webengine/webkitutils/SqliteSymbian/build.c
changeset 0 dd21522fd290
equal deleted inserted replaced
-1:000000000000 0:dd21522fd290
       
     1 /*
       
     2 ** 2001 September 15
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** This file contains C code routines that are called by the SQLite parser
       
    13 ** when syntax rules are reduced.  The routines in this file handle the
       
    14 ** following kinds of SQL syntax:
       
    15 **
       
    16 **     CREATE TABLE
       
    17 **     DROP TABLE
       
    18 **     CREATE INDEX
       
    19 **     DROP INDEX
       
    20 **     creating ID lists
       
    21 **     BEGIN TRANSACTION
       
    22 **     COMMIT
       
    23 **     ROLLBACK
       
    24 **
       
    25 ** $Id: build.c,v 1.410 2006/08/14 14:23:42 drh Exp $
       
    26 */
       
    27 #include "sqliteInt.h"
       
    28 #include <ctype.h>
       
    29 
       
    30 /*
       
    31 ** This routine is called when a new SQL statement is beginning to
       
    32 ** be parsed.  Initialize the pParse structure as needed.
       
    33 */
       
    34 void sqlite3BeginParse(Parse *pParse, int explainFlag){
       
    35   pParse->explain = explainFlag;
       
    36   pParse->nVar = 0;
       
    37 }
       
    38 
       
    39 #ifndef SQLITE_OMIT_SHARED_CACHE
       
    40 /*
       
    41 ** The TableLock structure is only used by the sqlite3TableLock() and
       
    42 ** codeTableLocks() functions.
       
    43 */
       
    44 struct TableLock {
       
    45   int iDb;             /* The database containing the table to be locked */
       
    46   int iTab;            /* The root page of the table to be locked */
       
    47   u8 isWriteLock;      /* True for write lock.  False for a read lock */
       
    48   const char *zName;   /* Name of the table */
       
    49 };
       
    50 
       
    51 /*
       
    52 ** Record the fact that we want to lock a table at run-time.  
       
    53 **
       
    54 ** The table to be locked has root page iTab and is found in database iDb.
       
    55 ** A read or a write lock can be taken depending on isWritelock.
       
    56 **
       
    57 ** This routine just records the fact that the lock is desired.  The
       
    58 ** code to make the lock occur is generated by a later call to
       
    59 ** codeTableLocks() which occurs during sqlite3FinishCoding().
       
    60 */
       
    61 void sqlite3TableLock(
       
    62   Parse *pParse,     /* Parsing context */
       
    63   int iDb,           /* Index of the database containing the table to lock */
       
    64   int iTab,          /* Root page number of the table to be locked */
       
    65   u8 isWriteLock,    /* True for a write lock */
       
    66   const char *zName  /* Name of the table to be locked */
       
    67 ){
       
    68   int i;
       
    69   int nBytes;
       
    70   TableLock *p;
       
    71 
       
    72   if( 0==sqlite3ThreadDataReadOnly()->useSharedData || iDb<0 ){
       
    73     return;
       
    74   }
       
    75 
       
    76   for(i=0; i<pParse->nTableLock; i++){
       
    77     p = &pParse->aTableLock[i];
       
    78     if( p->iDb==iDb && p->iTab==iTab ){
       
    79       p->isWriteLock = (p->isWriteLock || isWriteLock);
       
    80       return;
       
    81     }
       
    82   }
       
    83 
       
    84   nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
       
    85   sqliteReallocOrFree((void **)&pParse->aTableLock, nBytes);
       
    86   if( pParse->aTableLock ){
       
    87     p = &pParse->aTableLock[pParse->nTableLock++];
       
    88     p->iDb = iDb;
       
    89     p->iTab = iTab;
       
    90     p->isWriteLock = isWriteLock;
       
    91     p->zName = zName;
       
    92   }
       
    93 }
       
    94 
       
    95 /*
       
    96 ** Code an OP_TableLock instruction for each table locked by the
       
    97 ** statement (configured by calls to sqlite3TableLock()).
       
    98 */
       
    99 static void codeTableLocks(Parse *pParse){
       
   100   int i;
       
   101   Vdbe *pVdbe; 
       
   102   assert( sqlite3ThreadDataReadOnly()->useSharedData || pParse->nTableLock==0 );
       
   103 
       
   104   if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
       
   105     return;
       
   106   }
       
   107 
       
   108   for(i=0; i<pParse->nTableLock; i++){
       
   109     TableLock *p = &pParse->aTableLock[i];
       
   110     int p1 = p->iDb;
       
   111     if( p->isWriteLock ){
       
   112       p1 = -1*(p1+1);
       
   113     }
       
   114     sqlite3VdbeOp3(pVdbe, OP_TableLock, p1, p->iTab, p->zName, P3_STATIC);
       
   115   }
       
   116 }
       
   117 #else
       
   118   #define codeTableLocks(x)
       
   119 #endif
       
   120 
       
   121 /*
       
   122 ** This routine is called after a single SQL statement has been
       
   123 ** parsed and a VDBE program to execute that statement has been
       
   124 ** prepared.  This routine puts the finishing touches on the
       
   125 ** VDBE program and resets the pParse structure for the next
       
   126 ** parse.
       
   127 **
       
   128 ** Note that if an error occurred, it might be the case that
       
   129 ** no VDBE code was generated.
       
   130 */
       
   131 void sqlite3FinishCoding(Parse *pParse){
       
   132   sqlite3 *db;
       
   133   Vdbe *v;
       
   134 
       
   135   if( sqlite3MallocFailed() ) return;
       
   136   if( pParse->nested ) return;
       
   137   if( !pParse->pVdbe ){
       
   138     if( pParse->rc==SQLITE_OK && pParse->nErr ){
       
   139       pParse->rc = SQLITE_ERROR;
       
   140       return;
       
   141     }
       
   142   }
       
   143 
       
   144   /* Begin by generating some termination code at the end of the
       
   145   ** vdbe program
       
   146   */
       
   147   db = pParse->db;
       
   148   v = sqlite3GetVdbe(pParse);
       
   149   if( v ){
       
   150     sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
       
   151 
       
   152     /* The cookie mask contains one bit for each database file open.
       
   153     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
       
   154     ** set for each database that is used.  Generate code to start a
       
   155     ** transaction on each used database and to verify the schema cookie
       
   156     ** on each used database.
       
   157     */
       
   158     if( pParse->cookieGoto>0 ){
       
   159       u32 mask;
       
   160       int iDb;
       
   161       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
       
   162       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
       
   163         if( (mask & pParse->cookieMask)==0 ) continue;
       
   164         sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
       
   165         sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
       
   166       }
       
   167 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
   168       if( pParse->pVirtualLock ){
       
   169         char *vtab = (char *)pParse->pVirtualLock->pVtab;
       
   170         sqlite3VdbeOp3(v, OP_VBegin, 0, 0, vtab, P3_VTAB);
       
   171       }
       
   172 #endif
       
   173 
       
   174       /* Once all the cookies have been verified and transactions opened, 
       
   175       ** obtain the required table-locks. This is a no-op unless the 
       
   176       ** shared-cache feature is enabled.
       
   177       */
       
   178       codeTableLocks(pParse);
       
   179       sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto);
       
   180     }
       
   181 
       
   182 #ifndef SQLITE_OMIT_TRACE
       
   183     /* Add a No-op that contains the complete text of the compiled SQL
       
   184     ** statement as its P3 argument.  This does not change the functionality
       
   185     ** of the program. 
       
   186     **
       
   187     ** This is used to implement sqlite3_trace().
       
   188     */
       
   189     sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql);
       
   190 #endif /* SQLITE_OMIT_TRACE */
       
   191   }
       
   192 
       
   193 
       
   194   /* Get the VDBE program ready for execution
       
   195   */
       
   196   if( v && pParse->nErr==0 && !sqlite3MallocFailed() ){
       
   197     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
       
   198     sqlite3VdbeTrace(v, trace);
       
   199     sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
       
   200                          pParse->nTab+3, pParse->explain);
       
   201     pParse->rc = SQLITE_DONE;
       
   202     pParse->colNamesSet = 0;
       
   203   }else if( pParse->rc==SQLITE_OK ){
       
   204     pParse->rc = SQLITE_ERROR;
       
   205   }
       
   206   pParse->nTab = 0;
       
   207   pParse->nMem = 0;
       
   208   pParse->nSet = 0;
       
   209   pParse->nVar = 0;
       
   210   pParse->cookieMask = 0;
       
   211   pParse->cookieGoto = 0;
       
   212 }
       
   213 
       
   214 /*
       
   215 ** Run the parser and code generator recursively in order to generate
       
   216 ** code for the SQL statement given onto the end of the pParse context
       
   217 ** currently under construction.  When the parser is run recursively
       
   218 ** this way, the final OP_Halt is not appended and other initialization
       
   219 ** and finalization steps are omitted because those are handling by the
       
   220 ** outermost parser.
       
   221 **
       
   222 ** Not everything is nestable.  This facility is designed to permit
       
   223 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
       
   224 ** care if you decide to try to use this routine for some other purposes.
       
   225 */
       
   226 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
       
   227   va_list ap;
       
   228   char *zSql;
       
   229 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
       
   230   char saveBuf[SAVE_SZ];
       
   231 
       
   232   if( pParse->nErr ) return;
       
   233   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
       
   234   va_start(ap, zFormat);
       
   235   zSql = sqlite3VMPrintf(zFormat, ap);
       
   236   va_end(ap);
       
   237   if( zSql==0 ){
       
   238     return;   /* A malloc must have failed */
       
   239   }
       
   240   pParse->nested++;
       
   241   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
       
   242   memset(&pParse->nVar, 0, SAVE_SZ);
       
   243   sqlite3RunParser(pParse, zSql, 0);
       
   244   sqliteFree(zSql);
       
   245   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
       
   246   pParse->nested--;
       
   247 }
       
   248 
       
   249 /*
       
   250 ** Locate the in-memory structure that describes a particular database
       
   251 ** table given the name of that table and (optionally) the name of the
       
   252 ** database containing the table.  Return NULL if not found.
       
   253 **
       
   254 ** If zDatabase is 0, all databases are searched for the table and the
       
   255 ** first matching table is returned.  (No checking for duplicate table
       
   256 ** names is done.)  The search order is TEMP first, then MAIN, then any
       
   257 ** auxiliary databases added using the ATTACH command.
       
   258 **
       
   259 ** See also sqlite3LocateTable().
       
   260 */
       
   261 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
       
   262   Table *p = 0;
       
   263   int i;
       
   264   assert( zName!=0 );
       
   265   for(i=OMIT_TEMPDB; i<db->nDb; i++){
       
   266     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
       
   267     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
       
   268     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1);
       
   269     if( p ) break;
       
   270   }
       
   271   return p;
       
   272 }
       
   273 
       
   274 /*
       
   275 ** Locate the in-memory structure that describes a particular database
       
   276 ** table given the name of that table and (optionally) the name of the
       
   277 ** database containing the table.  Return NULL if not found.  Also leave an
       
   278 ** error message in pParse->zErrMsg.
       
   279 **
       
   280 ** The difference between this routine and sqlite3FindTable() is that this
       
   281 ** routine leaves an error message in pParse->zErrMsg where
       
   282 ** sqlite3FindTable() does not.
       
   283 */
       
   284 Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){
       
   285   Table *p;
       
   286 
       
   287   /* Read the database schema. If an error occurs, leave an error message
       
   288   ** and code in pParse and return NULL. */
       
   289   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
       
   290     return 0;
       
   291   }
       
   292 
       
   293   p = sqlite3FindTable(pParse->db, zName, zDbase);
       
   294   if( p==0 ){
       
   295     if( zDbase ){
       
   296       sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
       
   297     }else{
       
   298       sqlite3ErrorMsg(pParse, "no such table: %s", zName);
       
   299     }
       
   300     pParse->checkSchema = 1;
       
   301   }
       
   302   return p;
       
   303 }
       
   304 
       
   305 /*
       
   306 ** Locate the in-memory structure that describes 
       
   307 ** a particular index given the name of that index
       
   308 ** and the name of the database that contains the index.
       
   309 ** Return NULL if not found.
       
   310 **
       
   311 ** If zDatabase is 0, all databases are searched for the
       
   312 ** table and the first matching index is returned.  (No checking
       
   313 ** for duplicate index names is done.)  The search order is
       
   314 ** TEMP first, then MAIN, then any auxiliary databases added
       
   315 ** using the ATTACH command.
       
   316 */
       
   317 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
       
   318   Index *p = 0;
       
   319   int i;
       
   320   for(i=OMIT_TEMPDB; i<db->nDb; i++){
       
   321     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
       
   322     Schema *pSchema = db->aDb[j].pSchema;
       
   323     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
       
   324     assert( pSchema || (j==1 && !db->aDb[1].pBt) );
       
   325     if( pSchema ){
       
   326       p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1);
       
   327     }
       
   328     if( p ) break;
       
   329   }
       
   330   return p;
       
   331 }
       
   332 
       
   333 /*
       
   334 ** Reclaim the memory used by an index
       
   335 */
       
   336 static void freeIndex(Index *p){
       
   337   sqliteFree(p->zColAff);
       
   338   sqliteFree(p);
       
   339 }
       
   340 
       
   341 /*
       
   342 ** Remove the given index from the index hash table, and free
       
   343 ** its memory structures.
       
   344 **
       
   345 ** The index is removed from the database hash tables but
       
   346 ** it is not unlinked from the Table that it indexes.
       
   347 ** Unlinking from the Table must be done by the calling function.
       
   348 */
       
   349 static void sqliteDeleteIndex(Index *p){
       
   350   Index *pOld;
       
   351   const char *zName = p->zName;
       
   352 
       
   353   pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0);
       
   354   assert( pOld==0 || pOld==p );
       
   355   freeIndex(p);
       
   356 }
       
   357 
       
   358 /*
       
   359 ** For the index called zIdxName which is found in the database iDb,
       
   360 ** unlike that index from its Table then remove the index from
       
   361 ** the index hash table and free all memory structures associated
       
   362 ** with the index.
       
   363 */
       
   364 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
       
   365   Index *pIndex;
       
   366   int len;
       
   367   Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
       
   368 
       
   369   len = strlen(zIdxName);
       
   370   pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
       
   371   if( pIndex ){
       
   372     if( pIndex->pTable->pIndex==pIndex ){
       
   373       pIndex->pTable->pIndex = pIndex->pNext;
       
   374     }else{
       
   375       Index *p;
       
   376       for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
       
   377       if( p && p->pNext==pIndex ){
       
   378         p->pNext = pIndex->pNext;
       
   379       }
       
   380     }
       
   381     freeIndex(pIndex);
       
   382   }
       
   383   db->flags |= SQLITE_InternChanges;
       
   384 }
       
   385 
       
   386 /*
       
   387 ** Erase all schema information from the in-memory hash tables of
       
   388 ** a single database.  This routine is called to reclaim memory
       
   389 ** before the database closes.  It is also called during a rollback
       
   390 ** if there were schema changes during the transaction or if a
       
   391 ** schema-cookie mismatch occurs.
       
   392 **
       
   393 ** If iDb<=0 then reset the internal schema tables for all database
       
   394 ** files.  If iDb>=2 then reset the internal schema for only the
       
   395 ** single file indicated.
       
   396 */
       
   397 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
       
   398   int i, j;
       
   399 
       
   400   assert( iDb>=0 && iDb<db->nDb );
       
   401   for(i=iDb; i<db->nDb; i++){
       
   402     Db *pDb = &db->aDb[i];
       
   403     if( pDb->pSchema ){
       
   404       sqlite3SchemaFree(pDb->pSchema);
       
   405     }
       
   406     if( iDb>0 ) return;
       
   407   }
       
   408   assert( iDb==0 );
       
   409   db->flags &= ~SQLITE_InternChanges;
       
   410 
       
   411   /* If one or more of the auxiliary database files has been closed,
       
   412   ** then remove them from the auxiliary database list.  We take the
       
   413   ** opportunity to do this here since we have just deleted all of the
       
   414   ** schema hash tables and therefore do not have to make any changes
       
   415   ** to any of those tables.
       
   416   */
       
   417   for(i=0; i<db->nDb; i++){
       
   418     struct Db *pDb = &db->aDb[i];
       
   419     if( pDb->pBt==0 ){
       
   420       if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
       
   421       pDb->pAux = 0;
       
   422     }
       
   423   }
       
   424   for(i=j=2; i<db->nDb; i++){
       
   425     struct Db *pDb = &db->aDb[i];
       
   426     if( pDb->pBt==0 ){
       
   427       sqliteFree(pDb->zName);
       
   428       pDb->zName = 0;
       
   429       continue;
       
   430     }
       
   431     if( j<i ){
       
   432       db->aDb[j] = db->aDb[i];
       
   433     }
       
   434     j++;
       
   435   }
       
   436   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
       
   437   db->nDb = j;
       
   438   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
       
   439     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
       
   440     sqliteFree(db->aDb);
       
   441     db->aDb = db->aDbStatic;
       
   442   }
       
   443 }
       
   444 
       
   445 /*
       
   446 ** This routine is called whenever a rollback occurs.  If there were
       
   447 ** schema changes during the transaction, then we have to reset the
       
   448 ** internal hash tables and reload them from disk.
       
   449 */
       
   450 void sqlite3RollbackInternalChanges(sqlite3 *db){
       
   451   if( db->flags & SQLITE_InternChanges ){
       
   452     sqlite3ResetInternalSchema(db, 0);
       
   453   }
       
   454 }
       
   455 
       
   456 /*
       
   457 ** This routine is called when a commit occurs.
       
   458 */
       
   459 void sqlite3CommitInternalChanges(sqlite3 *db){
       
   460   db->flags &= ~SQLITE_InternChanges;
       
   461 }
       
   462 
       
   463 /*
       
   464 ** Clear the column names from a table or view.
       
   465 */
       
   466 static void sqliteResetColumnNames(Table *pTable){
       
   467   int i;
       
   468   Column *pCol;
       
   469   assert( pTable!=0 );
       
   470   if( (pCol = pTable->aCol)!=0 ){
       
   471     for(i=0; i<pTable->nCol; i++, pCol++){
       
   472       sqliteFree(pCol->zName);
       
   473       sqlite3ExprDelete(pCol->pDflt);
       
   474       sqliteFree(pCol->zType);
       
   475       sqliteFree(pCol->zColl);
       
   476     }
       
   477     sqliteFree(pTable->aCol);
       
   478   }
       
   479   pTable->aCol = 0;
       
   480   pTable->nCol = 0;
       
   481 }
       
   482 
       
   483 /*
       
   484 ** Remove the memory data structures associated with the given
       
   485 ** Table.  No changes are made to disk by this routine.
       
   486 **
       
   487 ** This routine just deletes the data structure.  It does not unlink
       
   488 ** the table data structure from the hash table.  Nor does it remove
       
   489 ** foreign keys from the sqlite.aFKey hash table.  But it does destroy
       
   490 ** memory structures of the indices and foreign keys associated with 
       
   491 ** the table.
       
   492 **
       
   493 ** Indices associated with the table are unlinked from the "db"
       
   494 ** data structure if db!=NULL.  If db==NULL, indices attached to
       
   495 ** the table are deleted, but it is assumed they have already been
       
   496 ** unlinked.
       
   497 */
       
   498 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
       
   499   Index *pIndex, *pNext;
       
   500   FKey *pFKey, *pNextFKey;
       
   501 
       
   502   db = 0;
       
   503 
       
   504   if( pTable==0 ) return;
       
   505 
       
   506   /* Do not delete the table until the reference count reaches zero. */
       
   507   pTable->nRef--;
       
   508   if( pTable->nRef>0 ){
       
   509     return;
       
   510   }
       
   511   assert( pTable->nRef==0 );
       
   512 
       
   513   /* Delete all indices associated with this table
       
   514   */
       
   515   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
       
   516     pNext = pIndex->pNext;
       
   517     assert( pIndex->pSchema==pTable->pSchema );
       
   518     sqliteDeleteIndex(pIndex);
       
   519   }
       
   520 
       
   521 #ifndef SQLITE_OMIT_FOREIGN_KEY
       
   522   /* Delete all foreign keys associated with this table.  The keys
       
   523   ** should have already been unlinked from the db->aFKey hash table 
       
   524   */
       
   525   for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
       
   526     pNextFKey = pFKey->pNextFrom;
       
   527     assert( sqlite3HashFind(&pTable->pSchema->aFKey,
       
   528                            pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
       
   529     sqliteFree(pFKey);
       
   530   }
       
   531 #endif
       
   532 
       
   533   /* Delete the Table structure itself.
       
   534   */
       
   535   sqliteResetColumnNames(pTable);
       
   536   sqliteFree(pTable->zName);
       
   537   sqliteFree(pTable->zColAff);
       
   538   sqlite3SelectDelete(pTable->pSelect);
       
   539 #ifndef SQLITE_OMIT_CHECK
       
   540   sqlite3ExprDelete(pTable->pCheck);
       
   541 #endif
       
   542   sqlite3VtabClear(pTable);
       
   543   sqliteFree(pTable);
       
   544 }
       
   545 
       
   546 /*
       
   547 ** Unlink the given table from the hash tables and the delete the
       
   548 ** table structure with all its indices and foreign keys.
       
   549 */
       
   550 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
       
   551   Table *p;
       
   552   FKey *pF1, *pF2;
       
   553   Db *pDb;
       
   554 
       
   555   assert( db!=0 );
       
   556   assert( iDb>=0 && iDb<db->nDb );
       
   557   assert( zTabName && zTabName[0] );
       
   558   pDb = &db->aDb[iDb];
       
   559   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
       
   560   if( p ){
       
   561 #ifndef SQLITE_OMIT_FOREIGN_KEY
       
   562     for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
       
   563       int nTo = strlen(pF1->zTo) + 1;
       
   564       pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
       
   565       if( pF2==pF1 ){
       
   566         sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
       
   567       }else{
       
   568         while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
       
   569         if( pF2 ){
       
   570           pF2->pNextTo = pF1->pNextTo;
       
   571         }
       
   572       }
       
   573     }
       
   574 #endif
       
   575     sqlite3DeleteTable(db, p);
       
   576   }
       
   577   db->flags |= SQLITE_InternChanges;
       
   578 }
       
   579 
       
   580 /*
       
   581 ** Given a token, return a string that consists of the text of that
       
   582 ** token with any quotations removed.  Space to hold the returned string
       
   583 ** is obtained from sqliteMalloc() and must be freed by the calling
       
   584 ** function.
       
   585 **
       
   586 ** Tokens are often just pointers into the original SQL text and so
       
   587 ** are not \000 terminated and are not persistent.  The returned string
       
   588 ** is \000 terminated and is persistent.
       
   589 */
       
   590 char *sqlite3NameFromToken(Token *pName){
       
   591   char *zName;
       
   592   if( pName ){
       
   593     zName = sqliteStrNDup((char*)pName->z, pName->n);
       
   594     sqlite3Dequote(zName);
       
   595   }else{
       
   596     zName = 0;
       
   597   }
       
   598   return zName;
       
   599 }
       
   600 
       
   601 /*
       
   602 ** Open the sqlite_master table stored in database number iDb for
       
   603 ** writing. The table is opened using cursor 0.
       
   604 */
       
   605 void sqlite3OpenMasterTable(Parse *p, int iDb){
       
   606   Vdbe *v = sqlite3GetVdbe(p);
       
   607   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
       
   608   sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
       
   609   sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT);
       
   610   sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
       
   611 }
       
   612 
       
   613 /*
       
   614 ** The token *pName contains the name of a database (either "main" or
       
   615 ** "temp" or the name of an attached db). This routine returns the
       
   616 ** index of the named database in db->aDb[], or -1 if the named db 
       
   617 ** does not exist.
       
   618 */
       
   619 int sqlite3FindDb(sqlite3 *db, Token *pName){
       
   620   int i = -1;    /* Database number */
       
   621   int n;         /* Number of characters in the name */
       
   622   Db *pDb;       /* A database whose name space is being searched */
       
   623   char *zName;   /* Name we are searching for */
       
   624 
       
   625   zName = sqlite3NameFromToken(pName);
       
   626   if( zName ){
       
   627     n = strlen(zName);
       
   628     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
       
   629       if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && 
       
   630           0==sqlite3StrICmp(pDb->zName, zName) ){
       
   631         break;
       
   632       }
       
   633     }
       
   634     sqliteFree(zName);
       
   635   }
       
   636   return i;
       
   637 }
       
   638 
       
   639 /* The table or view or trigger name is passed to this routine via tokens
       
   640 ** pName1 and pName2. If the table name was fully qualified, for example:
       
   641 **
       
   642 ** CREATE TABLE xxx.yyy (...);
       
   643 ** 
       
   644 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
       
   645 ** the table name is not fully qualified, i.e.:
       
   646 **
       
   647 ** CREATE TABLE yyy(...);
       
   648 **
       
   649 ** Then pName1 is set to "yyy" and pName2 is "".
       
   650 **
       
   651 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
       
   652 ** pName2) that stores the unqualified table name.  The index of the
       
   653 ** database "xxx" is returned.
       
   654 */
       
   655 int sqlite3TwoPartName(
       
   656   Parse *pParse,      /* Parsing and code generating context */
       
   657   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
       
   658   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
       
   659   Token **pUnqual     /* Write the unqualified object name here */
       
   660 ){
       
   661   int iDb;                    /* Database holding the object */
       
   662   sqlite3 *db = pParse->db;
       
   663 
       
   664   if( pName2 && pName2->n>0 ){
       
   665     assert( !db->init.busy );
       
   666     *pUnqual = pName2;
       
   667     iDb = sqlite3FindDb(db, pName1);
       
   668     if( iDb<0 ){
       
   669       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
       
   670       pParse->nErr++;
       
   671       return -1;
       
   672     }
       
   673   }else{
       
   674     assert( db->init.iDb==0 || db->init.busy );
       
   675     iDb = db->init.iDb;
       
   676     *pUnqual = pName1;
       
   677   }
       
   678   return iDb;
       
   679 }
       
   680 
       
   681 /*
       
   682 ** This routine is used to check if the UTF-8 string zName is a legal
       
   683 ** unqualified name for a new schema object (table, index, view or
       
   684 ** trigger). All names are legal except those that begin with the string
       
   685 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
       
   686 ** is reserved for internal use.
       
   687 */
       
   688 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
       
   689   if( !pParse->db->init.busy && pParse->nested==0 
       
   690           && (pParse->db->flags & SQLITE_WriteSchema)==0
       
   691           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
       
   692     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
       
   693     return SQLITE_ERROR;
       
   694   }
       
   695   return SQLITE_OK;
       
   696 }
       
   697 
       
   698 /*
       
   699 ** Begin constructing a new table representation in memory.  This is
       
   700 ** the first of several action routines that get called in response
       
   701 ** to a CREATE TABLE statement.  In particular, this routine is called
       
   702 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
       
   703 ** flag is true if the table should be stored in the auxiliary database
       
   704 ** file instead of in the main database file.  This is normally the case
       
   705 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
       
   706 ** CREATE and TABLE.
       
   707 **
       
   708 ** The new table record is initialized and put in pParse->pNewTable.
       
   709 ** As more of the CREATE TABLE statement is parsed, additional action
       
   710 ** routines will be called to add more information to this record.
       
   711 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
       
   712 ** is called to complete the construction of the new table record.
       
   713 */
       
   714 void sqlite3StartTable(
       
   715   Parse *pParse,   /* Parser context */
       
   716   Token *pName1,   /* First part of the name of the table or view */
       
   717   Token *pName2,   /* Second part of the name of the table or view */
       
   718   int isTemp,      /* True if this is a TEMP table */
       
   719   int isView,      /* True if this is a VIEW */
       
   720   int isVirtual,   /* True if this is a VIRTUAL table */
       
   721   int noErr        /* Do nothing if table already exists */
       
   722 ){
       
   723   Table *pTable;
       
   724   char *zName = 0; /* The name of the new table */
       
   725   sqlite3 *db = pParse->db;
       
   726   Vdbe *v;
       
   727   int iDb;         /* Database number to create the table in */
       
   728   Token *pName;    /* Unqualified name of the table to create */
       
   729 
       
   730   /* The table or view name to create is passed to this routine via tokens
       
   731   ** pName1 and pName2. If the table name was fully qualified, for example:
       
   732   **
       
   733   ** CREATE TABLE xxx.yyy (...);
       
   734   ** 
       
   735   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
       
   736   ** the table name is not fully qualified, i.e.:
       
   737   **
       
   738   ** CREATE TABLE yyy(...);
       
   739   **
       
   740   ** Then pName1 is set to "yyy" and pName2 is "".
       
   741   **
       
   742   ** The call below sets the pName pointer to point at the token (pName1 or
       
   743   ** pName2) that stores the unqualified table name. The variable iDb is
       
   744   ** set to the index of the database that the table or view is to be
       
   745   ** created in.
       
   746   */
       
   747   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
       
   748   if( iDb<0 ) return;
       
   749   if( !OMIT_TEMPDB && isTemp && iDb>1 ){
       
   750     /* If creating a temp table, the name may not be qualified */
       
   751     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
       
   752     return;
       
   753   }
       
   754   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
       
   755 
       
   756   pParse->sNameToken = *pName;
       
   757   zName = sqlite3NameFromToken(pName);
       
   758   if( zName==0 ) return;
       
   759   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
       
   760     goto begin_table_error;
       
   761   }
       
   762   if( db->init.iDb==1 ) isTemp = 1;
       
   763 #ifndef SQLITE_OMIT_AUTHORIZATION
       
   764   assert( (isTemp & 1)==isTemp );
       
   765   {
       
   766     int code;
       
   767     char *zDb = db->aDb[iDb].zName;
       
   768     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
       
   769       goto begin_table_error;
       
   770     }
       
   771     if( isView ){
       
   772       if( !OMIT_TEMPDB && isTemp ){
       
   773         code = SQLITE_CREATE_TEMP_VIEW;
       
   774       }else{
       
   775         code = SQLITE_CREATE_VIEW;
       
   776       }
       
   777     }else{
       
   778       if( !OMIT_TEMPDB && isTemp ){
       
   779         code = SQLITE_CREATE_TEMP_TABLE;
       
   780       }else{
       
   781         code = SQLITE_CREATE_TABLE;
       
   782       }
       
   783     }
       
   784     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
       
   785       goto begin_table_error;
       
   786     }
       
   787   }
       
   788 #endif
       
   789 
       
   790   /* Make sure the new table name does not collide with an existing
       
   791   ** index or table name in the same database.  Issue an error message if
       
   792   ** it does. The exception is if the statement being parsed was passed
       
   793   ** to an sqlite3_declare_vtab() call. In that case only the column names
       
   794   ** and types will be used, so there is no need to test for namespace
       
   795   ** collisions.
       
   796   */
       
   797   if( !IN_DECLARE_VTAB ){
       
   798     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
       
   799       goto begin_table_error;
       
   800     }
       
   801     pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
       
   802     if( pTable ){
       
   803       if( !noErr ){
       
   804         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
       
   805       }
       
   806       goto begin_table_error;
       
   807     }
       
   808     if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
       
   809       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
       
   810       goto begin_table_error;
       
   811     }
       
   812   }
       
   813 
       
   814   pTable = sqliteMalloc( sizeof(Table) );
       
   815   if( pTable==0 ){
       
   816     pParse->rc = SQLITE_NOMEM;
       
   817     pParse->nErr++;
       
   818     goto begin_table_error;
       
   819   }
       
   820   pTable->zName = zName;
       
   821   pTable->iPKey = -1;
       
   822   pTable->pSchema = db->aDb[iDb].pSchema;
       
   823   pTable->nRef = 1;
       
   824   if( pParse->pNewTable ) sqlite3DeleteTable(db, pParse->pNewTable);
       
   825   pParse->pNewTable = pTable;
       
   826 
       
   827   /* If this is the magic sqlite_sequence table used by autoincrement,
       
   828   ** then record a pointer to this table in the main database structure
       
   829   ** so that INSERT can find the table easily.
       
   830   */
       
   831 #ifndef SQLITE_OMIT_AUTOINCREMENT
       
   832   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
       
   833     pTable->pSchema->pSeqTab = pTable;
       
   834   }
       
   835 #endif
       
   836 
       
   837   /* Begin generating the code that will insert the table record into
       
   838   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
       
   839   ** and allocate the record number for the table entry now.  Before any
       
   840   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
       
   841   ** indices to be created and the table record must come before the 
       
   842   ** indices.  Hence, the record number for the table must be allocated
       
   843   ** now.
       
   844   */
       
   845   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
       
   846     int lbl;
       
   847     int fileFormat;
       
   848     sqlite3BeginWriteOperation(pParse, 0, iDb);
       
   849 
       
   850 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
   851     if( isVirtual ){
       
   852       sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
       
   853     }
       
   854 #endif
       
   855 
       
   856     /* If the file format and encoding in the database have not been set, 
       
   857     ** set them now.
       
   858     */
       
   859     sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1);   /* file_format */
       
   860     lbl = sqlite3VdbeMakeLabel(v);
       
   861     sqlite3VdbeAddOp(v, OP_If, 0, lbl);
       
   862     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
       
   863                   1 : SQLITE_MAX_FILE_FORMAT;
       
   864     sqlite3VdbeAddOp(v, OP_Integer, fileFormat, 0);
       
   865     sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
       
   866     sqlite3VdbeAddOp(v, OP_Integer, ENC(db), 0);
       
   867     sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4);
       
   868     sqlite3VdbeResolveLabel(v, lbl);
       
   869 
       
   870     /* This just creates a place-holder record in the sqlite_master table.
       
   871     ** The record created does not contain anything yet.  It will be replaced
       
   872     ** by the real entry in code generated at sqlite3EndTable().
       
   873     **
       
   874     ** The rowid for the new entry is left on the top of the stack.
       
   875     ** The rowid value is needed by the code that sqlite3EndTable will
       
   876     ** generate.
       
   877     */
       
   878 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
       
   879     if( isView || isVirtual ){
       
   880       sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
       
   881     }else
       
   882 #endif
       
   883     {
       
   884       sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0);
       
   885     }
       
   886     sqlite3OpenMasterTable(pParse, iDb);
       
   887     sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0);
       
   888     sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
       
   889     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
   890     sqlite3VdbeAddOp(v, OP_Insert, 0, 0);
       
   891     sqlite3VdbeAddOp(v, OP_Close, 0, 0);
       
   892     sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
       
   893   }
       
   894 
       
   895   /* Normal (non-error) return. */
       
   896   return;
       
   897 
       
   898   /* If an error occurs, we jump here */
       
   899 begin_table_error:
       
   900   sqliteFree(zName);
       
   901   return;
       
   902 }
       
   903 
       
   904 /*
       
   905 ** This macro is used to compare two strings in a case-insensitive manner.
       
   906 ** It is slightly faster than calling sqlite3StrICmp() directly, but
       
   907 ** produces larger code.
       
   908 **
       
   909 ** WARNING: This macro is not compatible with the strcmp() family. It
       
   910 ** returns true if the two strings are equal, otherwise false.
       
   911 */
       
   912 #define STRICMP(x, y) (\
       
   913 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
       
   914 sqlite3UpperToLower[*(unsigned char *)(y)]     \
       
   915 && sqlite3StrICmp((x)+1,(y)+1)==0 )
       
   916 
       
   917 /*
       
   918 ** Add a new column to the table currently being constructed.
       
   919 **
       
   920 ** The parser calls this routine once for each column declaration
       
   921 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
       
   922 ** first to get things going.  Then this routine is called for each
       
   923 ** column.
       
   924 */
       
   925 void sqlite3AddColumn(Parse *pParse, Token *pName){
       
   926   Table *p;
       
   927   int i;
       
   928   char *z;
       
   929   Column *pCol;
       
   930   if( (p = pParse->pNewTable)==0 ) return;
       
   931   z = sqlite3NameFromToken(pName);
       
   932   if( z==0 ) return;
       
   933   for(i=0; i<p->nCol; i++){
       
   934     if( STRICMP(z, p->aCol[i].zName) ){
       
   935       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
       
   936       sqliteFree(z);
       
   937       return;
       
   938     }
       
   939   }
       
   940   if( (p->nCol & 0x7)==0 ){
       
   941     Column *aNew;
       
   942     aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
       
   943     if( aNew==0 ){
       
   944       sqliteFree(z);
       
   945       return;
       
   946     }
       
   947     p->aCol = aNew;
       
   948   }
       
   949   pCol = &p->aCol[p->nCol];
       
   950   memset(pCol, 0, sizeof(p->aCol[0]));
       
   951   pCol->zName = z;
       
   952  
       
   953   /* If there is no type specified, columns have the default affinity
       
   954   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
       
   955   ** be called next to set pCol->affinity correctly.
       
   956   */
       
   957   pCol->affinity = SQLITE_AFF_NONE;
       
   958   p->nCol++;
       
   959 }
       
   960 
       
   961 /*
       
   962 ** This routine is called by the parser while in the middle of
       
   963 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
       
   964 ** been seen on a column.  This routine sets the notNull flag on
       
   965 ** the column currently under construction.
       
   966 */
       
   967 void sqlite3AddNotNull(Parse *pParse, int onError){
       
   968   Table *p;
       
   969   int i;
       
   970   if( (p = pParse->pNewTable)==0 ) return;
       
   971   i = p->nCol-1;
       
   972   if( i>=0 ) p->aCol[i].notNull = onError;
       
   973 }
       
   974 
       
   975 /*
       
   976 ** Scan the column type name zType (length nType) and return the
       
   977 ** associated affinity type.
       
   978 **
       
   979 ** This routine does a case-independent search of zType for the 
       
   980 ** substrings in the following table. If one of the substrings is
       
   981 ** found, the corresponding affinity is returned. If zType contains
       
   982 ** more than one of the substrings, entries toward the top of 
       
   983 ** the table take priority. For example, if zType is 'BLOBINT', 
       
   984 ** SQLITE_AFF_INTEGER is returned.
       
   985 **
       
   986 ** Substring     | Affinity
       
   987 ** --------------------------------
       
   988 ** 'INT'         | SQLITE_AFF_INTEGER
       
   989 ** 'CHAR'        | SQLITE_AFF_TEXT
       
   990 ** 'CLOB'        | SQLITE_AFF_TEXT
       
   991 ** 'TEXT'        | SQLITE_AFF_TEXT
       
   992 ** 'BLOB'        | SQLITE_AFF_NONE
       
   993 ** 'REAL'        | SQLITE_AFF_REAL
       
   994 ** 'FLOA'        | SQLITE_AFF_REAL
       
   995 ** 'DOUB'        | SQLITE_AFF_REAL
       
   996 **
       
   997 ** If none of the substrings in the above table are found,
       
   998 ** SQLITE_AFF_NUMERIC is returned.
       
   999 */
       
  1000 char sqlite3AffinityType(const Token *pType){
       
  1001   u32 h = 0;
       
  1002   char aff = SQLITE_AFF_NUMERIC;
       
  1003   const unsigned char *zIn = pType->z;
       
  1004   const unsigned char *zEnd = &pType->z[pType->n];
       
  1005 
       
  1006   while( zIn!=zEnd ){
       
  1007     h = (h<<8) + sqlite3UpperToLower[*zIn];
       
  1008     zIn++;
       
  1009     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
       
  1010       aff = SQLITE_AFF_TEXT; 
       
  1011     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
       
  1012       aff = SQLITE_AFF_TEXT;
       
  1013     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
       
  1014       aff = SQLITE_AFF_TEXT;
       
  1015     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
       
  1016         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
       
  1017       aff = SQLITE_AFF_NONE;
       
  1018 #ifndef SQLITE_OMIT_FLOATING_POINT
       
  1019     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
       
  1020         && aff==SQLITE_AFF_NUMERIC ){
       
  1021       aff = SQLITE_AFF_REAL;
       
  1022     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
       
  1023         && aff==SQLITE_AFF_NUMERIC ){
       
  1024       aff = SQLITE_AFF_REAL;
       
  1025     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
       
  1026         && aff==SQLITE_AFF_NUMERIC ){
       
  1027       aff = SQLITE_AFF_REAL;
       
  1028 #endif
       
  1029     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
       
  1030       aff = SQLITE_AFF_INTEGER;
       
  1031       break;
       
  1032     }
       
  1033   }
       
  1034 
       
  1035   return aff;
       
  1036 }
       
  1037 
       
  1038 /*
       
  1039 ** This routine is called by the parser while in the middle of
       
  1040 ** parsing a CREATE TABLE statement.  The pFirst token is the first
       
  1041 ** token in the sequence of tokens that describe the type of the
       
  1042 ** column currently under construction.   pLast is the last token
       
  1043 ** in the sequence.  Use this information to construct a string
       
  1044 ** that contains the typename of the column and store that string
       
  1045 ** in zType.
       
  1046 */ 
       
  1047 void sqlite3AddColumnType(Parse *pParse, Token *pType){
       
  1048   Table *p;
       
  1049   int i;
       
  1050   Column *pCol;
       
  1051 
       
  1052   if( (p = pParse->pNewTable)==0 ) return;
       
  1053   i = p->nCol-1;
       
  1054   if( i<0 ) return;
       
  1055   pCol = &p->aCol[i];
       
  1056   sqliteFree(pCol->zType);
       
  1057   pCol->zType = sqlite3NameFromToken(pType);
       
  1058   pCol->affinity = sqlite3AffinityType(pType);
       
  1059 }
       
  1060 
       
  1061 /*
       
  1062 ** The expression is the default value for the most recently added column
       
  1063 ** of the table currently under construction.
       
  1064 **
       
  1065 ** Default value expressions must be constant.  Raise an exception if this
       
  1066 ** is not the case.
       
  1067 **
       
  1068 ** This routine is called by the parser while in the middle of
       
  1069 ** parsing a CREATE TABLE statement.
       
  1070 */
       
  1071 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
       
  1072   Table *p;
       
  1073   Column *pCol;
       
  1074   if( (p = pParse->pNewTable)!=0 ){
       
  1075     pCol = &(p->aCol[p->nCol-1]);
       
  1076     if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
       
  1077       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
       
  1078           pCol->zName);
       
  1079     }else{
       
  1080       Expr *pCopy;
       
  1081       sqlite3ExprDelete(pCol->pDflt);
       
  1082       pCol->pDflt = pCopy = sqlite3ExprDup(pExpr);
       
  1083       if( pCopy ){
       
  1084         sqlite3TokenCopy(&pCopy->span, &pExpr->span);
       
  1085       }
       
  1086     }
       
  1087   }
       
  1088   sqlite3ExprDelete(pExpr);
       
  1089 }
       
  1090 
       
  1091 /*
       
  1092 ** Designate the PRIMARY KEY for the table.  pList is a list of names 
       
  1093 ** of columns that form the primary key.  If pList is NULL, then the
       
  1094 ** most recently added column of the table is the primary key.
       
  1095 **
       
  1096 ** A table can have at most one primary key.  If the table already has
       
  1097 ** a primary key (and this is the second primary key) then create an
       
  1098 ** error.
       
  1099 **
       
  1100 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
       
  1101 ** then we will try to use that column as the rowid.  Set the Table.iPKey
       
  1102 ** field of the table under construction to be the index of the
       
  1103 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
       
  1104 ** no INTEGER PRIMARY KEY.
       
  1105 **
       
  1106 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
       
  1107 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
       
  1108 */
       
  1109 void sqlite3AddPrimaryKey(
       
  1110   Parse *pParse,    /* Parsing context */
       
  1111   ExprList *pList,  /* List of field names to be indexed */
       
  1112   int onError,      /* What to do with a uniqueness conflict */
       
  1113   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
       
  1114   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
       
  1115 ){
       
  1116   Table *pTab = pParse->pNewTable;
       
  1117   char *zType = 0;
       
  1118   int iCol = -1, i;
       
  1119   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
       
  1120   if( pTab->hasPrimKey ){
       
  1121     sqlite3ErrorMsg(pParse, 
       
  1122       "table \"%s\" has more than one primary key", pTab->zName);
       
  1123     goto primary_key_exit;
       
  1124   }
       
  1125   pTab->hasPrimKey = 1;
       
  1126   if( pList==0 ){
       
  1127     iCol = pTab->nCol - 1;
       
  1128     pTab->aCol[iCol].isPrimKey = 1;
       
  1129   }else{
       
  1130     for(i=0; i<pList->nExpr; i++){
       
  1131       for(iCol=0; iCol<pTab->nCol; iCol++){
       
  1132         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
       
  1133           break;
       
  1134         }
       
  1135       }
       
  1136       if( iCol<pTab->nCol ){
       
  1137         pTab->aCol[iCol].isPrimKey = 1;
       
  1138       }
       
  1139     }
       
  1140     if( pList->nExpr>1 ) iCol = -1;
       
  1141   }
       
  1142   if( iCol>=0 && iCol<pTab->nCol ){
       
  1143     zType = pTab->aCol[iCol].zType;
       
  1144   }
       
  1145   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
       
  1146         && sortOrder==SQLITE_SO_ASC ){
       
  1147     pTab->iPKey = iCol;
       
  1148     pTab->keyConf = onError;
       
  1149     pTab->autoInc = autoInc;
       
  1150   }else if( autoInc ){
       
  1151 #ifndef SQLITE_OMIT_AUTOINCREMENT
       
  1152     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
       
  1153        "INTEGER PRIMARY KEY");
       
  1154 #endif
       
  1155   }else{
       
  1156     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
       
  1157     pList = 0;
       
  1158   }
       
  1159 
       
  1160 primary_key_exit:
       
  1161   sqlite3ExprListDelete(pList);
       
  1162   return;
       
  1163 }
       
  1164 
       
  1165 /*
       
  1166 ** Add a new CHECK constraint to the table currently under construction.
       
  1167 */
       
  1168 void sqlite3AddCheckConstraint(
       
  1169   Parse *pParse,    /* Parsing context */
       
  1170   Expr *pCheckExpr  /* The check expression */
       
  1171 ){
       
  1172 #ifndef SQLITE_OMIT_CHECK
       
  1173   Table *pTab = pParse->pNewTable;
       
  1174   if( pTab && !IN_DECLARE_VTAB ){
       
  1175     /* The CHECK expression must be duplicated so that tokens refer
       
  1176     ** to malloced space and not the (ephemeral) text of the CREATE TABLE
       
  1177     ** statement */
       
  1178     pTab->pCheck = sqlite3ExprAnd(pTab->pCheck, sqlite3ExprDup(pCheckExpr));
       
  1179   }
       
  1180 #endif
       
  1181   sqlite3ExprDelete(pCheckExpr);
       
  1182 }
       
  1183 
       
  1184 /*
       
  1185 ** Set the collation function of the most recently parsed table column
       
  1186 ** to the CollSeq given.
       
  1187 */
       
  1188 void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){
       
  1189   Table *p;
       
  1190   int i;
       
  1191 
       
  1192   if( (p = pParse->pNewTable)==0 ) return;
       
  1193   i = p->nCol-1;
       
  1194 
       
  1195   if( sqlite3LocateCollSeq(pParse, zType, nType) ){
       
  1196     Index *pIdx;
       
  1197     p->aCol[i].zColl = sqliteStrNDup(zType, nType);
       
  1198   
       
  1199     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
       
  1200     ** then an index may have been created on this column before the
       
  1201     ** collation type was added. Correct this if it is the case.
       
  1202     */
       
  1203     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
       
  1204       assert( pIdx->nColumn==1 );
       
  1205       if( pIdx->aiColumn[0]==i ){
       
  1206         pIdx->azColl[0] = p->aCol[i].zColl;
       
  1207       }
       
  1208     }
       
  1209   }
       
  1210 }
       
  1211 
       
  1212 /*
       
  1213 ** This function returns the collation sequence for database native text
       
  1214 ** encoding identified by the string zName, length nName.
       
  1215 **
       
  1216 ** If the requested collation sequence is not available, or not available
       
  1217 ** in the database native encoding, the collation factory is invoked to
       
  1218 ** request it. If the collation factory does not supply such a sequence,
       
  1219 ** and the sequence is available in another text encoding, then that is
       
  1220 ** returned instead.
       
  1221 **
       
  1222 ** If no versions of the requested collations sequence are available, or
       
  1223 ** another error occurs, NULL is returned and an error message written into
       
  1224 ** pParse.
       
  1225 */
       
  1226 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
       
  1227   sqlite3 *db = pParse->db;
       
  1228   u8 enc = ENC(db);
       
  1229   u8 initbusy = db->init.busy;
       
  1230   CollSeq *pColl;
       
  1231 
       
  1232   pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
       
  1233   if( !initbusy && (!pColl || !pColl->xCmp) ){
       
  1234     pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
       
  1235     if( !pColl ){
       
  1236       if( nName<0 ){
       
  1237         nName = strlen(zName);
       
  1238       }
       
  1239       sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
       
  1240       pColl = 0;
       
  1241     }
       
  1242   }
       
  1243 
       
  1244   return pColl;
       
  1245 }
       
  1246 
       
  1247 
       
  1248 /*
       
  1249 ** Generate code that will increment the schema cookie.
       
  1250 **
       
  1251 ** The schema cookie is used to determine when the schema for the
       
  1252 ** database changes.  After each schema change, the cookie value
       
  1253 ** changes.  When a process first reads the schema it records the
       
  1254 ** cookie.  Thereafter, whenever it goes to access the database,
       
  1255 ** it checks the cookie to make sure the schema has not changed
       
  1256 ** since it was last read.
       
  1257 **
       
  1258 ** This plan is not completely bullet-proof.  It is possible for
       
  1259 ** the schema to change multiple times and for the cookie to be
       
  1260 ** set back to prior value.  But schema changes are infrequent
       
  1261 ** and the probability of hitting the same cookie value is only
       
  1262 ** 1 chance in 2^32.  So we're safe enough.
       
  1263 */
       
  1264 void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){
       
  1265   sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0);
       
  1266   sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0);
       
  1267 }
       
  1268 
       
  1269 /*
       
  1270 ** Measure the number of characters needed to output the given
       
  1271 ** identifier.  The number returned includes any quotes used
       
  1272 ** but does not include the null terminator.
       
  1273 **
       
  1274 ** The estimate is conservative.  It might be larger that what is
       
  1275 ** really needed.
       
  1276 */
       
  1277 static int identLength(const char *z){
       
  1278   int n;
       
  1279   for(n=0; *z; n++, z++){
       
  1280     if( *z=='"' ){ n++; }
       
  1281   }
       
  1282   return n + 2;
       
  1283 }
       
  1284 
       
  1285 /*
       
  1286 ** Write an identifier onto the end of the given string.  Add
       
  1287 ** quote characters as needed.
       
  1288 */
       
  1289 static void identPut(char *z, int *pIdx, char *zSignedIdent){
       
  1290   unsigned char *zIdent = (unsigned char*)zSignedIdent;
       
  1291   int i, j, needQuote;
       
  1292   i = *pIdx;
       
  1293   for(j=0; zIdent[j]; j++){
       
  1294     if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
       
  1295   }
       
  1296   needQuote =  zIdent[j]!=0 || isdigit(zIdent[0])
       
  1297                   || sqlite3KeywordCode(zIdent, j)!=TK_ID;
       
  1298   if( needQuote ) z[i++] = '"';
       
  1299   for(j=0; zIdent[j]; j++){
       
  1300     z[i++] = zIdent[j];
       
  1301     if( zIdent[j]=='"' ) z[i++] = '"';
       
  1302   }
       
  1303   if( needQuote ) z[i++] = '"';
       
  1304   z[i] = 0;
       
  1305   *pIdx = i;
       
  1306 }
       
  1307 
       
  1308 /*
       
  1309 ** Generate a CREATE TABLE statement appropriate for the given
       
  1310 ** table.  Memory to hold the text of the statement is obtained
       
  1311 ** from sqliteMalloc() and must be freed by the calling function.
       
  1312 */
       
  1313 static char *createTableStmt(Table *p, int isTemp){
       
  1314   int i, k, n;
       
  1315   char *zStmt;
       
  1316   char *zSep, *zSep2, *zEnd, *z;
       
  1317   Column *pCol;
       
  1318   n = 0;
       
  1319   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
       
  1320     n += identLength(pCol->zName);
       
  1321     z = pCol->zType;
       
  1322     if( z ){
       
  1323       n += (strlen(z) + 1);
       
  1324     }
       
  1325   }
       
  1326   n += identLength(p->zName);
       
  1327   if( n<50 ){
       
  1328     zSep = "";
       
  1329     zSep2 = ",";
       
  1330     zEnd = ")";
       
  1331   }else{
       
  1332     zSep = "\n  ";
       
  1333     zSep2 = ",\n  ";
       
  1334     zEnd = "\n)";
       
  1335   }
       
  1336   n += 35 + 6*p->nCol;
       
  1337   zStmt = sqliteMallocRaw( n );
       
  1338   if( zStmt==0 ) return 0;
       
  1339   strcpy(zStmt, !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
       
  1340   k = strlen(zStmt);
       
  1341   identPut(zStmt, &k, p->zName);
       
  1342   zStmt[k++] = '(';
       
  1343   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
       
  1344     strcpy(&zStmt[k], zSep);
       
  1345     k += strlen(&zStmt[k]);
       
  1346     zSep = zSep2;
       
  1347     identPut(zStmt, &k, pCol->zName);
       
  1348     if( (z = pCol->zType)!=0 ){
       
  1349       zStmt[k++] = ' ';
       
  1350       strcpy(&zStmt[k], z);
       
  1351       k += strlen(z);
       
  1352     }
       
  1353   }
       
  1354   strcpy(&zStmt[k], zEnd);
       
  1355   return zStmt;
       
  1356 }
       
  1357 
       
  1358 /*
       
  1359 ** This routine is called to report the final ")" that terminates
       
  1360 ** a CREATE TABLE statement.
       
  1361 **
       
  1362 ** The table structure that other action routines have been building
       
  1363 ** is added to the internal hash tables, assuming no errors have
       
  1364 ** occurred.
       
  1365 **
       
  1366 ** An entry for the table is made in the master table on disk, unless
       
  1367 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
       
  1368 ** it means we are reading the sqlite_master table because we just
       
  1369 ** connected to the database or because the sqlite_master table has
       
  1370 ** recently changed, so the entry for this table already exists in
       
  1371 ** the sqlite_master table.  We do not want to create it again.
       
  1372 **
       
  1373 ** If the pSelect argument is not NULL, it means that this routine
       
  1374 ** was called to create a table generated from a 
       
  1375 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
       
  1376 ** the new table will match the result set of the SELECT.
       
  1377 */
       
  1378 void sqlite3EndTable(
       
  1379   Parse *pParse,          /* Parse context */
       
  1380   Token *pCons,           /* The ',' token after the last column defn. */
       
  1381   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
       
  1382   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
       
  1383 ){
       
  1384   Table *p;
       
  1385   sqlite3 *db = pParse->db;
       
  1386   int iDb;
       
  1387 
       
  1388   if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3MallocFailed() ) {
       
  1389     return;
       
  1390   }
       
  1391   p = pParse->pNewTable;
       
  1392   if( p==0 ) return;
       
  1393 
       
  1394   assert( !db->init.busy || !pSelect );
       
  1395 
       
  1396   iDb = sqlite3SchemaToIndex(db, p->pSchema);
       
  1397 
       
  1398 #ifndef SQLITE_OMIT_CHECK
       
  1399   /* Resolve names in all CHECK constraint expressions.
       
  1400   */
       
  1401   if( p->pCheck ){
       
  1402     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
       
  1403     NameContext sNC;                /* Name context for pParse->pNewTable */
       
  1404 
       
  1405     memset(&sNC, 0, sizeof(sNC));
       
  1406     memset(&sSrc, 0, sizeof(sSrc));
       
  1407     sSrc.nSrc = 1;
       
  1408     sSrc.a[0].zName = p->zName;
       
  1409     sSrc.a[0].pTab = p;
       
  1410     sSrc.a[0].iCursor = -1;
       
  1411     sNC.pParse = pParse;
       
  1412     sNC.pSrcList = &sSrc;
       
  1413     sNC.isCheck = 1;
       
  1414     if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
       
  1415       return;
       
  1416     }
       
  1417   }
       
  1418 #endif /* !defined(SQLITE_OMIT_CHECK) */
       
  1419 
       
  1420   /* If the db->init.busy is 1 it means we are reading the SQL off the
       
  1421   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
       
  1422   ** So do not write to the disk again.  Extract the root page number
       
  1423   ** for the table from the db->init.newTnum field.  (The page number
       
  1424   ** should have been put there by the sqliteOpenCb routine.)
       
  1425   */
       
  1426   if( db->init.busy ){
       
  1427     p->tnum = db->init.newTnum;
       
  1428   }
       
  1429 
       
  1430   /* If not initializing, then create a record for the new table
       
  1431   ** in the SQLITE_MASTER table of the database.  The record number
       
  1432   ** for the new table entry should already be on the stack.
       
  1433   **
       
  1434   ** If this is a TEMPORARY table, write the entry into the auxiliary
       
  1435   ** file instead of into the main database file.
       
  1436   */
       
  1437   if( !db->init.busy ){
       
  1438     int n;
       
  1439     Vdbe *v;
       
  1440     char *zType;    /* "view" or "table" */
       
  1441     char *zType2;   /* "VIEW" or "TABLE" */
       
  1442     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
       
  1443 
       
  1444     v = sqlite3GetVdbe(pParse);
       
  1445     if( v==0 ) return;
       
  1446 
       
  1447     sqlite3VdbeAddOp(v, OP_Close, 0, 0);
       
  1448 
       
  1449     /* Create the rootpage for the new table and push it onto the stack.
       
  1450     ** A view has no rootpage, so just push a zero onto the stack for
       
  1451     ** views.  Initialize zType at the same time.
       
  1452     */
       
  1453     if( p->pSelect==0 ){
       
  1454       /* A regular table */
       
  1455       zType = "table";
       
  1456       zType2 = "TABLE";
       
  1457 #ifndef SQLITE_OMIT_VIEW
       
  1458     }else{
       
  1459       /* A view */
       
  1460       zType = "view";
       
  1461       zType2 = "VIEW";
       
  1462 #endif
       
  1463     }
       
  1464 
       
  1465     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
       
  1466     ** statement to populate the new table. The root-page number for the
       
  1467     ** new table is on the top of the vdbe stack.
       
  1468     **
       
  1469     ** Once the SELECT has been coded by sqlite3Select(), it is in a
       
  1470     ** suitable state to query for the column names and types to be used
       
  1471     ** by the new table.
       
  1472     **
       
  1473     ** A shared-cache write-lock is not required to write to the new table,
       
  1474     ** as a schema-lock must have already been obtained to create it. Since
       
  1475     ** a schema-lock excludes all other database users, the write-lock would
       
  1476     ** be redundant.
       
  1477     */
       
  1478     if( pSelect ){
       
  1479       Table *pSelTab;
       
  1480       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
       
  1481       sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
       
  1482       sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0);
       
  1483       pParse->nTab = 2;
       
  1484       sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0);
       
  1485       sqlite3VdbeAddOp(v, OP_Close, 1, 0);
       
  1486       if( pParse->nErr==0 ){
       
  1487         pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
       
  1488         if( pSelTab==0 ) return;
       
  1489         assert( p->aCol==0 );
       
  1490         p->nCol = pSelTab->nCol;
       
  1491         p->aCol = pSelTab->aCol;
       
  1492         pSelTab->nCol = 0;
       
  1493         pSelTab->aCol = 0;
       
  1494         sqlite3DeleteTable(0, pSelTab);
       
  1495       }
       
  1496     }
       
  1497 
       
  1498     /* Compute the complete text of the CREATE statement */
       
  1499     if( pSelect ){
       
  1500       zStmt = createTableStmt(p, p->pSchema==pParse->db->aDb[1].pSchema);
       
  1501     }else{
       
  1502       n = pEnd->z - pParse->sNameToken.z + 1;
       
  1503       zStmt = sqlite3MPrintf("CREATE %s %.*s", zType2, n, pParse->sNameToken.z);
       
  1504     }
       
  1505 
       
  1506     /* A slot for the record has already been allocated in the 
       
  1507     ** SQLITE_MASTER table.  We just need to update that slot with all
       
  1508     ** the information we've collected.  The rowid for the preallocated
       
  1509     ** slot is the 2nd item on the stack.  The top of the stack is the
       
  1510     ** root page for the new table (or a 0 if this is a view).
       
  1511     */
       
  1512     sqlite3NestedParse(pParse,
       
  1513       "UPDATE %Q.%s "
       
  1514          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q "
       
  1515        "WHERE rowid=#1",
       
  1516       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
       
  1517       zType,
       
  1518       p->zName,
       
  1519       p->zName,
       
  1520       zStmt
       
  1521     );
       
  1522     sqliteFree(zStmt);
       
  1523     sqlite3ChangeCookie(db, v, iDb);
       
  1524 
       
  1525 #ifndef SQLITE_OMIT_AUTOINCREMENT
       
  1526     /* Check to see if we need to create an sqlite_sequence table for
       
  1527     ** keeping track of autoincrement keys.
       
  1528     */
       
  1529     if( p->autoInc ){
       
  1530       Db *pDb = &db->aDb[iDb];
       
  1531       if( pDb->pSchema->pSeqTab==0 ){
       
  1532         sqlite3NestedParse(pParse,
       
  1533           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
       
  1534           pDb->zName
       
  1535         );
       
  1536       }
       
  1537     }
       
  1538 #endif
       
  1539 
       
  1540     /* Reparse everything to update our internal data structures */
       
  1541     sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
       
  1542         sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC);
       
  1543   }
       
  1544 
       
  1545 
       
  1546   /* Add the table to the in-memory representation of the database.
       
  1547   */
       
  1548   if( db->init.busy && pParse->nErr==0 ){
       
  1549     Table *pOld;
       
  1550     FKey *pFKey; 
       
  1551     Schema *pSchema = p->pSchema;
       
  1552     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
       
  1553     if( pOld ){
       
  1554       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
       
  1555       return;
       
  1556     }
       
  1557 #ifndef SQLITE_OMIT_FOREIGN_KEY
       
  1558     for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
       
  1559       int nTo = strlen(pFKey->zTo) + 1;
       
  1560       pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
       
  1561       sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
       
  1562     }
       
  1563 #endif
       
  1564     pParse->pNewTable = 0;
       
  1565     db->nTable++;
       
  1566     db->flags |= SQLITE_InternChanges;
       
  1567 
       
  1568 #ifndef SQLITE_OMIT_ALTERTABLE
       
  1569     if( !p->pSelect ){
       
  1570       const char *zName = (const char *)pParse->sNameToken.z;
       
  1571       int nName;
       
  1572       assert( !pSelect && pCons && pEnd );
       
  1573       if( pCons->z==0 ){
       
  1574         pCons = pEnd;
       
  1575       }
       
  1576       nName = (const char *)pCons->z - zName;
       
  1577       p->addColOffset = 13 + sqlite3utf8CharLen(zName, nName);
       
  1578     }
       
  1579 #endif
       
  1580   }
       
  1581 }
       
  1582 
       
  1583 #ifndef SQLITE_OMIT_VIEW
       
  1584 /*
       
  1585 ** The parser calls this routine in order to create a new VIEW
       
  1586 */
       
  1587 void sqlite3CreateView(
       
  1588   Parse *pParse,     /* The parsing context */
       
  1589   Token *pBegin,     /* The CREATE token that begins the statement */
       
  1590   Token *pName1,     /* The token that holds the name of the view */
       
  1591   Token *pName2,     /* The token that holds the name of the view */
       
  1592   Select *pSelect,   /* A SELECT statement that will become the new view */
       
  1593   int isTemp         /* TRUE for a TEMPORARY view */
       
  1594 ){
       
  1595   Table *p;
       
  1596   int n;
       
  1597   const unsigned char *z;
       
  1598   Token sEnd;
       
  1599   DbFixer sFix;
       
  1600   Token *pName;
       
  1601   int iDb;
       
  1602 
       
  1603   if( pParse->nVar>0 ){
       
  1604     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
       
  1605     sqlite3SelectDelete(pSelect);
       
  1606     return;
       
  1607   }
       
  1608   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, 0);
       
  1609   p = pParse->pNewTable;
       
  1610   if( p==0 || pParse->nErr ){
       
  1611     sqlite3SelectDelete(pSelect);
       
  1612     return;
       
  1613   }
       
  1614   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
       
  1615   iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
       
  1616   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
       
  1617     && sqlite3FixSelect(&sFix, pSelect)
       
  1618   ){
       
  1619     sqlite3SelectDelete(pSelect);
       
  1620     return;
       
  1621   }
       
  1622 
       
  1623   /* Make a copy of the entire SELECT statement that defines the view.
       
  1624   ** This will force all the Expr.token.z values to be dynamically
       
  1625   ** allocated rather than point to the input string - which means that
       
  1626   ** they will persist after the current sqlite3_exec() call returns.
       
  1627   */
       
  1628   p->pSelect = sqlite3SelectDup(pSelect);
       
  1629   sqlite3SelectDelete(pSelect);
       
  1630   if( sqlite3MallocFailed() ){
       
  1631     return;
       
  1632   }
       
  1633   if( !pParse->db->init.busy ){
       
  1634     sqlite3ViewGetColumnNames(pParse, p);
       
  1635   }
       
  1636 
       
  1637   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
       
  1638   ** the end.
       
  1639   */
       
  1640   sEnd = pParse->sLastToken;
       
  1641   if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
       
  1642     sEnd.z += sEnd.n;
       
  1643   }
       
  1644   sEnd.n = 0;
       
  1645   n = sEnd.z - pBegin->z;
       
  1646   z = (const unsigned char*)pBegin->z;
       
  1647   while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
       
  1648   sEnd.z = &z[n-1];
       
  1649   sEnd.n = 1;
       
  1650 
       
  1651   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
       
  1652   sqlite3EndTable(pParse, 0, &sEnd, 0);
       
  1653   return;
       
  1654 }
       
  1655 #endif /* SQLITE_OMIT_VIEW */
       
  1656 
       
  1657 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
       
  1658 /*
       
  1659 ** The Table structure pTable is really a VIEW.  Fill in the names of
       
  1660 ** the columns of the view in the pTable structure.  Return the number
       
  1661 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
       
  1662 */
       
  1663 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
       
  1664   Table *pSelTab;   /* A fake table from which we get the result set */
       
  1665   Select *pSel;     /* Copy of the SELECT that implements the view */
       
  1666   int nErr = 0;     /* Number of errors encountered */
       
  1667   int n;            /* Temporarily holds the number of cursors assigned */
       
  1668 
       
  1669   assert( pTable );
       
  1670 
       
  1671 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  1672   if( sqlite3VtabCallConnect(pParse, pTable) ){
       
  1673     return SQLITE_ERROR;
       
  1674   }
       
  1675   if( IsVirtual(pTable) ) return 0;
       
  1676 #endif
       
  1677 
       
  1678 #ifndef SQLITE_OMIT_VIEW
       
  1679   /* A positive nCol means the columns names for this view are
       
  1680   ** already known.
       
  1681   */
       
  1682   if( pTable->nCol>0 ) return 0;
       
  1683 
       
  1684   /* A negative nCol is a special marker meaning that we are currently
       
  1685   ** trying to compute the column names.  If we enter this routine with
       
  1686   ** a negative nCol, it means two or more views form a loop, like this:
       
  1687   **
       
  1688   **     CREATE VIEW one AS SELECT * FROM two;
       
  1689   **     CREATE VIEW two AS SELECT * FROM one;
       
  1690   **
       
  1691   ** Actually, this error is caught previously and so the following test
       
  1692   ** should always fail.  But we will leave it in place just to be safe.
       
  1693   */
       
  1694   if( pTable->nCol<0 ){
       
  1695     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
       
  1696     return 1;
       
  1697   }
       
  1698   assert( pTable->nCol>=0 );
       
  1699 
       
  1700   /* If we get this far, it means we need to compute the table names.
       
  1701   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
       
  1702   ** "*" elements in the results set of the view and will assign cursors
       
  1703   ** to the elements of the FROM clause.  But we do not want these changes
       
  1704   ** to be permanent.  So the computation is done on a copy of the SELECT
       
  1705   ** statement that defines the view.
       
  1706   */
       
  1707   assert( pTable->pSelect );
       
  1708   pSel = sqlite3SelectDup(pTable->pSelect);
       
  1709   if( pSel ){
       
  1710     n = pParse->nTab;
       
  1711     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
       
  1712     pTable->nCol = -1;
       
  1713     pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
       
  1714     pParse->nTab = n;
       
  1715     if( pSelTab ){
       
  1716       assert( pTable->aCol==0 );
       
  1717       pTable->nCol = pSelTab->nCol;
       
  1718       pTable->aCol = pSelTab->aCol;
       
  1719       pSelTab->nCol = 0;
       
  1720       pSelTab->aCol = 0;
       
  1721       sqlite3DeleteTable(0, pSelTab);
       
  1722       pTable->pSchema->flags |= DB_UnresetViews;
       
  1723     }else{
       
  1724       pTable->nCol = 0;
       
  1725       nErr++;
       
  1726     }
       
  1727     sqlite3SelectDelete(pSel);
       
  1728   } else {
       
  1729     nErr++;
       
  1730   }
       
  1731 #endif /* SQLITE_OMIT_VIEW */
       
  1732   return nErr;  
       
  1733 }
       
  1734 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
       
  1735 
       
  1736 #ifndef SQLITE_OMIT_VIEW
       
  1737 /*
       
  1738 ** Clear the column names from every VIEW in database idx.
       
  1739 */
       
  1740 static void sqliteViewResetAll(sqlite3 *db, int idx){
       
  1741   HashElem *i;
       
  1742   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
       
  1743   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
       
  1744     Table *pTab = sqliteHashData(i);
       
  1745     if( pTab->pSelect ){
       
  1746       sqliteResetColumnNames(pTab);
       
  1747     }
       
  1748   }
       
  1749   DbClearProperty(db, idx, DB_UnresetViews);
       
  1750 }
       
  1751 #else
       
  1752 # define sqliteViewResetAll(A,B)
       
  1753 #endif /* SQLITE_OMIT_VIEW */
       
  1754 
       
  1755 /*
       
  1756 ** This function is called by the VDBE to adjust the internal schema
       
  1757 ** used by SQLite when the btree layer moves a table root page. The
       
  1758 ** root-page of a table or index in database iDb has changed from iFrom
       
  1759 ** to iTo.
       
  1760 **
       
  1761 ** Ticket #1728:  The symbol table might still contain information
       
  1762 ** on tables and/or indices that are the process of being deleted.
       
  1763 ** If you are unlucky, one of those deleted indices or tables might
       
  1764 ** have the same rootpage number as the real table or index that is
       
  1765 ** being moved.  So we cannot stop searching after the first match 
       
  1766 ** because the first match might be for one of the deleted indices
       
  1767 ** or tables and not the table/index that is actually being moved.
       
  1768 ** We must continue looping until all tables and indices with
       
  1769 ** rootpage==iFrom have been converted to have a rootpage of iTo
       
  1770 ** in order to be certain that we got the right one.
       
  1771 */
       
  1772 #ifndef SQLITE_OMIT_AUTOVACUUM
       
  1773 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
       
  1774   HashElem *pElem;
       
  1775   Hash *pHash;
       
  1776 
       
  1777   pHash = &pDb->pSchema->tblHash;
       
  1778   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
       
  1779     Table *pTab = sqliteHashData(pElem);
       
  1780     if( pTab->tnum==iFrom ){
       
  1781       pTab->tnum = iTo;
       
  1782     }
       
  1783   }
       
  1784   pHash = &pDb->pSchema->idxHash;
       
  1785   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
       
  1786     Index *pIdx = sqliteHashData(pElem);
       
  1787     if( pIdx->tnum==iFrom ){
       
  1788       pIdx->tnum = iTo;
       
  1789     }
       
  1790   }
       
  1791 }
       
  1792 #endif
       
  1793 
       
  1794 /*
       
  1795 ** Write code to erase the table with root-page iTable from database iDb.
       
  1796 ** Also write code to modify the sqlite_master table and internal schema
       
  1797 ** if a root-page of another table is moved by the btree-layer whilst
       
  1798 ** erasing iTable (this can happen with an auto-vacuum database).
       
  1799 */ 
       
  1800 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
       
  1801   Vdbe *v = sqlite3GetVdbe(pParse);
       
  1802   sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb);
       
  1803 #ifndef SQLITE_OMIT_AUTOVACUUM
       
  1804   /* OP_Destroy pushes an integer onto the stack. If this integer
       
  1805   ** is non-zero, then it is the root page number of a table moved to
       
  1806   ** location iTable. The following code modifies the sqlite_master table to
       
  1807   ** reflect this.
       
  1808   **
       
  1809   ** The "#0" in the SQL is a special constant that means whatever value
       
  1810   ** is on the top of the stack.  See sqlite3RegisterExpr().
       
  1811   */
       
  1812   sqlite3NestedParse(pParse, 
       
  1813      "UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0",
       
  1814      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable);
       
  1815 #endif
       
  1816 }
       
  1817 
       
  1818 /*
       
  1819 ** Write VDBE code to erase table pTab and all associated indices on disk.
       
  1820 ** Code to update the sqlite_master tables and internal schema definitions
       
  1821 ** in case a root-page belonging to another table is moved by the btree layer
       
  1822 ** is also added (this can happen with an auto-vacuum database).
       
  1823 */
       
  1824 static void destroyTable(Parse *pParse, Table *pTab){
       
  1825 #ifdef SQLITE_OMIT_AUTOVACUUM
       
  1826   Index *pIdx;
       
  1827   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
       
  1828   destroyRootPage(pParse, pTab->tnum, iDb);
       
  1829   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
       
  1830     destroyRootPage(pParse, pIdx->tnum, iDb);
       
  1831   }
       
  1832 #else
       
  1833   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
       
  1834   ** is not defined), then it is important to call OP_Destroy on the
       
  1835   ** table and index root-pages in order, starting with the numerically 
       
  1836   ** largest root-page number. This guarantees that none of the root-pages
       
  1837   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
       
  1838   ** following were coded:
       
  1839   **
       
  1840   ** OP_Destroy 4 0
       
  1841   ** ...
       
  1842   ** OP_Destroy 5 0
       
  1843   **
       
  1844   ** and root page 5 happened to be the largest root-page number in the
       
  1845   ** database, then root page 5 would be moved to page 4 by the 
       
  1846   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
       
  1847   ** a free-list page.
       
  1848   */
       
  1849   int iTab = pTab->tnum;
       
  1850   int iDestroyed = 0;
       
  1851 
       
  1852   while( 1 ){
       
  1853     Index *pIdx;
       
  1854     int iLargest = 0;
       
  1855 
       
  1856     if( iDestroyed==0 || iTab<iDestroyed ){
       
  1857       iLargest = iTab;
       
  1858     }
       
  1859     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
       
  1860       int iIdx = pIdx->tnum;
       
  1861       assert( pIdx->pSchema==pTab->pSchema );
       
  1862       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
       
  1863         iLargest = iIdx;
       
  1864       }
       
  1865     }
       
  1866     if( iLargest==0 ){
       
  1867       return;
       
  1868     }else{
       
  1869       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
       
  1870       destroyRootPage(pParse, iLargest, iDb);
       
  1871       iDestroyed = iLargest;
       
  1872     }
       
  1873   }
       
  1874 #endif
       
  1875 }
       
  1876 
       
  1877 /*
       
  1878 ** This routine is called to do the work of a DROP TABLE statement.
       
  1879 ** pName is the name of the table to be dropped.
       
  1880 */
       
  1881 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
       
  1882   Table *pTab;
       
  1883   Vdbe *v;
       
  1884   sqlite3 *db = pParse->db;
       
  1885   int iDb;
       
  1886 
       
  1887   if( pParse->nErr || sqlite3MallocFailed() ){
       
  1888     goto exit_drop_table;
       
  1889   }
       
  1890   assert( pName->nSrc==1 );
       
  1891   pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase);
       
  1892 
       
  1893   if( pTab==0 ){
       
  1894     if( noErr ){
       
  1895       sqlite3ErrorClear(pParse);
       
  1896     }
       
  1897     goto exit_drop_table;
       
  1898   }
       
  1899   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
       
  1900   assert( iDb>=0 && iDb<db->nDb );
       
  1901 #ifndef SQLITE_OMIT_AUTHORIZATION
       
  1902   {
       
  1903     int code;
       
  1904     const char *zTab = SCHEMA_TABLE(iDb);
       
  1905     const char *zDb = db->aDb[iDb].zName;
       
  1906     const char *zArg2 = 0;
       
  1907     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
       
  1908       goto exit_drop_table;
       
  1909     }
       
  1910     if( isView ){
       
  1911       if( !OMIT_TEMPDB && iDb==1 ){
       
  1912         code = SQLITE_DROP_TEMP_VIEW;
       
  1913       }else{
       
  1914         code = SQLITE_DROP_VIEW;
       
  1915       }
       
  1916 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  1917     }else if( IsVirtual(pTab) ){
       
  1918       if( sqlite3ViewGetColumnNames(pParse, pTab) ){
       
  1919         goto exit_drop_table;
       
  1920       }
       
  1921       code = SQLITE_DROP_VTABLE;
       
  1922       zArg2 = pTab->pMod->zName;
       
  1923 #endif
       
  1924     }else{
       
  1925       if( !OMIT_TEMPDB && iDb==1 ){
       
  1926         code = SQLITE_DROP_TEMP_TABLE;
       
  1927       }else{
       
  1928         code = SQLITE_DROP_TABLE;
       
  1929       }
       
  1930     }
       
  1931     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
       
  1932       goto exit_drop_table;
       
  1933     }
       
  1934     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
       
  1935       goto exit_drop_table;
       
  1936     }
       
  1937   }
       
  1938 #endif
       
  1939   if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
       
  1940     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
       
  1941     goto exit_drop_table;
       
  1942   }
       
  1943 
       
  1944 #ifndef SQLITE_OMIT_VIEW
       
  1945   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
       
  1946   ** on a table.
       
  1947   */
       
  1948   if( isView && pTab->pSelect==0 ){
       
  1949     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
       
  1950     goto exit_drop_table;
       
  1951   }
       
  1952   if( !isView && pTab->pSelect ){
       
  1953     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
       
  1954     goto exit_drop_table;
       
  1955   }
       
  1956 #endif
       
  1957 
       
  1958   /* Generate code to remove the table from the master table
       
  1959   ** on disk.
       
  1960   */
       
  1961   v = sqlite3GetVdbe(pParse);
       
  1962   if( v ){
       
  1963     Trigger *pTrigger;
       
  1964     Db *pDb = &db->aDb[iDb];
       
  1965     sqlite3BeginWriteOperation(pParse, 0, iDb);
       
  1966 
       
  1967 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  1968     if( IsVirtual(pTab) ){
       
  1969       Vdbe *v = sqlite3GetVdbe(pParse);
       
  1970       if( v ){
       
  1971         sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
       
  1972       }
       
  1973     }
       
  1974 #endif
       
  1975 
       
  1976     /* Drop all triggers associated with the table being dropped. Code
       
  1977     ** is generated to remove entries from sqlite_master and/or
       
  1978     ** sqlite_temp_master if required.
       
  1979     */
       
  1980     pTrigger = pTab->pTrigger;
       
  1981     while( pTrigger ){
       
  1982       assert( pTrigger->pSchema==pTab->pSchema || 
       
  1983           pTrigger->pSchema==db->aDb[1].pSchema );
       
  1984       sqlite3DropTriggerPtr(pParse, pTrigger);
       
  1985       pTrigger = pTrigger->pNext;
       
  1986     }
       
  1987 
       
  1988 #ifndef SQLITE_OMIT_AUTOINCREMENT
       
  1989     /* Remove any entries of the sqlite_sequence table associated with
       
  1990     ** the table being dropped. This is done before the table is dropped
       
  1991     ** at the btree level, in case the sqlite_sequence table needs to
       
  1992     ** move as a result of the drop (can happen in auto-vacuum mode).
       
  1993     */
       
  1994     if( pTab->autoInc ){
       
  1995       sqlite3NestedParse(pParse,
       
  1996         "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
       
  1997         pDb->zName, pTab->zName
       
  1998       );
       
  1999     }
       
  2000 #endif
       
  2001 
       
  2002     /* Drop all SQLITE_MASTER table and index entries that refer to the
       
  2003     ** table. The program name loops through the master table and deletes
       
  2004     ** every row that refers to a table of the same name as the one being
       
  2005     ** dropped. Triggers are handled seperately because a trigger can be
       
  2006     ** created in the temp database that refers to a table in another
       
  2007     ** database.
       
  2008     */
       
  2009     sqlite3NestedParse(pParse, 
       
  2010         "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
       
  2011         pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
       
  2012     if( !isView && !IsVirtual(pTab) ){
       
  2013       destroyTable(pParse, pTab);
       
  2014     }
       
  2015 
       
  2016     /* Remove the table entry from SQLite's internal schema and modify
       
  2017     ** the schema cookie.
       
  2018     */
       
  2019     if( IsVirtual(pTab) ){
       
  2020       sqlite3VdbeOp3(v, OP_VDestroy, iDb, 0, pTab->zName, 0);
       
  2021     }
       
  2022     sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
       
  2023     sqlite3ChangeCookie(db, v, iDb);
       
  2024   }
       
  2025   sqliteViewResetAll(db, iDb);
       
  2026 
       
  2027 exit_drop_table:
       
  2028   sqlite3SrcListDelete(pName);
       
  2029 }
       
  2030 
       
  2031 /*
       
  2032 ** This routine is called to create a new foreign key on the table
       
  2033 ** currently under construction.  pFromCol determines which columns
       
  2034 ** in the current table point to the foreign key.  If pFromCol==0 then
       
  2035 ** connect the key to the last column inserted.  pTo is the name of
       
  2036 ** the table referred to.  pToCol is a list of tables in the other
       
  2037 ** pTo table that the foreign key points to.  flags contains all
       
  2038 ** information about the conflict resolution algorithms specified
       
  2039 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
       
  2040 **
       
  2041 ** An FKey structure is created and added to the table currently
       
  2042 ** under construction in the pParse->pNewTable field.  The new FKey
       
  2043 ** is not linked into db->aFKey at this point - that does not happen
       
  2044 ** until sqlite3EndTable().
       
  2045 **
       
  2046 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
       
  2047 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
       
  2048 */
       
  2049 void sqlite3CreateForeignKey(
       
  2050   Parse *pParse,       /* Parsing context */
       
  2051   ExprList *pFromCol,  /* Columns in this table that point to other table */
       
  2052   Token *pTo,          /* Name of the other table */
       
  2053   ExprList *pToCol,    /* Columns in the other table */
       
  2054   int flags            /* Conflict resolution algorithms. */
       
  2055 ){
       
  2056 #ifndef SQLITE_OMIT_FOREIGN_KEY
       
  2057   FKey *pFKey = 0;
       
  2058   Table *p = pParse->pNewTable;
       
  2059   int nByte;
       
  2060   int i;
       
  2061   int nCol;
       
  2062   char *z;
       
  2063 
       
  2064   assert( pTo!=0 );
       
  2065   if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
       
  2066   if( pFromCol==0 ){
       
  2067     int iCol = p->nCol-1;
       
  2068     if( iCol<0 ) goto fk_end;
       
  2069     if( pToCol && pToCol->nExpr!=1 ){
       
  2070       sqlite3ErrorMsg(pParse, "foreign key on %s"
       
  2071          " should reference only one column of table %T",
       
  2072          p->aCol[iCol].zName, pTo);
       
  2073       goto fk_end;
       
  2074     }
       
  2075     nCol = 1;
       
  2076   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
       
  2077     sqlite3ErrorMsg(pParse,
       
  2078         "number of columns in foreign key does not match the number of "
       
  2079         "columns in the referenced table");
       
  2080     goto fk_end;
       
  2081   }else{
       
  2082     nCol = pFromCol->nExpr;
       
  2083   }
       
  2084   nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
       
  2085   if( pToCol ){
       
  2086     for(i=0; i<pToCol->nExpr; i++){
       
  2087       nByte += strlen(pToCol->a[i].zName) + 1;
       
  2088     }
       
  2089   }
       
  2090   pFKey = sqliteMalloc( nByte );
       
  2091   if( pFKey==0 ) goto fk_end;
       
  2092   pFKey->pFrom = p;
       
  2093   pFKey->pNextFrom = p->pFKey;
       
  2094   z = (char*)&pFKey[1];
       
  2095   pFKey->aCol = (struct sColMap*)z;
       
  2096   z += sizeof(struct sColMap)*nCol;
       
  2097   pFKey->zTo = z;
       
  2098   memcpy(z, pTo->z, pTo->n);
       
  2099   z[pTo->n] = 0;
       
  2100   z += pTo->n+1;
       
  2101   pFKey->pNextTo = 0;
       
  2102   pFKey->nCol = nCol;
       
  2103   if( pFromCol==0 ){
       
  2104     pFKey->aCol[0].iFrom = p->nCol-1;
       
  2105   }else{
       
  2106     for(i=0; i<nCol; i++){
       
  2107       int j;
       
  2108       for(j=0; j<p->nCol; j++){
       
  2109         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
       
  2110           pFKey->aCol[i].iFrom = j;
       
  2111           break;
       
  2112         }
       
  2113       }
       
  2114       if( j>=p->nCol ){
       
  2115         sqlite3ErrorMsg(pParse, 
       
  2116           "unknown column \"%s\" in foreign key definition", 
       
  2117           pFromCol->a[i].zName);
       
  2118         goto fk_end;
       
  2119       }
       
  2120     }
       
  2121   }
       
  2122   if( pToCol ){
       
  2123     for(i=0; i<nCol; i++){
       
  2124       int n = strlen(pToCol->a[i].zName);
       
  2125       pFKey->aCol[i].zCol = z;
       
  2126       memcpy(z, pToCol->a[i].zName, n);
       
  2127       z[n] = 0;
       
  2128       z += n+1;
       
  2129     }
       
  2130   }
       
  2131   pFKey->isDeferred = 0;
       
  2132   pFKey->deleteConf = flags & 0xff;
       
  2133   pFKey->updateConf = (flags >> 8 ) & 0xff;
       
  2134   pFKey->insertConf = (flags >> 16 ) & 0xff;
       
  2135 
       
  2136   /* Link the foreign key to the table as the last step.
       
  2137   */
       
  2138   p->pFKey = pFKey;
       
  2139   pFKey = 0;
       
  2140 
       
  2141 fk_end:
       
  2142   sqliteFree(pFKey);
       
  2143 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
       
  2144   sqlite3ExprListDelete(pFromCol);
       
  2145   sqlite3ExprListDelete(pToCol);
       
  2146 }
       
  2147 
       
  2148 /*
       
  2149 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
       
  2150 ** clause is seen as part of a foreign key definition.  The isDeferred
       
  2151 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
       
  2152 ** The behavior of the most recently created foreign key is adjusted
       
  2153 ** accordingly.
       
  2154 */
       
  2155 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
       
  2156 #ifndef SQLITE_OMIT_FOREIGN_KEY
       
  2157   Table *pTab;
       
  2158   FKey *pFKey;
       
  2159   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
       
  2160   pFKey->isDeferred = isDeferred;
       
  2161 #endif
       
  2162 }
       
  2163 
       
  2164 /*
       
  2165 ** Generate code that will erase and refill index *pIdx.  This is
       
  2166 ** used to initialize a newly created index or to recompute the
       
  2167 ** content of an index in response to a REINDEX command.
       
  2168 **
       
  2169 ** if memRootPage is not negative, it means that the index is newly
       
  2170 ** created.  The memory cell specified by memRootPage contains the
       
  2171 ** root page number of the index.  If memRootPage is negative, then
       
  2172 ** the index already exists and must be cleared before being refilled and
       
  2173 ** the root page number of the index is taken from pIndex->tnum.
       
  2174 */
       
  2175 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
       
  2176   Table *pTab = pIndex->pTable;  /* The table that is indexed */
       
  2177   int iTab = pParse->nTab;       /* Btree cursor used for pTab */
       
  2178   int iIdx = pParse->nTab+1;     /* Btree cursor used for pIndex */
       
  2179   int addr1;                     /* Address of top of loop */
       
  2180   int tnum;                      /* Root page of index */
       
  2181   Vdbe *v;                       /* Generate code into this virtual machine */
       
  2182   KeyInfo *pKey;                 /* KeyInfo for index */
       
  2183   int iDb = sqlite3SchemaToIndex(pParse->db, pIndex->pSchema);
       
  2184 
       
  2185 #ifndef SQLITE_OMIT_AUTHORIZATION
       
  2186   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
       
  2187       pParse->db->aDb[iDb].zName ) ){
       
  2188     return;
       
  2189   }
       
  2190 #endif
       
  2191 
       
  2192   /* Require a write-lock on the table to perform this operation */
       
  2193   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
       
  2194 
       
  2195   v = sqlite3GetVdbe(pParse);
       
  2196   if( v==0 ) return;
       
  2197   if( memRootPage>=0 ){
       
  2198     sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0);
       
  2199     tnum = 0;
       
  2200   }else{
       
  2201     tnum = pIndex->tnum;
       
  2202     sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb);
       
  2203   }
       
  2204   sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
       
  2205   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
       
  2206   sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char *)pKey, P3_KEYINFO_HANDOFF);
       
  2207   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
       
  2208   addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
       
  2209   sqlite3GenerateIndexKey(v, pIndex, iTab);
       
  2210   if( pIndex->onError!=OE_None ){
       
  2211     int curaddr = sqlite3VdbeCurrentAddr(v);
       
  2212     int addr2 = curaddr+4;
       
  2213     sqlite3VdbeChangeP2(v, curaddr-1, addr2);
       
  2214     sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0);
       
  2215     sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
       
  2216     sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2);
       
  2217     sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort,
       
  2218                     "indexed columns are not unique", P3_STATIC);
       
  2219     assert( addr2==sqlite3VdbeCurrentAddr(v) );
       
  2220   }
       
  2221   sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0);
       
  2222   sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1);
       
  2223   sqlite3VdbeJumpHere(v, addr1);
       
  2224   sqlite3VdbeAddOp(v, OP_Close, iTab, 0);
       
  2225   sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
       
  2226 }
       
  2227 
       
  2228 /*
       
  2229 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index 
       
  2230 ** and pTblList is the name of the table that is to be indexed.  Both will 
       
  2231 ** be NULL for a primary key or an index that is created to satisfy a
       
  2232 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
       
  2233 ** as the table to be indexed.  pParse->pNewTable is a table that is
       
  2234 ** currently being constructed by a CREATE TABLE statement.
       
  2235 **
       
  2236 ** pList is a list of columns to be indexed.  pList will be NULL if this
       
  2237 ** is a primary key or unique-constraint on the most recent column added
       
  2238 ** to the table currently under construction.  
       
  2239 */
       
  2240 void sqlite3CreateIndex(
       
  2241   Parse *pParse,     /* All information about this parse */
       
  2242   Token *pName1,     /* First part of index name. May be NULL */
       
  2243   Token *pName2,     /* Second part of index name. May be NULL */
       
  2244   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
       
  2245   ExprList *pList,   /* A list of columns to be indexed */
       
  2246   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
       
  2247   Token *pStart,     /* The CREATE token that begins a CREATE TABLE statement */
       
  2248   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
       
  2249   int sortOrder,     /* Sort order of primary key when pList==NULL */
       
  2250   int ifNotExist     /* Omit error if index already exists */
       
  2251 ){
       
  2252   Table *pTab = 0;     /* Table to be indexed */
       
  2253   Index *pIndex = 0;   /* The index to be created */
       
  2254   char *zName = 0;     /* Name of the index */
       
  2255   int nName;           /* Number of characters in zName */
       
  2256   int i, j;
       
  2257   Token nullId;        /* Fake token for an empty ID list */
       
  2258   DbFixer sFix;        /* For assigning database names to pTable */
       
  2259   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
       
  2260   sqlite3 *db = pParse->db;
       
  2261   Db *pDb;             /* The specific table containing the indexed database */
       
  2262   int iDb;             /* Index of the database that is being written */
       
  2263   Token *pName = 0;    /* Unqualified name of the index to create */
       
  2264   struct ExprList_item *pListItem; /* For looping over pList */
       
  2265   int nCol;
       
  2266   int nExtra = 0;
       
  2267   char *zExtra;
       
  2268 
       
  2269   if( pParse->nErr || sqlite3MallocFailed() || IN_DECLARE_VTAB ){
       
  2270     goto exit_create_index;
       
  2271   }
       
  2272 
       
  2273   /*
       
  2274   ** Find the table that is to be indexed.  Return early if not found.
       
  2275   */
       
  2276   if( pTblName!=0 ){
       
  2277 
       
  2278     /* Use the two-part index name to determine the database 
       
  2279     ** to search for the table. 'Fix' the table name to this db
       
  2280     ** before looking up the table.
       
  2281     */
       
  2282     assert( pName1 && pName2 );
       
  2283     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
       
  2284     if( iDb<0 ) goto exit_create_index;
       
  2285 
       
  2286 #ifndef SQLITE_OMIT_TEMPDB
       
  2287     /* If the index name was unqualified, check if the the table
       
  2288     ** is a temp table. If so, set the database to 1.
       
  2289     */
       
  2290     pTab = sqlite3SrcListLookup(pParse, pTblName);
       
  2291     if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
       
  2292       iDb = 1;
       
  2293     }
       
  2294 #endif
       
  2295 
       
  2296     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
       
  2297         sqlite3FixSrcList(&sFix, pTblName)
       
  2298     ){
       
  2299       /* Because the parser constructs pTblName from a single identifier,
       
  2300       ** sqlite3FixSrcList can never fail. */
       
  2301       assert(0);
       
  2302     }
       
  2303     pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName, 
       
  2304         pTblName->a[0].zDatabase);
       
  2305     if( !pTab ) goto exit_create_index;
       
  2306     assert( db->aDb[iDb].pSchema==pTab->pSchema );
       
  2307   }else{
       
  2308     assert( pName==0 );
       
  2309     pTab = pParse->pNewTable;
       
  2310     if( !pTab ) goto exit_create_index;
       
  2311     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
       
  2312   }
       
  2313   pDb = &db->aDb[iDb];
       
  2314 
       
  2315   if( pTab==0 || pParse->nErr ) goto exit_create_index;
       
  2316   if( pTab->readOnly ){
       
  2317     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
       
  2318     goto exit_create_index;
       
  2319   }
       
  2320 #ifndef SQLITE_OMIT_VIEW
       
  2321   if( pTab->pSelect ){
       
  2322     sqlite3ErrorMsg(pParse, "views may not be indexed");
       
  2323     goto exit_create_index;
       
  2324   }
       
  2325 #endif
       
  2326 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  2327   if( IsVirtual(pTab) ){
       
  2328     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
       
  2329     goto exit_create_index;
       
  2330   }
       
  2331 #endif
       
  2332 
       
  2333   /*
       
  2334   ** Find the name of the index.  Make sure there is not already another
       
  2335   ** index or table with the same name.  
       
  2336   **
       
  2337   ** Exception:  If we are reading the names of permanent indices from the
       
  2338   ** sqlite_master table (because some other process changed the schema) and
       
  2339   ** one of the index names collides with the name of a temporary table or
       
  2340   ** index, then we will continue to process this index.
       
  2341   **
       
  2342   ** If pName==0 it means that we are
       
  2343   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
       
  2344   ** own name.
       
  2345   */
       
  2346   if( pName ){
       
  2347     zName = sqlite3NameFromToken(pName);
       
  2348     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
       
  2349     if( zName==0 ) goto exit_create_index;
       
  2350     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
       
  2351       goto exit_create_index;
       
  2352     }
       
  2353     if( !db->init.busy ){
       
  2354       if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
       
  2355       if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
       
  2356         if( !ifNotExist ){
       
  2357           sqlite3ErrorMsg(pParse, "index %s already exists", zName);
       
  2358         }
       
  2359         goto exit_create_index;
       
  2360       }
       
  2361       if( sqlite3FindTable(db, zName, 0)!=0 ){
       
  2362         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
       
  2363         goto exit_create_index;
       
  2364       }
       
  2365     }
       
  2366   }else{
       
  2367     char zBuf[30];
       
  2368     int n;
       
  2369     Index *pLoop;
       
  2370     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
       
  2371     sprintf(zBuf,"_%d",n);
       
  2372     zName = 0;
       
  2373     sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
       
  2374     if( zName==0 ) goto exit_create_index;
       
  2375   }
       
  2376 
       
  2377   /* Check for authorization to create an index.
       
  2378   */
       
  2379 #ifndef SQLITE_OMIT_AUTHORIZATION
       
  2380   {
       
  2381     const char *zDb = pDb->zName;
       
  2382     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
       
  2383       goto exit_create_index;
       
  2384     }
       
  2385     i = SQLITE_CREATE_INDEX;
       
  2386     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
       
  2387     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
       
  2388       goto exit_create_index;
       
  2389     }
       
  2390   }
       
  2391 #endif
       
  2392 
       
  2393   /* If pList==0, it means this routine was called to make a primary
       
  2394   ** key out of the last column added to the table under construction.
       
  2395   ** So create a fake list to simulate this.
       
  2396   */
       
  2397   if( pList==0 ){
       
  2398     nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
       
  2399     nullId.n = strlen((char*)nullId.z);
       
  2400     pList = sqlite3ExprListAppend(0, 0, &nullId);
       
  2401     if( pList==0 ) goto exit_create_index;
       
  2402     pList->a[0].sortOrder = sortOrder;
       
  2403   }
       
  2404 
       
  2405   /* Figure out how many bytes of space are required to store explicitly
       
  2406   ** specified collation sequence names.
       
  2407   */
       
  2408   for(i=0; i<pList->nExpr; i++){
       
  2409     Expr *pExpr = pList->a[i].pExpr;
       
  2410     if( pExpr ){
       
  2411       nExtra += (1 + strlen(pExpr->pColl->zName));
       
  2412     }
       
  2413   }
       
  2414 
       
  2415   /* 
       
  2416   ** Allocate the index structure. 
       
  2417   */
       
  2418   nName = strlen(zName);
       
  2419   nCol = pList->nExpr;
       
  2420   pIndex = sqliteMalloc( 
       
  2421       sizeof(Index) +              /* Index structure  */
       
  2422       sizeof(int)*nCol +           /* Index.aiColumn   */
       
  2423       sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
       
  2424       sizeof(char *)*nCol +        /* Index.azColl     */
       
  2425       sizeof(u8)*nCol +            /* Index.aSortOrder */
       
  2426       nName + 1 +                  /* Index.zName      */
       
  2427       nExtra                       /* Collation sequence names */
       
  2428   );
       
  2429   if( sqlite3MallocFailed() ) goto exit_create_index;
       
  2430   pIndex->azColl = (char**)(&pIndex[1]);
       
  2431   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
       
  2432   pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
       
  2433   pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
       
  2434   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
       
  2435   zExtra = (char *)(&pIndex->zName[nName+1]);
       
  2436   strcpy(pIndex->zName, zName);
       
  2437   pIndex->pTable = pTab;
       
  2438   pIndex->nColumn = pList->nExpr;
       
  2439   pIndex->onError = onError;
       
  2440   pIndex->autoIndex = pName==0;
       
  2441   pIndex->pSchema = db->aDb[iDb].pSchema;
       
  2442 
       
  2443   /* Check to see if we should honor DESC requests on index columns
       
  2444   */
       
  2445   if( pDb->pSchema->file_format>=4 ){
       
  2446     sortOrderMask = -1;   /* Honor DESC */
       
  2447   }else{
       
  2448     sortOrderMask = 0;    /* Ignore DESC */
       
  2449   }
       
  2450 
       
  2451   /* Scan the names of the columns of the table to be indexed and
       
  2452   ** load the column indices into the Index structure.  Report an error
       
  2453   ** if any column is not found.
       
  2454   */
       
  2455   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
       
  2456     const char *zColName = pListItem->zName;
       
  2457     Column *pTabCol;
       
  2458     int requestedSortOrder;
       
  2459     char *zColl;                   /* Collation sequence */
       
  2460 
       
  2461     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
       
  2462       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
       
  2463     }
       
  2464     if( j>=pTab->nCol ){
       
  2465       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
       
  2466         pTab->zName, zColName);
       
  2467       goto exit_create_index;
       
  2468     }
       
  2469     pIndex->aiColumn[i] = j;
       
  2470     if( pListItem->pExpr ){
       
  2471       assert( pListItem->pExpr->pColl );
       
  2472       zColl = zExtra;
       
  2473       strcpy(zExtra, pListItem->pExpr->pColl->zName);
       
  2474       zExtra += (strlen(zColl) + 1);
       
  2475     }else{
       
  2476       zColl = pTab->aCol[j].zColl;
       
  2477       if( !zColl ){
       
  2478         zColl = db->pDfltColl->zName;
       
  2479       }
       
  2480     }
       
  2481     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
       
  2482       goto exit_create_index;
       
  2483     }
       
  2484     pIndex->azColl[i] = zColl;
       
  2485     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
       
  2486     pIndex->aSortOrder[i] = requestedSortOrder;
       
  2487   }
       
  2488   sqlite3DefaultRowEst(pIndex);
       
  2489 
       
  2490   if( pTab==pParse->pNewTable ){
       
  2491     /* This routine has been called to create an automatic index as a
       
  2492     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
       
  2493     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
       
  2494     ** i.e. one of:
       
  2495     **
       
  2496     ** CREATE TABLE t(x PRIMARY KEY, y);
       
  2497     ** CREATE TABLE t(x, y, UNIQUE(x, y));
       
  2498     **
       
  2499     ** Either way, check to see if the table already has such an index. If
       
  2500     ** so, don't bother creating this one. This only applies to
       
  2501     ** automatically created indices. Users can do as they wish with
       
  2502     ** explicit indices.
       
  2503     */
       
  2504     Index *pIdx;
       
  2505     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
       
  2506       int k;
       
  2507       assert( pIdx->onError!=OE_None );
       
  2508       assert( pIdx->autoIndex );
       
  2509       assert( pIndex->onError!=OE_None );
       
  2510 
       
  2511       if( pIdx->nColumn!=pIndex->nColumn ) continue;
       
  2512       for(k=0; k<pIdx->nColumn; k++){
       
  2513         const char *z1 = pIdx->azColl[k];
       
  2514         const char *z2 = pIndex->azColl[k];
       
  2515         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
       
  2516         if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
       
  2517         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
       
  2518       }
       
  2519       if( k==pIdx->nColumn ){
       
  2520         if( pIdx->onError!=pIndex->onError ){
       
  2521           /* This constraint creates the same index as a previous
       
  2522           ** constraint specified somewhere in the CREATE TABLE statement.
       
  2523           ** However the ON CONFLICT clauses are different. If both this 
       
  2524           ** constraint and the previous equivalent constraint have explicit
       
  2525           ** ON CONFLICT clauses this is an error. Otherwise, use the
       
  2526           ** explicitly specified behaviour for the index.
       
  2527           */
       
  2528           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
       
  2529             sqlite3ErrorMsg(pParse, 
       
  2530                 "conflicting ON CONFLICT clauses specified", 0);
       
  2531           }
       
  2532           if( pIdx->onError==OE_Default ){
       
  2533             pIdx->onError = pIndex->onError;
       
  2534           }
       
  2535         }
       
  2536         goto exit_create_index;
       
  2537       }
       
  2538     }
       
  2539   }
       
  2540 
       
  2541   /* Link the new Index structure to its table and to the other
       
  2542   ** in-memory database structures. 
       
  2543   */
       
  2544   if( db->init.busy ){
       
  2545     Index *p;
       
  2546     p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 
       
  2547                          pIndex->zName, strlen(pIndex->zName)+1, pIndex);
       
  2548     if( p ){
       
  2549       assert( p==pIndex );  /* Malloc must have failed */
       
  2550       goto exit_create_index;
       
  2551     }
       
  2552     db->flags |= SQLITE_InternChanges;
       
  2553     if( pTblName!=0 ){
       
  2554       pIndex->tnum = db->init.newTnum;
       
  2555     }
       
  2556   }
       
  2557 
       
  2558   /* If the db->init.busy is 0 then create the index on disk.  This
       
  2559   ** involves writing the index into the master table and filling in the
       
  2560   ** index with the current table contents.
       
  2561   **
       
  2562   ** The db->init.busy is 0 when the user first enters a CREATE INDEX 
       
  2563   ** command.  db->init.busy is 1 when a database is opened and 
       
  2564   ** CREATE INDEX statements are read out of the master table.  In
       
  2565   ** the latter case the index already exists on disk, which is why
       
  2566   ** we don't want to recreate it.
       
  2567   **
       
  2568   ** If pTblName==0 it means this index is generated as a primary key
       
  2569   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
       
  2570   ** has just been created, it contains no data and the index initialization
       
  2571   ** step can be skipped.
       
  2572   */
       
  2573   else if( db->init.busy==0 ){
       
  2574     Vdbe *v;
       
  2575     char *zStmt;
       
  2576     int iMem = pParse->nMem++;
       
  2577 
       
  2578     v = sqlite3GetVdbe(pParse);
       
  2579     if( v==0 ) goto exit_create_index;
       
  2580 
       
  2581 
       
  2582     /* Create the rootpage for the index
       
  2583     */
       
  2584     sqlite3BeginWriteOperation(pParse, 1, iDb);
       
  2585     sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0);
       
  2586     sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
       
  2587 
       
  2588     /* Gather the complete text of the CREATE INDEX statement into
       
  2589     ** the zStmt variable
       
  2590     */
       
  2591     if( pStart && pEnd ){
       
  2592       /* A named index with an explicit CREATE INDEX statement */
       
  2593       zStmt = sqlite3MPrintf("CREATE%s INDEX %.*s",
       
  2594         onError==OE_None ? "" : " UNIQUE",
       
  2595         pEnd->z - pName->z + 1,
       
  2596         pName->z);
       
  2597     }else{
       
  2598       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
       
  2599       /* zStmt = sqlite3MPrintf(""); */
       
  2600       zStmt = 0;
       
  2601     }
       
  2602 
       
  2603     /* Add an entry in sqlite_master for this index
       
  2604     */
       
  2605     sqlite3NestedParse(pParse, 
       
  2606         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);",
       
  2607         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
       
  2608         pIndex->zName,
       
  2609         pTab->zName,
       
  2610         zStmt
       
  2611     );
       
  2612     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  2613     sqliteFree(zStmt);
       
  2614 
       
  2615     /* Fill the index with data and reparse the schema. Code an OP_Expire
       
  2616     ** to invalidate all pre-compiled statements.
       
  2617     */
       
  2618     if( pTblName ){
       
  2619       sqlite3RefillIndex(pParse, pIndex, iMem);
       
  2620       sqlite3ChangeCookie(db, v, iDb);
       
  2621       sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
       
  2622          sqlite3MPrintf("name='%q'", pIndex->zName), P3_DYNAMIC);
       
  2623       sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
       
  2624     }
       
  2625   }
       
  2626 
       
  2627   /* When adding an index to the list of indices for a table, make
       
  2628   ** sure all indices labeled OE_Replace come after all those labeled
       
  2629   ** OE_Ignore.  This is necessary for the correct operation of UPDATE
       
  2630   ** and INSERT.
       
  2631   */
       
  2632   if( db->init.busy || pTblName==0 ){
       
  2633     if( onError!=OE_Replace || pTab->pIndex==0
       
  2634          || pTab->pIndex->onError==OE_Replace){
       
  2635       pIndex->pNext = pTab->pIndex;
       
  2636       pTab->pIndex = pIndex;
       
  2637     }else{
       
  2638       Index *pOther = pTab->pIndex;
       
  2639       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
       
  2640         pOther = pOther->pNext;
       
  2641       }
       
  2642       pIndex->pNext = pOther->pNext;
       
  2643       pOther->pNext = pIndex;
       
  2644     }
       
  2645     pIndex = 0;
       
  2646   }
       
  2647 
       
  2648   /* Clean up before exiting */
       
  2649 exit_create_index:
       
  2650   if( pIndex ){
       
  2651     freeIndex(pIndex);
       
  2652   }
       
  2653   sqlite3ExprListDelete(pList);
       
  2654   sqlite3SrcListDelete(pTblName);
       
  2655   sqliteFree(zName);
       
  2656   return;
       
  2657 }
       
  2658 
       
  2659 /*
       
  2660 ** Generate code to make sure the file format number is at least minFormat.
       
  2661 ** The generated code will increase the file format number if necessary.
       
  2662 */
       
  2663 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
       
  2664   Vdbe *v;
       
  2665   v = sqlite3GetVdbe(pParse);
       
  2666   if( v ){
       
  2667     sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1);
       
  2668     sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
       
  2669     sqlite3VdbeAddOp(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3);
       
  2670     sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
       
  2671     sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
       
  2672   }
       
  2673 }
       
  2674 
       
  2675 /*
       
  2676 ** Fill the Index.aiRowEst[] array with default information - information
       
  2677 ** to be used when we have not run the ANALYZE command.
       
  2678 **
       
  2679 ** aiRowEst[0] is suppose to contain the number of elements in the index.
       
  2680 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
       
  2681 ** number of rows in the table that match any particular value of the
       
  2682 ** first column of the index.  aiRowEst[2] is an estimate of the number
       
  2683 ** of rows that match any particular combiniation of the first 2 columns
       
  2684 ** of the index.  And so forth.  It must always be the case that
       
  2685 *
       
  2686 **           aiRowEst[N]<=aiRowEst[N-1]
       
  2687 **           aiRowEst[N]>=1
       
  2688 **
       
  2689 ** Apart from that, we have little to go on besides intuition as to
       
  2690 ** how aiRowEst[] should be initialized.  The numbers generated here
       
  2691 ** are based on typical values found in actual indices.
       
  2692 */
       
  2693 void sqlite3DefaultRowEst(Index *pIdx){
       
  2694   unsigned *a = pIdx->aiRowEst;
       
  2695   int i;
       
  2696   assert( a!=0 );
       
  2697   a[0] = 1000000;
       
  2698   for(i=pIdx->nColumn; i>=5; i--){
       
  2699     a[i] = 5;
       
  2700   }
       
  2701   while( i>=1 ){
       
  2702     a[i] = 11 - i;
       
  2703     i--;
       
  2704   }
       
  2705   if( pIdx->onError!=OE_None ){
       
  2706     a[pIdx->nColumn] = 1;
       
  2707   }
       
  2708 }
       
  2709 
       
  2710 /*
       
  2711 ** This routine will drop an existing named index.  This routine
       
  2712 ** implements the DROP INDEX statement.
       
  2713 */
       
  2714 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
       
  2715   Index *pIndex;
       
  2716   Vdbe *v;
       
  2717   sqlite3 *db = pParse->db;
       
  2718   int iDb;
       
  2719 
       
  2720   if( pParse->nErr || sqlite3MallocFailed() ){
       
  2721     goto exit_drop_index;
       
  2722   }
       
  2723   assert( pName->nSrc==1 );
       
  2724   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
       
  2725     goto exit_drop_index;
       
  2726   }
       
  2727   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
       
  2728   if( pIndex==0 ){
       
  2729     if( !ifExists ){
       
  2730       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
       
  2731     }
       
  2732     pParse->checkSchema = 1;
       
  2733     goto exit_drop_index;
       
  2734   }
       
  2735   if( pIndex->autoIndex ){
       
  2736     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
       
  2737       "or PRIMARY KEY constraint cannot be dropped", 0);
       
  2738     goto exit_drop_index;
       
  2739   }
       
  2740   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
       
  2741 #ifndef SQLITE_OMIT_AUTHORIZATION
       
  2742   {
       
  2743     int code = SQLITE_DROP_INDEX;
       
  2744     Table *pTab = pIndex->pTable;
       
  2745     const char *zDb = db->aDb[iDb].zName;
       
  2746     const char *zTab = SCHEMA_TABLE(iDb);
       
  2747     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
       
  2748       goto exit_drop_index;
       
  2749     }
       
  2750     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
       
  2751     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
       
  2752       goto exit_drop_index;
       
  2753     }
       
  2754   }
       
  2755 #endif
       
  2756 
       
  2757   /* Generate code to remove the index and from the master table */
       
  2758   v = sqlite3GetVdbe(pParse);
       
  2759   if( v ){
       
  2760     sqlite3NestedParse(pParse,
       
  2761        "DELETE FROM %Q.%s WHERE name=%Q",
       
  2762        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
       
  2763        pIndex->zName
       
  2764     );
       
  2765     sqlite3ChangeCookie(db, v, iDb);
       
  2766     destroyRootPage(pParse, pIndex->tnum, iDb);
       
  2767     sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0);
       
  2768   }
       
  2769 
       
  2770 exit_drop_index:
       
  2771   sqlite3SrcListDelete(pName);
       
  2772 }
       
  2773 
       
  2774 /*
       
  2775 ** ppArray points into a structure where there is an array pointer
       
  2776 ** followed by two integers. The first integer is the
       
  2777 ** number of elements in the structure array.  The second integer
       
  2778 ** is the number of allocated slots in the array.
       
  2779 **
       
  2780 ** In other words, the structure looks something like this:
       
  2781 **
       
  2782 **        struct Example1 {
       
  2783 **          struct subElem *aEntry;
       
  2784 **          int nEntry;
       
  2785 **          int nAlloc;
       
  2786 **        }
       
  2787 **
       
  2788 ** The pnEntry parameter points to the equivalent of Example1.nEntry.
       
  2789 **
       
  2790 ** This routine allocates a new slot in the array, zeros it out,
       
  2791 ** and returns its index.  If malloc fails a negative number is returned.
       
  2792 **
       
  2793 ** szEntry is the sizeof of a single array entry.  initSize is the 
       
  2794 ** number of array entries allocated on the initial allocation.
       
  2795 */
       
  2796 int sqlite3ArrayAllocate(void **ppArray, int szEntry, int initSize){
       
  2797   char *p;
       
  2798   int *an = (int*)&ppArray[1];
       
  2799   if( an[0]>=an[1] ){
       
  2800     void *pNew;
       
  2801     int newSize;
       
  2802     newSize = an[1]*2 + initSize;
       
  2803     pNew = sqliteRealloc(*ppArray, newSize*szEntry);
       
  2804     if( pNew==0 ){
       
  2805       return -1;
       
  2806     }
       
  2807     an[1] = newSize;
       
  2808     *ppArray = pNew;
       
  2809   }
       
  2810   p = *ppArray;
       
  2811   memset(&p[an[0]*szEntry], 0, szEntry);
       
  2812   return an[0]++;
       
  2813 }
       
  2814 
       
  2815 /*
       
  2816 ** Append a new element to the given IdList.  Create a new IdList if
       
  2817 ** need be.
       
  2818 **
       
  2819 ** A new IdList is returned, or NULL if malloc() fails.
       
  2820 */
       
  2821 IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){
       
  2822   int i;
       
  2823   if( pList==0 ){
       
  2824     pList = sqliteMalloc( sizeof(IdList) );
       
  2825     if( pList==0 ) return 0;
       
  2826     pList->nAlloc = 0;
       
  2827   }
       
  2828   i = sqlite3ArrayAllocate((void**)&pList->a, sizeof(pList->a[0]), 5);
       
  2829   if( i<0 ){
       
  2830     sqlite3IdListDelete(pList);
       
  2831     return 0;
       
  2832   }
       
  2833   pList->a[i].zName = sqlite3NameFromToken(pToken);
       
  2834   return pList;
       
  2835 }
       
  2836 
       
  2837 /*
       
  2838 ** Delete an IdList.
       
  2839 */
       
  2840 void sqlite3IdListDelete(IdList *pList){
       
  2841   int i;
       
  2842   if( pList==0 ) return;
       
  2843   for(i=0; i<pList->nId; i++){
       
  2844     sqliteFree(pList->a[i].zName);
       
  2845   }
       
  2846   sqliteFree(pList->a);
       
  2847   sqliteFree(pList);
       
  2848 }
       
  2849 
       
  2850 /*
       
  2851 ** Return the index in pList of the identifier named zId.  Return -1
       
  2852 ** if not found.
       
  2853 */
       
  2854 int sqlite3IdListIndex(IdList *pList, const char *zName){
       
  2855   int i;
       
  2856   if( pList==0 ) return -1;
       
  2857   for(i=0; i<pList->nId; i++){
       
  2858     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
       
  2859   }
       
  2860   return -1;
       
  2861 }
       
  2862 
       
  2863 /*
       
  2864 ** Append a new table name to the given SrcList.  Create a new SrcList if
       
  2865 ** need be.  A new entry is created in the SrcList even if pToken is NULL.
       
  2866 **
       
  2867 ** A new SrcList is returned, or NULL if malloc() fails.
       
  2868 **
       
  2869 ** If pDatabase is not null, it means that the table has an optional
       
  2870 ** database name prefix.  Like this:  "database.table".  The pDatabase
       
  2871 ** points to the table name and the pTable points to the database name.
       
  2872 ** The SrcList.a[].zName field is filled with the table name which might
       
  2873 ** come from pTable (if pDatabase is NULL) or from pDatabase.  
       
  2874 ** SrcList.a[].zDatabase is filled with the database name from pTable,
       
  2875 ** or with NULL if no database is specified.
       
  2876 **
       
  2877 ** In other words, if call like this:
       
  2878 **
       
  2879 **         sqlite3SrcListAppend(A,B,0);
       
  2880 **
       
  2881 ** Then B is a table name and the database name is unspecified.  If called
       
  2882 ** like this:
       
  2883 **
       
  2884 **         sqlite3SrcListAppend(A,B,C);
       
  2885 **
       
  2886 ** Then C is the table name and B is the database name.
       
  2887 */
       
  2888 SrcList *sqlite3SrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
       
  2889   struct SrcList_item *pItem;
       
  2890   if( pList==0 ){
       
  2891     pList = sqliteMalloc( sizeof(SrcList) );
       
  2892     if( pList==0 ) return 0;
       
  2893     pList->nAlloc = 1;
       
  2894   }
       
  2895   if( pList->nSrc>=pList->nAlloc ){
       
  2896     SrcList *pNew;
       
  2897     pList->nAlloc *= 2;
       
  2898     pNew = sqliteRealloc(pList,
       
  2899                sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
       
  2900     if( pNew==0 ){
       
  2901       sqlite3SrcListDelete(pList);
       
  2902       return 0;
       
  2903     }
       
  2904     pList = pNew;
       
  2905   }
       
  2906   pItem = &pList->a[pList->nSrc];
       
  2907   memset(pItem, 0, sizeof(pList->a[0]));
       
  2908   if( pDatabase && pDatabase->z==0 ){
       
  2909     pDatabase = 0;
       
  2910   }
       
  2911   if( pDatabase && pTable ){
       
  2912     Token *pTemp = pDatabase;
       
  2913     pDatabase = pTable;
       
  2914     pTable = pTemp;
       
  2915   }
       
  2916   pItem->zName = sqlite3NameFromToken(pTable);
       
  2917   pItem->zDatabase = sqlite3NameFromToken(pDatabase);
       
  2918   pItem->iCursor = -1;
       
  2919   pItem->isPopulated = 0;
       
  2920   pList->nSrc++;
       
  2921   return pList;
       
  2922 }
       
  2923 
       
  2924 /*
       
  2925 ** Assign cursors to all tables in a SrcList
       
  2926 */
       
  2927 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
       
  2928   int i;
       
  2929   struct SrcList_item *pItem;
       
  2930   assert(pList || sqlite3MallocFailed() );
       
  2931   if( pList ){
       
  2932     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
       
  2933       if( pItem->iCursor>=0 ) break;
       
  2934       pItem->iCursor = pParse->nTab++;
       
  2935       if( pItem->pSelect ){
       
  2936         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
       
  2937       }
       
  2938     }
       
  2939   }
       
  2940 }
       
  2941 
       
  2942 /*
       
  2943 ** Add an alias to the last identifier on the given identifier list.
       
  2944 */
       
  2945 void sqlite3SrcListAddAlias(SrcList *pList, Token *pToken){
       
  2946   if( pList && pList->nSrc>0 ){
       
  2947     pList->a[pList->nSrc-1].zAlias = sqlite3NameFromToken(pToken);
       
  2948   }
       
  2949 }
       
  2950 
       
  2951 /*
       
  2952 ** Delete an entire SrcList including all its substructure.
       
  2953 */
       
  2954 void sqlite3SrcListDelete(SrcList *pList){
       
  2955   int i;
       
  2956   struct SrcList_item *pItem;
       
  2957   if( pList==0 ) return;
       
  2958   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
       
  2959     sqliteFree(pItem->zDatabase);
       
  2960     sqliteFree(pItem->zName);
       
  2961     sqliteFree(pItem->zAlias);
       
  2962     sqlite3DeleteTable(0, pItem->pTab);
       
  2963     sqlite3SelectDelete(pItem->pSelect);
       
  2964     sqlite3ExprDelete(pItem->pOn);
       
  2965     sqlite3IdListDelete(pItem->pUsing);
       
  2966   }
       
  2967   sqliteFree(pList);
       
  2968 }
       
  2969 
       
  2970 /*
       
  2971 ** Begin a transaction
       
  2972 */
       
  2973 void sqlite3BeginTransaction(Parse *pParse, int type){
       
  2974   sqlite3 *db;
       
  2975   Vdbe *v;
       
  2976   int i;
       
  2977 
       
  2978   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
       
  2979   if( pParse->nErr || sqlite3MallocFailed() ) return;
       
  2980   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
       
  2981 
       
  2982   v = sqlite3GetVdbe(pParse);
       
  2983   if( !v ) return;
       
  2984   if( type!=TK_DEFERRED ){
       
  2985     for(i=0; i<db->nDb; i++){
       
  2986       sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
       
  2987     }
       
  2988   }
       
  2989   sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0);
       
  2990 }
       
  2991 
       
  2992 /*
       
  2993 ** Commit a transaction
       
  2994 */
       
  2995 void sqlite3CommitTransaction(Parse *pParse){
       
  2996   sqlite3 *db;
       
  2997   Vdbe *v;
       
  2998 
       
  2999   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
       
  3000   if( pParse->nErr || sqlite3MallocFailed() ) return;
       
  3001   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
       
  3002 
       
  3003   v = sqlite3GetVdbe(pParse);
       
  3004   if( v ){
       
  3005     sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0);
       
  3006   }
       
  3007 }
       
  3008 
       
  3009 /*
       
  3010 ** Rollback a transaction
       
  3011 */
       
  3012 void sqlite3RollbackTransaction(Parse *pParse){
       
  3013   sqlite3 *db;
       
  3014   Vdbe *v;
       
  3015 
       
  3016   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
       
  3017   if( pParse->nErr || sqlite3MallocFailed() ) return;
       
  3018   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
       
  3019 
       
  3020   v = sqlite3GetVdbe(pParse);
       
  3021   if( v ){
       
  3022     sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1);
       
  3023   }
       
  3024 }
       
  3025 
       
  3026 /*
       
  3027 ** Make sure the TEMP database is open and available for use.  Return
       
  3028 ** the number of errors.  Leave any error messages in the pParse structure.
       
  3029 */
       
  3030 int sqlite3OpenTempDatabase(Parse *pParse){
       
  3031   sqlite3 *db = pParse->db;
       
  3032   if( db->aDb[1].pBt==0 && !pParse->explain ){
       
  3033     int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
       
  3034     if( rc!=SQLITE_OK ){
       
  3035       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
       
  3036         "file for storing temporary tables");
       
  3037       pParse->rc = rc;
       
  3038       return 1;
       
  3039     }
       
  3040     if( db->flags & !db->autoCommit ){
       
  3041       rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1);
       
  3042       if( rc!=SQLITE_OK ){
       
  3043         sqlite3ErrorMsg(pParse, "unable to get a write lock on "
       
  3044           "the temporary database file");
       
  3045         pParse->rc = rc;
       
  3046         return 1;
       
  3047       }
       
  3048     }
       
  3049     assert( db->aDb[1].pSchema );
       
  3050   }
       
  3051   return 0;
       
  3052 }
       
  3053 
       
  3054 /*
       
  3055 ** Generate VDBE code that will verify the schema cookie and start
       
  3056 ** a read-transaction for all named database files.
       
  3057 **
       
  3058 ** It is important that all schema cookies be verified and all
       
  3059 ** read transactions be started before anything else happens in
       
  3060 ** the VDBE program.  But this routine can be called after much other
       
  3061 ** code has been generated.  So here is what we do:
       
  3062 **
       
  3063 ** The first time this routine is called, we code an OP_Goto that
       
  3064 ** will jump to a subroutine at the end of the program.  Then we
       
  3065 ** record every database that needs its schema verified in the
       
  3066 ** pParse->cookieMask field.  Later, after all other code has been
       
  3067 ** generated, the subroutine that does the cookie verifications and
       
  3068 ** starts the transactions will be coded and the OP_Goto P2 value
       
  3069 ** will be made to point to that subroutine.  The generation of the
       
  3070 ** cookie verification subroutine code happens in sqlite3FinishCoding().
       
  3071 **
       
  3072 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
       
  3073 ** schema on any databases.  This can be used to position the OP_Goto
       
  3074 ** early in the code, before we know if any database tables will be used.
       
  3075 */
       
  3076 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
       
  3077   sqlite3 *db;
       
  3078   Vdbe *v;
       
  3079   int mask;
       
  3080 
       
  3081   v = sqlite3GetVdbe(pParse);
       
  3082   if( v==0 ) return;  /* This only happens if there was a prior error */
       
  3083   db = pParse->db;
       
  3084   if( pParse->cookieGoto==0 ){
       
  3085     pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1;
       
  3086   }
       
  3087   if( iDb>=0 ){
       
  3088     assert( iDb<db->nDb );
       
  3089     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
       
  3090     assert( iDb<MAX_ATTACHED+2 );
       
  3091     mask = 1<<iDb;
       
  3092     if( (pParse->cookieMask & mask)==0 ){
       
  3093       pParse->cookieMask |= mask;
       
  3094       pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
       
  3095       if( !OMIT_TEMPDB && iDb==1 ){
       
  3096         sqlite3OpenTempDatabase(pParse);
       
  3097       }
       
  3098     }
       
  3099   }
       
  3100 }
       
  3101 
       
  3102 /*
       
  3103 ** Generate VDBE code that prepares for doing an operation that
       
  3104 ** might change the database.
       
  3105 **
       
  3106 ** This routine starts a new transaction if we are not already within
       
  3107 ** a transaction.  If we are already within a transaction, then a checkpoint
       
  3108 ** is set if the setStatement parameter is true.  A checkpoint should
       
  3109 ** be set for operations that might fail (due to a constraint) part of
       
  3110 ** the way through and which will need to undo some writes without having to
       
  3111 ** rollback the whole transaction.  For operations where all constraints
       
  3112 ** can be checked before any changes are made to the database, it is never
       
  3113 ** necessary to undo a write and the checkpoint should not be set.
       
  3114 **
       
  3115 ** Only database iDb and the temp database are made writable by this call.
       
  3116 ** If iDb==0, then the main and temp databases are made writable.   If
       
  3117 ** iDb==1 then only the temp database is made writable.  If iDb>1 then the
       
  3118 ** specified auxiliary database and the temp database are made writable.
       
  3119 */
       
  3120 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
       
  3121   Vdbe *v = sqlite3GetVdbe(pParse);
       
  3122   if( v==0 ) return;
       
  3123   sqlite3CodeVerifySchema(pParse, iDb);
       
  3124   pParse->writeMask |= 1<<iDb;
       
  3125   if( setStatement && pParse->nested==0 ){
       
  3126     sqlite3VdbeAddOp(v, OP_Statement, iDb, 0);
       
  3127   }
       
  3128   if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
       
  3129     sqlite3BeginWriteOperation(pParse, setStatement, 1);
       
  3130   }
       
  3131 }
       
  3132 
       
  3133 /*
       
  3134 ** Check to see if pIndex uses the collating sequence pColl.  Return
       
  3135 ** true if it does and false if it does not.
       
  3136 */
       
  3137 #ifndef SQLITE_OMIT_REINDEX
       
  3138 static int collationMatch(const char *zColl, Index *pIndex){
       
  3139   int i;
       
  3140   for(i=0; i<pIndex->nColumn; i++){
       
  3141     const char *z = pIndex->azColl[i];
       
  3142     if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
       
  3143       return 1;
       
  3144     }
       
  3145   }
       
  3146   return 0;
       
  3147 }
       
  3148 #endif
       
  3149 
       
  3150 /*
       
  3151 ** Recompute all indices of pTab that use the collating sequence pColl.
       
  3152 ** If pColl==0 then recompute all indices of pTab.
       
  3153 */
       
  3154 #ifndef SQLITE_OMIT_REINDEX
       
  3155 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
       
  3156   Index *pIndex;              /* An index associated with pTab */
       
  3157 
       
  3158   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
       
  3159     if( zColl==0 || collationMatch(zColl, pIndex) ){
       
  3160       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
       
  3161       sqlite3BeginWriteOperation(pParse, 0, iDb);
       
  3162       sqlite3RefillIndex(pParse, pIndex, -1);
       
  3163     }
       
  3164   }
       
  3165 }
       
  3166 #endif
       
  3167 
       
  3168 /*
       
  3169 ** Recompute all indices of all tables in all databases where the
       
  3170 ** indices use the collating sequence pColl.  If pColl==0 then recompute
       
  3171 ** all indices everywhere.
       
  3172 */
       
  3173 #ifndef SQLITE_OMIT_REINDEX
       
  3174 static void reindexDatabases(Parse *pParse, char const *zColl){
       
  3175   Db *pDb;                    /* A single database */
       
  3176   int iDb;                    /* The database index number */
       
  3177   sqlite3 *db = pParse->db;   /* The database connection */
       
  3178   HashElem *k;                /* For looping over tables in pDb */
       
  3179   Table *pTab;                /* A table in the database */
       
  3180 
       
  3181   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
       
  3182     assert( pDb!=0 );
       
  3183     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
       
  3184       pTab = (Table*)sqliteHashData(k);
       
  3185       reindexTable(pParse, pTab, zColl);
       
  3186     }
       
  3187   }
       
  3188 }
       
  3189 #endif
       
  3190 
       
  3191 /*
       
  3192 ** Generate code for the REINDEX command.
       
  3193 **
       
  3194 **        REINDEX                            -- 1
       
  3195 **        REINDEX  <collation>               -- 2
       
  3196 **        REINDEX  ?<database>.?<tablename>  -- 3
       
  3197 **        REINDEX  ?<database>.?<indexname>  -- 4
       
  3198 **
       
  3199 ** Form 1 causes all indices in all attached databases to be rebuilt.
       
  3200 ** Form 2 rebuilds all indices in all databases that use the named
       
  3201 ** collating function.  Forms 3 and 4 rebuild the named index or all
       
  3202 ** indices associated with the named table.
       
  3203 */
       
  3204 #ifndef SQLITE_OMIT_REINDEX
       
  3205 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
       
  3206   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
       
  3207   char *z;                    /* Name of a table or index */
       
  3208   const char *zDb;            /* Name of the database */
       
  3209   Table *pTab;                /* A table in the database */
       
  3210   Index *pIndex;              /* An index associated with pTab */
       
  3211   int iDb;                    /* The database index number */
       
  3212   sqlite3 *db = pParse->db;   /* The database connection */
       
  3213   Token *pObjName;            /* Name of the table or index to be reindexed */
       
  3214 
       
  3215   /* Read the database schema. If an error occurs, leave an error message
       
  3216   ** and code in pParse and return NULL. */
       
  3217   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
       
  3218     return;
       
  3219   }
       
  3220 
       
  3221   if( pName1==0 || pName1->z==0 ){
       
  3222     reindexDatabases(pParse, 0);
       
  3223     return;
       
  3224   }else if( pName2==0 || pName2->z==0 ){
       
  3225     assert( pName1->z );
       
  3226     pColl = sqlite3FindCollSeq(db, ENC(db), (char*)pName1->z, pName1->n, 0);
       
  3227     if( pColl ){
       
  3228       char *zColl = sqliteStrNDup((const char *)pName1->z, pName1->n);
       
  3229       if( zColl ){
       
  3230         reindexDatabases(pParse, zColl);
       
  3231         sqliteFree(zColl);
       
  3232       }
       
  3233       return;
       
  3234     }
       
  3235   }
       
  3236   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
       
  3237   if( iDb<0 ) return;
       
  3238   z = sqlite3NameFromToken(pObjName);
       
  3239   zDb = db->aDb[iDb].zName;
       
  3240   pTab = sqlite3FindTable(db, z, zDb);
       
  3241   if( pTab ){
       
  3242     reindexTable(pParse, pTab, 0);
       
  3243     sqliteFree(z);
       
  3244     return;
       
  3245   }
       
  3246   pIndex = sqlite3FindIndex(db, z, zDb);
       
  3247   sqliteFree(z);
       
  3248   if( pIndex ){
       
  3249     sqlite3BeginWriteOperation(pParse, 0, iDb);
       
  3250     sqlite3RefillIndex(pParse, pIndex, -1);
       
  3251     return;
       
  3252   }
       
  3253   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
       
  3254 }
       
  3255 #endif
       
  3256 
       
  3257 /*
       
  3258 ** Return a dynamicly allocated KeyInfo structure that can be used
       
  3259 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
       
  3260 **
       
  3261 ** If successful, a pointer to the new structure is returned. In this case
       
  3262 ** the caller is responsible for calling sqliteFree() on the returned 
       
  3263 ** pointer. If an error occurs (out of memory or missing collation 
       
  3264 ** sequence), NULL is returned and the state of pParse updated to reflect
       
  3265 ** the error.
       
  3266 */
       
  3267 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
       
  3268   int i;
       
  3269   int nCol = pIdx->nColumn;
       
  3270   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
       
  3271   KeyInfo *pKey = (KeyInfo *)sqliteMalloc(nBytes);
       
  3272 
       
  3273   if( pKey ){
       
  3274     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
       
  3275     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
       
  3276     for(i=0; i<nCol; i++){
       
  3277       char *zColl = pIdx->azColl[i];
       
  3278       assert( zColl );
       
  3279       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
       
  3280       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
       
  3281     }
       
  3282     pKey->nField = nCol;
       
  3283   }
       
  3284 
       
  3285   if( pParse->nErr ){
       
  3286     sqliteFree(pKey);
       
  3287     pKey = 0;
       
  3288   }
       
  3289   return pKey;
       
  3290 }