/****************************************************************************
**
** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the test suite of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "oldtessellator.h"
#include <QPointF>
#include <QVector>
#include <QList>
#include <QVariant>
#include <QVarLengthArray>
#include <qdebug.h>
#include "limits.h"
#include "utils.h"
#include "qnum.h"
#include "XrenderFake.h"
/*
* Polygon tesselator - can probably be optimized a bit more
*/
//#define QT_DEBUG_TESSELATOR
#define FloatToXFixed(i) (int)((i) * 65536)
#define IntToXFixed(i) ((i) << 16)
//inline int qrealToXFixed(qreal f)
//{ return f << 8; }
struct QEdge {
inline QEdge()
{}
inline QEdge(const QPointF &pt1,
const QPointF &pt2)
{
p1.x = XDoubleToFixed(pt1.x());
p1.y = XDoubleToFixed(pt1.y());
p2.x = XDoubleToFixed(pt2.x());
p2.y = XDoubleToFixed(pt2.y());
m = (pt1.x() - pt2.x()) ? (pt1.y() - pt2.y()) / (pt1.x() - pt2.x()) : 0;
im = m ? 1/m : 0;
b = pt1.y() - m * pt1.x();
vertical = p1.x == p2.x;
horizontal = p1.y == p2.y;
}
inline qreal xAt(const qreal &y) const
{
Q_ASSERT(p1.y != p2.y);
XFixed yf = XDoubleToFixed(y);
if (yf == p1.y)
return XFixedToDouble(p1.x);
else if (yf == p2.y)
return XFixedToDouble(p2.x);
return (!vertical) ? (((y - b)*im)) : pf1.x();
}
QPointF pf1, pf2;
XPointFixed p1, p2;
qreal m;
qreal im;
qreal b;
qreal intersection;
signed short winding;
bool vertical;
bool horizontal;
};
struct QVrtx {
typedef QList<QEdge> Edges;
XPointFixed coords;
Edges startingEdges;
Edges endingEdges;
Edges intersectingEdges;
};
struct QIntersectionPoint {
qreal x;
const QEdge *edge;
};
QT_BEGIN_NAMESPACE
Q_DECLARE_TYPEINFO(QEdge, Q_PRIMITIVE_TYPE);
Q_DECLARE_TYPEINFO(QVrtx, Q_PRIMITIVE_TYPE);
Q_DECLARE_TYPEINFO(QIntersectionPoint, Q_PRIMITIVE_TYPE);
QT_END_NAMESPACE
// used by the edge point sort algorithm
static qreal currentY = 0.f;
static inline bool compareEdges(const QEdge *e1, const QEdge *e2)
{
return e1->p1.y < e2->p1.y;
}
static inline bool isEqual(const XPointFixed &p1, const XPointFixed &p2)
{
return ((p1.x == p2.x) && (p1.y == p2.y));
}
static inline bool compareIntersections(const QIntersectionPoint &i1, const QIntersectionPoint &i2)
{
if (qAbs(i1.x - i2.x) > 0.01) { // x != other.x in 99% of the cases
return i1.x < i2.x;
} else {
qreal x1 = (i1.edge->p1.x != i1.edge->p2.x) ?
((currentY+1 - i1.edge->b)*i1.edge->m) : XFixedToDouble(i1.edge->p1.x);
qreal x2 = (i2.edge->p1.x != i2.edge->p2.x) ?
((currentY+1 - i2.edge->b)*i2.edge->m) : XFixedToDouble(i2.edge->p1.x);
// qDebug() << ">>>" << currentY << i1.edge << i2.edge << x1 << x2;
return x1 < x2;
}
}
#ifdef QT_USE_FIXED_POINT
inline int qrealToXFixed(qreal f)
{ return f.value() << 8; }
#else
#define qrealToXFixed FloatToXFixed
#endif
static XTrapezoid QT_FASTCALL toXTrapezoid(XFixed y1, XFixed y2, const QEdge &left, const QEdge &right)
{
XTrapezoid trap;
trap.top = y1;
trap.bottom = y2;
trap.left.p1.y = left.p1.y;
trap.left.p2.y = left.p2.y;
trap.right.p1.y = right.p1.y;
trap.right.p2.y = right.p2.y;
trap.left.p1.x = left.p1.x;
trap.left.p2.x = left.p2.x;
trap.right.p1.x = right.p1.x;
trap.right.p2.x = right.p2.x;
return trap;
}
#ifdef QT_DEBUG_TESSELATOR
static void dump_edges(const QList<const QEdge *> &et)
{
for (int x = 0; x < et.size(); ++x) {
qDebug() << "edge#" << x << et.at(x) << "("
<< XFixedToDouble(et.at(x)->p1.x)
<< XFixedToDouble(et.at(x)->p1.y)
<< ") ("
<< XFixedToDouble(et.at(x)->p2.x)
<< XFixedToDouble(et.at(x)->p2.y)
<< ") b: " << et.at(x)->b << "m:" << et.at(x)->m;
}
}
static void dump_trap(const XTrapezoid &t)
{
qDebug() << "trap# t=" << t.top/65536.0 << "b=" << t.bottom/65536.0 << "h="
<< XFixedToDouble(t.bottom - t.top) << "\tleft p1: ("
<< XFixedToDouble(t.left.p1.x) << ","<< XFixedToDouble(t.left.p1.y)
<< ")" << "\tleft p2: (" << XFixedToDouble(t.left.p2.x) << ","
<< XFixedToDouble(t.left.p2.y) << ")" << "\n\t\t\t\tright p1:("
<< XFixedToDouble(t.right.p1.x) << "," << XFixedToDouble(t.right.p1.y) << ")"
<< "\tright p2:(" << XFixedToDouble(t.right.p2.x) << ","
<< XFixedToDouble(t.right.p2.y) << ")";
}
#endif
typedef int Q27Dot5;
#define Q27Dot5ToDouble(i) (i/32.)
#define FloatToQ27Dot5(i) (int)((i) * 32)
#define IntToQ27Dot5(i) ((i) << 5)
#define Q27Dot5ToXFixed(i) ((i) << 11)
#define Q27Dot5Factor 32
void old_tesselate_polygon(QVector<XTrapezoid> *traps, const QPointF *pg, int pgSize,
bool winding)
{
QVector<QEdge> edges;
edges.reserve(128);
qreal ymin(INT_MAX/256);
qreal ymax(INT_MIN/256);
//painter.begin(pg, pgSize);
Q_ASSERT(pg[0] == pg[pgSize-1]);
// generate edge table
// qDebug() << "POINTS:";
for (int x = 0; x < pgSize-1; ++x) {
QEdge edge;
QPointF p1(Q27Dot5ToDouble(FloatToQ27Dot5(pg[x].x())),
Q27Dot5ToDouble(FloatToQ27Dot5(pg[x].y())));
QPointF p2(Q27Dot5ToDouble(FloatToQ27Dot5(pg[x+1].x())),
Q27Dot5ToDouble(FloatToQ27Dot5(pg[x+1].y())));
// qDebug() << " "
// << p1;
edge.winding = p1.y() > p2.y() ? 1 : -1;
if (edge.winding > 0)
qSwap(p1, p2);
edge.p1.x = XDoubleToFixed(p1.x());
edge.p1.y = XDoubleToFixed(p1.y());
edge.p2.x = XDoubleToFixed(p2.x());
edge.p2.y = XDoubleToFixed(p2.y());
edge.m = (p1.y() - p2.y()) / (p1.x() - p2.x()); // line derivative
edge.b = p1.y() - edge.m * p1.x(); // intersection with y axis
edge.m = edge.m != 0.0 ? 1.0 / edge.m : 0.0; // inverted derivative
edges.append(edge);
ymin = qMin(ymin, qreal(XFixedToDouble(edge.p1.y)));
ymax = qMax(ymax, qreal(XFixedToDouble(edge.p2.y)));
}
QList<const QEdge *> et; // edge list
for (int i = 0; i < edges.size(); ++i)
et.append(&edges.at(i));
// sort edge table by min y value
qSort(et.begin(), et.end(), compareEdges);
// eliminate shared edges
for (int i = 0; i < et.size(); ++i) {
for (int k = i+1; k < et.size(); ++k) {
const QEdge *edgeI = et.at(i);
const QEdge *edgeK = et.at(k);
if (edgeK->p1.y > edgeI->p1.y)
break;
if (edgeI->winding != edgeK->winding &&
isEqual(edgeI->p1, edgeK->p1) && isEqual(edgeI->p2, edgeK->p2)
) {
et.removeAt(k);
et.removeAt(i);
--i;
break;
}
}
}
if (ymax <= ymin)
return;
QList<const QEdge *> aet; // edges that intersects the current scanline
// if (ymin < 0)
// ymin = 0;
// if (paintEventClipRegion) // don't scan more lines than we have to
// ymax = paintEventClipRegion->boundingRect().height();
#ifdef QT_DEBUG_TESSELATOR
qDebug("==> ymin = %f, ymax = %f", ymin, ymax);
#endif // QT_DEBUG_TESSELATOR
currentY = ymin; // used by the less than op
for (qreal y = ymin; y < ymax;) {
// fill active edge table with edges that intersect the current line
for (int i = 0; i < et.size(); ++i) {
const QEdge *edge = et.at(i);
if (edge->p1.y > XDoubleToFixed(y))
break;
aet.append(edge);
et.removeAt(i);
--i;
}
// remove processed edges from active edge table
for (int i = 0; i < aet.size(); ++i) {
if (aet.at(i)->p2.y <= XDoubleToFixed(y)) {
aet.removeAt(i);
--i;
}
}
if (aet.size()%2 != 0) {
#ifndef QT_NO_DEBUG
qWarning("QX11PaintEngine: aet out of sync - this should not happen.");
#endif
return;
}
// done?
if (!aet.size()) {
if (!et.size()) {
break;
} else {
y = currentY = XFixedToDouble(et.at(0)->p1.y);
continue;
}
}
// calculate the next y where we have to start a new set of trapezoids
qreal next_y(INT_MAX/256);
for (int i = 0; i < aet.size(); ++i) {
const QEdge *edge = aet.at(i);
if (XFixedToDouble(edge->p2.y) < next_y)
next_y = XFixedToDouble(edge->p2.y);
}
if (et.size() && next_y > XFixedToDouble(et.at(0)->p1.y))
next_y = XFixedToDouble(et.at(0)->p1.y);
int aetSize = aet.size();
for (int i = 0; i < aetSize; ++i) {
for (int k = i+1; k < aetSize; ++k) {
const QEdge *edgeI = aet.at(i);
const QEdge *edgeK = aet.at(k);
qreal m1 = edgeI->m;
qreal b1 = edgeI->b;
qreal m2 = edgeK->m;
qreal b2 = edgeK->b;
if (qAbs(m1 - m2) < 0.001)
continue;
// ### intersect is not calculated correctly when optimized with -O2 (gcc)
volatile qreal intersect = 0;
if (!qIsFinite(b1))
intersect = (1.f / m2) * XFixedToDouble(edgeI->p1.x) + b2;
else if (!qIsFinite(b2))
intersect = (1.f / m1) * XFixedToDouble(edgeK->p1.x) + b1;
else
intersect = (b1*m1 - b2*m2) / (m1 - m2);
if (intersect > y && intersect < next_y)
next_y = intersect;
}
}
XFixed yf, next_yf;
yf = qrealToXFixed(y);
next_yf = qrealToXFixed(next_y);
if (yf == next_yf) {
y = currentY = next_y;
continue;
}
#ifdef QT_DEBUG_TESSELATOR
qDebug("###> y = %f, next_y = %f, %d active edges", y, next_y, aet.size());
qDebug("===> edges");
dump_edges(et);
qDebug("===> active edges");
dump_edges(aet);
#endif
// calc intersection points
QVarLengthArray<QIntersectionPoint> isects(aet.size()+1);
for (int i = 0; i < isects.size()-1; ++i) {
const QEdge *edge = aet.at(i);
isects[i].x = (edge->p1.x != edge->p2.x) ?
((y - edge->b)*edge->m) : XFixedToDouble(edge->p1.x);
isects[i].edge = edge;
}
Q_ASSERT(isects.size()%2 == 1);
// sort intersection points
qSort(&isects[0], &isects[isects.size()-1], compareIntersections);
// qDebug() << "INTERSECTION_POINTS:";
// for (int i = 0; i < isects.size(); ++i)
// qDebug() << isects[i].edge << isects[i].x;
if (winding) {
// winding fill rule
for (int i = 0; i < isects.size()-1;) {
int winding = 0;
const QEdge *left = isects[i].edge;
const QEdge *right = 0;
winding += isects[i].edge->winding;
for (++i; i < isects.size()-1 && winding != 0; ++i) {
winding += isects[i].edge->winding;
right = isects[i].edge;
}
if (!left || !right)
break;
//painter.addTrapezoid(&toXTrapezoid(yf, next_yf, *left, *right));
traps->append(toXTrapezoid(yf, next_yf, *left, *right));
}
} else {
// odd-even fill rule
for (int i = 0; i < isects.size()-2; i += 2) {
//painter.addTrapezoid(&toXTrapezoid(yf, next_yf, *isects[i].edge, *isects[i+1].edge));
traps->append(toXTrapezoid(yf, next_yf, *isects[i].edge, *isects[i+1].edge));
}
}
y = currentY = next_y;
}
#ifdef QT_DEBUG_TESSELATOR
qDebug("==> number of trapezoids: %d - edge table size: %d\n", traps->size(), et.size());
for (int i = 0; i < traps->size(); ++i)
dump_trap(traps->at(i));
#endif
// optimize by unifying trapezoids that share left/right lines
// and have a common top/bottom edge
// for (int i = 0; i < tps.size(); ++i) {
// for (int k = i+1; k < tps.size(); ++k) {
// if (i != k && tps.at(i).right == tps.at(k).right
// && tps.at(i).left == tps.at(k).left
// && (tps.at(i).top == tps.at(k).bottom
// || tps.at(i).bottom == tps.at(k).top))
// {
// tps[i].bottom = tps.at(k).bottom;
// tps.removeAt(k);
// i = 0;
// break;
// }
// }
// }
//static int i = 0;
//QImage img = painter.end();
//img.save(QString("res%1.png").arg(i++), "PNG");
}