 1, offset);
        else {
            const qreal sx = pm.width() / qreal(scaled.width());
            const qreal sy = pm.height() / qreal(scaled.height());
            d->drawTiledImageAsPath(r, scaled, sx, sy, offset);
        }
    } else {
        d->flushDrawQueue();

        QGLTexture *tex;
        if (scaled.isNull())
            tex = d->device->context()->d_func()->bindTexture(pm, GL_TEXTURE_2D, GL_RGBA,
                                                              QGLContext::InternalBindOption);
        else
            tex = d->device->context()->d_func()->bindTexture(scaled, GL_TEXTURE_2D, GL_RGBA,
                                                              QGLContext::InternalBindOption);
        updateTextureFilter(GL_TEXTURE_2D, GL_REPEAT, d->use_smooth_pixmap_transform);

#ifndef QT_OPENGL_ES
        glPushAttrib(GL_CURRENT_BIT);
        glDisable(GL_TEXTURE_GEN_S);
#endif
        glColor4f(d->opacity, d->opacity, d->opacity, d->opacity);
        glEnable(GL_TEXTURE_2D);

        GLdouble tc_w = r.width()/pm.width();
        GLdouble tc_h = r.height()/pm.height();

        // Rotate the texture so that it is aligned correctly and the
        // wrapping is done correctly
        if (tex->options & QGLContext::InvertedYBindOption) {
            glMatrixMode(GL_TEXTURE);
            glPushMatrix();
            glRotatef(180.0, 0.0, 1.0, 0.0);
            glRotatef(180.0, 0.0, 0.0, 1.0);
        }

        q_vertexType vertexArray[4*2];
        q_vertexType texCoordArray[4*2];

        double offset_x = offset.x() / pm.width();
        double offset_y = offset.y() / pm.height();

        qt_add_rect_to_array(r, vertexArray);
        qt_add_texcoords_to_array(offset_x, offset_y,
                                  tc_w + offset_x, tc_h + offset_y, texCoordArray);

        glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
        glTexCoordPointer(2, q_vertexTypeEnum, 0, texCoordArray);

        glEnableClientState(GL_VERTEX_ARRAY);
        glEnableClientState(GL_TEXTURE_COORD_ARRAY);
        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
        glDisableClientState(GL_TEXTURE_COORD_ARRAY);
        glDisableClientState(GL_VERTEX_ARRAY);
        if (tex->options & QGLContext::InvertedYBindOption)
            glPopMatrix();

        glDisable(GL_TEXTURE_2D);
#ifndef QT_OPENGL_ES
        glPopAttrib();
#endif
    }
}

void QOpenGLPaintEngine::drawImage(const QRectF &r, const QImage &image, const QRectF &sr,
                                   Qt::ImageConversionFlags)
{
    Q_D(QOpenGLPaintEngine);

    const int sz = d->max_texture_size;
    if (image.width() > sz || image.height() > sz) {
        QRectF subsr;
        const QImage sub = qSubImage(image, sr, &subsr);

        if (sub.width() <= sz && sub.height() <= sz) {
            drawImage(r, sub, subsr, 0);
        } else {
            const QImage scaled = sub.scaled(sz, sz, Qt::KeepAspectRatio);
            const qreal sx = scaled.width() / qreal(sub.width());
            const qreal sy = scaled.height() / qreal(sub.height());

            drawImage(r, scaled, scaleRect(subsr, sx, sy), 0);
        }
        return;
    }

    if (d->composition_mode > QPainter::CompositionMode_Plus || (d->high_quality_antialiasing && !d->isFastRect(r)))
        d->drawImageAsPath(r, image, sr);
    else {
        GLenum target = qt_gl_preferredTextureTarget();
        d->flushDrawQueue();
        QGLTexture *tex =
            d->device->context()->d_func()->bindTexture(image, target, GL_RGBA,
                                                        QGLContext::InternalBindOption);
        drawTextureRect(image.width(), image.height(), r, sr, target, tex);
    }
}

void QOpenGLPaintEngine::drawTextureRect(int tx_width, int tx_height, const QRectF &r,
                                         const QRectF &sr, GLenum target, QGLTexture *tex)
{
    Q_D(QOpenGLPaintEngine);
#ifndef QT_OPENGL_ES
    glPushAttrib(GL_CURRENT_BIT);
    glDisable(GL_TEXTURE_GEN_S);
#endif
    glColor4f(d->opacity, d->opacity, d->opacity, d->opacity);
    glEnable(target);
    updateTextureFilter(target, GL_CLAMP_TO_EDGE, d->use_smooth_pixmap_transform);

    qreal x1, x2, y1, y2;
    if (target == GL_TEXTURE_2D) {
        x1 = sr.x() / tx_width;
        x2 = x1 + sr.width() / tx_width;
        if (tex->options & QGLContext::InvertedYBindOption) {
            y1 = 1 - (sr.bottom() / tx_height);
            y2 = 1 - (sr.y() / tx_height);
        } else {
            y1 = sr.bottom() / tx_height;
            y2 = sr.y() / tx_height;
        }
    } else {
        x1 = sr.x();
        x2 = sr.right();
        y1 = sr.bottom();
        y2 = sr.y();
    }

    q_vertexType vertexArray[4*2];
    q_vertexType texCoordArray[4*2];

    qt_add_rect_to_array(r, vertexArray);
    qt_add_texcoords_to_array(x1, y2, x2, y1, texCoordArray);

    glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
    glTexCoordPointer(2, q_vertexTypeEnum, 0, texCoordArray);

    glEnableClientState(GL_VERTEX_ARRAY);
    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
    glDisableClientState(GL_VERTEX_ARRAY);

    glDisable(target);
#ifndef QT_OPENGL_ES
    glPopAttrib();
#endif
}

#ifdef Q_WS_WIN
HDC
#else
Qt::HANDLE
#endif
QOpenGLPaintEngine::handle() const
{
    return 0;
}

static const int x_margin = 1;
static const int y_margin = 0;

struct QGLGlyphCoord {
    // stores the offset and size of a glyph texture
    qreal x;
    qreal y;
    qreal width;
    qreal height;
    qreal log_width;
    qreal log_height;
    QFixed x_offset;
    QFixed y_offset;
};

struct QGLFontTexture {
    int x_offset; // glyph offset within the
    int y_offset;
    GLuint texture;
    int width;
    int height;
};

typedef QHash<glyph_t, QGLGlyphCoord*>  QGLGlyphHash;
typedef QHash<QFontEngine*, QGLGlyphHash*> QGLFontGlyphHash;
typedef QHash<quint64, QGLFontTexture*> QGLFontTexHash;
typedef QHash<const QGLContext*, QGLFontGlyphHash*> QGLContextHash;

class QGLGlyphCache : public QObject
{
    Q_OBJECT
public:
    QGLGlyphCache() : QObject(0) { current_cache = 0; }
    ~QGLGlyphCache();
    QGLGlyphCoord *lookup(QFontEngine *, glyph_t);
    void cacheGlyphs(QGLContext *, const QTextItemInt &, const QVarLengthArray<glyph_t> &);
    void cleanCache();
    void allocTexture(int width, int height, GLuint texture);

public slots:
    void cleanupContext(const QGLContext *);
    void fontEngineDestroyed(QObject *);
    void widgetDestroyed(QObject *);

protected:
    QGLGlyphHash *current_cache;
    QGLFontTexHash qt_font_textures;
    QGLContextHash qt_context_cache;
};

QGLGlyphCache::~QGLGlyphCache()
{
//     qDebug() << "cleaning out the QGLGlyphCache";
    cleanCache();
}

void QGLGlyphCache::fontEngineDestroyed(QObject *o)
{
//     qDebug() << "fontEngineDestroyed()";
    QFontEngine *fe = static_cast<QFontEngine *>(o); // safe, since only the type is used
    QList<const QGLContext *> keys = qt_context_cache.keys();
    const QGLContext *ctx = 0;

    for (int i=0; i < keys.size(); ++i) {
        QGLFontGlyphHash *font_cache = qt_context_cache.value(keys.at(i));
        if (font_cache->find(fe) != font_cache->end()) {
            ctx = keys.at(i);
            QGLGlyphHash *cache = font_cache->take(fe);
            delete cache;
            break;
        }
    }

    quint64 font_key = (reinterpret_cast<quint64>(ctx) << 32) | reinterpret_cast<quint64>(fe);
    QGLFontTexture *tex = qt_font_textures.take(font_key);
    if (tex) {
#ifdef Q_WS_MAC
        if (
#  ifndef QT_MAC_USE_COCOA
            aglGetCurrentContext() != 0
#  else
            qt_current_nsopengl_context() != 0
#  endif
           )
#endif
            glDeleteTextures(1, &tex->texture);
        delete tex;
    }
}

void QGLGlyphCache::widgetDestroyed(QObject *)
{
//     qDebug() << "widget destroyed";
    cleanCache(); // ###
}

void QGLGlyphCache::cleanupContext(const QGLContext *ctx)
{
//     qDebug() << "==> cleaning for: " << hex << ctx;
    QGLFontGlyphHash *font_cache = qt_context_cache.take(ctx);

    if (font_cache) {
        QList<QFontEngine *> keys = font_cache->keys();
        for (int i=0; i < keys.size(); ++i) {
            QFontEngine *fe = keys.at(i);
            delete font_cache->take(fe);
            quint64 font_key = (reinterpret_cast<quint64>(ctx) << 32) | reinterpret_cast<quint64>(fe);
            QGLFontTexture *font_tex = qt_font_textures.take(font_key);
            if (font_tex) {
#ifdef Q_WS_MAC
                if (
#  ifndef QT_MAC_USE_COCOA
            aglGetCurrentContext() == 0
#  else
            qt_current_nsopengl_context() != 0
#  endif
                   )
#endif
                    glDeleteTextures(1, &font_tex->texture);
                delete font_tex;
            }
        }
        delete font_cache;
    }
//    qDebug() << "<=== done cleaning, num tex:" << qt_font_textures.size() << "num ctx:" << qt_context_cache.size();
}

void QGLGlyphCache::cleanCache()
{
    QGLFontTexHash::const_iterator it = qt_font_textures.constBegin();
    if (QGLContext::currentContext()) {
        while (it != qt_font_textures.constEnd()) {
#if defined(Q_WS_MAC) && defined(QT_MAC_USE_COCOA)
            if (qt_current_nsopengl_context() == 0)
                break;
#endif
            glDeleteTextures(1, &it.value()->texture);
            ++it;
        }
    }
    qDeleteAll(qt_font_textures);
    qt_font_textures.clear();

    QList<const QGLContext *> keys = qt_context_cache.keys();
    for (int i=0; i < keys.size(); ++i) {
        QGLFontGlyphHash *font_cache = qt_context_cache.value(keys.at(i));
        qDeleteAll(*font_cache);
        font_cache->clear();
    }
    qDeleteAll(qt_context_cache);
    qt_context_cache.clear();
}

void QGLGlyphCache::allocTexture(int width, int height, GLuint texture)
{
    uchar *tex_data = (uchar *) malloc(width*height*2);
    memset(tex_data, 0, width*height*2);
    glBindTexture(GL_TEXTURE_2D, texture);
#ifndef QT_OPENGL_ES
    glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE8_ALPHA8,
                 width, height, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, tex_data);
#else
    glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA,
                 width, height, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, tex_data);
#endif
    free(tex_data);
}

#if 0
// useful for debugging the glyph cache
static QImage getCurrentTexture(const QColor &color, QGLFontTexture *font_tex)
{
    ushort *old_tex_data = (ushort *) malloc(font_tex->width*font_tex->height*2);
    glGetTexImage(GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, old_tex_data);
    QImage im(font_tex->width, font_tex->height, QImage::Format_ARGB32);
    for (int y=0; y<font_tex->height; ++y) {
        for (int x=0; x<font_tex->width; ++x) {
            im.setPixel(x, y, ((*(old_tex_data+x+y*font_tex->width)) << 24) | (0x00ffffff & color.rgb()));
        }
    }
    delete old_tex_data;
    return im;
}
#endif

void QGLGlyphCache::cacheGlyphs(QGLContext *context, const QTextItemInt &ti,
                                const QVarLengthArray<glyph_t> &glyphs)
{
    QGLContextHash::const_iterator dev_it = qt_context_cache.constFind(context);
    QGLFontGlyphHash *font_cache = 0;
    const QGLContext *context_key = 0;

    if (dev_it == qt_context_cache.constEnd()) {
        // check for shared contexts
        QList<const QGLContext *> contexts = qt_context_cache.keys();
        for (int i=0; i<contexts.size(); ++i) {
            const QGLContext *ctx = contexts.at(i);
            if (ctx != context && QGLContext::areSharing(context, ctx)) {
                context_key = ctx;
                dev_it = qt_context_cache.constFind(context_key);
                break;
            }
        }
    }

    if (dev_it == qt_context_cache.constEnd()) {
        // no shared contexts either - create a new entry
        font_cache = new QGLFontGlyphHash;
//         qDebug() << "new context" << context << font_cache;
        qt_context_cache.insert(context, font_cache);
        if (context->isValid() && context->device()->devType() == QInternal::Widget) {
            QWidget *widget = static_cast<QWidget *>(context->device());
            connect(widget, SIGNAL(destroyed(QObject*)), SLOT(widgetDestroyed(QObject*)));
            connect(QGLSignalProxy::instance(),
                    SIGNAL(aboutToDestroyContext(const QGLContext *)),
                    SLOT(cleanupContext(const QGLContext *)));
        }
    } else {
        font_cache = dev_it.value();
    }
    Q_ASSERT(font_cache != 0);

    QGLFontGlyphHash::const_iterator cache_it = font_cache->constFind(ti.fontEngine);
    QGLGlyphHash *cache = 0;
    if (cache_it == font_cache->constEnd()) {
        cache = new QGLGlyphHash;
        font_cache->insert(ti.fontEngine, cache);
        connect(ti.fontEngine, SIGNAL(destroyed(QObject*)), SLOT(fontEngineDestroyed(QObject*)));
    } else {
        cache = cache_it.value();
    }
    current_cache = cache;

    quint64 font_key = (reinterpret_cast<quint64>(context_key ? context_key : context) << 32)
                       | reinterpret_cast<quint64>(ti.fontEngine);
    QGLFontTexHash::const_iterator it = qt_font_textures.constFind(font_key);
    QGLFontTexture *font_tex;
    if (it == qt_font_textures.constEnd()) {
        GLuint font_texture;
        glGenTextures(1, &font_texture);
        GLint tex_height = qt_next_power_of_two(qRound(ti.ascent.toReal() + ti.descent.toReal())+2);
        GLint tex_width = qt_next_power_of_two(tex_height*30); // ###
        GLint max_tex_size;
        glGetIntegerv(GL_MAX_TEXTURE_SIZE, &max_tex_size);
        Q_ASSERT(max_tex_size > 0);
        if (tex_width > max_tex_size)
            tex_width = max_tex_size;
        allocTexture(tex_width, tex_height, font_texture);
        font_tex = new QGLFontTexture;
        font_tex->texture = font_texture;
        font_tex->x_offset = x_margin;
        font_tex->y_offset = y_margin;
        font_tex->width = tex_width;
        font_tex->height = tex_height;
//         qDebug() << "new font tex - width:" << tex_width << "height:"<< tex_height
//                  << hex << "tex id:" << font_tex->texture << "key:" << font_key << "num cached:" << qt_font_textures.size();
        qt_font_textures.insert(font_key, font_tex);
    } else {
        font_tex = it.value();
        glBindTexture(GL_TEXTURE_2D, font_tex->texture);
    }

    for (int i=0; i< glyphs.size(); ++i) {
        QGLGlyphHash::const_iterator it = cache->constFind(glyphs[i]);
        if (it == cache->constEnd()) {
            // render new glyph and put it in the cache
            glyph_metrics_t metrics = ti.fontEngine->boundingBox(glyphs[i]);
            int glyph_width = qRound(metrics.width.toReal())+2;
            int glyph_height = qRound(ti.ascent.toReal() + ti.descent.toReal())+2;

            if (font_tex->x_offset + glyph_width + x_margin > font_tex->width) {
                int strip_height = qt_next_power_of_two(qRound(ti.ascent.toReal() + ti.descent.toReal())+2);
                font_tex->x_offset = x_margin;
                font_tex->y_offset += strip_height;
                if (font_tex->y_offset >= font_tex->height) {
                    // get hold of the old font texture
                    uchar *old_tex_data = (uchar *) malloc(font_tex->width*font_tex->height*2);
                    int old_tex_height = font_tex->height;
#ifndef QT_OPENGL_ES
                    glGetTexImage(GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, old_tex_data);
#endif

                    // realloc a larger texture
                    glDeleteTextures(1, &font_tex->texture);
                    glGenTextures(1, &font_tex->texture);
                    font_tex->height = qt_next_power_of_two(font_tex->height + strip_height);
                    allocTexture(font_tex->width, font_tex->height, font_tex->texture);

                    // write back the old texture data
                    glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, font_tex->width, old_tex_height,
                                    GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, old_tex_data);
                    free(old_tex_data);

                    // update the texture coords and the y offset for the existing glyphs in
                    // the cache, because of the texture size change
                    QGLGlyphHash::iterator it = cache->begin();
                    while (it != cache->end()) {
                        it.value()->height = (it.value()->height * old_tex_height) / font_tex->height;
                        it.value()->y = (it.value()->y * old_tex_height) / font_tex->height;
                        ++it;
                    }
                }
            }

            QImage glyph_im(ti.fontEngine->alphaMapForGlyph(glyphs[i]));
            glyph_im = glyph_im.convertToFormat(QImage::Format_Indexed8);
            glyph_width = glyph_im.width();
            Q_ASSERT(glyph_width >= 0);
            // pad the glyph width to an even number
            if (glyph_width%2 != 0)
                ++glyph_width;

            QGLGlyphCoord *qgl_glyph = new QGLGlyphCoord;
            qgl_glyph->x = qreal(font_tex->x_offset) / font_tex->width;
            qgl_glyph->y = qreal(font_tex->y_offset) / font_tex->height;
            qgl_glyph->width = qreal(glyph_width) / font_tex->width;
            qgl_glyph->height = qreal(glyph_height) / font_tex->height;
            qgl_glyph->log_width = qreal(glyph_width);
            qgl_glyph->log_height = qgl_glyph->height * font_tex->height;
#ifdef Q_WS_MAC
            qgl_glyph->x_offset = -metrics.x + 1;
            qgl_glyph->y_offset = metrics.y - 2;
#else
            qgl_glyph->x_offset = -metrics.x;
            qgl_glyph->y_offset = metrics.y;
#endif

            if (!glyph_im.isNull()) {

                int idx = 0;
                uchar *tex_data = (uchar *) malloc(glyph_width*glyph_im.height()*2);
                memset(tex_data, 0, glyph_width*glyph_im.height()*2);

                for (int y=0; y<glyph_im.height(); ++y) {
                    uchar *s = (uchar *) glyph_im.scanLine(y);
                    for (int x=0; x<glyph_im.width(); ++x) {
                        uchar alpha = qAlpha(glyph_im.color(*s));
                        tex_data[idx] = alpha;
                        tex_data[idx+1] = alpha;
                        ++s;
                        idx += 2;
                    }
                    if (glyph_im.width()%2 != 0)
                        idx += 2;
                }
                glTexSubImage2D(GL_TEXTURE_2D, 0, font_tex->x_offset, font_tex->y_offset,
                                glyph_width, glyph_im.height(),
                                GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, tex_data);
                free(tex_data);
            }
            if (font_tex->x_offset + glyph_width + x_margin > font_tex->width) {
                font_tex->x_offset = x_margin;
                font_tex->y_offset += glyph_height + y_margin;
            } else {
                font_tex->x_offset += glyph_width + x_margin;
            }

            cache->insert(glyphs[i], qgl_glyph);
        }
    }
}

QGLGlyphCoord *QGLGlyphCache::lookup(QFontEngine *, glyph_t g)
{
    Q_ASSERT(current_cache != 0);
    // ### careful here
    QGLGlyphHash::const_iterator it = current_cache->constFind(g);
    if (it == current_cache->constEnd())
        return 0;
    else
        return it.value();
}

Q_GLOBAL_STATIC(QGLGlyphCache, qt_glyph_cache)

//
// assumption: the context that this is called for has to be the
// current context
//
void qgl_cleanup_glyph_cache(QGLContext *ctx)
{
    qt_glyph_cache()->cleanupContext(ctx);
}

void QOpenGLPaintEngine::drawTextItem(const QPointF &p, const QTextItem &textItem)
{
    Q_D(QOpenGLPaintEngine);

    const QTextItemInt &ti = static_cast<const QTextItemInt &>(textItem);

    // fall back to drawing a polygon if the scale factor is large, or
    // we use a gradient pen
    if ((d->matrix.det() > 1) || (d->pen_brush_style >= Qt::LinearGradientPattern
                                  && d->pen_brush_style <= Qt::ConicalGradientPattern)) {
        QPaintEngine::drawTextItem(p, textItem);
        return;
    }

    d->flushDrawQueue();

    // add the glyphs used to the glyph texture cache
    QVarLengthArray<QFixedPoint> positions;
    QVarLengthArray<glyph_t> glyphs;
    QTransform matrix = QTransform::fromTranslate(qRound(p.x()), qRound(p.y()));
    ti.fontEngine->getGlyphPositions(ti.glyphs, matrix, ti.flags, glyphs, positions);

    // make sure the glyphs we want to draw are in the cache
    qt_glyph_cache()->cacheGlyphs(d->device->context(), ti, glyphs);

    d->setGradientOps(Qt::SolidPattern, QRectF()); // turns off gradient ops
    qt_glColor4ubv(d->pen_color);
    glEnable(GL_TEXTURE_2D);

#ifdef Q_WS_QWS
    // XXX: it is necessary to disable alpha writes on GLES/embedded because we don't want
    // text rendering to update the alpha in the window surface.
    // XXX: This may not be needed as this behavior does seem to be caused by driver bug
    glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_FALSE);
#endif

    // do the actual drawing
    q_vertexType vertexArray[4*2];
    q_vertexType texCoordArray[4*2];

    glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
    glTexCoordPointer(2, q_vertexTypeEnum, 0, texCoordArray);

    glEnableClientState(GL_VERTEX_ARRAY);
    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
    bool antialias = !(ti.fontEngine->fontDef.styleStrategy & QFont::NoAntialias);
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, antialias ? GL_LINEAR : GL_NEAREST);
    glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, antialias ? GL_LINEAR : GL_NEAREST);

    for (int i=0; i< glyphs.size(); ++i) {
        QGLGlyphCoord *g = qt_glyph_cache()->lookup(ti.fontEngine, glyphs[i]);

        // we don't cache glyphs with no width/height
        if (!g)
            continue;

        qreal x1, x2, y1, y2;
        x1 = g->x;
        y1 = g->y;
        x2 = x1 + g->width;
        y2 = y1 + g->height;

        QPointF logical_pos((positions[i].x - g->x_offset).toReal(),
                            (positions[i].y + g->y_offset).toReal());

        qt_add_rect_to_array(QRectF(logical_pos, QSizeF(g->log_width, g->log_height)), vertexArray);
        qt_add_texcoords_to_array(x1, y1, x2, y2, texCoordArray);

        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
    }

    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
    glDisableClientState(GL_VERTEX_ARRAY);

    glDisable(GL_TEXTURE_2D);

#ifdef Q_WS_QWS
    // XXX: This may not be needed as this behavior does seem to be caused by driver bug
    glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
#endif
}


void QOpenGLPaintEngine::drawEllipse(const QRectF &rect)
{
#ifndef Q_WS_QWS
    Q_D(QOpenGLPaintEngine);

    if (d->use_emulation) {
        QPaintEngineEx::drawEllipse(rect);
        return;
    }

    if (d->high_quality_antialiasing) {
        if (d->has_brush) {
            d->disableClipping();

            glMatrixMode(GL_MODELVIEW);
            glPushMatrix();
            glLoadIdentity();

            GLuint program = qt_gl_program_cache()->getProgram(d->device->context(),
                                                               FRAGMENT_PROGRAM_MASK_ELLIPSE_AA, 0, true);
            QGLEllipseMaskGenerator maskGenerator(rect,
                                                  d->matrix,
                                                  d->offscreen,
                                                  program,
                                                  mask_variable_locations[FRAGMENT_PROGRAM_MASK_ELLIPSE_AA]);

            d->addItem(qt_mask_texture_cache()->getMask(maskGenerator, d));

            d->enableClipping();

            glMatrixMode(GL_MODELVIEW);
            glPopMatrix();
        }

        if (d->has_pen) {
            QPainterPath path;
            path.addEllipse(rect);

            d->strokePath(path, false);
        }
    } else {
        DEBUG_ONCE_STR("QOpenGLPaintEngine::drawEllipse(): falling back to drawPath()");

        QPainterPath path;
        path.addEllipse(rect);
        drawPath(path);
    }
#else
    QPaintEngineEx::drawEllipse(rect);
#endif
}


void QOpenGLPaintEnginePrivate::updateFragmentProgramData(int locations[])
{
#ifdef Q_WS_QWS
    Q_UNUSED(locations);
#else
    QGL_FUNC_CONTEXT;

    QSize sz = offscreen.offscreenSize();

    float inv_mask_size_data[4] = { 1.0f / sz.width(), 1.0f / sz.height(), 0.0f, 0.0f };

    sz = drawable_texture_size;

    float inv_dst_size_data[4] = { 1.0f / sz.width(), 1.0f / sz.height(), 0.0f, 0.0f };

    // default inv size 0.125f == 1.0f / 8.0f for pattern brushes
    float inv_brush_texture_size_data[4] = { 0.125f, 0.125f };

    // texture patterns have their own size
    if (current_style == Qt::TexturePattern) {
        QSize sz = cbrush.texture().size();

        inv_brush_texture_size_data[0] = 1.0f / sz.width();
        inv_brush_texture_size_data[1] = 1.0f / sz.height();
    }

    for (unsigned int i = 0; i < num_fragment_variables; ++i) {
        int location = locations[i];

        if (location < 0)
            continue;

        switch (i) {
        case VAR_ANGLE:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, angle_data);
            break;
        case VAR_LINEAR:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, linear_data);
            break;
        case VAR_FMP:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, fmp_data);
            break;
        case VAR_FMP2_M_RADIUS2:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, fmp2_m_radius2_data);
            break;
        case VAR_INV_MASK_SIZE:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, inv_mask_size_data);
            break;
        case VAR_INV_DST_SIZE:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, inv_dst_size_data);
            break;
        case VAR_INV_MATRIX_M0:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, inv_matrix_data[0]);
            break;
        case VAR_INV_MATRIX_M1:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, inv_matrix_data[1]);
            break;
        case VAR_INV_MATRIX_M2:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, inv_matrix_data[2]);
            break;
        case VAR_PORTERDUFF_AB:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, porterduff_ab_data);
            break;
        case VAR_PORTERDUFF_XYZ:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, porterduff_xyz_data);
            break;
        case VAR_INV_BRUSH_TEXTURE_SIZE:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, inv_brush_texture_size_data);
            break;
        case VAR_MASK_OFFSET:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, mask_offset_data);
            break;
        case VAR_MASK_CHANNEL:
            glProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, location, mask_channel_data);
            break;
        case VAR_DST_TEXTURE:
        case VAR_MASK_TEXTURE:
        case VAR_PALETTE:
        case VAR_BRUSH_TEXTURE:
            // texture variables, not handled here
            break;
        default:
            qDebug() << "QOpenGLPaintEnginePrivate: Unhandled fragment variable:" << i;
        }
    }
#endif
}


void QOpenGLPaintEnginePrivate::copyDrawable(const QRectF &rect)
{
#ifdef Q_WS_QWS
    Q_UNUSED(rect);
#else
    ensureDrawableTexture();

    DEBUG_ONCE qDebug() << "Refreshing drawable_texture for rectangle" << rect;
    QRectF screen_rect = rect.adjusted(-1, -1, 1, 1);

    int left = qMax(0, static_cast<int>(screen_rect.left()));
    int width = qMin(device->size().width() - left, static_cast<int>(screen_rect.width()) + 1);

    int bottom = qMax(0, static_cast<int>(device->size().height() - screen_rect.bottom()));
    int height = qMin(device->size().height() - bottom, static_cast<int>(screen_rect.height()) + 1);

    glBindTexture(GL_TEXTURE_2D, drawable_texture);
    glCopyTexSubImage2D(GL_TEXTURE_2D, 0, left, bottom, left, bottom, width, height);
#endif
}


void QOpenGLPaintEnginePrivate::composite(const QRectF &rect, const QPoint &maskOffset)
{
#ifdef Q_WS_QWS
    Q_UNUSED(rect);
    Q_UNUSED(maskOffset);
#else
    q_vertexType vertexArray[8];
    qt_add_rect_to_array(rect, vertexArray);

    composite(GL_TRIANGLE_FAN, vertexArray, 4, maskOffset);
#endif
}


void QOpenGLPaintEnginePrivate::composite(GLuint primitive, const q_vertexType *vertexArray, int vertexCount, const QPoint &maskOffset)
{
#ifdef QT_OPENGL_ES
    Q_UNUSED(primitive);
    Q_UNUSED(vertexArray);
    Q_UNUSED(vertexCount);
    Q_UNUSED(maskOffset);
#else
    Q_Q(QOpenGLPaintEngine);
    QGL_FUNC_CONTEXT;

    if (current_style == Qt::NoBrush)
        return;

    DEBUG_ONCE qDebug() << "QOpenGLPaintEnginePrivate: Using compositing program: fragment_brush ="
                        << fragment_brush << ", fragment_composition_mode =" << fragment_composition_mode;

    if (has_fast_composition_mode)
        q->updateCompositionMode(composition_mode);
    else {
        qreal minX = 1e9, minY = 1e9, maxX = -1e9, maxY = -1e9;

        for (int i = 0; i < vertexCount; ++i) {
            qreal x = vt2f(vertexArray[2 * i]);
            qreal y = vt2f(vertexArray[2 * i + 1]);

            qreal tx, ty;
            matrix.map(x, y, &tx, &ty);

            minX = qMin(minX, tx);
            minY = qMin(minY, ty);
            maxX = qMax(maxX, tx);
            maxY = qMax(maxY, ty);
        }

        QRectF r(minX, minY, maxX - minX, maxY - minY);
        copyDrawable(r);

        glBlendFunc(GL_ONE, GL_ZERO);
    }

    int *locations = painter_variable_locations[fragment_brush][fragment_composition_mode];

    int texture_locations[] = { locations[VAR_DST_TEXTURE],
                                locations[VAR_MASK_TEXTURE],
                                locations[VAR_PALETTE] };

    int brush_texture_location = locations[VAR_BRUSH_TEXTURE];

    GLuint texture_targets[] = { GL_TEXTURE_2D,
                                 GL_TEXTURE_2D,
                                 GL_TEXTURE_1D };

    GLuint textures[] = { drawable_texture,
                          offscreen.offscreenTexture(),
                          grad_palette };

    const int num_textures = sizeof(textures) / sizeof(*textures);

    Q_ASSERT(num_textures == sizeof(texture_locations) / sizeof(*texture_locations));
    Q_ASSERT(num_textures == sizeof(texture_targets) / sizeof(*texture_targets));

    for (int i = 0; i < num_textures; ++i)
        if (texture_locations[i] >= 0) {
            glActiveTexture(GL_TEXTURE0 + texture_locations[i]);
            glBindTexture(texture_targets[i], textures[i]);
        }

    if (brush_texture_location >= 0) {
        glActiveTexture(GL_TEXTURE0 + brush_texture_location);

        if (current_style == Qt::TexturePattern)
            device->context()->d_func()->bindTexture(cbrush.textureImage(), GL_TEXTURE_2D, GL_RGBA,
                                                     QGLContext::InternalBindOption);
        else
            device->context()->d_func()->bindTexture(qt_imageForBrush(current_style, false),
                                                     GL_TEXTURE_2D, GL_RGBA,
                                                     QGLContext::InternalBindOption);

        updateTextureFilter(GL_TEXTURE_2D, GL_REPEAT, use_smooth_pixmap_transform);
    }

    glEnableClientState(GL_VERTEX_ARRAY);
    glVertexPointer(2, q_vertexTypeEnum, 0, vertexArray);
    glEnable(GL_FRAGMENT_PROGRAM_ARB);
    GLuint program = qt_gl_program_cache()->getProgram(device->context(),
                                                       fragment_brush,
                                                       fragment_composition_mode, false);
    glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, program);

    mask_offset_data[0] = maskOffset.x();
    mask_offset_data[1] = -maskOffset.y();

    updateFragmentProgramData(locations);

    glDrawArrays(primitive, 0, vertexCount);

    glDisable(GL_FRAGMENT_PROGRAM_ARB);
    glDisableClientState(GL_VERTEX_ARRAY);

    for (int i = 0; i < num_textures; ++i)
        if (texture_locations[i] >= 0) {
            glActiveTexture(GL_TEXTURE0 + texture_locations[i]);
            glBindTexture(texture_targets[i], 0);
        }

    if (brush_texture_location >= 0) {
        glActiveTexture(GL_TEXTURE0 + brush_texture_location);
        glBindTexture(GL_TEXTURE_2D, 0);
    }

    glActiveTexture(GL_TEXTURE0);

    if (!has_fast_composition_mode)
        q->updateCompositionMode(composition_mode);
#endif
}

void QOpenGLPaintEnginePrivate::cacheItemErased(int channel, const QRect &rect)
{
    bool isInDrawQueue = false;

    foreach (const QDrawQueueItem &item, drawQueue) {
        if (item.location.channel == channel && item.location.rect == rect) {
            isInDrawQueue = true;
            break;
        }
    }

    if (isInDrawQueue)
        flushDrawQueue();
}

void QOpenGLPaintEnginePrivate::addItem(const QGLMaskTextureCache::CacheLocation &location)
{
    drawQueue << QDrawQueueItem(opacity, cbrush, brush_origin, composition_mode, matrix, location);
}

void QOpenGLPaintEnginePrivate::drawItem(const QDrawQueueItem &item)
{
    Q_Q(QOpenGLPaintEngine);

    opacity = item.opacity;
    brush_origin = item.brush_origin;
    q->updateCompositionMode(item.composition_mode);
    matrix = item.matrix;
    cbrush = item.brush;
    brush_style = item.brush.style();

    mask_channel_data[0] = item.location.channel == 0;
    mask_channel_data[1] = item.location.channel == 1;
    mask_channel_data[2] = item.location.channel == 2;
    mask_channel_data[3] = item.location.channel == 3;

    setGradientOps(item.brush, item.location.screen_rect);

    composite(item.location.screen_rect, item.location.rect.topLeft() - item.location.screen_rect.topLeft()
                                         - QPoint(0, offscreen.offscreenSize().height() - device->size().height()));
}

void QOpenGLPaintEnginePrivate::flushDrawQueue()
{
#ifndef QT_OPENGL_ES
    Q_Q(QOpenGLPaintEngine);

    offscreen.release();

    if (!drawQueue.isEmpty()) {
        DEBUG_ONCE qDebug() << "QOpenGLPaintEngine::flushDrawQueue():" << drawQueue.size() << "items";

        glPushMatrix();
        glLoadIdentity();
        qreal old_opacity = opacity;
        QPointF old_brush_origin = brush_origin;
        QPainter::CompositionMode old_composition_mode = composition_mode;
        QTransform old_matrix = matrix;
        QBrush old_brush = cbrush;

        bool hqaa_old = high_quality_antialiasing;

        high_quality_antialiasing = true;

        foreach (const QDrawQueueItem &item, drawQueue)
            drawItem(item);

        opacity = old_opacity;
        brush_origin = old_brush_origin;
        q->updateCompositionMode(old_composition_mode);
        matrix = old_matrix;
        cbrush = old_brush;
        brush_style = old_brush.style();

        high_quality_antialiasing = hqaa_old;

        setGLBrush(old_brush.color());
        qt_glColor4ubv(brush_color);

        drawQueue.clear();

        glPopMatrix();
    }
#endif
}

void QOpenGLPaintEngine::clipEnabledChanged()
{
    Q_D(QOpenGLPaintEngine);

    d->updateDepthClip();
}

void QOpenGLPaintEngine::penChanged()
{
    updatePen(state()->pen);
}

void QOpenGLPaintEngine::brushChanged()
{
    updateBrush(state()->brush, state()->brushOrigin);
}

void QOpenGLPaintEngine::brushOriginChanged()
{
    updateBrush(state()->brush, state()->brushOrigin);
}

void QOpenGLPaintEngine::opacityChanged()
{
    Q_D(QOpenGLPaintEngine);
    QPainterState *s = state();
    d->opacity = s->opacity;
    updateBrush(s->brush, s->brushOrigin);
    updatePen(s->pen);
}

void QOpenGLPaintEngine::compositionModeChanged()
{
    updateCompositionMode(state()->composition_mode);
}

void QOpenGLPaintEngine::renderHintsChanged()
{
    updateRenderHints(state()->renderHints);
}

void QOpenGLPaintEngine::transformChanged()
{
    updateMatrix(state()->matrix);
}

static QPainterPath painterPathFromVectorPath(const QVectorPath &path)
{
    const qreal *points = path.points();
    const QPainterPath::ElementType *types = path.elements();

    QPainterPath p;
    if (types) {
        int id = 0;
        for (int i=0; i<path.elementCount(); ++i) {
            switch(types[i]) {
            case QPainterPath::MoveToElement:
                p.moveTo(QPointF(points[id], points[id+1]));
                id+=2;
                break;
            case QPainterPath::LineToElement:
                p.lineTo(QPointF(points[id], points[id+1]));
                id+=2;
                break;
            case QPainterPath::CurveToElement: {
                QPointF p1(points[id], points[id+1]);
                QPointF p2(points[id+2], points[id+3]);
                QPointF p3(points[id+4], points[id+5]);
                p.cubicTo(p1, p2, p3);
                id+=6;
                break;
            }
            case QPainterPath::CurveToDataElement:
                ;
                break;
            }
        }
    } else {
        p.moveTo(QPointF(points[0], points[1]));
        int id = 2;
        for (int i=1; i<path.elementCount(); ++i) {
            p.lineTo(QPointF(points[id], points[id+1]));
            id+=2;
        }
    }
    if (path.hints() & QVectorPath::WindingFill)
        p.setFillRule(Qt::WindingFill);

    return p;
}

void QOpenGLPaintEngine::fill(const QVectorPath &path, const QBrush &brush)
{
    Q_D(QOpenGLPaintEngine);

    if (brush.style() == Qt::NoBrush)
        return;

    if (!d->use_fragment_programs && needsEmulation(brush.style())) {
        QPainter *p = painter();
        QBrush oldBrush = p->brush();
        p->setBrush(brush);
        qt_draw_helper(p->d_ptr.data(), painterPathFromVectorPath(path), QPainterPrivate::FillDraw);
        p->setBrush(oldBrush);
        return;
    }

    QBrush old_brush = state()->brush;
    updateBrush(brush, state()->brushOrigin);

    const qreal *points = path.points();
    const QPainterPath::ElementType *types = path.elements();
    if (!types && path.shape() == QVectorPath::RectangleHint) {
        QRectF r(points[0], points[1], points[4]-points[0], points[5]-points[1]);
        QPen old_pen = state()->pen;
        updatePen(Qt::NoPen);
        drawRects(&r, 1);
        updatePen(old_pen);
    } else {
        d->fillPath(painterPathFromVectorPath(path));
    }

    updateBrush(old_brush, state()->brushOrigin);
}

template <typename T> static inline bool isRect(const T *pts, int elementCount) {
    return (elementCount == 5 // 5-point polygon, check for closed rect
            && pts[0] == pts[8] && pts[1] == pts[9] // last point == first point
            && pts[0] == pts[6] && pts[2] == pts[4] // x values equal
            && pts[1] == pts[3] && pts[5] == pts[7] // y values equal...
            ) ||
           (elementCount == 4 // 4-point polygon, check for unclosed rect
            && pts[0] == pts[6] && pts[2] == pts[4] // x values equal
            && pts[1] == pts[3] && pts[5] == pts[7] // y values equal...
            );
}

void QOpenGLPaintEngine::clip(const QVectorPath &path, Qt::ClipOperation op)
{
    const qreal *points = path.points();
    const QPainterPath::ElementType *types = path.elements();
    if (!types && path.shape() == QVectorPath::RectangleHint) {
        QRectF r(points[0], points[1], points[4]-points[0], points[5]-points[1]);
        updateClipRegion(QRegion(r.toRect()), op);
        return;
    }

    QPainterPath p;
    if (types) {
        int id = 0;
        for (int i=0; i<path.elementCount(); ++i) {
            switch(types[i]) {
            case QPainterPath::MoveToElement:
                p.moveTo(QPointF(points[id], points[id+1]));
                id+=2;
                break;
            case QPainterPath::LineToElement:
                p.lineTo(QPointF(points[id], points[id+1]));
                id+=2;
                break;
            case QPainterPath::CurveToElement: {
                QPointF p1(points[id], points[id+1]);
                QPointF p2(points[id+2], points[id+3]);
                QPointF p3(points[id+4], points[id+5]);
                p.cubicTo(p1, p2, p3);
                id+=6;
                break;
            }
            case QPainterPath::CurveToDataElement:
                ;
                break;
            }
        }
    } else if (!path.isEmpty()) {
        p.moveTo(QPointF(points[0], points[1]));
        int id = 2;
        for (int i=1; i<path.elementCount(); ++i) {
            p.lineTo(QPointF(points[id], points[id+1]));
            id+=2;
        }
    }
    if (path.hints() & QVectorPath::WindingFill)
        p.setFillRule(Qt::WindingFill);

    updateClipRegion(QRegion(p.toFillPolygon().toPolygon(), p.fillRule()), op);
    return;
}

void QOpenGLPaintEngine::setState(QPainterState *s)
{
    Q_D(QOpenGLPaintEngine);
    QOpenGLPaintEngineState *new_state = static_cast<QOpenGLPaintEngineState *>(s);
    QOpenGLPaintEngineState *old_state = state();

    QPaintEngineEx::setState(s);

    // are we in a save() ?
    if (s == d->last_created_state) {
        d->last_created_state = 0;
        return;
    }

    if (isActive()) {
        if (old_state->depthClipId != new_state->depthClipId)
            d->updateDepthClip();
        penChanged();
        brushChanged();
        opacityChanged();
        compositionModeChanged();
        renderHintsChanged();
        transformChanged();
    }
}

QPainterState *QOpenGLPaintEngine::createState(QPainterState *orig) const
{
    const Q_D(QOpenGLPaintEngine);

    QOpenGLPaintEngineState *s;
    if (!orig)
        s = new QOpenGLPaintEngineState();
    else
        s = new QOpenGLPaintEngineState(*static_cast<QOpenGLPaintEngineState *>(orig));

    d->last_created_state = s;
    return s;
}

//
//  QOpenGLPaintEngineState
//

QOpenGLPaintEngineState::QOpenGLPaintEngineState(QOpenGLPaintEngineState &other)
    : QPainterState(other)
{
    clipRegion = other.clipRegion;
    hasClipping = other.hasClipping;
    fastClip = other.fastClip;
    depthClipId = other.depthClipId;
}

QOpenGLPaintEngineState::QOpenGLPaintEngineState()
{
    hasClipping = false;
    depthClipId = 0;
}

QOpenGLPaintEngineState::~QOpenGLPaintEngineState()
{
}

void QOpenGLPaintEnginePrivate::ensureDrawableTexture()
{
    if (!dirty_drawable_texture)
        return;

    dirty_drawable_texture = false;

#ifndef QT_OPENGL_ES
    glGenTextures(1, &drawable_texture);
    glBindTexture(GL_TEXTURE_2D, drawable_texture);

    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8,
            drawable_texture_size.width(),
            drawable_texture_size.height(), 0,
            GL_RGBA, GL_UNSIGNED_BYTE, NULL);

    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
#endif
}

QT_END_NAMESPACE

#include "qpaintengine_opengl.moc"