webengine/webkitutils/SqliteSymbian/expr.c
changeset 0 dd21522fd290
equal deleted inserted replaced
-1:000000000000 0:dd21522fd290
       
     1 /*
       
     2 ** 2001 September 15
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** This file contains routines used for analyzing expressions and
       
    13 ** for generating VDBE code that evaluates expressions in SQLite.
       
    14 **
       
    15 ** $Id: expr.c,v 1.268 2006/08/24 15:18:25 drh Exp $
       
    16 */
       
    17 #include "sqliteInt.h"
       
    18 #include <ctype.h>
       
    19 
       
    20 /*
       
    21 ** Return the 'affinity' of the expression pExpr if any.
       
    22 **
       
    23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
       
    24 ** or a sub-select with a column as the return value, then the 
       
    25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
       
    26 ** indicating no affinity for the expression.
       
    27 **
       
    28 ** i.e. the WHERE clause expresssions in the following statements all
       
    29 ** have an affinity:
       
    30 **
       
    31 ** CREATE TABLE t1(a);
       
    32 ** SELECT * FROM t1 WHERE a;
       
    33 ** SELECT a AS b FROM t1 WHERE b;
       
    34 ** SELECT * FROM t1 WHERE (select a from t1);
       
    35 */
       
    36 char sqlite3ExprAffinity(Expr *pExpr){
       
    37   int op = pExpr->op;
       
    38   if( op==TK_AS ){
       
    39     return sqlite3ExprAffinity(pExpr->pLeft);
       
    40   }
       
    41   if( op==TK_SELECT ){
       
    42     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
       
    43   }
       
    44 #ifndef SQLITE_OMIT_CAST
       
    45   if( op==TK_CAST ){
       
    46     return sqlite3AffinityType(&pExpr->token);
       
    47   }
       
    48 #endif
       
    49   return pExpr->affinity;
       
    50 }
       
    51 
       
    52 /*
       
    53 ** Return the default collation sequence for the expression pExpr. If
       
    54 ** there is no default collation type, return 0.
       
    55 */
       
    56 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
       
    57   CollSeq *pColl = 0;
       
    58   if( pExpr ){
       
    59     pColl = pExpr->pColl;
       
    60     if( (pExpr->op==TK_AS || pExpr->op==TK_CAST) && !pColl ){
       
    61       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
       
    62     }
       
    63   }
       
    64   if( sqlite3CheckCollSeq(pParse, pColl) ){ 
       
    65     pColl = 0;
       
    66   }
       
    67   return pColl;
       
    68 }
       
    69 
       
    70 /*
       
    71 ** pExpr is an operand of a comparison operator.  aff2 is the
       
    72 ** type affinity of the other operand.  This routine returns the
       
    73 ** type affinity that should be used for the comparison operator.
       
    74 */
       
    75 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
       
    76   char aff1 = sqlite3ExprAffinity(pExpr);
       
    77   if( aff1 && aff2 ){
       
    78     /* Both sides of the comparison are columns. If one has numeric
       
    79     ** affinity, use that. Otherwise use no affinity.
       
    80     */
       
    81     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
       
    82       return SQLITE_AFF_NUMERIC;
       
    83     }else{
       
    84       return SQLITE_AFF_NONE;
       
    85     }
       
    86   }else if( !aff1 && !aff2 ){
       
    87     /* Neither side of the comparison is a column.  Compare the
       
    88     ** results directly.
       
    89     */
       
    90     return SQLITE_AFF_NONE;
       
    91   }else{
       
    92     /* One side is a column, the other is not. Use the columns affinity. */
       
    93     assert( aff1==0 || aff2==0 );
       
    94     return (aff1 + aff2);
       
    95   }
       
    96 }
       
    97 
       
    98 /*
       
    99 ** pExpr is a comparison operator.  Return the type affinity that should
       
   100 ** be applied to both operands prior to doing the comparison.
       
   101 */
       
   102 static char comparisonAffinity(Expr *pExpr){
       
   103   char aff;
       
   104   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
       
   105           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
       
   106           pExpr->op==TK_NE );
       
   107   assert( pExpr->pLeft );
       
   108   aff = sqlite3ExprAffinity(pExpr->pLeft);
       
   109   if( pExpr->pRight ){
       
   110     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
       
   111   }
       
   112   else if( pExpr->pSelect ){
       
   113     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
       
   114   }
       
   115   else if( !aff ){
       
   116     aff = SQLITE_AFF_NUMERIC;
       
   117   }
       
   118   return aff;
       
   119 }
       
   120 
       
   121 /*
       
   122 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
       
   123 ** idx_affinity is the affinity of an indexed column. Return true
       
   124 ** if the index with affinity idx_affinity may be used to implement
       
   125 ** the comparison in pExpr.
       
   126 */
       
   127 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
       
   128   char aff = comparisonAffinity(pExpr);
       
   129   switch( aff ){
       
   130     case SQLITE_AFF_NONE:
       
   131       return 1;
       
   132     case SQLITE_AFF_TEXT:
       
   133       return idx_affinity==SQLITE_AFF_TEXT;
       
   134     default:
       
   135       return sqlite3IsNumericAffinity(idx_affinity);
       
   136   }
       
   137 }
       
   138 
       
   139 /*
       
   140 ** Return the P1 value that should be used for a binary comparison
       
   141 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
       
   142 ** If jumpIfNull is true, then set the low byte of the returned
       
   143 ** P1 value to tell the opcode to jump if either expression
       
   144 ** evaluates to NULL.
       
   145 */
       
   146 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
       
   147   char aff = sqlite3ExprAffinity(pExpr2);
       
   148   return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);
       
   149 }
       
   150 
       
   151 /*
       
   152 ** Return a pointer to the collation sequence that should be used by
       
   153 ** a binary comparison operator comparing pLeft and pRight.
       
   154 **
       
   155 ** If the left hand expression has a collating sequence type, then it is
       
   156 ** used. Otherwise the collation sequence for the right hand expression
       
   157 ** is used, or the default (BINARY) if neither expression has a collating
       
   158 ** type.
       
   159 */
       
   160 static CollSeq* binaryCompareCollSeq(Parse *pParse, Expr *pLeft, Expr *pRight){
       
   161   CollSeq *pColl = sqlite3ExprCollSeq(pParse, pLeft);
       
   162   if( !pColl ){
       
   163     pColl = sqlite3ExprCollSeq(pParse, pRight);
       
   164   }
       
   165   return pColl;
       
   166 }
       
   167 
       
   168 /*
       
   169 ** Generate code for a comparison operator.
       
   170 */
       
   171 static int codeCompare(
       
   172   Parse *pParse,    /* The parsing (and code generating) context */
       
   173   Expr *pLeft,      /* The left operand */
       
   174   Expr *pRight,     /* The right operand */
       
   175   int opcode,       /* The comparison opcode */
       
   176   int dest,         /* Jump here if true.  */
       
   177   int jumpIfNull    /* If true, jump if either operand is NULL */
       
   178 ){
       
   179   int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
       
   180   CollSeq *p3 = binaryCompareCollSeq(pParse, pLeft, pRight);
       
   181   return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ);
       
   182 }
       
   183 
       
   184 /*
       
   185 ** Construct a new expression node and return a pointer to it.  Memory
       
   186 ** for this node is obtained from sqliteMalloc().  The calling function
       
   187 ** is responsible for making sure the node eventually gets freed.
       
   188 */
       
   189 Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
       
   190   Expr *pNew;
       
   191   pNew = sqliteMalloc( sizeof(Expr) );
       
   192   if( pNew==0 ){
       
   193     /* When malloc fails, delete pLeft and pRight. Expressions passed to 
       
   194     ** this function must always be allocated with sqlite3Expr() for this 
       
   195     ** reason. 
       
   196     */
       
   197     sqlite3ExprDelete(pLeft);
       
   198     sqlite3ExprDelete(pRight);
       
   199     return 0;
       
   200   }
       
   201   pNew->op = op;
       
   202   pNew->pLeft = pLeft;
       
   203   pNew->pRight = pRight;
       
   204   pNew->iAgg = -1;
       
   205   if( pToken ){
       
   206     assert( pToken->dyn==0 );
       
   207     pNew->span = pNew->token = *pToken;
       
   208   }else if( pLeft && pRight ){
       
   209     sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
       
   210   }
       
   211   return pNew;
       
   212 }
       
   213 
       
   214 /*
       
   215 ** Works like sqlite3Expr() but frees its pLeft and pRight arguments
       
   216 ** if it fails due to a malloc problem.
       
   217 */
       
   218 Expr *sqlite3ExprOrFree(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
       
   219   Expr *pNew = sqlite3Expr(op, pLeft, pRight, pToken);
       
   220   if( pNew==0 ){
       
   221     sqlite3ExprDelete(pLeft);
       
   222     sqlite3ExprDelete(pRight);
       
   223   }
       
   224   return pNew;
       
   225 }
       
   226 
       
   227 /*
       
   228 ** When doing a nested parse, you can include terms in an expression
       
   229 ** that look like this:   #0 #1 #2 ...  These terms refer to elements
       
   230 ** on the stack.  "#0" means the top of the stack.
       
   231 ** "#1" means the next down on the stack.  And so forth.
       
   232 **
       
   233 ** This routine is called by the parser to deal with on of those terms.
       
   234 ** It immediately generates code to store the value in a memory location.
       
   235 ** The returns an expression that will code to extract the value from
       
   236 ** that memory location as needed.
       
   237 */
       
   238 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
       
   239   Vdbe *v = pParse->pVdbe;
       
   240   Expr *p;
       
   241   int depth;
       
   242   if( pParse->nested==0 ){
       
   243     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
       
   244     return 0;
       
   245   }
       
   246   if( v==0 ) return 0;
       
   247   p = sqlite3Expr(TK_REGISTER, 0, 0, pToken);
       
   248   if( p==0 ){
       
   249     return 0;  /* Malloc failed */
       
   250   }
       
   251   depth = atoi((char*)&pToken->z[1]);
       
   252   p->iTable = pParse->nMem++;
       
   253   sqlite3VdbeAddOp(v, OP_Dup, depth, 0);
       
   254   sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);
       
   255   return p;
       
   256 }
       
   257 
       
   258 /*
       
   259 ** Join two expressions using an AND operator.  If either expression is
       
   260 ** NULL, then just return the other expression.
       
   261 */
       
   262 Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){
       
   263   if( pLeft==0 ){
       
   264     return pRight;
       
   265   }else if( pRight==0 ){
       
   266     return pLeft;
       
   267   }else{
       
   268     return sqlite3Expr(TK_AND, pLeft, pRight, 0);
       
   269   }
       
   270 }
       
   271 
       
   272 /*
       
   273 ** Set the Expr.span field of the given expression to span all
       
   274 ** text between the two given tokens.
       
   275 */
       
   276 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
       
   277   assert( pRight!=0 );
       
   278   assert( pLeft!=0 );
       
   279   if( !sqlite3MallocFailed() && pRight->z && pLeft->z ){
       
   280     assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
       
   281     if( pLeft->dyn==0 && pRight->dyn==0 ){
       
   282       pExpr->span.z = pLeft->z;
       
   283       pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
       
   284     }else{
       
   285       pExpr->span.z = 0;
       
   286     }
       
   287   }
       
   288 }
       
   289 
       
   290 /*
       
   291 ** Construct a new expression node for a function with multiple
       
   292 ** arguments.
       
   293 */
       
   294 Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){
       
   295   Expr *pNew;
       
   296   assert( pToken );
       
   297   pNew = sqliteMalloc( sizeof(Expr) );
       
   298   if( pNew==0 ){
       
   299     sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
       
   300     return 0;
       
   301   }
       
   302   pNew->op = TK_FUNCTION;
       
   303   pNew->pList = pList;
       
   304   assert( pToken->dyn==0 );
       
   305   pNew->token = *pToken;
       
   306   pNew->span = pNew->token;
       
   307   return pNew;
       
   308 }
       
   309 
       
   310 /*
       
   311 ** Assign a variable number to an expression that encodes a wildcard
       
   312 ** in the original SQL statement.  
       
   313 **
       
   314 ** Wildcards consisting of a single "?" are assigned the next sequential
       
   315 ** variable number.
       
   316 **
       
   317 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
       
   318 ** sure "nnn" is not too be to avoid a denial of service attack when
       
   319 ** the SQL statement comes from an external source.
       
   320 **
       
   321 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
       
   322 ** as the previous instance of the same wildcard.  Or if this is the first
       
   323 ** instance of the wildcard, the next sequenial variable number is
       
   324 ** assigned.
       
   325 */
       
   326 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
       
   327   Token *pToken;
       
   328   if( pExpr==0 ) return;
       
   329   pToken = &pExpr->token;
       
   330   assert( pToken->n>=1 );
       
   331   assert( pToken->z!=0 );
       
   332   assert( pToken->z[0]!=0 );
       
   333   if( pToken->n==1 ){
       
   334     /* Wildcard of the form "?".  Assign the next variable number */
       
   335     pExpr->iTable = ++pParse->nVar;
       
   336   }else if( pToken->z[0]=='?' ){
       
   337     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
       
   338     ** use it as the variable number */
       
   339     int i;
       
   340     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
       
   341     if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
       
   342       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
       
   343           SQLITE_MAX_VARIABLE_NUMBER);
       
   344     }
       
   345     if( i>pParse->nVar ){
       
   346       pParse->nVar = i;
       
   347     }
       
   348   }else{
       
   349     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
       
   350     ** number as the prior appearance of the same name, or if the name
       
   351     ** has never appeared before, reuse the same variable number
       
   352     */
       
   353     int i, n;
       
   354     n = pToken->n;
       
   355     for(i=0; i<pParse->nVarExpr; i++){
       
   356       Expr *pE;
       
   357       if( (pE = pParse->apVarExpr[i])!=0
       
   358           && pE->token.n==n
       
   359           && memcmp(pE->token.z, pToken->z, n)==0 ){
       
   360         pExpr->iTable = pE->iTable;
       
   361         break;
       
   362       }
       
   363     }
       
   364     if( i>=pParse->nVarExpr ){
       
   365       pExpr->iTable = ++pParse->nVar;
       
   366       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
       
   367         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
       
   368         sqliteReallocOrFree((void**)&pParse->apVarExpr,
       
   369                        pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) );
       
   370       }
       
   371       if( !sqlite3MallocFailed() ){
       
   372         assert( pParse->apVarExpr!=0 );
       
   373         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
       
   374       }
       
   375     }
       
   376   } 
       
   377 }
       
   378 
       
   379 /*
       
   380 ** Recursively delete an expression tree.
       
   381 */
       
   382 void sqlite3ExprDelete(Expr *p){
       
   383   if( p==0 ) return;
       
   384   if( p->span.dyn ) sqliteFree((char*)p->span.z);
       
   385   if( p->token.dyn ) sqliteFree((char*)p->token.z);
       
   386   sqlite3ExprDelete(p->pLeft);
       
   387   sqlite3ExprDelete(p->pRight);
       
   388   sqlite3ExprListDelete(p->pList);
       
   389   sqlite3SelectDelete(p->pSelect);
       
   390   sqliteFree(p);
       
   391 }
       
   392 
       
   393 /*
       
   394 ** The Expr.token field might be a string literal that is quoted.
       
   395 ** If so, remove the quotation marks.
       
   396 */
       
   397 void sqlite3DequoteExpr(Expr *p){
       
   398   if( ExprHasAnyProperty(p, EP_Dequoted) ){
       
   399     return;
       
   400   }
       
   401   ExprSetProperty(p, EP_Dequoted);
       
   402   if( p->token.dyn==0 ){
       
   403     sqlite3TokenCopy(&p->token, &p->token);
       
   404   }
       
   405   sqlite3Dequote((char*)p->token.z);
       
   406 }
       
   407 
       
   408 
       
   409 /*
       
   410 ** The following group of routines make deep copies of expressions,
       
   411 ** expression lists, ID lists, and select statements.  The copies can
       
   412 ** be deleted (by being passed to their respective ...Delete() routines)
       
   413 ** without effecting the originals.
       
   414 **
       
   415 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
       
   416 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 
       
   417 ** by subsequent calls to sqlite*ListAppend() routines.
       
   418 **
       
   419 ** Any tables that the SrcList might point to are not duplicated.
       
   420 */
       
   421 Expr *sqlite3ExprDup(Expr *p){
       
   422   Expr *pNew;
       
   423   if( p==0 ) return 0;
       
   424   pNew = sqliteMallocRaw( sizeof(*p) );
       
   425   if( pNew==0 ) return 0;
       
   426   memcpy(pNew, p, sizeof(*pNew));
       
   427   if( p->token.z!=0 ){
       
   428     pNew->token.z = (u8*)sqliteStrNDup((char*)p->token.z, p->token.n);
       
   429     pNew->token.dyn = 1;
       
   430   }else{
       
   431     assert( pNew->token.z==0 );
       
   432   }
       
   433   pNew->span.z = 0;
       
   434   pNew->pLeft = sqlite3ExprDup(p->pLeft);
       
   435   pNew->pRight = sqlite3ExprDup(p->pRight);
       
   436   pNew->pList = sqlite3ExprListDup(p->pList);
       
   437   pNew->pSelect = sqlite3SelectDup(p->pSelect);
       
   438   pNew->pTab = p->pTab;
       
   439   return pNew;
       
   440 }
       
   441 void sqlite3TokenCopy(Token *pTo, Token *pFrom){
       
   442   if( pTo->dyn ) sqliteFree((char*)pTo->z);
       
   443   if( pFrom->z ){
       
   444     pTo->n = pFrom->n;
       
   445     pTo->z = (u8*)sqliteStrNDup((char*)pFrom->z, pFrom->n);
       
   446     pTo->dyn = 1;
       
   447   }else{
       
   448     pTo->z = 0;
       
   449   }
       
   450 }
       
   451 ExprList *sqlite3ExprListDup(ExprList *p){
       
   452   ExprList *pNew;
       
   453   struct ExprList_item *pItem, *pOldItem;
       
   454   int i;
       
   455   if( p==0 ) return 0;
       
   456   pNew = sqliteMalloc( sizeof(*pNew) );
       
   457   if( pNew==0 ) return 0;
       
   458   pNew->nExpr = pNew->nAlloc = p->nExpr;
       
   459   pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
       
   460   if( pItem==0 ){
       
   461     sqliteFree(pNew);
       
   462     return 0;
       
   463   } 
       
   464   pOldItem = p->a;
       
   465   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
       
   466     Expr *pNewExpr, *pOldExpr;
       
   467     pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr);
       
   468     if( pOldExpr->span.z!=0 && pNewExpr ){
       
   469       /* Always make a copy of the span for top-level expressions in the
       
   470       ** expression list.  The logic in SELECT processing that determines
       
   471       ** the names of columns in the result set needs this information */
       
   472       sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span);
       
   473     }
       
   474     assert( pNewExpr==0 || pNewExpr->span.z!=0 
       
   475             || pOldExpr->span.z==0
       
   476             || sqlite3MallocFailed() );
       
   477     pItem->zName = sqliteStrDup(pOldItem->zName);
       
   478     pItem->sortOrder = pOldItem->sortOrder;
       
   479     pItem->isAgg = pOldItem->isAgg;
       
   480     pItem->done = 0;
       
   481   }
       
   482   return pNew;
       
   483 }
       
   484 
       
   485 /*
       
   486 ** If cursors, triggers, views and subqueries are all omitted from
       
   487 ** the build, then none of the following routines, except for 
       
   488 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
       
   489 ** called with a NULL argument.
       
   490 */
       
   491 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
       
   492  || !defined(SQLITE_OMIT_SUBQUERY)
       
   493 SrcList *sqlite3SrcListDup(SrcList *p){
       
   494   SrcList *pNew;
       
   495   int i;
       
   496   int nByte;
       
   497   if( p==0 ) return 0;
       
   498   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
       
   499   pNew = sqliteMallocRaw( nByte );
       
   500   if( pNew==0 ) return 0;
       
   501   pNew->nSrc = pNew->nAlloc = p->nSrc;
       
   502   for(i=0; i<p->nSrc; i++){
       
   503     struct SrcList_item *pNewItem = &pNew->a[i];
       
   504     struct SrcList_item *pOldItem = &p->a[i];
       
   505     Table *pTab;
       
   506     pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
       
   507     pNewItem->zName = sqliteStrDup(pOldItem->zName);
       
   508     pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
       
   509     pNewItem->jointype = pOldItem->jointype;
       
   510     pNewItem->iCursor = pOldItem->iCursor;
       
   511     pNewItem->isPopulated = pOldItem->isPopulated;
       
   512     pTab = pNewItem->pTab = pOldItem->pTab;
       
   513     if( pTab ){
       
   514       pTab->nRef++;
       
   515     }
       
   516     pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect);
       
   517     pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn);
       
   518     pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing);
       
   519     pNewItem->colUsed = pOldItem->colUsed;
       
   520   }
       
   521   return pNew;
       
   522 }
       
   523 IdList *sqlite3IdListDup(IdList *p){
       
   524   IdList *pNew;
       
   525   int i;
       
   526   if( p==0 ) return 0;
       
   527   pNew = sqliteMallocRaw( sizeof(*pNew) );
       
   528   if( pNew==0 ) return 0;
       
   529   pNew->nId = pNew->nAlloc = p->nId;
       
   530   pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
       
   531   if( pNew->a==0 ){
       
   532     sqliteFree(pNew);
       
   533     return 0;
       
   534   }
       
   535   for(i=0; i<p->nId; i++){
       
   536     struct IdList_item *pNewItem = &pNew->a[i];
       
   537     struct IdList_item *pOldItem = &p->a[i];
       
   538     pNewItem->zName = sqliteStrDup(pOldItem->zName);
       
   539     pNewItem->idx = pOldItem->idx;
       
   540   }
       
   541   return pNew;
       
   542 }
       
   543 Select *sqlite3SelectDup(Select *p){
       
   544   Select *pNew;
       
   545   if( p==0 ) return 0;
       
   546   pNew = sqliteMallocRaw( sizeof(*p) );
       
   547   if( pNew==0 ) return 0;
       
   548   pNew->isDistinct = p->isDistinct;
       
   549   pNew->pEList = sqlite3ExprListDup(p->pEList);
       
   550   pNew->pSrc = sqlite3SrcListDup(p->pSrc);
       
   551   pNew->pWhere = sqlite3ExprDup(p->pWhere);
       
   552   pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy);
       
   553   pNew->pHaving = sqlite3ExprDup(p->pHaving);
       
   554   pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy);
       
   555   pNew->op = p->op;
       
   556   pNew->pPrior = sqlite3SelectDup(p->pPrior);
       
   557   pNew->pLimit = sqlite3ExprDup(p->pLimit);
       
   558   pNew->pOffset = sqlite3ExprDup(p->pOffset);
       
   559   pNew->iLimit = -1;
       
   560   pNew->iOffset = -1;
       
   561   pNew->isResolved = p->isResolved;
       
   562   pNew->isAgg = p->isAgg;
       
   563   pNew->usesEphm = 0;
       
   564   pNew->disallowOrderBy = 0;
       
   565   pNew->pRightmost = 0;
       
   566   pNew->addrOpenEphm[0] = -1;
       
   567   pNew->addrOpenEphm[1] = -1;
       
   568   pNew->addrOpenEphm[2] = -1;
       
   569   return pNew;
       
   570 }
       
   571 #else
       
   572 Select *sqlite3SelectDup(Select *p){
       
   573   assert( p==0 );
       
   574   return 0;
       
   575 }
       
   576 #endif
       
   577 
       
   578 
       
   579 /*
       
   580 ** Add a new element to the end of an expression list.  If pList is
       
   581 ** initially NULL, then create a new expression list.
       
   582 */
       
   583 ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
       
   584   if( pList==0 ){
       
   585     pList = sqliteMalloc( sizeof(ExprList) );
       
   586     if( pList==0 ){
       
   587       goto no_mem;
       
   588     }
       
   589     assert( pList->nAlloc==0 );
       
   590   }
       
   591   if( pList->nAlloc<=pList->nExpr ){
       
   592     struct ExprList_item *a;
       
   593     int n = pList->nAlloc*2 + 4;
       
   594     a = sqliteRealloc(pList->a, n*sizeof(pList->a[0]));
       
   595     if( a==0 ){
       
   596       goto no_mem;
       
   597     }
       
   598     pList->a = a;
       
   599     pList->nAlloc = n;
       
   600   }
       
   601   assert( pList->a!=0 );
       
   602   if( pExpr || pName ){
       
   603     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
       
   604     memset(pItem, 0, sizeof(*pItem));
       
   605     pItem->zName = sqlite3NameFromToken(pName);
       
   606     pItem->pExpr = pExpr;
       
   607   }
       
   608   return pList;
       
   609 
       
   610 no_mem:     
       
   611   /* Avoid leaking memory if malloc has failed. */
       
   612   sqlite3ExprDelete(pExpr);
       
   613   sqlite3ExprListDelete(pList);
       
   614   return 0;
       
   615 }
       
   616 
       
   617 /*
       
   618 ** Delete an entire expression list.
       
   619 */
       
   620 void sqlite3ExprListDelete(ExprList *pList){
       
   621   int i;
       
   622   struct ExprList_item *pItem;
       
   623   if( pList==0 ) return;
       
   624   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
       
   625   assert( pList->nExpr<=pList->nAlloc );
       
   626   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
       
   627     sqlite3ExprDelete(pItem->pExpr);
       
   628     sqliteFree(pItem->zName);
       
   629   }
       
   630   sqliteFree(pList->a);
       
   631   sqliteFree(pList);
       
   632 }
       
   633 
       
   634 /*
       
   635 ** Walk an expression tree.  Call xFunc for each node visited.
       
   636 **
       
   637 ** The return value from xFunc determines whether the tree walk continues.
       
   638 ** 0 means continue walking the tree.  1 means do not walk children
       
   639 ** of the current node but continue with siblings.  2 means abandon
       
   640 ** the tree walk completely.
       
   641 **
       
   642 ** The return value from this routine is 1 to abandon the tree walk
       
   643 ** and 0 to continue.
       
   644 **
       
   645 ** NOTICE:  This routine does *not* descend into subqueries.
       
   646 */
       
   647 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
       
   648 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
       
   649   int rc;
       
   650   if( pExpr==0 ) return 0;
       
   651   rc = (*xFunc)(pArg, pExpr);
       
   652   if( rc==0 ){
       
   653     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
       
   654     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
       
   655     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
       
   656   }
       
   657   return rc>1;
       
   658 }
       
   659 
       
   660 /*
       
   661 ** Call walkExprTree() for every expression in list p.
       
   662 */
       
   663 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
       
   664   int i;
       
   665   struct ExprList_item *pItem;
       
   666   if( !p ) return 0;
       
   667   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
       
   668     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
       
   669   }
       
   670   return 0;
       
   671 }
       
   672 
       
   673 /*
       
   674 ** Call walkExprTree() for every expression in Select p, not including
       
   675 ** expressions that are part of sub-selects in any FROM clause or the LIMIT
       
   676 ** or OFFSET expressions..
       
   677 */
       
   678 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
       
   679   walkExprList(p->pEList, xFunc, pArg);
       
   680   walkExprTree(p->pWhere, xFunc, pArg);
       
   681   walkExprList(p->pGroupBy, xFunc, pArg);
       
   682   walkExprTree(p->pHaving, xFunc, pArg);
       
   683   walkExprList(p->pOrderBy, xFunc, pArg);
       
   684   return 0;
       
   685 }
       
   686 
       
   687 
       
   688 /*
       
   689 ** This routine is designed as an xFunc for walkExprTree().
       
   690 **
       
   691 ** pArg is really a pointer to an integer.  If we can tell by looking
       
   692 ** at pExpr that the expression that contains pExpr is not a constant
       
   693 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
       
   694 ** If pExpr does does not disqualify the expression from being a constant
       
   695 ** then do nothing.
       
   696 **
       
   697 ** After walking the whole tree, if no nodes are found that disqualify
       
   698 ** the expression as constant, then we assume the whole expression
       
   699 ** is constant.  See sqlite3ExprIsConstant() for additional information.
       
   700 */
       
   701 static int exprNodeIsConstant(void *pArg, Expr *pExpr){
       
   702   switch( pExpr->op ){
       
   703     /* Consider functions to be constant if all their arguments are constant
       
   704     ** and *pArg==2 */
       
   705     case TK_FUNCTION:
       
   706       if( *((int*)pArg)==2 ) return 0;
       
   707       /* Fall through */
       
   708     case TK_ID:
       
   709     case TK_COLUMN:
       
   710     case TK_DOT:
       
   711     case TK_AGG_FUNCTION:
       
   712     case TK_AGG_COLUMN:
       
   713 #ifndef SQLITE_OMIT_SUBQUERY
       
   714     case TK_SELECT:
       
   715     case TK_EXISTS:
       
   716 #endif
       
   717       *((int*)pArg) = 0;
       
   718       return 2;
       
   719     case TK_IN:
       
   720       if( pExpr->pSelect ){
       
   721         *((int*)pArg) = 0;
       
   722         return 2;
       
   723       }
       
   724     default:
       
   725       return 0;
       
   726   }
       
   727 }
       
   728 
       
   729 /*
       
   730 ** Walk an expression tree.  Return 1 if the expression is constant
       
   731 ** and 0 if it involves variables or function calls.
       
   732 **
       
   733 ** For the purposes of this function, a double-quoted string (ex: "abc")
       
   734 ** is considered a variable but a single-quoted string (ex: 'abc') is
       
   735 ** a constant.
       
   736 */
       
   737 int sqlite3ExprIsConstant(Expr *p){
       
   738   int isConst = 1;
       
   739   walkExprTree(p, exprNodeIsConstant, &isConst);
       
   740   return isConst;
       
   741 }
       
   742 
       
   743 /*
       
   744 ** Walk an expression tree.  Return 1 if the expression is constant
       
   745 ** or a function call with constant arguments.  Return and 0 if there
       
   746 ** are any variables.
       
   747 **
       
   748 ** For the purposes of this function, a double-quoted string (ex: "abc")
       
   749 ** is considered a variable but a single-quoted string (ex: 'abc') is
       
   750 ** a constant.
       
   751 */
       
   752 int sqlite3ExprIsConstantOrFunction(Expr *p){
       
   753   int isConst = 2;
       
   754   walkExprTree(p, exprNodeIsConstant, &isConst);
       
   755   return isConst!=0;
       
   756 }
       
   757 
       
   758 /*
       
   759 ** If the expression p codes a constant integer that is small enough
       
   760 ** to fit in a 32-bit integer, return 1 and put the value of the integer
       
   761 ** in *pValue.  If the expression is not an integer or if it is too big
       
   762 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
       
   763 */
       
   764 int sqlite3ExprIsInteger(Expr *p, int *pValue){
       
   765   switch( p->op ){
       
   766     case TK_INTEGER: {
       
   767       if( sqlite3GetInt32((char*)p->token.z, pValue) ){
       
   768         return 1;
       
   769       }
       
   770       break;
       
   771     }
       
   772     case TK_UPLUS: {
       
   773       return sqlite3ExprIsInteger(p->pLeft, pValue);
       
   774     }
       
   775     case TK_UMINUS: {
       
   776       int v;
       
   777       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
       
   778         *pValue = -v;
       
   779         return 1;
       
   780       }
       
   781       break;
       
   782     }
       
   783     default: break;
       
   784   }
       
   785   return 0;
       
   786 }
       
   787 
       
   788 /*
       
   789 ** Return TRUE if the given string is a row-id column name.
       
   790 */
       
   791 int sqlite3IsRowid(const char *z){
       
   792   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
       
   793   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
       
   794   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
       
   795   return 0;
       
   796 }
       
   797 
       
   798 /*
       
   799 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
       
   800 ** that name in the set of source tables in pSrcList and make the pExpr 
       
   801 ** expression node refer back to that source column.  The following changes
       
   802 ** are made to pExpr:
       
   803 **
       
   804 **    pExpr->iDb           Set the index in db->aDb[] of the database holding
       
   805 **                         the table.
       
   806 **    pExpr->iTable        Set to the cursor number for the table obtained
       
   807 **                         from pSrcList.
       
   808 **    pExpr->iColumn       Set to the column number within the table.
       
   809 **    pExpr->op            Set to TK_COLUMN.
       
   810 **    pExpr->pLeft         Any expression this points to is deleted
       
   811 **    pExpr->pRight        Any expression this points to is deleted.
       
   812 **
       
   813 ** The pDbToken is the name of the database (the "X").  This value may be
       
   814 ** NULL meaning that name is of the form Y.Z or Z.  Any available database
       
   815 ** can be used.  The pTableToken is the name of the table (the "Y").  This
       
   816 ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
       
   817 ** means that the form of the name is Z and that columns from any table
       
   818 ** can be used.
       
   819 **
       
   820 ** If the name cannot be resolved unambiguously, leave an error message
       
   821 ** in pParse and return non-zero.  Return zero on success.
       
   822 */
       
   823 static int lookupName(
       
   824   Parse *pParse,       /* The parsing context */
       
   825   Token *pDbToken,     /* Name of the database containing table, or NULL */
       
   826   Token *pTableToken,  /* Name of table containing column, or NULL */
       
   827   Token *pColumnToken, /* Name of the column. */
       
   828   NameContext *pNC,    /* The name context used to resolve the name */
       
   829   Expr *pExpr          /* Make this EXPR node point to the selected column */
       
   830 ){
       
   831   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
       
   832   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
       
   833   char *zCol = 0;      /* Name of the column.  The "Z" */
       
   834   int i, j;            /* Loop counters */
       
   835   int cnt = 0;         /* Number of matching column names */
       
   836   int cntTab = 0;      /* Number of matching table names */
       
   837   sqlite3 *db = pParse->db;  /* The database */
       
   838   struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
       
   839   struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
       
   840   NameContext *pTopNC = pNC;        /* First namecontext in the list */
       
   841 
       
   842   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
       
   843   zDb = sqlite3NameFromToken(pDbToken);
       
   844   zTab = sqlite3NameFromToken(pTableToken);
       
   845   zCol = sqlite3NameFromToken(pColumnToken);
       
   846   if( sqlite3MallocFailed() ){
       
   847     goto lookupname_end;
       
   848   }
       
   849 
       
   850   pExpr->iTable = -1;
       
   851   while( pNC && cnt==0 ){
       
   852     ExprList *pEList;
       
   853     SrcList *pSrcList = pNC->pSrcList;
       
   854 
       
   855     if( pSrcList ){
       
   856       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
       
   857         Table *pTab;
       
   858         int iDb;
       
   859         Column *pCol;
       
   860   
       
   861         pTab = pItem->pTab;
       
   862         assert( pTab!=0 );
       
   863         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
       
   864         assert( pTab->nCol>0 );
       
   865         if( zTab ){
       
   866           if( pItem->zAlias ){
       
   867             char *zTabName = pItem->zAlias;
       
   868             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
       
   869           }else{
       
   870             char *zTabName = pTab->zName;
       
   871             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
       
   872             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
       
   873               continue;
       
   874             }
       
   875           }
       
   876         }
       
   877         if( 0==(cntTab++) ){
       
   878           pExpr->iTable = pItem->iCursor;
       
   879           pExpr->pSchema = pTab->pSchema;
       
   880           pMatch = pItem;
       
   881         }
       
   882         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
       
   883           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
       
   884             const char *zColl = pTab->aCol[j].zColl;
       
   885             IdList *pUsing;
       
   886             cnt++;
       
   887             pExpr->iTable = pItem->iCursor;
       
   888             pMatch = pItem;
       
   889             pExpr->pSchema = pTab->pSchema;
       
   890             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
       
   891             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
       
   892             pExpr->affinity = pTab->aCol[j].affinity;
       
   893             pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
       
   894             if( pItem->jointype & JT_NATURAL ){
       
   895               /* If this match occurred in the left table of a natural join,
       
   896               ** then skip the right table to avoid a duplicate match */
       
   897               pItem++;
       
   898               i++;
       
   899             }
       
   900             if( (pUsing = pItem->pUsing)!=0 ){
       
   901               /* If this match occurs on a column that is in the USING clause
       
   902               ** of a join, skip the search of the right table of the join
       
   903               ** to avoid a duplicate match there. */
       
   904               int k;
       
   905               for(k=0; k<pUsing->nId; k++){
       
   906                 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
       
   907                   pItem++;
       
   908                   i++;
       
   909                   break;
       
   910                 }
       
   911               }
       
   912             }
       
   913             break;
       
   914           }
       
   915         }
       
   916       }
       
   917     }
       
   918 
       
   919 #ifndef SQLITE_OMIT_TRIGGER
       
   920     /* If we have not already resolved the name, then maybe 
       
   921     ** it is a new.* or old.* trigger argument reference
       
   922     */
       
   923     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
       
   924       TriggerStack *pTriggerStack = pParse->trigStack;
       
   925       Table *pTab = 0;
       
   926       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
       
   927         pExpr->iTable = pTriggerStack->newIdx;
       
   928         assert( pTriggerStack->pTab );
       
   929         pTab = pTriggerStack->pTab;
       
   930       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
       
   931         pExpr->iTable = pTriggerStack->oldIdx;
       
   932         assert( pTriggerStack->pTab );
       
   933         pTab = pTriggerStack->pTab;
       
   934       }
       
   935 
       
   936       if( pTab ){ 
       
   937         int iCol;
       
   938         Column *pCol = pTab->aCol;
       
   939 
       
   940         pExpr->pSchema = pTab->pSchema;
       
   941         cntTab++;
       
   942         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
       
   943           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
       
   944             const char *zColl = pTab->aCol[iCol].zColl;
       
   945             cnt++;
       
   946             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
       
   947             pExpr->affinity = pTab->aCol[iCol].affinity;
       
   948             pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
       
   949             pExpr->pTab = pTab;
       
   950             break;
       
   951           }
       
   952         }
       
   953       }
       
   954     }
       
   955 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
       
   956 
       
   957     /*
       
   958     ** Perhaps the name is a reference to the ROWID
       
   959     */
       
   960     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
       
   961       cnt = 1;
       
   962       pExpr->iColumn = -1;
       
   963       pExpr->affinity = SQLITE_AFF_INTEGER;
       
   964     }
       
   965 
       
   966     /*
       
   967     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
       
   968     ** might refer to an result-set alias.  This happens, for example, when
       
   969     ** we are resolving names in the WHERE clause of the following command:
       
   970     **
       
   971     **     SELECT a+b AS x FROM table WHERE x<10;
       
   972     **
       
   973     ** In cases like this, replace pExpr with a copy of the expression that
       
   974     ** forms the result set entry ("a+b" in the example) and return immediately.
       
   975     ** Note that the expression in the result set should have already been
       
   976     ** resolved by the time the WHERE clause is resolved.
       
   977     */
       
   978     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
       
   979       for(j=0; j<pEList->nExpr; j++){
       
   980         char *zAs = pEList->a[j].zName;
       
   981         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
       
   982           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
       
   983           pExpr->op = TK_AS;
       
   984           pExpr->iColumn = j;
       
   985           pExpr->pLeft = sqlite3ExprDup(pEList->a[j].pExpr);
       
   986           cnt = 1;
       
   987           assert( zTab==0 && zDb==0 );
       
   988           goto lookupname_end_2;
       
   989         }
       
   990       } 
       
   991     }
       
   992 
       
   993     /* Advance to the next name context.  The loop will exit when either
       
   994     ** we have a match (cnt>0) or when we run out of name contexts.
       
   995     */
       
   996     if( cnt==0 ){
       
   997       pNC = pNC->pNext;
       
   998     }
       
   999   }
       
  1000 
       
  1001   /*
       
  1002   ** If X and Y are NULL (in other words if only the column name Z is
       
  1003   ** supplied) and the value of Z is enclosed in double-quotes, then
       
  1004   ** Z is a string literal if it doesn't match any column names.  In that
       
  1005   ** case, we need to return right away and not make any changes to
       
  1006   ** pExpr.
       
  1007   **
       
  1008   ** Because no reference was made to outer contexts, the pNC->nRef
       
  1009   ** fields are not changed in any context.
       
  1010   */
       
  1011   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
       
  1012     sqliteFree(zCol);
       
  1013     return 0;
       
  1014   }
       
  1015 
       
  1016   /*
       
  1017   ** cnt==0 means there was not match.  cnt>1 means there were two or
       
  1018   ** more matches.  Either way, we have an error.
       
  1019   */
       
  1020   if( cnt!=1 ){
       
  1021     char *z = 0;
       
  1022     char *zErr;
       
  1023     zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
       
  1024     if( zDb ){
       
  1025       sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0);
       
  1026     }else if( zTab ){
       
  1027       sqlite3SetString(&z, zTab, ".", zCol, (char*)0);
       
  1028     }else{
       
  1029       z = sqliteStrDup(zCol);
       
  1030     }
       
  1031     sqlite3ErrorMsg(pParse, zErr, z);
       
  1032     sqliteFree(z);
       
  1033     pTopNC->nErr++;
       
  1034   }
       
  1035 
       
  1036   /* If a column from a table in pSrcList is referenced, then record
       
  1037   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
       
  1038   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
       
  1039   ** column number is greater than the number of bits in the bitmask
       
  1040   ** then set the high-order bit of the bitmask.
       
  1041   */
       
  1042   if( pExpr->iColumn>=0 && pMatch!=0 ){
       
  1043     int n = pExpr->iColumn;
       
  1044     if( n>=sizeof(Bitmask)*8 ){
       
  1045       n = sizeof(Bitmask)*8-1;
       
  1046     }
       
  1047     assert( pMatch->iCursor==pExpr->iTable );
       
  1048     pMatch->colUsed |= 1<<n;
       
  1049   }
       
  1050 
       
  1051 lookupname_end:
       
  1052   /* Clean up and return
       
  1053   */
       
  1054   sqliteFree(zDb);
       
  1055   sqliteFree(zTab);
       
  1056   sqlite3ExprDelete(pExpr->pLeft);
       
  1057   pExpr->pLeft = 0;
       
  1058   sqlite3ExprDelete(pExpr->pRight);
       
  1059   pExpr->pRight = 0;
       
  1060   pExpr->op = TK_COLUMN;
       
  1061 lookupname_end_2:
       
  1062   sqliteFree(zCol);
       
  1063   if( cnt==1 ){
       
  1064     assert( pNC!=0 );
       
  1065     sqlite3AuthRead(pParse, pExpr, pNC->pSrcList);
       
  1066     if( pMatch && !pMatch->pSelect ){
       
  1067       pExpr->pTab = pMatch->pTab;
       
  1068     }
       
  1069     /* Increment the nRef value on all name contexts from TopNC up to
       
  1070     ** the point where the name matched. */
       
  1071     for(;;){
       
  1072       assert( pTopNC!=0 );
       
  1073       pTopNC->nRef++;
       
  1074       if( pTopNC==pNC ) break;
       
  1075       pTopNC = pTopNC->pNext;
       
  1076     }
       
  1077     return 0;
       
  1078   } else {
       
  1079     return 1;
       
  1080   }
       
  1081 }
       
  1082 
       
  1083 /*
       
  1084 ** This routine is designed as an xFunc for walkExprTree().
       
  1085 **
       
  1086 ** Resolve symbolic names into TK_COLUMN operators for the current
       
  1087 ** node in the expression tree.  Return 0 to continue the search down
       
  1088 ** the tree or 2 to abort the tree walk.
       
  1089 **
       
  1090 ** This routine also does error checking and name resolution for
       
  1091 ** function names.  The operator for aggregate functions is changed
       
  1092 ** to TK_AGG_FUNCTION.
       
  1093 */
       
  1094 static int nameResolverStep(void *pArg, Expr *pExpr){
       
  1095   NameContext *pNC = (NameContext*)pArg;
       
  1096   Parse *pParse;
       
  1097 
       
  1098   if( pExpr==0 ) return 1;
       
  1099   assert( pNC!=0 );
       
  1100   pParse = pNC->pParse;
       
  1101 
       
  1102   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
       
  1103   ExprSetProperty(pExpr, EP_Resolved);
       
  1104 #ifndef NDEBUG
       
  1105   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
       
  1106     SrcList *pSrcList = pNC->pSrcList;
       
  1107     int i;
       
  1108     for(i=0; i<pNC->pSrcList->nSrc; i++){
       
  1109       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
       
  1110     }
       
  1111   }
       
  1112 #endif
       
  1113   switch( pExpr->op ){
       
  1114     /* Double-quoted strings (ex: "abc") are used as identifiers if
       
  1115     ** possible.  Otherwise they remain as strings.  Single-quoted
       
  1116     ** strings (ex: 'abc') are always string literals.
       
  1117     */
       
  1118     case TK_STRING: {
       
  1119       if( pExpr->token.z[0]=='\'' ) break;
       
  1120       /* Fall thru into the TK_ID case if this is a double-quoted string */
       
  1121     }
       
  1122     /* A lone identifier is the name of a column.
       
  1123     */
       
  1124     case TK_ID: {
       
  1125       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
       
  1126       return 1;
       
  1127     }
       
  1128   
       
  1129     /* A table name and column name:     ID.ID
       
  1130     ** Or a database, table and column:  ID.ID.ID
       
  1131     */
       
  1132     case TK_DOT: {
       
  1133       Token *pColumn;
       
  1134       Token *pTable;
       
  1135       Token *pDb;
       
  1136       Expr *pRight;
       
  1137 
       
  1138       /* if( pSrcList==0 ) break; */
       
  1139       pRight = pExpr->pRight;
       
  1140       if( pRight->op==TK_ID ){
       
  1141         pDb = 0;
       
  1142         pTable = &pExpr->pLeft->token;
       
  1143         pColumn = &pRight->token;
       
  1144       }else{
       
  1145         assert( pRight->op==TK_DOT );
       
  1146         pDb = &pExpr->pLeft->token;
       
  1147         pTable = &pRight->pLeft->token;
       
  1148         pColumn = &pRight->pRight->token;
       
  1149       }
       
  1150       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
       
  1151       return 1;
       
  1152     }
       
  1153 
       
  1154     /* Resolve function names
       
  1155     */
       
  1156     case TK_CONST_FUNC:
       
  1157     case TK_FUNCTION: {
       
  1158       ExprList *pList = pExpr->pList;    /* The argument list */
       
  1159       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
       
  1160       int no_such_func = 0;       /* True if no such function exists */
       
  1161       int wrong_num_args = 0;     /* True if wrong number of arguments */
       
  1162       int is_agg = 0;             /* True if is an aggregate function */
       
  1163       int i;
       
  1164       int auth;                   /* Authorization to use the function */
       
  1165       int nId;                    /* Number of characters in function name */
       
  1166       const char *zId;            /* The function name. */
       
  1167       FuncDef *pDef;              /* Information about the function */
       
  1168       int enc = ENC(pParse->db);  /* The database encoding */
       
  1169 
       
  1170       zId = (char*)pExpr->token.z;
       
  1171       nId = pExpr->token.n;
       
  1172       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
       
  1173       if( pDef==0 ){
       
  1174         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
       
  1175         if( pDef==0 ){
       
  1176           no_such_func = 1;
       
  1177         }else{
       
  1178           wrong_num_args = 1;
       
  1179         }
       
  1180       }else{
       
  1181         is_agg = pDef->xFunc==0;
       
  1182       }
       
  1183 #ifndef SQLITE_OMIT_AUTHORIZER
       
  1184       if( pDef ){
       
  1185         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
       
  1186         if( auth!=SQLITE_OK ){
       
  1187           if( auth==SQLITE_DENY ){
       
  1188             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
       
  1189                                     pDef->zName);
       
  1190             pNC->nErr++;
       
  1191           }
       
  1192           pExpr->op = TK_NULL;
       
  1193           return 1;
       
  1194         }
       
  1195       }
       
  1196 #endif
       
  1197       if( is_agg && !pNC->allowAgg ){
       
  1198         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
       
  1199         pNC->nErr++;
       
  1200         is_agg = 0;
       
  1201       }else if( no_such_func ){
       
  1202         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
       
  1203         pNC->nErr++;
       
  1204       }else if( wrong_num_args ){
       
  1205         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
       
  1206              nId, zId);
       
  1207         pNC->nErr++;
       
  1208       }
       
  1209       if( is_agg ){
       
  1210         pExpr->op = TK_AGG_FUNCTION;
       
  1211         pNC->hasAgg = 1;
       
  1212       }
       
  1213       if( is_agg ) pNC->allowAgg = 0;
       
  1214       for(i=0; pNC->nErr==0 && i<n; i++){
       
  1215         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
       
  1216       }
       
  1217       if( is_agg ) pNC->allowAgg = 1;
       
  1218       /* FIX ME:  Compute pExpr->affinity based on the expected return
       
  1219       ** type of the function 
       
  1220       */
       
  1221       return is_agg;
       
  1222     }
       
  1223 #ifndef SQLITE_OMIT_SUBQUERY
       
  1224     case TK_SELECT:
       
  1225     case TK_EXISTS:
       
  1226 #endif
       
  1227     case TK_IN: {
       
  1228       if( pExpr->pSelect ){
       
  1229         int nRef = pNC->nRef;
       
  1230 #ifndef SQLITE_OMIT_CHECK
       
  1231         if( pNC->isCheck ){
       
  1232           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
       
  1233         }
       
  1234 #endif
       
  1235         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
       
  1236         assert( pNC->nRef>=nRef );
       
  1237         if( nRef!=pNC->nRef ){
       
  1238           ExprSetProperty(pExpr, EP_VarSelect);
       
  1239         }
       
  1240       }
       
  1241       break;
       
  1242     }
       
  1243 #ifndef SQLITE_OMIT_CHECK
       
  1244     case TK_VARIABLE: {
       
  1245       if( pNC->isCheck ){
       
  1246         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
       
  1247       }
       
  1248       break;
       
  1249     }
       
  1250 #endif
       
  1251   }
       
  1252   return 0;
       
  1253 }
       
  1254 
       
  1255 /*
       
  1256 ** This routine walks an expression tree and resolves references to
       
  1257 ** table columns.  Nodes of the form ID.ID or ID resolve into an
       
  1258 ** index to the table in the table list and a column offset.  The 
       
  1259 ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
       
  1260 ** value is changed to the index of the referenced table in pTabList
       
  1261 ** plus the "base" value.  The base value will ultimately become the
       
  1262 ** VDBE cursor number for a cursor that is pointing into the referenced
       
  1263 ** table.  The Expr.iColumn value is changed to the index of the column 
       
  1264 ** of the referenced table.  The Expr.iColumn value for the special
       
  1265 ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
       
  1266 ** alias for ROWID.
       
  1267 **
       
  1268 ** Also resolve function names and check the functions for proper
       
  1269 ** usage.  Make sure all function names are recognized and all functions
       
  1270 ** have the correct number of arguments.  Leave an error message
       
  1271 ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
       
  1272 **
       
  1273 ** If the expression contains aggregate functions then set the EP_Agg
       
  1274 ** property on the expression.
       
  1275 */
       
  1276 int sqlite3ExprResolveNames(
       
  1277   NameContext *pNC,       /* Namespace to resolve expressions in. */
       
  1278   Expr *pExpr             /* The expression to be analyzed. */
       
  1279 ){
       
  1280   int savedHasAgg;
       
  1281   if( pExpr==0 ) return 0;
       
  1282   savedHasAgg = pNC->hasAgg;
       
  1283   pNC->hasAgg = 0;
       
  1284   walkExprTree(pExpr, nameResolverStep, pNC);
       
  1285   if( pNC->nErr>0 ){
       
  1286     ExprSetProperty(pExpr, EP_Error);
       
  1287   }
       
  1288   if( pNC->hasAgg ){
       
  1289     ExprSetProperty(pExpr, EP_Agg);
       
  1290   }else if( savedHasAgg ){
       
  1291     pNC->hasAgg = 1;
       
  1292   }
       
  1293   return ExprHasProperty(pExpr, EP_Error);
       
  1294 }
       
  1295 
       
  1296 /*
       
  1297 ** A pointer instance of this structure is used to pass information
       
  1298 ** through walkExprTree into codeSubqueryStep().
       
  1299 */
       
  1300 typedef struct QueryCoder QueryCoder;
       
  1301 struct QueryCoder {
       
  1302   Parse *pParse;       /* The parsing context */
       
  1303   NameContext *pNC;    /* Namespace of first enclosing query */
       
  1304 };
       
  1305 
       
  1306 
       
  1307 /*
       
  1308 ** Generate code for scalar subqueries used as an expression
       
  1309 ** and IN operators.  Examples:
       
  1310 **
       
  1311 **     (SELECT a FROM b)          -- subquery
       
  1312 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
       
  1313 **     x IN (4,5,11)              -- IN operator with list on right-hand side
       
  1314 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
       
  1315 **
       
  1316 ** The pExpr parameter describes the expression that contains the IN
       
  1317 ** operator or subquery.
       
  1318 */
       
  1319 #ifndef SQLITE_OMIT_SUBQUERY
       
  1320 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
       
  1321   int testAddr = 0;                       /* One-time test address */
       
  1322   Vdbe *v = sqlite3GetVdbe(pParse);
       
  1323   if( v==0 ) return;
       
  1324 
       
  1325   /* This code must be run in its entirety every time it is encountered
       
  1326   ** if any of the following is true:
       
  1327   **
       
  1328   **    *  The right-hand side is a correlated subquery
       
  1329   **    *  The right-hand side is an expression list containing variables
       
  1330   **    *  We are inside a trigger
       
  1331   **
       
  1332   ** If all of the above are false, then we can run this code just once
       
  1333   ** save the results, and reuse the same result on subsequent invocations.
       
  1334   */
       
  1335   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
       
  1336     int mem = pParse->nMem++;
       
  1337     sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
       
  1338     testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
       
  1339     assert( testAddr>0 || sqlite3MallocFailed() );
       
  1340     sqlite3VdbeAddOp(v, OP_MemInt, 1, mem);
       
  1341   }
       
  1342 
       
  1343   switch( pExpr->op ){
       
  1344     case TK_IN: {
       
  1345       char affinity;
       
  1346       KeyInfo keyInfo;
       
  1347       int addr;        /* Address of OP_OpenEphemeral instruction */
       
  1348 
       
  1349       affinity = sqlite3ExprAffinity(pExpr->pLeft);
       
  1350 
       
  1351       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
       
  1352       ** expression it is handled the same way. A virtual table is 
       
  1353       ** filled with single-field index keys representing the results
       
  1354       ** from the SELECT or the <exprlist>.
       
  1355       **
       
  1356       ** If the 'x' expression is a column value, or the SELECT...
       
  1357       ** statement returns a column value, then the affinity of that
       
  1358       ** column is used to build the index keys. If both 'x' and the
       
  1359       ** SELECT... statement are columns, then numeric affinity is used
       
  1360       ** if either column has NUMERIC or INTEGER affinity. If neither
       
  1361       ** 'x' nor the SELECT... statement are columns, then numeric affinity
       
  1362       ** is used.
       
  1363       */
       
  1364       pExpr->iTable = pParse->nTab++;
       
  1365       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0);
       
  1366       memset(&keyInfo, 0, sizeof(keyInfo));
       
  1367       keyInfo.nField = 1;
       
  1368       sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);
       
  1369 
       
  1370       if( pExpr->pSelect ){
       
  1371         /* Case 1:     expr IN (SELECT ...)
       
  1372         **
       
  1373         ** Generate code to write the results of the select into the temporary
       
  1374         ** table allocated and opened above.
       
  1375         */
       
  1376         int iParm = pExpr->iTable +  (((int)affinity)<<16);
       
  1377         ExprList *pEList;
       
  1378         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
       
  1379         sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0);
       
  1380         pEList = pExpr->pSelect->pEList;
       
  1381         if( pEList && pEList->nExpr>0 ){ 
       
  1382           keyInfo.aColl[0] = binaryCompareCollSeq(pParse, pExpr->pLeft,
       
  1383               pEList->a[0].pExpr);
       
  1384         }
       
  1385       }else if( pExpr->pList ){
       
  1386         /* Case 2:     expr IN (exprlist)
       
  1387         **
       
  1388 	** For each expression, build an index key from the evaluation and
       
  1389         ** store it in the temporary table. If <expr> is a column, then use
       
  1390         ** that columns affinity when building index keys. If <expr> is not
       
  1391         ** a column, use numeric affinity.
       
  1392         */
       
  1393         int i;
       
  1394         ExprList *pList = pExpr->pList;
       
  1395         struct ExprList_item *pItem;
       
  1396 
       
  1397         if( !affinity ){
       
  1398           affinity = SQLITE_AFF_NONE;
       
  1399         }
       
  1400         keyInfo.aColl[0] = pExpr->pLeft->pColl;
       
  1401 
       
  1402         /* Loop through each expression in <exprlist>. */
       
  1403         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
       
  1404           Expr *pE2 = pItem->pExpr;
       
  1405 
       
  1406           /* If the expression is not constant then we will need to
       
  1407           ** disable the test that was generated above that makes sure
       
  1408           ** this code only executes once.  Because for a non-constant
       
  1409           ** expression we need to rerun this code each time.
       
  1410           */
       
  1411           if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){
       
  1412             sqlite3VdbeChangeToNoop(v, testAddr-1, 3);
       
  1413             testAddr = 0;
       
  1414           }
       
  1415 
       
  1416           /* Evaluate the expression and insert it into the temp table */
       
  1417           sqlite3ExprCode(pParse, pE2);
       
  1418           sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
       
  1419           sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0);
       
  1420         }
       
  1421       }
       
  1422       sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO);
       
  1423       break;
       
  1424     }
       
  1425 
       
  1426     case TK_EXISTS:
       
  1427     case TK_SELECT: {
       
  1428       /* This has to be a scalar SELECT.  Generate code to put the
       
  1429       ** value of this select in a memory cell and record the number
       
  1430       ** of the memory cell in iColumn.
       
  1431       */
       
  1432       static const Token one = { (u8*)"1", 0, 1 };
       
  1433       Select *pSel;
       
  1434       int iMem;
       
  1435       int sop;
       
  1436 
       
  1437       pExpr->iColumn = iMem = pParse->nMem++;
       
  1438       pSel = pExpr->pSelect;
       
  1439       if( pExpr->op==TK_SELECT ){
       
  1440         sop = SRT_Mem;
       
  1441         sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0);
       
  1442         VdbeComment((v, "# Init subquery result"));
       
  1443       }else{
       
  1444         sop = SRT_Exists;
       
  1445         sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem);
       
  1446         VdbeComment((v, "# Init EXISTS result"));
       
  1447       }
       
  1448       sqlite3ExprDelete(pSel->pLimit);
       
  1449       pSel->pLimit = sqlite3Expr(TK_INTEGER, 0, 0, &one);
       
  1450       sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0);
       
  1451       break;
       
  1452     }
       
  1453   }
       
  1454 
       
  1455   if( testAddr ){
       
  1456     sqlite3VdbeJumpHere(v, testAddr);
       
  1457   }
       
  1458   return;
       
  1459 }
       
  1460 #endif /* SQLITE_OMIT_SUBQUERY */
       
  1461 
       
  1462 /*
       
  1463 ** Generate an instruction that will put the integer describe by
       
  1464 ** text z[0..n-1] on the stack.
       
  1465 */
       
  1466 static void codeInteger(Vdbe *v, const char *z, int n){
       
  1467   int i;
       
  1468   if( sqlite3GetInt32(z, &i) ){
       
  1469     sqlite3VdbeAddOp(v, OP_Integer, i, 0);
       
  1470   }else if( sqlite3FitsIn64Bits(z) ){
       
  1471     sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n);
       
  1472   }else{
       
  1473     sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n);
       
  1474   }
       
  1475 }
       
  1476 
       
  1477 /*
       
  1478 ** Generate code into the current Vdbe to evaluate the given
       
  1479 ** expression and leave the result on the top of stack.
       
  1480 **
       
  1481 ** This code depends on the fact that certain token values (ex: TK_EQ)
       
  1482 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
       
  1483 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
       
  1484 ** the make process cause these values to align.  Assert()s in the code
       
  1485 ** below verify that the numbers are aligned correctly.
       
  1486 */
       
  1487 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
       
  1488   Vdbe *v = pParse->pVdbe;
       
  1489   int op;
       
  1490   int stackChng = 1;    /* Amount of change to stack depth */
       
  1491 
       
  1492   if( v==0 ) return;
       
  1493   if( pExpr==0 ){
       
  1494     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
  1495     return;
       
  1496   }
       
  1497   op = pExpr->op;
       
  1498   switch( op ){
       
  1499     case TK_AGG_COLUMN: {
       
  1500       AggInfo *pAggInfo = pExpr->pAggInfo;
       
  1501       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
       
  1502       if( !pAggInfo->directMode ){
       
  1503         sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);
       
  1504         break;
       
  1505       }else if( pAggInfo->useSortingIdx ){
       
  1506         sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,
       
  1507                               pCol->iSorterColumn);
       
  1508         break;
       
  1509       }
       
  1510       /* Otherwise, fall thru into the TK_COLUMN case */
       
  1511     }
       
  1512     case TK_COLUMN: {
       
  1513       if( pExpr->iTable<0 ){
       
  1514         /* This only happens when coding check constraints */
       
  1515         assert( pParse->ckOffset>0 );
       
  1516         sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);
       
  1517       }else if( pExpr->iColumn>=0 ){
       
  1518         Table *pTab = pExpr->pTab;
       
  1519         int iCol = pExpr->iColumn;
       
  1520         int op = (pTab && IsVirtual(pTab)) ? OP_VColumn : OP_Column;
       
  1521         sqlite3VdbeAddOp(v, op, pExpr->iTable, iCol);
       
  1522         sqlite3ColumnDefault(v, pTab, iCol);
       
  1523 #ifndef SQLITE_OMIT_FLOATING_POINT
       
  1524         if( pTab && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
       
  1525           sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0);
       
  1526         }
       
  1527 #endif
       
  1528       }else{
       
  1529         Table *pTab = pExpr->pTab;
       
  1530         int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
       
  1531         sqlite3VdbeAddOp(v, op, pExpr->iTable, 0);
       
  1532       }
       
  1533       break;
       
  1534     }
       
  1535     case TK_INTEGER: {
       
  1536       codeInteger(v, (char*)pExpr->token.z, pExpr->token.n);
       
  1537       break;
       
  1538     }
       
  1539     case TK_FLOAT:
       
  1540     case TK_STRING: {
       
  1541       assert( TK_FLOAT==OP_Real );
       
  1542       assert( TK_STRING==OP_String8 );
       
  1543       sqlite3DequoteExpr(pExpr);
       
  1544       sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n);
       
  1545       break;
       
  1546     }
       
  1547     case TK_NULL: {
       
  1548       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
  1549       break;
       
  1550     }
       
  1551 #ifndef SQLITE_OMIT_BLOB_LITERAL
       
  1552     case TK_BLOB: {
       
  1553       int n;
       
  1554       const char *z;
       
  1555       assert( TK_BLOB==OP_HexBlob );
       
  1556       n = pExpr->token.n - 3;
       
  1557       z = (char*)pExpr->token.z + 2;
       
  1558       assert( n>=0 );
       
  1559       if( n==0 ){
       
  1560         z = "";
       
  1561       }
       
  1562       sqlite3VdbeOp3(v, op, 0, 0, z, n);
       
  1563       break;
       
  1564     }
       
  1565 #endif
       
  1566     case TK_VARIABLE: {
       
  1567       sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
       
  1568       if( pExpr->token.n>1 ){
       
  1569         sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n);
       
  1570       }
       
  1571       break;
       
  1572     }
       
  1573     case TK_REGISTER: {
       
  1574       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0);
       
  1575       break;
       
  1576     }
       
  1577 #ifndef SQLITE_OMIT_CAST
       
  1578     case TK_CAST: {
       
  1579       /* Expressions of the form:   CAST(pLeft AS token) */
       
  1580       int aff, to_op;
       
  1581       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  1582       aff = sqlite3AffinityType(&pExpr->token);
       
  1583       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
       
  1584       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
       
  1585       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
       
  1586       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
       
  1587       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
       
  1588       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
       
  1589       sqlite3VdbeAddOp(v, to_op, 0, 0);
       
  1590       stackChng = 0;
       
  1591       break;
       
  1592     }
       
  1593 #endif /* SQLITE_OMIT_CAST */
       
  1594     case TK_LT:
       
  1595     case TK_LE:
       
  1596     case TK_GT:
       
  1597     case TK_GE:
       
  1598     case TK_NE:
       
  1599     case TK_EQ: {
       
  1600       assert( TK_LT==OP_Lt );
       
  1601       assert( TK_LE==OP_Le );
       
  1602       assert( TK_GT==OP_Gt );
       
  1603       assert( TK_GE==OP_Ge );
       
  1604       assert( TK_EQ==OP_Eq );
       
  1605       assert( TK_NE==OP_Ne );
       
  1606       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  1607       sqlite3ExprCode(pParse, pExpr->pRight);
       
  1608       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0);
       
  1609       stackChng = -1;
       
  1610       break;
       
  1611     }
       
  1612     case TK_AND:
       
  1613     case TK_OR:
       
  1614     case TK_PLUS:
       
  1615     case TK_STAR:
       
  1616     case TK_MINUS:
       
  1617     case TK_REM:
       
  1618     case TK_BITAND:
       
  1619     case TK_BITOR:
       
  1620     case TK_SLASH:
       
  1621     case TK_LSHIFT:
       
  1622     case TK_RSHIFT: 
       
  1623     case TK_CONCAT: {
       
  1624       assert( TK_AND==OP_And );
       
  1625       assert( TK_OR==OP_Or );
       
  1626       assert( TK_PLUS==OP_Add );
       
  1627       assert( TK_MINUS==OP_Subtract );
       
  1628       assert( TK_REM==OP_Remainder );
       
  1629       assert( TK_BITAND==OP_BitAnd );
       
  1630       assert( TK_BITOR==OP_BitOr );
       
  1631       assert( TK_SLASH==OP_Divide );
       
  1632       assert( TK_LSHIFT==OP_ShiftLeft );
       
  1633       assert( TK_RSHIFT==OP_ShiftRight );
       
  1634       assert( TK_CONCAT==OP_Concat );
       
  1635       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  1636       sqlite3ExprCode(pParse, pExpr->pRight);
       
  1637       sqlite3VdbeAddOp(v, op, 0, 0);
       
  1638       stackChng = -1;
       
  1639       break;
       
  1640     }
       
  1641     case TK_UMINUS: {
       
  1642       Expr *pLeft = pExpr->pLeft;
       
  1643       assert( pLeft );
       
  1644       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
       
  1645         Token *p = &pLeft->token;
       
  1646         char *z = sqlite3MPrintf("-%.*s", p->n, p->z);
       
  1647         if( pLeft->op==TK_FLOAT ){
       
  1648           sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1);
       
  1649         }else{
       
  1650           codeInteger(v, z, p->n+1);
       
  1651         }
       
  1652         sqliteFree(z);
       
  1653         break;
       
  1654       }
       
  1655       /* Fall through into TK_NOT */
       
  1656     }
       
  1657     case TK_BITNOT:
       
  1658     case TK_NOT: {
       
  1659       assert( TK_BITNOT==OP_BitNot );
       
  1660       assert( TK_NOT==OP_Not );
       
  1661       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  1662       sqlite3VdbeAddOp(v, op, 0, 0);
       
  1663       stackChng = 0;
       
  1664       break;
       
  1665     }
       
  1666     case TK_ISNULL:
       
  1667     case TK_NOTNULL: {
       
  1668       int dest;
       
  1669       assert( TK_ISNULL==OP_IsNull );
       
  1670       assert( TK_NOTNULL==OP_NotNull );
       
  1671       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
       
  1672       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  1673       dest = sqlite3VdbeCurrentAddr(v) + 2;
       
  1674       sqlite3VdbeAddOp(v, op, 1, dest);
       
  1675       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
       
  1676       stackChng = 0;
       
  1677       break;
       
  1678     }
       
  1679     case TK_AGG_FUNCTION: {
       
  1680       AggInfo *pInfo = pExpr->pAggInfo;
       
  1681       if( pInfo==0 ){
       
  1682         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
       
  1683             &pExpr->span);
       
  1684       }else{
       
  1685         sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);
       
  1686       }
       
  1687       break;
       
  1688     }
       
  1689     case TK_CONST_FUNC:
       
  1690     case TK_FUNCTION: {
       
  1691       ExprList *pList = pExpr->pList;
       
  1692       int nExpr = pList ? pList->nExpr : 0;
       
  1693       FuncDef *pDef;
       
  1694       int nId;
       
  1695       const char *zId;
       
  1696       int constMask = 0;
       
  1697       int i;
       
  1698       u8 enc = ENC(pParse->db);
       
  1699       CollSeq *pColl = 0;
       
  1700       zId = (char*)pExpr->token.z;
       
  1701       nId = pExpr->token.n;
       
  1702       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
       
  1703       assert( pDef!=0 );
       
  1704       nExpr = sqlite3ExprCodeExprList(pParse, pList);
       
  1705 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  1706       /* Possibly overload the function if the first argument is
       
  1707       ** a virtual table column.
       
  1708       **
       
  1709       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
       
  1710       ** second argument, not the first, as the argument to test to
       
  1711       ** see if it is a column in a virtual table.  This is done because
       
  1712       ** the left operand of infix functions (the operand we want to
       
  1713       ** control overloading) ends up as the second argument to the
       
  1714       ** function.  The expression "A glob B" is equivalent to 
       
  1715       ** "glob(B,A).  We want to use the A in "A glob B" to test
       
  1716       ** for function overloading.  But we use the B term in "glob(B,A)".
       
  1717       */
       
  1718       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
       
  1719         pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[1].pExpr);
       
  1720       }else if( nExpr>0 ){
       
  1721         pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[0].pExpr);
       
  1722       }
       
  1723 #endif
       
  1724       for(i=0; i<nExpr && i<32; i++){
       
  1725         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
       
  1726           constMask |= (1<<i);
       
  1727         }
       
  1728         if( pDef->needCollSeq && !pColl ){
       
  1729           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
       
  1730         }
       
  1731       }
       
  1732       if( pDef->needCollSeq ){
       
  1733         if( !pColl ) pColl = pParse->db->pDfltColl; 
       
  1734         sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
       
  1735       }
       
  1736       sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);
       
  1737       stackChng = 1-nExpr;
       
  1738       break;
       
  1739     }
       
  1740 #ifndef SQLITE_OMIT_SUBQUERY
       
  1741     case TK_EXISTS:
       
  1742     case TK_SELECT: {
       
  1743       if( pExpr->iColumn==0 ){
       
  1744         sqlite3CodeSubselect(pParse, pExpr);
       
  1745       }
       
  1746       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
       
  1747       VdbeComment((v, "# load subquery result"));
       
  1748       break;
       
  1749     }
       
  1750     case TK_IN: {
       
  1751       int addr;
       
  1752       char affinity;
       
  1753       int ckOffset = pParse->ckOffset;
       
  1754       sqlite3CodeSubselect(pParse, pExpr);
       
  1755 
       
  1756       /* Figure out the affinity to use to create a key from the results
       
  1757       ** of the expression. affinityStr stores a static string suitable for
       
  1758       ** P3 of OP_MakeRecord.
       
  1759       */
       
  1760       affinity = comparisonAffinity(pExpr);
       
  1761 
       
  1762       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
       
  1763       pParse->ckOffset = ckOffset+1;
       
  1764 
       
  1765       /* Code the <expr> from "<expr> IN (...)". The temporary table
       
  1766       ** pExpr->iTable contains the values that make up the (...) set.
       
  1767       */
       
  1768       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  1769       addr = sqlite3VdbeCurrentAddr(v);
       
  1770       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4);            /* addr + 0 */
       
  1771       sqlite3VdbeAddOp(v, OP_Pop, 2, 0);
       
  1772       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
  1773       sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7);
       
  1774       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);   /* addr + 4 */
       
  1775       sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7);
       
  1776       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);                  /* addr + 6 */
       
  1777 
       
  1778       break;
       
  1779     }
       
  1780 #endif
       
  1781     case TK_BETWEEN: {
       
  1782       Expr *pLeft = pExpr->pLeft;
       
  1783       struct ExprList_item *pLItem = pExpr->pList->a;
       
  1784       Expr *pRight = pLItem->pExpr;
       
  1785       sqlite3ExprCode(pParse, pLeft);
       
  1786       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
       
  1787       sqlite3ExprCode(pParse, pRight);
       
  1788       codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
       
  1789       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
       
  1790       pLItem++;
       
  1791       pRight = pLItem->pExpr;
       
  1792       sqlite3ExprCode(pParse, pRight);
       
  1793       codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
       
  1794       sqlite3VdbeAddOp(v, OP_And, 0, 0);
       
  1795       break;
       
  1796     }
       
  1797     case TK_UPLUS:
       
  1798     case TK_AS: {
       
  1799       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  1800       stackChng = 0;
       
  1801       break;
       
  1802     }
       
  1803     case TK_CASE: {
       
  1804       int expr_end_label;
       
  1805       int jumpInst;
       
  1806       int nExpr;
       
  1807       int i;
       
  1808       ExprList *pEList;
       
  1809       struct ExprList_item *aListelem;
       
  1810 
       
  1811       assert(pExpr->pList);
       
  1812       assert((pExpr->pList->nExpr % 2) == 0);
       
  1813       assert(pExpr->pList->nExpr > 0);
       
  1814       pEList = pExpr->pList;
       
  1815       aListelem = pEList->a;
       
  1816       nExpr = pEList->nExpr;
       
  1817       expr_end_label = sqlite3VdbeMakeLabel(v);
       
  1818       if( pExpr->pLeft ){
       
  1819         sqlite3ExprCode(pParse, pExpr->pLeft);
       
  1820       }
       
  1821       for(i=0; i<nExpr; i=i+2){
       
  1822         sqlite3ExprCode(pParse, aListelem[i].pExpr);
       
  1823         if( pExpr->pLeft ){
       
  1824           sqlite3VdbeAddOp(v, OP_Dup, 1, 1);
       
  1825           jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
       
  1826                                  OP_Ne, 0, 1);
       
  1827           sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  1828         }else{
       
  1829           jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0);
       
  1830         }
       
  1831         sqlite3ExprCode(pParse, aListelem[i+1].pExpr);
       
  1832         sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label);
       
  1833         sqlite3VdbeJumpHere(v, jumpInst);
       
  1834       }
       
  1835       if( pExpr->pLeft ){
       
  1836         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  1837       }
       
  1838       if( pExpr->pRight ){
       
  1839         sqlite3ExprCode(pParse, pExpr->pRight);
       
  1840       }else{
       
  1841         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
  1842       }
       
  1843       sqlite3VdbeResolveLabel(v, expr_end_label);
       
  1844       break;
       
  1845     }
       
  1846 #ifndef SQLITE_OMIT_TRIGGER
       
  1847     case TK_RAISE: {
       
  1848       if( !pParse->trigStack ){
       
  1849         sqlite3ErrorMsg(pParse,
       
  1850                        "RAISE() may only be used within a trigger-program");
       
  1851 	return;
       
  1852       }
       
  1853       if( pExpr->iColumn!=OE_Ignore ){
       
  1854          assert( pExpr->iColumn==OE_Rollback ||
       
  1855                  pExpr->iColumn == OE_Abort ||
       
  1856                  pExpr->iColumn == OE_Fail );
       
  1857          sqlite3DequoteExpr(pExpr);
       
  1858          sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
       
  1859                         (char*)pExpr->token.z, pExpr->token.n);
       
  1860       } else {
       
  1861          assert( pExpr->iColumn == OE_Ignore );
       
  1862          sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
       
  1863          sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
       
  1864          VdbeComment((v, "# raise(IGNORE)"));
       
  1865       }
       
  1866       stackChng = 0;
       
  1867       break;
       
  1868     }
       
  1869 #endif
       
  1870   }
       
  1871 
       
  1872   if( pParse->ckOffset ){
       
  1873     pParse->ckOffset += stackChng;
       
  1874     assert( pParse->ckOffset );
       
  1875   }
       
  1876 }
       
  1877 
       
  1878 #ifndef SQLITE_OMIT_TRIGGER
       
  1879 /*
       
  1880 ** Generate code that evalutes the given expression and leaves the result
       
  1881 ** on the stack.  See also sqlite3ExprCode().
       
  1882 **
       
  1883 ** This routine might also cache the result and modify the pExpr tree
       
  1884 ** so that it will make use of the cached result on subsequent evaluations
       
  1885 ** rather than evaluate the whole expression again.  Trivial expressions are
       
  1886 ** not cached.  If the expression is cached, its result is stored in a 
       
  1887 ** memory location.
       
  1888 */
       
  1889 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){
       
  1890   Vdbe *v = pParse->pVdbe;
       
  1891   int iMem;
       
  1892   int addr1, addr2;
       
  1893   if( v==0 ) return;
       
  1894   addr1 = sqlite3VdbeCurrentAddr(v);
       
  1895   sqlite3ExprCode(pParse, pExpr);
       
  1896   addr2 = sqlite3VdbeCurrentAddr(v);
       
  1897   if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){
       
  1898     iMem = pExpr->iTable = pParse->nMem++;
       
  1899     sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
       
  1900     pExpr->op = TK_REGISTER;
       
  1901   }
       
  1902 }
       
  1903 #endif
       
  1904 
       
  1905 /*
       
  1906 ** Generate code that pushes the value of every element of the given
       
  1907 ** expression list onto the stack.
       
  1908 **
       
  1909 ** Return the number of elements pushed onto the stack.
       
  1910 */
       
  1911 int sqlite3ExprCodeExprList(
       
  1912   Parse *pParse,     /* Parsing context */
       
  1913   ExprList *pList    /* The expression list to be coded */
       
  1914 ){
       
  1915   struct ExprList_item *pItem;
       
  1916   int i, n;
       
  1917   if( pList==0 ) return 0;
       
  1918   n = pList->nExpr;
       
  1919   for(pItem=pList->a, i=n; i>0; i--, pItem++){
       
  1920     sqlite3ExprCode(pParse, pItem->pExpr);
       
  1921   }
       
  1922   return n;
       
  1923 }
       
  1924 
       
  1925 /*
       
  1926 ** Generate code for a boolean expression such that a jump is made
       
  1927 ** to the label "dest" if the expression is true but execution
       
  1928 ** continues straight thru if the expression is false.
       
  1929 **
       
  1930 ** If the expression evaluates to NULL (neither true nor false), then
       
  1931 ** take the jump if the jumpIfNull flag is true.
       
  1932 **
       
  1933 ** This code depends on the fact that certain token values (ex: TK_EQ)
       
  1934 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
       
  1935 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
       
  1936 ** the make process cause these values to align.  Assert()s in the code
       
  1937 ** below verify that the numbers are aligned correctly.
       
  1938 */
       
  1939 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
       
  1940   Vdbe *v = pParse->pVdbe;
       
  1941   int op = 0;
       
  1942   int ckOffset = pParse->ckOffset;
       
  1943   if( v==0 || pExpr==0 ) return;
       
  1944   op = pExpr->op;
       
  1945   switch( op ){
       
  1946     case TK_AND: {
       
  1947       int d2 = sqlite3VdbeMakeLabel(v);
       
  1948       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
       
  1949       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
       
  1950       sqlite3VdbeResolveLabel(v, d2);
       
  1951       break;
       
  1952     }
       
  1953     case TK_OR: {
       
  1954       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  1955       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
       
  1956       break;
       
  1957     }
       
  1958     case TK_NOT: {
       
  1959       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  1960       break;
       
  1961     }
       
  1962     case TK_LT:
       
  1963     case TK_LE:
       
  1964     case TK_GT:
       
  1965     case TK_GE:
       
  1966     case TK_NE:
       
  1967     case TK_EQ: {
       
  1968       assert( TK_LT==OP_Lt );
       
  1969       assert( TK_LE==OP_Le );
       
  1970       assert( TK_GT==OP_Gt );
       
  1971       assert( TK_GE==OP_Ge );
       
  1972       assert( TK_EQ==OP_Eq );
       
  1973       assert( TK_NE==OP_Ne );
       
  1974       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  1975       sqlite3ExprCode(pParse, pExpr->pRight);
       
  1976       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
       
  1977       break;
       
  1978     }
       
  1979     case TK_ISNULL:
       
  1980     case TK_NOTNULL: {
       
  1981       assert( TK_ISNULL==OP_IsNull );
       
  1982       assert( TK_NOTNULL==OP_NotNull );
       
  1983       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  1984       sqlite3VdbeAddOp(v, op, 1, dest);
       
  1985       break;
       
  1986     }
       
  1987     case TK_BETWEEN: {
       
  1988       /* The expression "x BETWEEN y AND z" is implemented as:
       
  1989       **
       
  1990       ** 1 IF (x < y) GOTO 3
       
  1991       ** 2 IF (x <= z) GOTO <dest>
       
  1992       ** 3 ...
       
  1993       */
       
  1994       int addr;
       
  1995       Expr *pLeft = pExpr->pLeft;
       
  1996       Expr *pRight = pExpr->pList->a[0].pExpr;
       
  1997       sqlite3ExprCode(pParse, pLeft);
       
  1998       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
       
  1999       sqlite3ExprCode(pParse, pRight);
       
  2000       addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);
       
  2001 
       
  2002       pRight = pExpr->pList->a[1].pExpr;
       
  2003       sqlite3ExprCode(pParse, pRight);
       
  2004       codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);
       
  2005 
       
  2006       sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
       
  2007       sqlite3VdbeJumpHere(v, addr);
       
  2008       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  2009       break;
       
  2010     }
       
  2011     default: {
       
  2012       sqlite3ExprCode(pParse, pExpr);
       
  2013       sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest);
       
  2014       break;
       
  2015     }
       
  2016   }
       
  2017   pParse->ckOffset = ckOffset;
       
  2018 }
       
  2019 
       
  2020 /*
       
  2021 ** Generate code for a boolean expression such that a jump is made
       
  2022 ** to the label "dest" if the expression is false but execution
       
  2023 ** continues straight thru if the expression is true.
       
  2024 **
       
  2025 ** If the expression evaluates to NULL (neither true nor false) then
       
  2026 ** jump if jumpIfNull is true or fall through if jumpIfNull is false.
       
  2027 */
       
  2028 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
       
  2029   Vdbe *v = pParse->pVdbe;
       
  2030   int op = 0;
       
  2031   int ckOffset = pParse->ckOffset;
       
  2032   if( v==0 || pExpr==0 ) return;
       
  2033 
       
  2034   /* The value of pExpr->op and op are related as follows:
       
  2035   **
       
  2036   **       pExpr->op            op
       
  2037   **       ---------          ----------
       
  2038   **       TK_ISNULL          OP_NotNull
       
  2039   **       TK_NOTNULL         OP_IsNull
       
  2040   **       TK_NE              OP_Eq
       
  2041   **       TK_EQ              OP_Ne
       
  2042   **       TK_GT              OP_Le
       
  2043   **       TK_LE              OP_Gt
       
  2044   **       TK_GE              OP_Lt
       
  2045   **       TK_LT              OP_Ge
       
  2046   **
       
  2047   ** For other values of pExpr->op, op is undefined and unused.
       
  2048   ** The value of TK_ and OP_ constants are arranged such that we
       
  2049   ** can compute the mapping above using the following expression.
       
  2050   ** Assert()s verify that the computation is correct.
       
  2051   */
       
  2052   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
       
  2053 
       
  2054   /* Verify correct alignment of TK_ and OP_ constants
       
  2055   */
       
  2056   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
       
  2057   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
       
  2058   assert( pExpr->op!=TK_NE || op==OP_Eq );
       
  2059   assert( pExpr->op!=TK_EQ || op==OP_Ne );
       
  2060   assert( pExpr->op!=TK_LT || op==OP_Ge );
       
  2061   assert( pExpr->op!=TK_LE || op==OP_Gt );
       
  2062   assert( pExpr->op!=TK_GT || op==OP_Le );
       
  2063   assert( pExpr->op!=TK_GE || op==OP_Lt );
       
  2064 
       
  2065   switch( pExpr->op ){
       
  2066     case TK_AND: {
       
  2067       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  2068       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
       
  2069       break;
       
  2070     }
       
  2071     case TK_OR: {
       
  2072       int d2 = sqlite3VdbeMakeLabel(v);
       
  2073       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
       
  2074       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
       
  2075       sqlite3VdbeResolveLabel(v, d2);
       
  2076       break;
       
  2077     }
       
  2078     case TK_NOT: {
       
  2079       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  2080       break;
       
  2081     }
       
  2082     case TK_LT:
       
  2083     case TK_LE:
       
  2084     case TK_GT:
       
  2085     case TK_GE:
       
  2086     case TK_NE:
       
  2087     case TK_EQ: {
       
  2088       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2089       sqlite3ExprCode(pParse, pExpr->pRight);
       
  2090       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
       
  2091       break;
       
  2092     }
       
  2093     case TK_ISNULL:
       
  2094     case TK_NOTNULL: {
       
  2095       sqlite3ExprCode(pParse, pExpr->pLeft);
       
  2096       sqlite3VdbeAddOp(v, op, 1, dest);
       
  2097       break;
       
  2098     }
       
  2099     case TK_BETWEEN: {
       
  2100       /* The expression is "x BETWEEN y AND z". It is implemented as:
       
  2101       **
       
  2102       ** 1 IF (x >= y) GOTO 3
       
  2103       ** 2 GOTO <dest>
       
  2104       ** 3 IF (x > z) GOTO <dest>
       
  2105       */
       
  2106       int addr;
       
  2107       Expr *pLeft = pExpr->pLeft;
       
  2108       Expr *pRight = pExpr->pList->a[0].pExpr;
       
  2109       sqlite3ExprCode(pParse, pLeft);
       
  2110       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
       
  2111       sqlite3ExprCode(pParse, pRight);
       
  2112       addr = sqlite3VdbeCurrentAddr(v);
       
  2113       codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);
       
  2114 
       
  2115       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  2116       sqlite3VdbeAddOp(v, OP_Goto, 0, dest);
       
  2117       pRight = pExpr->pList->a[1].pExpr;
       
  2118       sqlite3ExprCode(pParse, pRight);
       
  2119       codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);
       
  2120       break;
       
  2121     }
       
  2122     default: {
       
  2123       sqlite3ExprCode(pParse, pExpr);
       
  2124       sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
       
  2125       break;
       
  2126     }
       
  2127   }
       
  2128   pParse->ckOffset = ckOffset;
       
  2129 }
       
  2130 
       
  2131 /*
       
  2132 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
       
  2133 ** if they are identical and return FALSE if they differ in any way.
       
  2134 */
       
  2135 int sqlite3ExprCompare(Expr *pA, Expr *pB){
       
  2136   int i;
       
  2137   if( pA==0||pB==0 ){
       
  2138     return pB==pA;
       
  2139   }
       
  2140   if( pA->op!=pB->op ) return 0;
       
  2141   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
       
  2142   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
       
  2143   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
       
  2144   if( pA->pList ){
       
  2145     if( pB->pList==0 ) return 0;
       
  2146     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
       
  2147     for(i=0; i<pA->pList->nExpr; i++){
       
  2148       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
       
  2149         return 0;
       
  2150       }
       
  2151     }
       
  2152   }else if( pB->pList ){
       
  2153     return 0;
       
  2154   }
       
  2155   if( pA->pSelect || pB->pSelect ) return 0;
       
  2156   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
       
  2157   if( pA->token.z ){
       
  2158     if( pB->token.z==0 ) return 0;
       
  2159     if( pB->token.n!=pA->token.n ) return 0;
       
  2160     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
       
  2161       return 0;
       
  2162     }
       
  2163   }
       
  2164   return 1;
       
  2165 }
       
  2166 
       
  2167 
       
  2168 /*
       
  2169 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
       
  2170 ** the new element.  Return a negative number if malloc fails.
       
  2171 */
       
  2172 static int addAggInfoColumn(AggInfo *pInfo){
       
  2173   int i;
       
  2174   i = sqlite3ArrayAllocate((void**)&pInfo->aCol, sizeof(pInfo->aCol[0]), 3);
       
  2175   if( i<0 ){
       
  2176     return -1;
       
  2177   }
       
  2178   return i;
       
  2179 }    
       
  2180 
       
  2181 /*
       
  2182 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
       
  2183 ** the new element.  Return a negative number if malloc fails.
       
  2184 */
       
  2185 static int addAggInfoFunc(AggInfo *pInfo){
       
  2186   int i;
       
  2187   i = sqlite3ArrayAllocate((void**)&pInfo->aFunc, sizeof(pInfo->aFunc[0]), 2);
       
  2188   if( i<0 ){
       
  2189     return -1;
       
  2190   }
       
  2191   return i;
       
  2192 }    
       
  2193 
       
  2194 /*
       
  2195 ** This is an xFunc for walkExprTree() used to implement 
       
  2196 ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
       
  2197 ** for additional information.
       
  2198 **
       
  2199 ** This routine analyzes the aggregate function at pExpr.
       
  2200 */
       
  2201 static int analyzeAggregate(void *pArg, Expr *pExpr){
       
  2202   int i;
       
  2203   NameContext *pNC = (NameContext *)pArg;
       
  2204   Parse *pParse = pNC->pParse;
       
  2205   SrcList *pSrcList = pNC->pSrcList;
       
  2206   AggInfo *pAggInfo = pNC->pAggInfo;
       
  2207   
       
  2208 
       
  2209   switch( pExpr->op ){
       
  2210     case TK_COLUMN: {
       
  2211       /* Check to see if the column is in one of the tables in the FROM
       
  2212       ** clause of the aggregate query */
       
  2213       if( pSrcList ){
       
  2214         struct SrcList_item *pItem = pSrcList->a;
       
  2215         for(i=0; i<pSrcList->nSrc; i++, pItem++){
       
  2216           struct AggInfo_col *pCol;
       
  2217           if( pExpr->iTable==pItem->iCursor ){
       
  2218             /* If we reach this point, it means that pExpr refers to a table
       
  2219             ** that is in the FROM clause of the aggregate query.  
       
  2220             **
       
  2221             ** Make an entry for the column in pAggInfo->aCol[] if there
       
  2222             ** is not an entry there already.
       
  2223             */
       
  2224             pCol = pAggInfo->aCol;
       
  2225             for(i=0; i<pAggInfo->nColumn; i++, pCol++){
       
  2226               if( pCol->iTable==pExpr->iTable &&
       
  2227                   pCol->iColumn==pExpr->iColumn ){
       
  2228                 break;
       
  2229               }
       
  2230             }
       
  2231             if( i>=pAggInfo->nColumn && (i = addAggInfoColumn(pAggInfo))>=0 ){
       
  2232               pCol = &pAggInfo->aCol[i];
       
  2233               pCol->iTable = pExpr->iTable;
       
  2234               pCol->iColumn = pExpr->iColumn;
       
  2235               pCol->iMem = pParse->nMem++;
       
  2236               pCol->iSorterColumn = -1;
       
  2237               pCol->pExpr = pExpr;
       
  2238               if( pAggInfo->pGroupBy ){
       
  2239                 int j, n;
       
  2240                 ExprList *pGB = pAggInfo->pGroupBy;
       
  2241                 struct ExprList_item *pTerm = pGB->a;
       
  2242                 n = pGB->nExpr;
       
  2243                 for(j=0; j<n; j++, pTerm++){
       
  2244                   Expr *pE = pTerm->pExpr;
       
  2245                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
       
  2246                       pE->iColumn==pExpr->iColumn ){
       
  2247                     pCol->iSorterColumn = j;
       
  2248                     break;
       
  2249                   }
       
  2250                 }
       
  2251               }
       
  2252               if( pCol->iSorterColumn<0 ){
       
  2253                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
       
  2254               }
       
  2255             }
       
  2256             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
       
  2257             ** because it was there before or because we just created it).
       
  2258             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
       
  2259             ** pAggInfo->aCol[] entry.
       
  2260             */
       
  2261             pExpr->pAggInfo = pAggInfo;
       
  2262             pExpr->op = TK_AGG_COLUMN;
       
  2263             pExpr->iAgg = i;
       
  2264             break;
       
  2265           } /* endif pExpr->iTable==pItem->iCursor */
       
  2266         } /* end loop over pSrcList */
       
  2267       }
       
  2268       return 1;
       
  2269     }
       
  2270     case TK_AGG_FUNCTION: {
       
  2271       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
       
  2272       ** to be ignored */
       
  2273       if( pNC->nDepth==0 ){
       
  2274         /* Check to see if pExpr is a duplicate of another aggregate 
       
  2275         ** function that is already in the pAggInfo structure
       
  2276         */
       
  2277         struct AggInfo_func *pItem = pAggInfo->aFunc;
       
  2278         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
       
  2279           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
       
  2280             break;
       
  2281           }
       
  2282         }
       
  2283         if( i>=pAggInfo->nFunc ){
       
  2284           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
       
  2285           */
       
  2286           u8 enc = ENC(pParse->db);
       
  2287           i = addAggInfoFunc(pAggInfo);
       
  2288           if( i>=0 ){
       
  2289             pItem = &pAggInfo->aFunc[i];
       
  2290             pItem->pExpr = pExpr;
       
  2291             pItem->iMem = pParse->nMem++;
       
  2292             pItem->pFunc = sqlite3FindFunction(pParse->db,
       
  2293                    (char*)pExpr->token.z, pExpr->token.n,
       
  2294                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
       
  2295             if( pExpr->flags & EP_Distinct ){
       
  2296               pItem->iDistinct = pParse->nTab++;
       
  2297             }else{
       
  2298               pItem->iDistinct = -1;
       
  2299             }
       
  2300           }
       
  2301         }
       
  2302         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
       
  2303         */
       
  2304         pExpr->iAgg = i;
       
  2305         pExpr->pAggInfo = pAggInfo;
       
  2306         return 1;
       
  2307       }
       
  2308     }
       
  2309   }
       
  2310 
       
  2311   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
       
  2312   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
       
  2313   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
       
  2314   */
       
  2315   if( pExpr->pSelect ){
       
  2316     pNC->nDepth++;
       
  2317     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
       
  2318     pNC->nDepth--;
       
  2319   }
       
  2320   return 0;
       
  2321 }
       
  2322 
       
  2323 /*
       
  2324 ** Analyze the given expression looking for aggregate functions and
       
  2325 ** for variables that need to be added to the pParse->aAgg[] array.
       
  2326 ** Make additional entries to the pParse->aAgg[] array as necessary.
       
  2327 **
       
  2328 ** This routine should only be called after the expression has been
       
  2329 ** analyzed by sqlite3ExprResolveNames().
       
  2330 **
       
  2331 ** If errors are seen, leave an error message in zErrMsg and return
       
  2332 ** the number of errors.
       
  2333 */
       
  2334 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
       
  2335   int nErr = pNC->pParse->nErr;
       
  2336   walkExprTree(pExpr, analyzeAggregate, pNC);
       
  2337   return pNC->pParse->nErr - nErr;
       
  2338 }
       
  2339 
       
  2340 /*
       
  2341 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
       
  2342 ** expression list.  Return the number of errors.
       
  2343 **
       
  2344 ** If an error is found, the analysis is cut short.
       
  2345 */
       
  2346 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
       
  2347   struct ExprList_item *pItem;
       
  2348   int i;
       
  2349   int nErr = 0;
       
  2350   if( pList ){
       
  2351     for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){
       
  2352       nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
       
  2353     }
       
  2354   }
       
  2355   return nErr;
       
  2356 }