webengine/webkitutils/SqliteSymbian/where.c
changeset 0 dd21522fd290
equal deleted inserted replaced
-1:000000000000 0:dd21522fd290
       
     1 /*
       
     2 ** 2001 September 15
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** This module contains C code that generates VDBE code used to process
       
    13 ** the WHERE clause of SQL statements.  This module is reponsible for
       
    14 ** generating the code that loops through a table looking for applicable
       
    15 ** rows.  Indices are selected and used to speed the search when doing
       
    16 ** so is applicable.  Because this module is responsible for selecting
       
    17 ** indices, you might also think of this module as the "query optimizer".
       
    18 **
       
    19 ** $Id: where.c,v 1.228 2006/06/27 13:20:22 drh Exp $
       
    20 */
       
    21 #include "sqliteInt.h"
       
    22 
       
    23 /*
       
    24 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
       
    25 */
       
    26 #define BMS  (sizeof(Bitmask)*8)
       
    27 
       
    28 /*
       
    29 ** Determine the number of elements in an array.
       
    30 */
       
    31 #define ARRAYSIZE(X)  (sizeof(X)/sizeof(X[0]))
       
    32 
       
    33 /*
       
    34 ** Trace output macros
       
    35 */
       
    36 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
       
    37 int sqlite3_where_trace = 0;
       
    38 # define TRACE(X)  if(sqlite3_where_trace) sqlite3DebugPrintf X
       
    39 #else
       
    40 # define TRACE(X)
       
    41 #endif
       
    42 
       
    43 /* Forward reference
       
    44 */
       
    45 typedef struct WhereClause WhereClause;
       
    46 
       
    47 /*
       
    48 ** The query generator uses an array of instances of this structure to
       
    49 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
       
    50 ** clause subexpression is separated from the others by an AND operator.
       
    51 **
       
    52 ** All WhereTerms are collected into a single WhereClause structure.  
       
    53 ** The following identity holds:
       
    54 **
       
    55 **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
       
    56 **
       
    57 ** When a term is of the form:
       
    58 **
       
    59 **              X <op> <expr>
       
    60 **
       
    61 ** where X is a column name and <op> is one of certain operators,
       
    62 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
       
    63 ** cursor number and column number for X.  WhereTerm.operator records
       
    64 ** the <op> using a bitmask encoding defined by WO_xxx below.  The
       
    65 ** use of a bitmask encoding for the operator allows us to search
       
    66 ** quickly for terms that match any of several different operators.
       
    67 **
       
    68 ** prereqRight and prereqAll record sets of cursor numbers,
       
    69 ** but they do so indirectly.  A single ExprMaskSet structure translates
       
    70 ** cursor number into bits and the translated bit is stored in the prereq
       
    71 ** fields.  The translation is used in order to maximize the number of
       
    72 ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
       
    73 ** spread out over the non-negative integers.  For example, the cursor
       
    74 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
       
    75 ** translates these sparse cursor numbers into consecutive integers
       
    76 ** beginning with 0 in order to make the best possible use of the available
       
    77 ** bits in the Bitmask.  So, in the example above, the cursor numbers
       
    78 ** would be mapped into integers 0 through 7.
       
    79 */
       
    80 typedef struct WhereTerm WhereTerm;
       
    81 struct WhereTerm {
       
    82   Expr *pExpr;            /* Pointer to the subexpression */
       
    83   i16 iParent;            /* Disable pWC->a[iParent] when this term disabled */
       
    84   i16 leftCursor;         /* Cursor number of X in "X <op> <expr>" */
       
    85   i16 leftColumn;         /* Column number of X in "X <op> <expr>" */
       
    86   u16 eOperator;          /* A WO_xx value describing <op> */
       
    87   u8 flags;               /* Bit flags.  See below */
       
    88   u8 nChild;              /* Number of children that must disable us */
       
    89   WhereClause *pWC;       /* The clause this term is part of */
       
    90   Bitmask prereqRight;    /* Bitmask of tables used by pRight */
       
    91   Bitmask prereqAll;      /* Bitmask of tables referenced by p */
       
    92 };
       
    93 
       
    94 /*
       
    95 ** Allowed values of WhereTerm.flags
       
    96 */
       
    97 #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(pExpr) */
       
    98 #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
       
    99 #define TERM_CODED      0x04   /* This term is already coded */
       
   100 #define TERM_COPIED     0x08   /* Has a child */
       
   101 #define TERM_OR_OK      0x10   /* Used during OR-clause processing */
       
   102 
       
   103 /*
       
   104 ** An instance of the following structure holds all information about a
       
   105 ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
       
   106 */
       
   107 struct WhereClause {
       
   108   Parse *pParse;           /* The parser context */
       
   109   int nTerm;               /* Number of terms */
       
   110   int nSlot;               /* Number of entries in a[] */
       
   111   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
       
   112   WhereTerm aStatic[10];   /* Initial static space for a[] */
       
   113 };
       
   114 
       
   115 /*
       
   116 ** An instance of the following structure keeps track of a mapping
       
   117 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
       
   118 **
       
   119 ** The VDBE cursor numbers are small integers contained in 
       
   120 ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE 
       
   121 ** clause, the cursor numbers might not begin with 0 and they might
       
   122 ** contain gaps in the numbering sequence.  But we want to make maximum
       
   123 ** use of the bits in our bitmasks.  This structure provides a mapping
       
   124 ** from the sparse cursor numbers into consecutive integers beginning
       
   125 ** with 0.
       
   126 **
       
   127 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
       
   128 ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
       
   129 **
       
   130 ** For example, if the WHERE clause expression used these VDBE
       
   131 ** cursors:  4, 5, 8, 29, 57, 73.  Then the  ExprMaskSet structure
       
   132 ** would map those cursor numbers into bits 0 through 5.
       
   133 **
       
   134 ** Note that the mapping is not necessarily ordered.  In the example
       
   135 ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
       
   136 ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
       
   137 ** does not really matter.  What is important is that sparse cursor
       
   138 ** numbers all get mapped into bit numbers that begin with 0 and contain
       
   139 ** no gaps.
       
   140 */
       
   141 typedef struct ExprMaskSet ExprMaskSet;
       
   142 struct ExprMaskSet {
       
   143   int n;                        /* Number of assigned cursor values */
       
   144   int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
       
   145 };
       
   146 
       
   147 
       
   148 /*
       
   149 ** Bitmasks for the operators that indices are able to exploit.  An
       
   150 ** OR-ed combination of these values can be used when searching for
       
   151 ** terms in the where clause.
       
   152 */
       
   153 #define WO_IN     1
       
   154 #define WO_EQ     2
       
   155 #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
       
   156 #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
       
   157 #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
       
   158 #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
       
   159 #define WO_MATCH  64
       
   160 
       
   161 /*
       
   162 ** Value for flags returned by bestIndex()
       
   163 */
       
   164 #define WHERE_ROWID_EQ       0x0001   /* rowid=EXPR or rowid IN (...) */
       
   165 #define WHERE_ROWID_RANGE    0x0002   /* rowid<EXPR and/or rowid>EXPR */
       
   166 #define WHERE_COLUMN_EQ      0x0010   /* x=EXPR or x IN (...) */
       
   167 #define WHERE_COLUMN_RANGE   0x0020   /* x<EXPR and/or x>EXPR */
       
   168 #define WHERE_COLUMN_IN      0x0040   /* x IN (...) */
       
   169 #define WHERE_TOP_LIMIT      0x0100   /* x<EXPR or x<=EXPR constraint */
       
   170 #define WHERE_BTM_LIMIT      0x0200   /* x>EXPR or x>=EXPR constraint */
       
   171 #define WHERE_IDX_ONLY       0x0800   /* Use index only - omit table */
       
   172 #define WHERE_ORDERBY        0x1000   /* Output will appear in correct order */
       
   173 #define WHERE_REVERSE        0x2000   /* Scan in reverse order */
       
   174 #define WHERE_UNIQUE         0x4000   /* Selects no more than one row */
       
   175 #define WHERE_VIRTUALTABLE   0x8000   /* Use virtual-table processing */
       
   176 
       
   177 /*
       
   178 ** Initialize a preallocated WhereClause structure.
       
   179 */
       
   180 static void whereClauseInit(WhereClause *pWC, Parse *pParse){
       
   181   pWC->pParse = pParse;
       
   182   pWC->nTerm = 0;
       
   183   pWC->nSlot = ARRAYSIZE(pWC->aStatic);
       
   184   pWC->a = pWC->aStatic;
       
   185 }
       
   186 
       
   187 /*
       
   188 ** Deallocate a WhereClause structure.  The WhereClause structure
       
   189 ** itself is not freed.  This routine is the inverse of whereClauseInit().
       
   190 */
       
   191 static void whereClauseClear(WhereClause *pWC){
       
   192   int i;
       
   193   WhereTerm *a;
       
   194   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
       
   195     if( a->flags & TERM_DYNAMIC ){
       
   196       sqlite3ExprDelete(a->pExpr);
       
   197     }
       
   198   }
       
   199   if( pWC->a!=pWC->aStatic ){
       
   200     sqliteFree(pWC->a);
       
   201   }
       
   202 }
       
   203 
       
   204 /*
       
   205 ** Add a new entries to the WhereClause structure.  Increase the allocated
       
   206 ** space as necessary.
       
   207 **
       
   208 ** WARNING:  This routine might reallocate the space used to store
       
   209 ** WhereTerms.  All pointers to WhereTerms should be invalided after
       
   210 ** calling this routine.  Such pointers may be reinitialized by referencing
       
   211 ** the pWC->a[] array.
       
   212 */
       
   213 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
       
   214   WhereTerm *pTerm;
       
   215   int idx;
       
   216   if( pWC->nTerm>=pWC->nSlot ){
       
   217     WhereTerm *pOld = pWC->a;
       
   218     pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
       
   219     if( pWC->a==0 ) return 0;
       
   220     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
       
   221     if( pOld!=pWC->aStatic ){
       
   222       sqliteFree(pOld);
       
   223     }
       
   224     pWC->nSlot *= 2;
       
   225   }
       
   226   pTerm = &pWC->a[idx = pWC->nTerm];
       
   227   pWC->nTerm++;
       
   228   pTerm->pExpr = p;
       
   229   pTerm->flags = flags;
       
   230   pTerm->pWC = pWC;
       
   231   pTerm->iParent = -1;
       
   232   return idx;
       
   233 }
       
   234 
       
   235 /*
       
   236 ** This routine identifies subexpressions in the WHERE clause where
       
   237 ** each subexpression is separated by the AND operator or some other
       
   238 ** operator specified in the op parameter.  The WhereClause structure
       
   239 ** is filled with pointers to subexpressions.  For example:
       
   240 **
       
   241 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
       
   242 **           \________/     \_______________/     \________________/
       
   243 **            slot[0]            slot[1]               slot[2]
       
   244 **
       
   245 ** The original WHERE clause in pExpr is unaltered.  All this routine
       
   246 ** does is make slot[] entries point to substructure within pExpr.
       
   247 **
       
   248 ** In the previous sentence and in the diagram, "slot[]" refers to
       
   249 ** the WhereClause.a[] array.  This array grows as needed to contain
       
   250 ** all terms of the WHERE clause.
       
   251 */
       
   252 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
       
   253   if( pExpr==0 ) return;
       
   254   if( pExpr->op!=op ){
       
   255     whereClauseInsert(pWC, pExpr, 0);
       
   256   }else{
       
   257     whereSplit(pWC, pExpr->pLeft, op);
       
   258     whereSplit(pWC, pExpr->pRight, op);
       
   259   }
       
   260 }
       
   261 
       
   262 /*
       
   263 ** Initialize an expression mask set
       
   264 */
       
   265 #define initMaskSet(P)  memset(P, 0, sizeof(*P))
       
   266 
       
   267 /*
       
   268 ** Return the bitmask for the given cursor number.  Return 0 if
       
   269 ** iCursor is not in the set.
       
   270 */
       
   271 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
       
   272   int i;
       
   273   for(i=0; i<pMaskSet->n; i++){
       
   274     if( pMaskSet->ix[i]==iCursor ){
       
   275       return ((Bitmask)1)<<i;
       
   276     }
       
   277   }
       
   278   return 0;
       
   279 }
       
   280 
       
   281 /*
       
   282 ** Create a new mask for cursor iCursor.
       
   283 **
       
   284 ** There is one cursor per table in the FROM clause.  The number of
       
   285 ** tables in the FROM clause is limited by a test early in the
       
   286 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
       
   287 ** array will never overflow.
       
   288 */
       
   289 static void createMask(ExprMaskSet *pMaskSet, int iCursor){
       
   290   assert( pMaskSet->n < ARRAYSIZE(pMaskSet->ix) );
       
   291   pMaskSet->ix[pMaskSet->n++] = iCursor;
       
   292 }
       
   293 
       
   294 /*
       
   295 ** This routine walks (recursively) an expression tree and generates
       
   296 ** a bitmask indicating which tables are used in that expression
       
   297 ** tree.
       
   298 **
       
   299 ** In order for this routine to work, the calling function must have
       
   300 ** previously invoked sqlite3ExprResolveNames() on the expression.  See
       
   301 ** the header comment on that routine for additional information.
       
   302 ** The sqlite3ExprResolveNames() routines looks for column names and
       
   303 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
       
   304 ** the VDBE cursor number of the table.  This routine just has to
       
   305 ** translate the cursor numbers into bitmask values and OR all
       
   306 ** the bitmasks together.
       
   307 */
       
   308 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
       
   309 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
       
   310 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
       
   311   Bitmask mask = 0;
       
   312   if( p==0 ) return 0;
       
   313   if( p->op==TK_COLUMN ){
       
   314     mask = getMask(pMaskSet, p->iTable);
       
   315     return mask;
       
   316   }
       
   317   mask = exprTableUsage(pMaskSet, p->pRight);
       
   318   mask |= exprTableUsage(pMaskSet, p->pLeft);
       
   319   mask |= exprListTableUsage(pMaskSet, p->pList);
       
   320   mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
       
   321   return mask;
       
   322 }
       
   323 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
       
   324   int i;
       
   325   Bitmask mask = 0;
       
   326   if( pList ){
       
   327     for(i=0; i<pList->nExpr; i++){
       
   328       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
       
   329     }
       
   330   }
       
   331   return mask;
       
   332 }
       
   333 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
       
   334   Bitmask mask;
       
   335   if( pS==0 ){
       
   336     mask = 0;
       
   337   }else{
       
   338     mask = exprListTableUsage(pMaskSet, pS->pEList);
       
   339     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
       
   340     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
       
   341     mask |= exprTableUsage(pMaskSet, pS->pWhere);
       
   342     mask |= exprTableUsage(pMaskSet, pS->pHaving);
       
   343   }
       
   344   return mask;
       
   345 }
       
   346 
       
   347 /*
       
   348 ** Return TRUE if the given operator is one of the operators that is
       
   349 ** allowed for an indexable WHERE clause term.  The allowed operators are
       
   350 ** "=", "<", ">", "<=", ">=", and "IN".
       
   351 */
       
   352 static int allowedOp(int op){
       
   353   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
       
   354   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
       
   355   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
       
   356   assert( TK_GE==TK_EQ+4 );
       
   357   return op==TK_IN || (op>=TK_EQ && op<=TK_GE);
       
   358 }
       
   359 
       
   360 /*
       
   361 ** Swap two objects of type T.
       
   362 */
       
   363 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
       
   364 
       
   365 /*
       
   366 ** Commute a comparision operator.  Expressions of the form "X op Y"
       
   367 ** are converted into "Y op X".
       
   368 */
       
   369 static void exprCommute(Expr *pExpr){
       
   370   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
       
   371   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
       
   372   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
       
   373   if( pExpr->op>=TK_GT ){
       
   374     assert( TK_LT==TK_GT+2 );
       
   375     assert( TK_GE==TK_LE+2 );
       
   376     assert( TK_GT>TK_EQ );
       
   377     assert( TK_GT<TK_LE );
       
   378     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
       
   379     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
       
   380   }
       
   381 }
       
   382 
       
   383 /*
       
   384 ** Translate from TK_xx operator to WO_xx bitmask.
       
   385 */
       
   386 static int operatorMask(int op){
       
   387   int c;
       
   388   assert( allowedOp(op) );
       
   389   if( op==TK_IN ){
       
   390     c = WO_IN;
       
   391   }else{
       
   392     c = WO_EQ<<(op-TK_EQ);
       
   393   }
       
   394   assert( op!=TK_IN || c==WO_IN );
       
   395   assert( op!=TK_EQ || c==WO_EQ );
       
   396   assert( op!=TK_LT || c==WO_LT );
       
   397   assert( op!=TK_LE || c==WO_LE );
       
   398   assert( op!=TK_GT || c==WO_GT );
       
   399   assert( op!=TK_GE || c==WO_GE );
       
   400   return c;
       
   401 }
       
   402 
       
   403 /*
       
   404 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
       
   405 ** where X is a reference to the iColumn of table iCur and <op> is one of
       
   406 ** the WO_xx operator codes specified by the op parameter.
       
   407 ** Return a pointer to the term.  Return 0 if not found.
       
   408 */
       
   409 static WhereTerm *findTerm(
       
   410   WhereClause *pWC,     /* The WHERE clause to be searched */
       
   411   int iCur,             /* Cursor number of LHS */
       
   412   int iColumn,          /* Column number of LHS */
       
   413   Bitmask notReady,     /* RHS must not overlap with this mask */
       
   414   u16 op,               /* Mask of WO_xx values describing operator */
       
   415   Index *pIdx           /* Must be compatible with this index, if not NULL */
       
   416 ){
       
   417   WhereTerm *pTerm;
       
   418   int k;
       
   419   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
       
   420     if( pTerm->leftCursor==iCur
       
   421        && (pTerm->prereqRight & notReady)==0
       
   422        && pTerm->leftColumn==iColumn
       
   423        && (pTerm->eOperator & op)!=0
       
   424     ){
       
   425       if( iCur>=0 && pIdx ){
       
   426         Expr *pX = pTerm->pExpr;
       
   427         CollSeq *pColl;
       
   428         char idxaff;
       
   429         int j;
       
   430         Parse *pParse = pWC->pParse;
       
   431 
       
   432         idxaff = pIdx->pTable->aCol[iColumn].affinity;
       
   433         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
       
   434         pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
       
   435         if( !pColl ){
       
   436           if( pX->pRight ){
       
   437             pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
       
   438           }
       
   439           if( !pColl ){
       
   440             pColl = pParse->db->pDfltColl;
       
   441           }
       
   442         }
       
   443         for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
       
   444         assert( j<pIdx->nColumn );
       
   445         if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
       
   446       }
       
   447       return pTerm;
       
   448     }
       
   449   }
       
   450   return 0;
       
   451 }
       
   452 
       
   453 /* Forward reference */
       
   454 static void exprAnalyze(SrcList*, ExprMaskSet*, WhereClause*, int);
       
   455 
       
   456 /*
       
   457 ** Call exprAnalyze on all terms in a WHERE clause.  
       
   458 **
       
   459 **
       
   460 */
       
   461 static void exprAnalyzeAll(
       
   462   SrcList *pTabList,       /* the FROM clause */
       
   463   ExprMaskSet *pMaskSet,   /* table masks */
       
   464   WhereClause *pWC         /* the WHERE clause to be analyzed */
       
   465 ){
       
   466   int i;
       
   467   for(i=pWC->nTerm-1; i>=0; i--){
       
   468     exprAnalyze(pTabList, pMaskSet, pWC, i);
       
   469   }
       
   470 }
       
   471 
       
   472 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
       
   473 /*
       
   474 ** Check to see if the given expression is a LIKE or GLOB operator that
       
   475 ** can be optimized using inequality constraints.  Return TRUE if it is
       
   476 ** so and false if not.
       
   477 **
       
   478 ** In order for the operator to be optimizible, the RHS must be a string
       
   479 ** literal that does not begin with a wildcard.  
       
   480 */
       
   481 static int isLikeOrGlob(
       
   482   sqlite3 *db,      /* The database */
       
   483   Expr *pExpr,      /* Test this expression */
       
   484   int *pnPattern,   /* Number of non-wildcard prefix characters */
       
   485   int *pisComplete  /* True if the only wildcard is % in the last character */
       
   486 ){
       
   487   const char *z;
       
   488   Expr *pRight, *pLeft;
       
   489   ExprList *pList;
       
   490   int c, cnt;
       
   491   int noCase;
       
   492   char wc[3];
       
   493   CollSeq *pColl;
       
   494 
       
   495   if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){
       
   496     return 0;
       
   497   }
       
   498   pList = pExpr->pList;
       
   499   pRight = pList->a[0].pExpr;
       
   500   if( pRight->op!=TK_STRING ){
       
   501     return 0;
       
   502   }
       
   503   pLeft = pList->a[1].pExpr;
       
   504   if( pLeft->op!=TK_COLUMN ){
       
   505     return 0;
       
   506   }
       
   507   pColl = pLeft->pColl;
       
   508   if( pColl==0 ){
       
   509     pColl = db->pDfltColl;
       
   510   }
       
   511   if( (pColl->type!=SQLITE_COLL_BINARY || noCase) &&
       
   512       (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){
       
   513     return 0;
       
   514   }
       
   515   sqlite3DequoteExpr(pRight);
       
   516   z = (char *)pRight->token.z;
       
   517   for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){}
       
   518   if( cnt==0 || 255==(u8)z[cnt] ){
       
   519     return 0;
       
   520   }
       
   521   *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
       
   522   *pnPattern = cnt;
       
   523   return 1;
       
   524 }
       
   525 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
       
   526 
       
   527 
       
   528 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
   529 /*
       
   530 ** Check to see if the given expression is of the form
       
   531 **
       
   532 **         column MATCH expr
       
   533 **
       
   534 ** If it is then return TRUE.  If not, return FALSE.
       
   535 */
       
   536 static int isMatchOfColumn(
       
   537   Expr *pExpr      /* Test this expression */
       
   538 ){
       
   539   ExprList *pList;
       
   540 
       
   541   if( pExpr->op!=TK_FUNCTION ){
       
   542     return 0;
       
   543   }
       
   544   if( pExpr->token.n!=5 ||
       
   545        sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
       
   546     return 0;
       
   547   }
       
   548   pList = pExpr->pList;
       
   549   if( pList->nExpr!=2 ){
       
   550     return 0;
       
   551   }
       
   552   if( pList->a[1].pExpr->op != TK_COLUMN ){
       
   553     return 0;
       
   554   }
       
   555   return 1;
       
   556 }
       
   557 #endif /* SQLITE_OMIT_VIRTUALTABLE */
       
   558 
       
   559 /*
       
   560 ** If the pBase expression originated in the ON or USING clause of
       
   561 ** a join, then transfer the appropriate markings over to derived.
       
   562 */
       
   563 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
       
   564   pDerived->flags |= pBase->flags & EP_FromJoin;
       
   565   pDerived->iRightJoinTable = pBase->iRightJoinTable;
       
   566 }
       
   567 
       
   568 
       
   569 /*
       
   570 ** The input to this routine is an WhereTerm structure with only the
       
   571 ** "pExpr" field filled in.  The job of this routine is to analyze the
       
   572 ** subexpression and populate all the other fields of the WhereTerm
       
   573 ** structure.
       
   574 **
       
   575 ** If the expression is of the form "<expr> <op> X" it gets commuted
       
   576 ** to the standard form of "X <op> <expr>".  If the expression is of
       
   577 ** the form "X <op> Y" where both X and Y are columns, then the original
       
   578 ** expression is unchanged and a new virtual expression of the form
       
   579 ** "Y <op> X" is added to the WHERE clause and analyzed separately.
       
   580 */
       
   581 static void exprAnalyze(
       
   582   SrcList *pSrc,            /* the FROM clause */
       
   583   ExprMaskSet *pMaskSet,    /* table masks */
       
   584   WhereClause *pWC,         /* the WHERE clause */
       
   585   int idxTerm               /* Index of the term to be analyzed */
       
   586 ){
       
   587   WhereTerm *pTerm = &pWC->a[idxTerm];
       
   588   Expr *pExpr = pTerm->pExpr;
       
   589   Bitmask prereqLeft;
       
   590   Bitmask prereqAll;
       
   591   int nPattern;
       
   592   int isComplete;
       
   593 
       
   594   if( sqlite3MallocFailed() ) return;
       
   595   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
       
   596   if( pExpr->op==TK_IN ){
       
   597     assert( pExpr->pRight==0 );
       
   598     pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
       
   599                           | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
       
   600   }else{
       
   601     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
       
   602   }
       
   603   prereqAll = exprTableUsage(pMaskSet, pExpr);
       
   604   if( ExprHasProperty(pExpr, EP_FromJoin) ){
       
   605     prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
       
   606   }
       
   607   pTerm->prereqAll = prereqAll;
       
   608   pTerm->leftCursor = -1;
       
   609   pTerm->iParent = -1;
       
   610   pTerm->eOperator = 0;
       
   611   if( allowedOp(pExpr->op) && (pTerm->prereqRight & prereqLeft)==0 ){
       
   612     Expr *pLeft = pExpr->pLeft;
       
   613     Expr *pRight = pExpr->pRight;
       
   614     if( pLeft->op==TK_COLUMN ){
       
   615       pTerm->leftCursor = pLeft->iTable;
       
   616       pTerm->leftColumn = pLeft->iColumn;
       
   617       pTerm->eOperator = operatorMask(pExpr->op);
       
   618     }
       
   619     if( pRight && pRight->op==TK_COLUMN ){
       
   620       WhereTerm *pNew;
       
   621       Expr *pDup;
       
   622       if( pTerm->leftCursor>=0 ){
       
   623         int idxNew;
       
   624         pDup = sqlite3ExprDup(pExpr);
       
   625         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
       
   626         if( idxNew==0 ) return;
       
   627         pNew = &pWC->a[idxNew];
       
   628         pNew->iParent = idxTerm;
       
   629         pTerm = &pWC->a[idxTerm];
       
   630         pTerm->nChild = 1;
       
   631         pTerm->flags |= TERM_COPIED;
       
   632       }else{
       
   633         pDup = pExpr;
       
   634         pNew = pTerm;
       
   635       }
       
   636       exprCommute(pDup);
       
   637       pLeft = pDup->pLeft;
       
   638       pNew->leftCursor = pLeft->iTable;
       
   639       pNew->leftColumn = pLeft->iColumn;
       
   640       pNew->prereqRight = prereqLeft;
       
   641       pNew->prereqAll = prereqAll;
       
   642       pNew->eOperator = operatorMask(pDup->op);
       
   643     }
       
   644   }
       
   645 
       
   646 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
       
   647   /* If a term is the BETWEEN operator, create two new virtual terms
       
   648   ** that define the range that the BETWEEN implements.
       
   649   */
       
   650   else if( pExpr->op==TK_BETWEEN ){
       
   651     ExprList *pList = pExpr->pList;
       
   652     int i;
       
   653     static const u8 ops[] = {TK_GE, TK_LE};
       
   654     assert( pList!=0 );
       
   655     assert( pList->nExpr==2 );
       
   656     for(i=0; i<2; i++){
       
   657       Expr *pNewExpr;
       
   658       int idxNew;
       
   659       pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft),
       
   660                              sqlite3ExprDup(pList->a[i].pExpr), 0);
       
   661       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
       
   662       exprAnalyze(pSrc, pMaskSet, pWC, idxNew);
       
   663       pTerm = &pWC->a[idxTerm];
       
   664       pWC->a[idxNew].iParent = idxTerm;
       
   665     }
       
   666     pTerm->nChild = 2;
       
   667   }
       
   668 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
       
   669 
       
   670 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
       
   671   /* Attempt to convert OR-connected terms into an IN operator so that
       
   672   ** they can make use of indices.  Example:
       
   673   **
       
   674   **      x = expr1  OR  expr2 = x  OR  x = expr3
       
   675   **
       
   676   ** is converted into
       
   677   **
       
   678   **      x IN (expr1,expr2,expr3)
       
   679   **
       
   680   ** This optimization must be omitted if OMIT_SUBQUERY is defined because
       
   681   ** the compiler for the the IN operator is part of sub-queries.
       
   682   */
       
   683   else if( pExpr->op==TK_OR ){
       
   684     int ok;
       
   685     int i, j;
       
   686     int iColumn, iCursor;
       
   687     WhereClause sOr;
       
   688     WhereTerm *pOrTerm;
       
   689 
       
   690     assert( (pTerm->flags & TERM_DYNAMIC)==0 );
       
   691     whereClauseInit(&sOr, pWC->pParse);
       
   692     whereSplit(&sOr, pExpr, TK_OR);
       
   693     exprAnalyzeAll(pSrc, pMaskSet, &sOr);
       
   694     assert( sOr.nTerm>0 );
       
   695     j = 0;
       
   696     do{
       
   697       iColumn = sOr.a[j].leftColumn;
       
   698       iCursor = sOr.a[j].leftCursor;
       
   699       ok = iCursor>=0;
       
   700       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
       
   701         if( pOrTerm->eOperator!=WO_EQ ){
       
   702           goto or_not_possible;
       
   703         }
       
   704         if( pOrTerm->leftCursor==iCursor && pOrTerm->leftColumn==iColumn ){
       
   705           pOrTerm->flags |= TERM_OR_OK;
       
   706         }else if( (pOrTerm->flags & TERM_COPIED)!=0 ||
       
   707                     ((pOrTerm->flags & TERM_VIRTUAL)!=0 &&
       
   708                      (sOr.a[pOrTerm->iParent].flags & TERM_OR_OK)!=0) ){
       
   709           pOrTerm->flags &= ~TERM_OR_OK;
       
   710         }else{
       
   711           ok = 0;
       
   712         }
       
   713       }
       
   714     }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<sOr.nTerm );
       
   715     if( ok ){
       
   716       ExprList *pList = 0;
       
   717       Expr *pNew, *pDup;
       
   718       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
       
   719         if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
       
   720         pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight);
       
   721         pList = sqlite3ExprListAppend(pList, pDup, 0);
       
   722       }
       
   723       pDup = sqlite3Expr(TK_COLUMN, 0, 0, 0);
       
   724       if( pDup ){
       
   725         pDup->iTable = iCursor;
       
   726         pDup->iColumn = iColumn;
       
   727       }
       
   728       pNew = sqlite3Expr(TK_IN, pDup, 0, 0);
       
   729       if( pNew ){
       
   730         int idxNew;
       
   731         transferJoinMarkings(pNew, pExpr);
       
   732         pNew->pList = pList;
       
   733         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
       
   734         exprAnalyze(pSrc, pMaskSet, pWC, idxNew);
       
   735         pTerm = &pWC->a[idxTerm];
       
   736         pWC->a[idxNew].iParent = idxTerm;
       
   737         pTerm->nChild = 1;
       
   738       }else{
       
   739         sqlite3ExprListDelete(pList);
       
   740       }
       
   741     }
       
   742 or_not_possible:
       
   743     whereClauseClear(&sOr);
       
   744   }
       
   745 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
       
   746 
       
   747 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
       
   748   /* Add constraints to reduce the search space on a LIKE or GLOB
       
   749   ** operator.
       
   750   */
       
   751   if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){
       
   752     Expr *pLeft, *pRight;
       
   753     Expr *pStr1, *pStr2;
       
   754     Expr *pNewExpr1, *pNewExpr2;
       
   755     int idxNew1, idxNew2;
       
   756 
       
   757     pLeft = pExpr->pList->a[1].pExpr;
       
   758     pRight = pExpr->pList->a[0].pExpr;
       
   759     pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0);
       
   760     if( pStr1 ){
       
   761       sqlite3TokenCopy(&pStr1->token, &pRight->token);
       
   762       pStr1->token.n = nPattern;
       
   763     }
       
   764     pStr2 = sqlite3ExprDup(pStr1);
       
   765     if( pStr2 ){
       
   766       assert( pStr2->token.dyn );
       
   767       ++*(u8*)&pStr2->token.z[nPattern-1];
       
   768     }
       
   769     pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0);
       
   770     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
       
   771     exprAnalyze(pSrc, pMaskSet, pWC, idxNew1);
       
   772     pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0);
       
   773     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
       
   774     exprAnalyze(pSrc, pMaskSet, pWC, idxNew2);
       
   775     pTerm = &pWC->a[idxTerm];
       
   776     if( isComplete ){
       
   777       pWC->a[idxNew1].iParent = idxTerm;
       
   778       pWC->a[idxNew2].iParent = idxTerm;
       
   779       pTerm->nChild = 2;
       
   780     }
       
   781   }
       
   782 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
       
   783 
       
   784 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
   785   /* Add a WO_MATCH auxiliary term to the constraint set if the
       
   786   ** current expression is of the form:  column MATCH expr.
       
   787   ** This information is used by the xBestIndex methods of
       
   788   ** virtual tables.  The native query optimizer does not attempt
       
   789   ** to do anything with MATCH functions.
       
   790   */
       
   791   if( isMatchOfColumn(pExpr) ){
       
   792     int idxNew;
       
   793     Expr *pRight, *pLeft;
       
   794     WhereTerm *pNewTerm;
       
   795     Bitmask prereqColumn, prereqExpr;
       
   796 
       
   797     pRight = pExpr->pList->a[0].pExpr;
       
   798     pLeft = pExpr->pList->a[1].pExpr;
       
   799     prereqExpr = exprTableUsage(pMaskSet, pRight);
       
   800     prereqColumn = exprTableUsage(pMaskSet, pLeft);
       
   801     if( (prereqExpr & prereqColumn)==0 ){
       
   802       Expr *pNewExpr;
       
   803       pNewExpr = sqlite3Expr(TK_MATCH, 0, sqlite3ExprDup(pRight), 0);
       
   804       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
       
   805       pNewTerm = &pWC->a[idxNew];
       
   806       pNewTerm->prereqRight = prereqExpr;
       
   807       pNewTerm->leftCursor = pLeft->iTable;
       
   808       pNewTerm->leftColumn = pLeft->iColumn;
       
   809       pNewTerm->eOperator = WO_MATCH;
       
   810       pNewTerm->iParent = idxTerm;
       
   811       pTerm = &pWC->a[idxTerm];
       
   812       pTerm->nChild = 1;
       
   813       pTerm->flags |= TERM_COPIED;
       
   814       pNewTerm->prereqAll = pTerm->prereqAll;
       
   815     }
       
   816   }
       
   817 #endif /* SQLITE_OMIT_VIRTUALTABLE */
       
   818 }
       
   819 
       
   820 
       
   821 /*
       
   822 ** This routine decides if pIdx can be used to satisfy the ORDER BY
       
   823 ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
       
   824 ** ORDER BY clause, this routine returns 0.
       
   825 **
       
   826 ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
       
   827 ** left-most table in the FROM clause of that same SELECT statement and
       
   828 ** the table has a cursor number of "base".  pIdx is an index on pTab.
       
   829 **
       
   830 ** nEqCol is the number of columns of pIdx that are used as equality
       
   831 ** constraints.  Any of these columns may be missing from the ORDER BY
       
   832 ** clause and the match can still be a success.
       
   833 **
       
   834 ** All terms of the ORDER BY that match against the index must be either
       
   835 ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
       
   836 ** index do not need to satisfy this constraint.)  The *pbRev value is
       
   837 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
       
   838 ** the ORDER BY clause is all ASC.
       
   839 */
       
   840 static int isSortingIndex(
       
   841   Parse *pParse,          /* Parsing context */
       
   842   Index *pIdx,            /* The index we are testing */
       
   843   int base,               /* Cursor number for the table to be sorted */
       
   844   ExprList *pOrderBy,     /* The ORDER BY clause */
       
   845   int nEqCol,             /* Number of index columns with == constraints */
       
   846   int *pbRev              /* Set to 1 if ORDER BY is DESC */
       
   847 ){
       
   848   int i, j;                       /* Loop counters */
       
   849   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
       
   850   int nTerm;                      /* Number of ORDER BY terms */
       
   851   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
       
   852   sqlite3 *db = pParse->db;
       
   853 
       
   854   assert( pOrderBy!=0 );
       
   855   nTerm = pOrderBy->nExpr;
       
   856   assert( nTerm>0 );
       
   857 
       
   858   /* Match terms of the ORDER BY clause against columns of
       
   859   ** the index.
       
   860   */
       
   861   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){
       
   862     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
       
   863     CollSeq *pColl;    /* The collating sequence of pExpr */
       
   864     int termSortOrder; /* Sort order for this term */
       
   865 
       
   866     pExpr = pTerm->pExpr;
       
   867     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
       
   868       /* Can not use an index sort on anything that is not a column in the
       
   869       ** left-most table of the FROM clause */
       
   870       return 0;
       
   871     }
       
   872     pColl = sqlite3ExprCollSeq(pParse, pExpr);
       
   873     if( !pColl ) pColl = db->pDfltColl;
       
   874     if( pExpr->iColumn!=pIdx->aiColumn[i] || 
       
   875         sqlite3StrICmp(pColl->zName, pIdx->azColl[i]) ){
       
   876       /* Term j of the ORDER BY clause does not match column i of the index */
       
   877       if( i<nEqCol ){
       
   878         /* If an index column that is constrained by == fails to match an
       
   879         ** ORDER BY term, that is OK.  Just ignore that column of the index
       
   880         */
       
   881         continue;
       
   882       }else{
       
   883         /* If an index column fails to match and is not constrained by ==
       
   884         ** then the index cannot satisfy the ORDER BY constraint.
       
   885         */
       
   886         return 0;
       
   887       }
       
   888     }
       
   889     assert( pIdx->aSortOrder!=0 );
       
   890     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
       
   891     assert( pIdx->aSortOrder[i]==0 || pIdx->aSortOrder[i]==1 );
       
   892     termSortOrder = pIdx->aSortOrder[i] ^ pTerm->sortOrder;
       
   893     if( i>nEqCol ){
       
   894       if( termSortOrder!=sortOrder ){
       
   895         /* Indices can only be used if all ORDER BY terms past the
       
   896         ** equality constraints are all either DESC or ASC. */
       
   897         return 0;
       
   898       }
       
   899     }else{
       
   900       sortOrder = termSortOrder;
       
   901     }
       
   902     j++;
       
   903     pTerm++;
       
   904   }
       
   905 
       
   906   /* The index can be used for sorting if all terms of the ORDER BY clause
       
   907   ** are covered.
       
   908   */
       
   909   if( j>=nTerm ){
       
   910     *pbRev = sortOrder!=0;
       
   911     return 1;
       
   912   }
       
   913   return 0;
       
   914 }
       
   915 
       
   916 /*
       
   917 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
       
   918 ** by sorting in order of ROWID.  Return true if so and set *pbRev to be
       
   919 ** true for reverse ROWID and false for forward ROWID order.
       
   920 */
       
   921 static int sortableByRowid(
       
   922   int base,               /* Cursor number for table to be sorted */
       
   923   ExprList *pOrderBy,     /* The ORDER BY clause */
       
   924   int *pbRev              /* Set to 1 if ORDER BY is DESC */
       
   925 ){
       
   926   Expr *p;
       
   927 
       
   928   assert( pOrderBy!=0 );
       
   929   assert( pOrderBy->nExpr>0 );
       
   930   p = pOrderBy->a[0].pExpr;
       
   931   if( pOrderBy->nExpr==1 && p->op==TK_COLUMN && p->iTable==base
       
   932           && p->iColumn==-1 ){
       
   933     *pbRev = pOrderBy->a[0].sortOrder;
       
   934     return 1;
       
   935   }
       
   936   return 0;
       
   937 }
       
   938 
       
   939 /*
       
   940 ** Prepare a crude estimate of the logarithm of the input value.
       
   941 ** The results need not be exact.  This is only used for estimating
       
   942 ** the total cost of performing operatings with O(logN) or O(NlogN)
       
   943 ** complexity.  Because N is just a guess, it is no great tragedy if
       
   944 ** logN is a little off.
       
   945 */
       
   946 static double estLog(double N){
       
   947   double logN = 1;
       
   948   double x = 10;
       
   949   while( N>x ){
       
   950     logN += 1;
       
   951     x *= 10;
       
   952   }
       
   953   return logN;
       
   954 }
       
   955 
       
   956 /*
       
   957 ** Two routines for printing the content of an sqlite3_index_info
       
   958 ** structure.  Used for testing and debugging only.  If neither
       
   959 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
       
   960 ** are no-ops.
       
   961 */
       
   962 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && \
       
   963         (defined(SQLITE_TEST) || defined(SQLITE_DEBUG))
       
   964 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
       
   965   int i;
       
   966   if( !sqlite3_where_trace ) return;
       
   967   for(i=0; i<p->nConstraint; i++){
       
   968     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
       
   969        i,
       
   970        p->aConstraint[i].iColumn,
       
   971        p->aConstraint[i].iTermOffset,
       
   972        p->aConstraint[i].op,
       
   973        p->aConstraint[i].usable);
       
   974   }
       
   975   for(i=0; i<p->nOrderBy; i++){
       
   976     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
       
   977        i,
       
   978        p->aOrderBy[i].iColumn,
       
   979        p->aOrderBy[i].desc);
       
   980   }
       
   981 }
       
   982 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
       
   983   int i;
       
   984   if( !sqlite3_where_trace ) return;
       
   985   for(i=0; i<p->nConstraint; i++){
       
   986     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
       
   987        i,
       
   988        p->aConstraintUsage[i].argvIndex,
       
   989        p->aConstraintUsage[i].omit);
       
   990   }
       
   991   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
       
   992   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
       
   993   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
       
   994   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
       
   995 }
       
   996 #else
       
   997 #define TRACE_IDX_INPUTS(A)
       
   998 #define TRACE_IDX_OUTPUTS(A)
       
   999 #endif
       
  1000 
       
  1001 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  1002 /*
       
  1003 ** Compute the best index for a virtual table.
       
  1004 **
       
  1005 ** The best index is computed by the xBestIndex method of the virtual
       
  1006 ** table module.  This routine is really just a wrapper that sets up
       
  1007 ** the sqlite3_index_info structure that is used to communicate with
       
  1008 ** xBestIndex.
       
  1009 **
       
  1010 ** In a join, this routine might be called multiple times for the
       
  1011 ** same virtual table.  The sqlite3_index_info structure is created
       
  1012 ** and initialized on the first invocation and reused on all subsequent
       
  1013 ** invocations.  The sqlite3_index_info structure is also used when
       
  1014 ** code is generated to access the virtual table.  The whereInfoDelete() 
       
  1015 ** routine takes care of freeing the sqlite3_index_info structure after
       
  1016 ** everybody has finished with it.
       
  1017 */
       
  1018 static double bestVirtualIndex(
       
  1019   Parse *pParse,                 /* The parsing context */
       
  1020   WhereClause *pWC,              /* The WHERE clause */
       
  1021   struct SrcList_item *pSrc,     /* The FROM clause term to search */
       
  1022   Bitmask notReady,              /* Mask of cursors that are not available */
       
  1023   ExprList *pOrderBy,            /* The order by clause */
       
  1024   int orderByUsable,             /* True if we can potential sort */
       
  1025   sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
       
  1026 ){
       
  1027   Table *pTab = pSrc->pTab;
       
  1028   sqlite3_index_info *pIdxInfo;
       
  1029   struct sqlite3_index_constraint *pIdxCons;
       
  1030   struct sqlite3_index_orderby *pIdxOrderBy;
       
  1031   struct sqlite3_index_constraint_usage *pUsage;
       
  1032   WhereTerm *pTerm;
       
  1033   int i, j;
       
  1034   int nOrderBy;
       
  1035   int rc;
       
  1036 
       
  1037   /* If the sqlite3_index_info structure has not been previously
       
  1038   ** allocated and initialized for this virtual table, then allocate
       
  1039   ** and initialize it now
       
  1040   */
       
  1041   pIdxInfo = *ppIdxInfo;
       
  1042   if( pIdxInfo==0 ){
       
  1043     WhereTerm *pTerm;
       
  1044     int nTerm;
       
  1045     TRACE(("Recomputing index info for %s...\n", pTab->zName));
       
  1046 
       
  1047     /* Count the number of possible WHERE clause constraints referring
       
  1048     ** to this virtual table */
       
  1049     for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
       
  1050       if( pTerm->leftCursor != pSrc->iCursor ) continue;
       
  1051       if( pTerm->eOperator==WO_IN ) continue;
       
  1052       nTerm++;
       
  1053     }
       
  1054 
       
  1055     /* If the ORDER BY clause contains only columns in the current 
       
  1056     ** virtual table then allocate space for the aOrderBy part of
       
  1057     ** the sqlite3_index_info structure.
       
  1058     */
       
  1059     nOrderBy = 0;
       
  1060     if( pOrderBy ){
       
  1061       for(i=0; i<pOrderBy->nExpr; i++){
       
  1062         Expr *pExpr = pOrderBy->a[i].pExpr;
       
  1063         if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
       
  1064       }
       
  1065       if( i==pOrderBy->nExpr ){
       
  1066         nOrderBy = pOrderBy->nExpr;
       
  1067       }
       
  1068     }
       
  1069 
       
  1070     /* Allocate the sqlite3_index_info structure
       
  1071     */
       
  1072     pIdxInfo = sqliteMalloc( sizeof(*pIdxInfo)
       
  1073                              + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
       
  1074                              + sizeof(*pIdxOrderBy)*nOrderBy );
       
  1075     if( pIdxInfo==0 ){
       
  1076       sqlite3ErrorMsg(pParse, "out of memory");
       
  1077       return 0.0;
       
  1078     }
       
  1079     *ppIdxInfo = pIdxInfo;
       
  1080 
       
  1081     /* Initialize the structure.  The sqlite3_index_info structure contains
       
  1082     ** many fields that are declared "const" to prevent xBestIndex from
       
  1083     ** changing them.  We have to do some funky casting in order to
       
  1084     ** initialize those fields.
       
  1085     */
       
  1086     pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
       
  1087     pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
       
  1088     pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
       
  1089     *(int*)&pIdxInfo->nConstraint = nTerm;
       
  1090     *(int*)&pIdxInfo->nOrderBy = nOrderBy;
       
  1091     *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
       
  1092     *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
       
  1093     *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
       
  1094                                                                      pUsage;
       
  1095 
       
  1096     for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
       
  1097       if( pTerm->leftCursor != pSrc->iCursor ) continue;
       
  1098       if( pTerm->eOperator==WO_IN ) continue;
       
  1099       pIdxCons[j].iColumn = pTerm->leftColumn;
       
  1100       pIdxCons[j].iTermOffset = i;
       
  1101       pIdxCons[j].op = pTerm->eOperator;
       
  1102       /* The direct assignment in the previous line is possible only because
       
  1103       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
       
  1104       ** following asserts verify this fact. */
       
  1105       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
       
  1106       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
       
  1107       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
       
  1108       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
       
  1109       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
       
  1110       assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
       
  1111       assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
       
  1112       j++;
       
  1113     }
       
  1114     for(i=0; i<nOrderBy; i++){
       
  1115       Expr *pExpr = pOrderBy->a[i].pExpr;
       
  1116       pIdxOrderBy[i].iColumn = pExpr->iColumn;
       
  1117       pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
       
  1118     }
       
  1119   }
       
  1120 
       
  1121   /* At this point, the sqlite3_index_info structure that pIdxInfo points
       
  1122   ** to will have been initialized, either during the current invocation or
       
  1123   ** during some prior invocation.  Now we just have to customize the
       
  1124   ** details of pIdxInfo for the current invocation and pass it to
       
  1125   ** xBestIndex.
       
  1126   */
       
  1127 
       
  1128   /* The module name must be defined */
       
  1129   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
       
  1130   if( pTab->pVtab==0 ){
       
  1131     sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
       
  1132         pTab->azModuleArg[0], pTab->zName);
       
  1133     return 0.0;
       
  1134   }
       
  1135 
       
  1136   /* Set the aConstraint[].usable fields and initialize all 
       
  1137   ** output variables to zero.
       
  1138   **
       
  1139   ** aConstraint[].usable is true for constraints where the right-hand
       
  1140   ** side contains only references to tables to the left of the current
       
  1141   ** table.  In other words, if the constraint is of the form:
       
  1142   **
       
  1143   **           column = expr
       
  1144   **
       
  1145   ** and we are evaluating a join, then the constraint on column is 
       
  1146   ** only valid if all tables referenced in expr occur to the left
       
  1147   ** of the table containing column.
       
  1148   **
       
  1149   ** The aConstraints[] array contains entries for all constraints
       
  1150   ** on the current table.  That way we only have to compute it once
       
  1151   ** even though we might try to pick the best index multiple times.
       
  1152   ** For each attempt at picking an index, the order of tables in the
       
  1153   ** join might be different so we have to recompute the usable flag
       
  1154   ** each time.
       
  1155   */
       
  1156   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
       
  1157   pUsage = pIdxInfo->aConstraintUsage;
       
  1158   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
       
  1159     j = pIdxCons->iTermOffset;
       
  1160     pTerm = &pWC->a[j];
       
  1161     pIdxCons->usable =  (pTerm->prereqRight & notReady)==0;
       
  1162   }
       
  1163   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
       
  1164   if( pIdxInfo->needToFreeIdxStr ){
       
  1165     sqlite3_free(pIdxInfo->idxStr);
       
  1166   }
       
  1167   pIdxInfo->idxStr = 0;
       
  1168   pIdxInfo->idxNum = 0;
       
  1169   pIdxInfo->needToFreeIdxStr = 0;
       
  1170   pIdxInfo->orderByConsumed = 0;
       
  1171   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
       
  1172   nOrderBy = pIdxInfo->nOrderBy;
       
  1173   if( pIdxInfo->nOrderBy && !orderByUsable ){
       
  1174     *(int*)&pIdxInfo->nOrderBy = 0;
       
  1175   }
       
  1176 
       
  1177   sqlite3SafetyOff(pParse->db);
       
  1178   TRACE(("xBestIndex for %s\n", pTab->zName));
       
  1179   TRACE_IDX_INPUTS(pIdxInfo);
       
  1180   rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
       
  1181   TRACE_IDX_OUTPUTS(pIdxInfo);
       
  1182   if( rc!=SQLITE_OK ){
       
  1183     if( rc==SQLITE_NOMEM ){
       
  1184       sqlite3FailedMalloc();
       
  1185     }else {
       
  1186       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
       
  1187     }
       
  1188     sqlite3SafetyOn(pParse->db);
       
  1189   }else{
       
  1190     rc = sqlite3SafetyOn(pParse->db);
       
  1191   }
       
  1192   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
       
  1193   return pIdxInfo->estimatedCost;
       
  1194 }
       
  1195 #endif /* SQLITE_OMIT_VIRTUALTABLE */
       
  1196 
       
  1197 /*
       
  1198 ** Find the best index for accessing a particular table.  Return a pointer
       
  1199 ** to the index, flags that describe how the index should be used, the
       
  1200 ** number of equality constraints, and the "cost" for this index.
       
  1201 **
       
  1202 ** The lowest cost index wins.  The cost is an estimate of the amount of
       
  1203 ** CPU and disk I/O need to process the request using the selected index.
       
  1204 ** Factors that influence cost include:
       
  1205 **
       
  1206 **    *  The estimated number of rows that will be retrieved.  (The
       
  1207 **       fewer the better.)
       
  1208 **
       
  1209 **    *  Whether or not sorting must occur.
       
  1210 **
       
  1211 **    *  Whether or not there must be separate lookups in the
       
  1212 **       index and in the main table.
       
  1213 **
       
  1214 */
       
  1215 static double bestIndex(
       
  1216   Parse *pParse,              /* The parsing context */
       
  1217   WhereClause *pWC,           /* The WHERE clause */
       
  1218   struct SrcList_item *pSrc,  /* The FROM clause term to search */
       
  1219   Bitmask notReady,           /* Mask of cursors that are not available */
       
  1220   ExprList *pOrderBy,         /* The order by clause */
       
  1221   Index **ppIndex,            /* Make *ppIndex point to the best index */
       
  1222   int *pFlags,                /* Put flags describing this choice in *pFlags */
       
  1223   int *pnEq                   /* Put the number of == or IN constraints here */
       
  1224 ){
       
  1225   WhereTerm *pTerm;
       
  1226   Index *bestIdx = 0;         /* Index that gives the lowest cost */
       
  1227   double lowestCost;          /* The cost of using bestIdx */
       
  1228   int bestFlags = 0;          /* Flags associated with bestIdx */
       
  1229   int bestNEq = 0;            /* Best value for nEq */
       
  1230   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
       
  1231   Index *pProbe;              /* An index we are evaluating */
       
  1232   int rev;                    /* True to scan in reverse order */
       
  1233   int flags;                  /* Flags associated with pProbe */
       
  1234   int nEq;                    /* Number of == or IN constraints */
       
  1235   double cost;                /* Cost of using pProbe */
       
  1236 
       
  1237   TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
       
  1238   lowestCost = SQLITE_BIG_DBL;
       
  1239   pProbe = pSrc->pTab->pIndex;
       
  1240 
       
  1241   /* If the table has no indices and there are no terms in the where
       
  1242   ** clause that refer to the ROWID, then we will never be able to do
       
  1243   ** anything other than a full table scan on this table.  We might as
       
  1244   ** well put it first in the join order.  That way, perhaps it can be
       
  1245   ** referenced by other tables in the join.
       
  1246   */
       
  1247   if( pProbe==0 &&
       
  1248      findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
       
  1249      (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, &rev)) ){
       
  1250     *pFlags = 0;
       
  1251     *ppIndex = 0;
       
  1252     *pnEq = 0;
       
  1253     return 0.0;
       
  1254   }
       
  1255 
       
  1256   /* Check for a rowid=EXPR or rowid IN (...) constraints
       
  1257   */
       
  1258   pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
       
  1259   if( pTerm ){
       
  1260     Expr *pExpr;
       
  1261     *ppIndex = 0;
       
  1262     bestFlags = WHERE_ROWID_EQ;
       
  1263     if( pTerm->eOperator & WO_EQ ){
       
  1264       /* Rowid== is always the best pick.  Look no further.  Because only
       
  1265       ** a single row is generated, output is always in sorted order */
       
  1266       *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
       
  1267       *pnEq = 1;
       
  1268       TRACE(("... best is rowid\n"));
       
  1269       return 0.0;
       
  1270     }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
       
  1271       /* Rowid IN (LIST): cost is NlogN where N is the number of list
       
  1272       ** elements.  */
       
  1273       lowestCost = pExpr->pList->nExpr;
       
  1274       lowestCost *= estLog(lowestCost);
       
  1275     }else{
       
  1276       /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
       
  1277       ** in the result of the inner select.  We have no way to estimate
       
  1278       ** that value so make a wild guess. */
       
  1279       lowestCost = 200;
       
  1280     }
       
  1281     TRACE(("... rowid IN cost: %.9g\n", lowestCost));
       
  1282   }
       
  1283 
       
  1284   /* Estimate the cost of a table scan.  If we do not know how many
       
  1285   ** entries are in the table, use 1 million as a guess.
       
  1286   */
       
  1287   cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
       
  1288   TRACE(("... table scan base cost: %.9g\n", cost));
       
  1289   flags = WHERE_ROWID_RANGE;
       
  1290 
       
  1291   /* Check for constraints on a range of rowids in a table scan.
       
  1292   */
       
  1293   pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
       
  1294   if( pTerm ){
       
  1295     if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
       
  1296       flags |= WHERE_TOP_LIMIT;
       
  1297       cost /= 3;  /* Guess that rowid<EXPR eliminates two-thirds or rows */
       
  1298     }
       
  1299     if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
       
  1300       flags |= WHERE_BTM_LIMIT;
       
  1301       cost /= 3;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
       
  1302     }
       
  1303     TRACE(("... rowid range reduces cost to %.9g\n", cost));
       
  1304   }else{
       
  1305     flags = 0;
       
  1306   }
       
  1307 
       
  1308   /* If the table scan does not satisfy the ORDER BY clause, increase
       
  1309   ** the cost by NlogN to cover the expense of sorting. */
       
  1310   if( pOrderBy ){
       
  1311     if( sortableByRowid(iCur, pOrderBy, &rev) ){
       
  1312       flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
       
  1313       if( rev ){
       
  1314         flags |= WHERE_REVERSE;
       
  1315       }
       
  1316     }else{
       
  1317       cost += cost*estLog(cost);
       
  1318       TRACE(("... sorting increases cost to %.9g\n", cost));
       
  1319     }
       
  1320   }
       
  1321   if( cost<lowestCost ){
       
  1322     lowestCost = cost;
       
  1323     bestFlags = flags;
       
  1324   }
       
  1325 
       
  1326   /* Look at each index.
       
  1327   */
       
  1328   for(; pProbe; pProbe=pProbe->pNext){
       
  1329     int i;                       /* Loop counter */
       
  1330     double inMultiplier = 1;
       
  1331 
       
  1332     TRACE(("... index %s:\n", pProbe->zName));
       
  1333 
       
  1334     /* Count the number of columns in the index that are satisfied
       
  1335     ** by x=EXPR constraints or x IN (...) constraints.
       
  1336     */
       
  1337     flags = 0;
       
  1338     for(i=0; i<pProbe->nColumn; i++){
       
  1339       int j = pProbe->aiColumn[i];
       
  1340       pTerm = findTerm(pWC, iCur, j, notReady, WO_EQ|WO_IN, pProbe);
       
  1341       if( pTerm==0 ) break;
       
  1342       flags |= WHERE_COLUMN_EQ;
       
  1343       if( pTerm->eOperator & WO_IN ){
       
  1344         Expr *pExpr = pTerm->pExpr;
       
  1345         flags |= WHERE_COLUMN_IN;
       
  1346         if( pExpr->pSelect!=0 ){
       
  1347           inMultiplier *= 25;
       
  1348         }else if( pExpr->pList!=0 ){
       
  1349           inMultiplier *= pExpr->pList->nExpr + 1;
       
  1350         }
       
  1351       }
       
  1352     }
       
  1353     cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
       
  1354     nEq = i;
       
  1355     if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
       
  1356          && nEq==pProbe->nColumn ){
       
  1357       flags |= WHERE_UNIQUE;
       
  1358     }
       
  1359     TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost));
       
  1360 
       
  1361     /* Look for range constraints
       
  1362     */
       
  1363     if( nEq<pProbe->nColumn ){
       
  1364       int j = pProbe->aiColumn[nEq];
       
  1365       pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
       
  1366       if( pTerm ){
       
  1367         flags |= WHERE_COLUMN_RANGE;
       
  1368         if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
       
  1369           flags |= WHERE_TOP_LIMIT;
       
  1370           cost /= 3;
       
  1371         }
       
  1372         if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
       
  1373           flags |= WHERE_BTM_LIMIT;
       
  1374           cost /= 3;
       
  1375         }
       
  1376         TRACE(("...... range reduces cost to %.9g\n", cost));
       
  1377       }
       
  1378     }
       
  1379 
       
  1380     /* Add the additional cost of sorting if that is a factor.
       
  1381     */
       
  1382     if( pOrderBy ){
       
  1383       if( (flags & WHERE_COLUMN_IN)==0 &&
       
  1384            isSortingIndex(pParse,pProbe,iCur,pOrderBy,nEq,&rev) ){
       
  1385         if( flags==0 ){
       
  1386           flags = WHERE_COLUMN_RANGE;
       
  1387         }
       
  1388         flags |= WHERE_ORDERBY;
       
  1389         if( rev ){
       
  1390           flags |= WHERE_REVERSE;
       
  1391         }
       
  1392       }else{
       
  1393         cost += cost*estLog(cost);
       
  1394         TRACE(("...... orderby increases cost to %.9g\n", cost));
       
  1395       }
       
  1396     }
       
  1397 
       
  1398     /* Check to see if we can get away with using just the index without
       
  1399     ** ever reading the table.  If that is the case, then halve the
       
  1400     ** cost of this index.
       
  1401     */
       
  1402     if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
       
  1403       Bitmask m = pSrc->colUsed;
       
  1404       int j;
       
  1405       for(j=0; j<pProbe->nColumn; j++){
       
  1406         int x = pProbe->aiColumn[j];
       
  1407         if( x<BMS-1 ){
       
  1408           m &= ~(((Bitmask)1)<<x);
       
  1409         }
       
  1410       }
       
  1411       if( m==0 ){
       
  1412         flags |= WHERE_IDX_ONLY;
       
  1413         cost /= 2;
       
  1414         TRACE(("...... idx-only reduces cost to %.9g\n", cost));
       
  1415       }
       
  1416     }
       
  1417 
       
  1418     /* If this index has achieved the lowest cost so far, then use it.
       
  1419     */
       
  1420     if( cost < lowestCost ){
       
  1421       bestIdx = pProbe;
       
  1422       lowestCost = cost;
       
  1423       assert( flags!=0 );
       
  1424       bestFlags = flags;
       
  1425       bestNEq = nEq;
       
  1426     }
       
  1427   }
       
  1428 
       
  1429   /* Report the best result
       
  1430   */
       
  1431   *ppIndex = bestIdx;
       
  1432   TRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
       
  1433         bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
       
  1434   *pFlags = bestFlags;
       
  1435   *pnEq = bestNEq;
       
  1436   return lowestCost;
       
  1437 }
       
  1438 
       
  1439 
       
  1440 /*
       
  1441 ** Disable a term in the WHERE clause.  Except, do not disable the term
       
  1442 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
       
  1443 ** or USING clause of that join.
       
  1444 **
       
  1445 ** Consider the term t2.z='ok' in the following queries:
       
  1446 **
       
  1447 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
       
  1448 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
       
  1449 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
       
  1450 **
       
  1451 ** The t2.z='ok' is disabled in the in (2) because it originates
       
  1452 ** in the ON clause.  The term is disabled in (3) because it is not part
       
  1453 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
       
  1454 **
       
  1455 ** Disabling a term causes that term to not be tested in the inner loop
       
  1456 ** of the join.  Disabling is an optimization.  When terms are satisfied
       
  1457 ** by indices, we disable them to prevent redundant tests in the inner
       
  1458 ** loop.  We would get the correct results if nothing were ever disabled,
       
  1459 ** but joins might run a little slower.  The trick is to disable as much
       
  1460 ** as we can without disabling too much.  If we disabled in (1), we'd get
       
  1461 ** the wrong answer.  See ticket #813.
       
  1462 */
       
  1463 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
       
  1464   if( pTerm
       
  1465       && (pTerm->flags & TERM_CODED)==0
       
  1466       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
       
  1467   ){
       
  1468     pTerm->flags |= TERM_CODED;
       
  1469     if( pTerm->iParent>=0 ){
       
  1470       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
       
  1471       if( (--pOther->nChild)==0 ){
       
  1472         disableTerm(pLevel, pOther);
       
  1473       }
       
  1474     }
       
  1475   }
       
  1476 }
       
  1477 
       
  1478 /*
       
  1479 ** Generate code that builds a probe for an index.  Details:
       
  1480 **
       
  1481 **    *  Check the top nColumn entries on the stack.  If any
       
  1482 **       of those entries are NULL, jump immediately to brk,
       
  1483 **       which is the loop exit, since no index entry will match
       
  1484 **       if any part of the key is NULL. Pop (nColumn+nExtra) 
       
  1485 **       elements from the stack.
       
  1486 **
       
  1487 **    *  Construct a probe entry from the top nColumn entries in
       
  1488 **       the stack with affinities appropriate for index pIdx. 
       
  1489 **       Only nColumn elements are popped from the stack in this case
       
  1490 **       (by OP_MakeRecord).
       
  1491 **
       
  1492 */
       
  1493 static void buildIndexProbe(
       
  1494   Vdbe *v, 
       
  1495   int nColumn, 
       
  1496   int nExtra, 
       
  1497   int brk, 
       
  1498   Index *pIdx
       
  1499 ){
       
  1500   sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3);
       
  1501   sqlite3VdbeAddOp(v, OP_Pop, nColumn+nExtra, 0);
       
  1502   sqlite3VdbeAddOp(v, OP_Goto, 0, brk);
       
  1503   sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
       
  1504   sqlite3IndexAffinityStr(v, pIdx);
       
  1505 }
       
  1506 
       
  1507 
       
  1508 /*
       
  1509 ** Generate code for a single equality term of the WHERE clause.  An equality
       
  1510 ** term can be either X=expr or X IN (...).   pTerm is the term to be 
       
  1511 ** coded.
       
  1512 **
       
  1513 ** The current value for the constraint is left on the top of the stack.
       
  1514 **
       
  1515 ** For a constraint of the form X=expr, the expression is evaluated and its
       
  1516 ** result is left on the stack.  For constraints of the form X IN (...)
       
  1517 ** this routine sets up a loop that will iterate over all values of X.
       
  1518 */
       
  1519 static void codeEqualityTerm(
       
  1520   Parse *pParse,      /* The parsing context */
       
  1521   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
       
  1522   int brk,            /* Jump here to abandon the loop */
       
  1523   WhereLevel *pLevel  /* When level of the FROM clause we are working on */
       
  1524 ){
       
  1525   Expr *pX = pTerm->pExpr;
       
  1526   if( pX->op!=TK_IN ){
       
  1527     assert( pX->op==TK_EQ );
       
  1528     sqlite3ExprCode(pParse, pX->pRight);
       
  1529 #ifndef SQLITE_OMIT_SUBQUERY
       
  1530   }else{
       
  1531     int iTab;
       
  1532     int *aIn;
       
  1533     Vdbe *v = pParse->pVdbe;
       
  1534 
       
  1535     sqlite3CodeSubselect(pParse, pX);
       
  1536     iTab = pX->iTable;
       
  1537     sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
       
  1538     VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
       
  1539     pLevel->nIn++;
       
  1540     sqliteReallocOrFree((void**)&pLevel->aInLoop,
       
  1541                                  sizeof(pLevel->aInLoop[0])*2*pLevel->nIn);
       
  1542     aIn = pLevel->aInLoop;
       
  1543     if( aIn ){
       
  1544       aIn += pLevel->nIn*2 - 2;
       
  1545       aIn[0] = iTab;
       
  1546       aIn[1] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
       
  1547     }else{
       
  1548       pLevel->nIn = 0;
       
  1549     }
       
  1550 #endif
       
  1551   }
       
  1552   disableTerm(pLevel, pTerm);
       
  1553 }
       
  1554 
       
  1555 /*
       
  1556 ** Generate code that will evaluate all == and IN constraints for an
       
  1557 ** index.  The values for all constraints are left on the stack.
       
  1558 **
       
  1559 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
       
  1560 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
       
  1561 ** The index has as many as three equality constraints, but in this
       
  1562 ** example, the third "c" value is an inequality.  So only two 
       
  1563 ** constraints are coded.  This routine will generate code to evaluate
       
  1564 ** a==5 and b IN (1,2,3).  The current values for a and b will be left
       
  1565 ** on the stack - a is the deepest and b the shallowest.
       
  1566 **
       
  1567 ** In the example above nEq==2.  But this subroutine works for any value
       
  1568 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
       
  1569 ** The only thing it does is allocate the pLevel->iMem memory cell.
       
  1570 **
       
  1571 ** This routine always allocates at least one memory cell and puts
       
  1572 ** the address of that memory cell in pLevel->iMem.  The code that
       
  1573 ** calls this routine will use pLevel->iMem to store the termination
       
  1574 ** key value of the loop.  If one or more IN operators appear, then
       
  1575 ** this routine allocates an additional nEq memory cells for internal
       
  1576 ** use.
       
  1577 */
       
  1578 static void codeAllEqualityTerms(
       
  1579   Parse *pParse,        /* Parsing context */
       
  1580   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
       
  1581   WhereClause *pWC,     /* The WHERE clause */
       
  1582   Bitmask notReady,     /* Which parts of FROM have not yet been coded */
       
  1583   int brk               /* Jump here to end the loop */
       
  1584 ){
       
  1585   int nEq = pLevel->nEq;        /* The number of == or IN constraints to code */
       
  1586   int termsInMem = 0;           /* If true, store value in mem[] cells */
       
  1587   Vdbe *v = pParse->pVdbe;      /* The virtual machine under construction */
       
  1588   Index *pIdx = pLevel->pIdx;   /* The index being used for this loop */
       
  1589   int iCur = pLevel->iTabCur;   /* The cursor of the table */
       
  1590   WhereTerm *pTerm;             /* A single constraint term */
       
  1591   int j;                        /* Loop counter */
       
  1592 
       
  1593   /* Figure out how many memory cells we will need then allocate them.
       
  1594   ** We always need at least one used to store the loop terminator
       
  1595   ** value.  If there are IN operators we'll need one for each == or
       
  1596   ** IN constraint.
       
  1597   */
       
  1598   pLevel->iMem = pParse->nMem++;
       
  1599   if( pLevel->flags & WHERE_COLUMN_IN ){
       
  1600     pParse->nMem += pLevel->nEq;
       
  1601     termsInMem = 1;
       
  1602   }
       
  1603 
       
  1604   /* Evaluate the equality constraints
       
  1605   */
       
  1606   for(j=0; j<pIdx->nColumn; j++){
       
  1607     int k = pIdx->aiColumn[j];
       
  1608     pTerm = findTerm(pWC, iCur, k, notReady, WO_EQ|WO_IN, pIdx);
       
  1609     if( pTerm==0 ) break;
       
  1610     assert( (pTerm->flags & TERM_CODED)==0 );
       
  1611     codeEqualityTerm(pParse, pTerm, brk, pLevel);
       
  1612     if( termsInMem ){
       
  1613       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
       
  1614     }
       
  1615   }
       
  1616   assert( j==nEq );
       
  1617 
       
  1618   /* Make sure all the constraint values are on the top of the stack
       
  1619   */
       
  1620   if( termsInMem ){
       
  1621     for(j=0; j<nEq; j++){
       
  1622       sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
       
  1623     }
       
  1624   }
       
  1625 }
       
  1626 
       
  1627 #if defined(SQLITE_TEST)
       
  1628 /*
       
  1629 ** The following variable holds a text description of query plan generated
       
  1630 ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
       
  1631 ** overwrites the previous.  This information is used for testing and
       
  1632 ** analysis only.
       
  1633 */
       
  1634 char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
       
  1635 static int nQPlan = 0;              /* Next free slow in _query_plan[] */
       
  1636 
       
  1637 #endif /* SQLITE_TEST */
       
  1638 
       
  1639 
       
  1640 /*
       
  1641 ** Free a WhereInfo structure
       
  1642 */
       
  1643 static void whereInfoFree(WhereInfo *pWInfo){
       
  1644   if( pWInfo ){
       
  1645     int i;
       
  1646     for(i=0; i<pWInfo->nLevel; i++){
       
  1647       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
       
  1648       if( pInfo ){
       
  1649         if( pInfo->needToFreeIdxStr ){
       
  1650           sqlite3_free(pInfo->idxStr);
       
  1651         }
       
  1652         sqliteFree(pInfo);
       
  1653       }
       
  1654     }
       
  1655     sqliteFree(pWInfo);
       
  1656   }
       
  1657 }
       
  1658 
       
  1659 
       
  1660 /*
       
  1661 ** Generate the beginning of the loop used for WHERE clause processing.
       
  1662 ** The return value is a pointer to an opaque structure that contains
       
  1663 ** information needed to terminate the loop.  Later, the calling routine
       
  1664 ** should invoke sqlite3WhereEnd() with the return value of this function
       
  1665 ** in order to complete the WHERE clause processing.
       
  1666 **
       
  1667 ** If an error occurs, this routine returns NULL.
       
  1668 **
       
  1669 ** The basic idea is to do a nested loop, one loop for each table in
       
  1670 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
       
  1671 ** same as a SELECT with only a single table in the FROM clause.)  For
       
  1672 ** example, if the SQL is this:
       
  1673 **
       
  1674 **       SELECT * FROM t1, t2, t3 WHERE ...;
       
  1675 **
       
  1676 ** Then the code generated is conceptually like the following:
       
  1677 **
       
  1678 **      foreach row1 in t1 do       \    Code generated
       
  1679 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
       
  1680 **          foreach row3 in t3 do   /
       
  1681 **            ...
       
  1682 **          end                     \    Code generated
       
  1683 **        end                        |-- by sqlite3WhereEnd()
       
  1684 **      end                         /
       
  1685 **
       
  1686 ** Note that the loops might not be nested in the order in which they
       
  1687 ** appear in the FROM clause if a different order is better able to make
       
  1688 ** use of indices.  Note also that when the IN operator appears in
       
  1689 ** the WHERE clause, it might result in additional nested loops for
       
  1690 ** scanning through all values on the right-hand side of the IN.
       
  1691 **
       
  1692 ** There are Btree cursors associated with each table.  t1 uses cursor
       
  1693 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
       
  1694 ** And so forth.  This routine generates code to open those VDBE cursors
       
  1695 ** and sqlite3WhereEnd() generates the code to close them.
       
  1696 **
       
  1697 ** The code that sqlite3WhereBegin() generates leaves the cursors named
       
  1698 ** in pTabList pointing at their appropriate entries.  The [...] code
       
  1699 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
       
  1700 ** data from the various tables of the loop.
       
  1701 **
       
  1702 ** If the WHERE clause is empty, the foreach loops must each scan their
       
  1703 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
       
  1704 ** the tables have indices and there are terms in the WHERE clause that
       
  1705 ** refer to those indices, a complete table scan can be avoided and the
       
  1706 ** code will run much faster.  Most of the work of this routine is checking
       
  1707 ** to see if there are indices that can be used to speed up the loop.
       
  1708 **
       
  1709 ** Terms of the WHERE clause are also used to limit which rows actually
       
  1710 ** make it to the "..." in the middle of the loop.  After each "foreach",
       
  1711 ** terms of the WHERE clause that use only terms in that loop and outer
       
  1712 ** loops are evaluated and if false a jump is made around all subsequent
       
  1713 ** inner loops (or around the "..." if the test occurs within the inner-
       
  1714 ** most loop)
       
  1715 **
       
  1716 ** OUTER JOINS
       
  1717 **
       
  1718 ** An outer join of tables t1 and t2 is conceptally coded as follows:
       
  1719 **
       
  1720 **    foreach row1 in t1 do
       
  1721 **      flag = 0
       
  1722 **      foreach row2 in t2 do
       
  1723 **        start:
       
  1724 **          ...
       
  1725 **          flag = 1
       
  1726 **      end
       
  1727 **      if flag==0 then
       
  1728 **        move the row2 cursor to a null row
       
  1729 **        goto start
       
  1730 **      fi
       
  1731 **    end
       
  1732 **
       
  1733 ** ORDER BY CLAUSE PROCESSING
       
  1734 **
       
  1735 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
       
  1736 ** if there is one.  If there is no ORDER BY clause or if this routine
       
  1737 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
       
  1738 **
       
  1739 ** If an index can be used so that the natural output order of the table
       
  1740 ** scan is correct for the ORDER BY clause, then that index is used and
       
  1741 ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
       
  1742 ** unnecessary sort of the result set if an index appropriate for the
       
  1743 ** ORDER BY clause already exists.
       
  1744 **
       
  1745 ** If the where clause loops cannot be arranged to provide the correct
       
  1746 ** output order, then the *ppOrderBy is unchanged.
       
  1747 */
       
  1748 WhereInfo *sqlite3WhereBegin(
       
  1749   Parse *pParse,        /* The parser context */
       
  1750   SrcList *pTabList,    /* A list of all tables to be scanned */
       
  1751   Expr *pWhere,         /* The WHERE clause */
       
  1752   ExprList **ppOrderBy  /* An ORDER BY clause, or NULL */
       
  1753 ){
       
  1754   int i;                     /* Loop counter */
       
  1755   WhereInfo *pWInfo;         /* Will become the return value of this function */
       
  1756   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
       
  1757   int brk, cont = 0;         /* Addresses used during code generation */
       
  1758   Bitmask notReady;          /* Cursors that are not yet positioned */
       
  1759   WhereTerm *pTerm;          /* A single term in the WHERE clause */
       
  1760   ExprMaskSet maskSet;       /* The expression mask set */
       
  1761   WhereClause wc;            /* The WHERE clause is divided into these terms */
       
  1762   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
       
  1763   WhereLevel *pLevel;             /* A single level in the pWInfo list */
       
  1764   int iFrom;                      /* First unused FROM clause element */
       
  1765   int andFlags;              /* AND-ed combination of all wc.a[].flags */
       
  1766 
       
  1767   /* The number of tables in the FROM clause is limited by the number of
       
  1768   ** bits in a Bitmask 
       
  1769   */
       
  1770   if( pTabList->nSrc>BMS ){
       
  1771     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
       
  1772     return 0;
       
  1773   }
       
  1774 
       
  1775   /* Split the WHERE clause into separate subexpressions where each
       
  1776   ** subexpression is separated by an AND operator.
       
  1777   */
       
  1778   initMaskSet(&maskSet);
       
  1779   whereClauseInit(&wc, pParse);
       
  1780   whereSplit(&wc, pWhere, TK_AND);
       
  1781     
       
  1782   /* Allocate and initialize the WhereInfo structure that will become the
       
  1783   ** return value.
       
  1784   */
       
  1785   pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
       
  1786   if( sqlite3MallocFailed() ){
       
  1787     goto whereBeginNoMem;
       
  1788   }
       
  1789   pWInfo->nLevel = pTabList->nSrc;
       
  1790   pWInfo->pParse = pParse;
       
  1791   pWInfo->pTabList = pTabList;
       
  1792   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
       
  1793 
       
  1794   /* Special case: a WHERE clause that is constant.  Evaluate the
       
  1795   ** expression and either jump over all of the code or fall thru.
       
  1796   */
       
  1797   if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
       
  1798     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
       
  1799     pWhere = 0;
       
  1800   }
       
  1801 
       
  1802   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
       
  1803   ** add new virtual terms onto the end of the WHERE clause.  We do not
       
  1804   ** want to analyze these virtual terms, so start analyzing at the end
       
  1805   ** and work forward so that the added virtual terms are never processed.
       
  1806   */
       
  1807   for(i=0; i<pTabList->nSrc; i++){
       
  1808     createMask(&maskSet, pTabList->a[i].iCursor);
       
  1809   }
       
  1810   exprAnalyzeAll(pTabList, &maskSet, &wc);
       
  1811   if( sqlite3MallocFailed() ){
       
  1812     goto whereBeginNoMem;
       
  1813   }
       
  1814 
       
  1815   /* Chose the best index to use for each table in the FROM clause.
       
  1816   **
       
  1817   ** This loop fills in the following fields:
       
  1818   **
       
  1819   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
       
  1820   **   pWInfo->a[].flags     WHERE_xxx flags associated with pIdx
       
  1821   **   pWInfo->a[].nEq       The number of == and IN constraints
       
  1822   **   pWInfo->a[].iFrom     When term of the FROM clause is being coded
       
  1823   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
       
  1824   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
       
  1825   **
       
  1826   ** This loop also figures out the nesting order of tables in the FROM
       
  1827   ** clause.
       
  1828   */
       
  1829   notReady = ~(Bitmask)0;
       
  1830   pTabItem = pTabList->a;
       
  1831   pLevel = pWInfo->a;
       
  1832   andFlags = ~0;
       
  1833   TRACE(("*** Optimizer Start ***\n"));
       
  1834   for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
       
  1835     Index *pIdx;                /* Index for FROM table at pTabItem */
       
  1836     int flags;                  /* Flags asssociated with pIdx */
       
  1837     int nEq;                    /* Number of == or IN constraints */
       
  1838     double cost;                /* The cost for pIdx */
       
  1839     int j;                      /* For looping over FROM tables */
       
  1840     Index *pBest = 0;           /* The best index seen so far */
       
  1841     int bestFlags = 0;          /* Flags associated with pBest */
       
  1842     int bestNEq = 0;            /* nEq associated with pBest */
       
  1843     double lowestCost;          /* Cost of the pBest */
       
  1844     int bestJ = 0;              /* The value of j */
       
  1845     Bitmask m;                  /* Bitmask value for j or bestJ */
       
  1846     int once = 0;               /* True when first table is seen */
       
  1847     sqlite3_index_info *pIndex; /* Current virtual index */
       
  1848 
       
  1849     lowestCost = SQLITE_BIG_DBL;
       
  1850     for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
       
  1851       int doNotReorder;  /* True if this table should not be reordered */
       
  1852 
       
  1853       doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0
       
  1854                    || (j>0 && (pTabItem[-1].jointype & (JT_LEFT|JT_CROSS))!=0);
       
  1855       if( once && doNotReorder ) break;
       
  1856       m = getMask(&maskSet, pTabItem->iCursor);
       
  1857       if( (m & notReady)==0 ){
       
  1858         if( j==iFrom ) iFrom++;
       
  1859         continue;
       
  1860       }
       
  1861       assert( pTabItem->pTab );
       
  1862 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  1863       if( IsVirtual(pTabItem->pTab) ){
       
  1864         sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
       
  1865         cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
       
  1866                                 ppOrderBy ? *ppOrderBy : 0, i==0,
       
  1867                                 ppIdxInfo);
       
  1868         flags = WHERE_VIRTUALTABLE;
       
  1869         pIndex = *ppIdxInfo;
       
  1870         if( pIndex && pIndex->orderByConsumed ){
       
  1871           flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
       
  1872         }
       
  1873         pIdx = 0;
       
  1874         nEq = 0;
       
  1875       }else 
       
  1876 #endif
       
  1877       {
       
  1878         cost = bestIndex(pParse, &wc, pTabItem, notReady,
       
  1879                          (i==0 && ppOrderBy) ? *ppOrderBy : 0,
       
  1880                          &pIdx, &flags, &nEq);
       
  1881         pIndex = 0;
       
  1882       }
       
  1883       if( cost<lowestCost ){
       
  1884         once = 1;
       
  1885         lowestCost = cost;
       
  1886         pBest = pIdx;
       
  1887         bestFlags = flags;
       
  1888         bestNEq = nEq;
       
  1889         bestJ = j;
       
  1890         pLevel->pBestIdx = pIndex;
       
  1891       }
       
  1892       if( doNotReorder ) break;
       
  1893     }
       
  1894     TRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
       
  1895            pLevel-pWInfo->a));
       
  1896     if( (bestFlags & WHERE_ORDERBY)!=0 ){
       
  1897       *ppOrderBy = 0;
       
  1898     }
       
  1899     andFlags &= bestFlags;
       
  1900     pLevel->flags = bestFlags;
       
  1901     pLevel->pIdx = pBest;
       
  1902     pLevel->nEq = bestNEq;
       
  1903     pLevel->aInLoop = 0;
       
  1904     pLevel->nIn = 0;
       
  1905     if( pBest ){
       
  1906       pLevel->iIdxCur = pParse->nTab++;
       
  1907     }else{
       
  1908       pLevel->iIdxCur = -1;
       
  1909     }
       
  1910     notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
       
  1911     pLevel->iFrom = bestJ;
       
  1912   }
       
  1913   TRACE(("*** Optimizer Finished ***\n"));
       
  1914 
       
  1915   /* If the total query only selects a single row, then the ORDER BY
       
  1916   ** clause is irrelevant.
       
  1917   */
       
  1918   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
       
  1919     *ppOrderBy = 0;
       
  1920   }
       
  1921 
       
  1922   /* Open all tables in the pTabList and any indices selected for
       
  1923   ** searching those tables.
       
  1924   */
       
  1925   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
       
  1926   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
       
  1927     Table *pTab;     /* Table to open */
       
  1928     Index *pIx;      /* Index used to access pTab (if any) */
       
  1929     int iDb;         /* Index of database containing table/index */
       
  1930     int iIdxCur = pLevel->iIdxCur;
       
  1931 
       
  1932 #ifndef SQLITE_OMIT_EXPLAIN
       
  1933     if( pParse->explain==2 ){
       
  1934       char *zMsg;
       
  1935       struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
       
  1936       zMsg = sqlite3MPrintf("TABLE %s", pItem->zName);
       
  1937       if( pItem->zAlias ){
       
  1938         zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias);
       
  1939       }
       
  1940       if( (pIx = pLevel->pIdx)!=0 ){
       
  1941         zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName);
       
  1942       }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
       
  1943         zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg);
       
  1944       }
       
  1945 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  1946       else if( pLevel->pBestIdx ){
       
  1947         sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
       
  1948         zMsg = sqlite3MPrintf("%z VIRTUAL TABLE INDEX %d:%s", zMsg,
       
  1949                     pBestIdx->idxNum, pBestIdx->idxStr);
       
  1950       }
       
  1951 #endif
       
  1952       if( pLevel->flags & WHERE_ORDERBY ){
       
  1953         zMsg = sqlite3MPrintf("%z ORDER BY", zMsg);
       
  1954       }
       
  1955       sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
       
  1956     }
       
  1957 #endif /* SQLITE_OMIT_EXPLAIN */
       
  1958     pTabItem = &pTabList->a[pLevel->iFrom];
       
  1959     pTab = pTabItem->pTab;
       
  1960     iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
       
  1961     if( pTab->isEphem || pTab->pSelect ) continue;
       
  1962 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  1963     if( pLevel->pBestIdx ){
       
  1964       int iCur = pTabItem->iCursor;
       
  1965       sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB);
       
  1966     }else
       
  1967 #endif
       
  1968     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
       
  1969       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
       
  1970       if( pTab->nCol<(sizeof(Bitmask)*8) ){
       
  1971         Bitmask b = pTabItem->colUsed;
       
  1972         int n = 0;
       
  1973         for(; b; b=b>>1, n++){}
       
  1974         sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
       
  1975         assert( n<=pTab->nCol );
       
  1976       }
       
  1977     }else{
       
  1978       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
       
  1979     }
       
  1980     pLevel->iTabCur = pTabItem->iCursor;
       
  1981     if( (pIx = pLevel->pIdx)!=0 ){
       
  1982       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
       
  1983       assert( pIx->pSchema==pTab->pSchema );
       
  1984       sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
       
  1985       VdbeComment((v, "# %s", pIx->zName));
       
  1986       sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
       
  1987                      (char*)pKey, P3_KEYINFO_HANDOFF);
       
  1988     }
       
  1989     if( (pLevel->flags & WHERE_IDX_ONLY)!=0 ){
       
  1990       sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
       
  1991     }
       
  1992     sqlite3CodeVerifySchema(pParse, iDb);
       
  1993   }
       
  1994   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
       
  1995 
       
  1996   /* Generate the code to do the search.  Each iteration of the for
       
  1997   ** loop below generates code for a single nested loop of the VM
       
  1998   ** program.
       
  1999   */
       
  2000   notReady = ~(Bitmask)0;
       
  2001   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
       
  2002     int j;
       
  2003     int iCur = pTabItem->iCursor;  /* The VDBE cursor for the table */
       
  2004     Index *pIdx;       /* The index we will be using */
       
  2005     int iIdxCur;       /* The VDBE cursor for the index */
       
  2006     int omitTable;     /* True if we use the index only */
       
  2007     int bRev;          /* True if we need to scan in reverse order */
       
  2008 
       
  2009     pTabItem = &pTabList->a[pLevel->iFrom];
       
  2010     iCur = pTabItem->iCursor;
       
  2011     pIdx = pLevel->pIdx;
       
  2012     iIdxCur = pLevel->iIdxCur;
       
  2013     bRev = (pLevel->flags & WHERE_REVERSE)!=0;
       
  2014     omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
       
  2015 
       
  2016     /* Create labels for the "break" and "continue" instructions
       
  2017     ** for the current loop.  Jump to brk to break out of a loop.
       
  2018     ** Jump to cont to go immediately to the next iteration of the
       
  2019     ** loop.
       
  2020     */
       
  2021     brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
       
  2022     cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
       
  2023 
       
  2024     /* If this is the right table of a LEFT OUTER JOIN, allocate and
       
  2025     ** initialize a memory cell that records if this table matches any
       
  2026     ** row of the left table of the join.
       
  2027     */
       
  2028     if( pLevel->iFrom>0 && (pTabItem[-1].jointype & JT_LEFT)!=0 ){
       
  2029       if( !pParse->nMem ) pParse->nMem++;
       
  2030       pLevel->iLeftJoin = pParse->nMem++;
       
  2031       sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin);
       
  2032       VdbeComment((v, "# init LEFT JOIN no-match flag"));
       
  2033     }
       
  2034 
       
  2035 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  2036     if( pLevel->pBestIdx ){
       
  2037       /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
       
  2038       **          to access the data.
       
  2039       */
       
  2040       int j;
       
  2041       sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
       
  2042       int nConstraint = pBestIdx->nConstraint;
       
  2043       struct sqlite3_index_constraint_usage *aUsage =
       
  2044                                                   pBestIdx->aConstraintUsage;
       
  2045       const struct sqlite3_index_constraint *aConstraint =
       
  2046                                                   pBestIdx->aConstraint;
       
  2047 
       
  2048       for(j=1; j<=nConstraint; j++){
       
  2049         int k;
       
  2050         for(k=0; k<nConstraint; k++){
       
  2051           if( aUsage[k].argvIndex==j ){
       
  2052             int iTerm = aConstraint[k].iTermOffset;
       
  2053             sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight);
       
  2054             break;
       
  2055           }
       
  2056         }
       
  2057         if( k==nConstraint ) break;
       
  2058       }
       
  2059       sqlite3VdbeAddOp(v, OP_Integer, j-1, 0);
       
  2060       sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0);
       
  2061       sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr,
       
  2062                       pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC);
       
  2063       pBestIdx->needToFreeIdxStr = 0;
       
  2064       for(j=0; j<pBestIdx->nConstraint; j++){
       
  2065         if( aUsage[j].omit ){
       
  2066           int iTerm = aConstraint[j].iTermOffset;
       
  2067           disableTerm(pLevel, &wc.a[iTerm]);
       
  2068         }
       
  2069       }
       
  2070       pLevel->op = OP_VNext;
       
  2071       pLevel->p1 = iCur;
       
  2072       pLevel->p2 = sqlite3VdbeCurrentAddr(v);
       
  2073     }else
       
  2074 #endif /* SQLITE_OMIT_VIRTUALTABLE */
       
  2075 
       
  2076     if( pLevel->flags & WHERE_ROWID_EQ ){
       
  2077       /* Case 1:  We can directly reference a single row using an
       
  2078       **          equality comparison against the ROWID field.  Or
       
  2079       **          we reference multiple rows using a "rowid IN (...)"
       
  2080       **          construct.
       
  2081       */
       
  2082       pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
       
  2083       assert( pTerm!=0 );
       
  2084       assert( pTerm->pExpr!=0 );
       
  2085       assert( pTerm->leftCursor==iCur );
       
  2086       assert( omitTable==0 );
       
  2087       codeEqualityTerm(pParse, pTerm, brk, pLevel);
       
  2088       sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
       
  2089       sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
       
  2090       VdbeComment((v, "pk"));
       
  2091       pLevel->op = OP_Noop;
       
  2092     }else if( pLevel->flags & WHERE_ROWID_RANGE ){
       
  2093       /* Case 2:  We have an inequality comparison against the ROWID field.
       
  2094       */
       
  2095       int testOp = OP_Noop;
       
  2096       int start;
       
  2097       WhereTerm *pStart, *pEnd;
       
  2098 
       
  2099       assert( omitTable==0 );
       
  2100       pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
       
  2101       pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
       
  2102       if( bRev ){
       
  2103         pTerm = pStart;
       
  2104         pStart = pEnd;
       
  2105         pEnd = pTerm;
       
  2106       }
       
  2107       if( pStart ){
       
  2108         Expr *pX;
       
  2109         pX = pStart->pExpr;
       
  2110         assert( pX!=0 );
       
  2111         assert( pStart->leftCursor==iCur );
       
  2112         sqlite3ExprCode(pParse, pX->pRight);
       
  2113         sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
       
  2114         sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
       
  2115         VdbeComment((v, "pk"));
       
  2116         disableTerm(pLevel, pStart);
       
  2117       }else{
       
  2118         sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
       
  2119       }
       
  2120       if( pEnd ){
       
  2121         Expr *pX;
       
  2122         pX = pEnd->pExpr;
       
  2123         assert( pX!=0 );
       
  2124         assert( pEnd->leftCursor==iCur );
       
  2125         sqlite3ExprCode(pParse, pX->pRight);
       
  2126         pLevel->iMem = pParse->nMem++;
       
  2127         sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
       
  2128         if( pX->op==TK_LT || pX->op==TK_GT ){
       
  2129           testOp = bRev ? OP_Le : OP_Ge;
       
  2130         }else{
       
  2131           testOp = bRev ? OP_Lt : OP_Gt;
       
  2132         }
       
  2133         disableTerm(pLevel, pEnd);
       
  2134       }
       
  2135       start = sqlite3VdbeCurrentAddr(v);
       
  2136       pLevel->op = bRev ? OP_Prev : OP_Next;
       
  2137       pLevel->p1 = iCur;
       
  2138       pLevel->p2 = start;
       
  2139       if( testOp!=OP_Noop ){
       
  2140         sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
       
  2141         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
       
  2142         sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC, brk);
       
  2143       }
       
  2144     }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
       
  2145       /* Case 3: The WHERE clause term that refers to the right-most
       
  2146       **         column of the index is an inequality.  For example, if
       
  2147       **         the index is on (x,y,z) and the WHERE clause is of the
       
  2148       **         form "x=5 AND y<10" then this case is used.  Only the
       
  2149       **         right-most column can be an inequality - the rest must
       
  2150       **         use the "==" and "IN" operators.
       
  2151       **
       
  2152       **         This case is also used when there are no WHERE clause
       
  2153       **         constraints but an index is selected anyway, in order
       
  2154       **         to force the output order to conform to an ORDER BY.
       
  2155       */
       
  2156       int start;
       
  2157       int nEq = pLevel->nEq;
       
  2158       int topEq=0;        /* True if top limit uses ==. False is strictly < */
       
  2159       int btmEq=0;        /* True if btm limit uses ==. False if strictly > */
       
  2160       int topOp, btmOp;   /* Operators for the top and bottom search bounds */
       
  2161       int testOp;
       
  2162       int nNotNull;       /* Number of rows of index that must be non-NULL */
       
  2163       int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
       
  2164       int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
       
  2165 
       
  2166       /* Generate code to evaluate all constraint terms using == or IN
       
  2167       ** and level the values of those terms on the stack.
       
  2168       */
       
  2169       codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);
       
  2170 
       
  2171       /* Duplicate the equality term values because they will all be
       
  2172       ** used twice: once to make the termination key and once to make the
       
  2173       ** start key.
       
  2174       */
       
  2175       for(j=0; j<nEq; j++){
       
  2176         sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
       
  2177       }
       
  2178 
       
  2179       /* Figure out what comparison operators to use for top and bottom 
       
  2180       ** search bounds. For an ascending index, the bottom bound is a > or >=
       
  2181       ** operator and the top bound is a < or <= operator.  For a descending
       
  2182       ** index the operators are reversed.
       
  2183       */
       
  2184       nNotNull = nEq + topLimit;
       
  2185       if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
       
  2186         topOp = WO_LT|WO_LE;
       
  2187         btmOp = WO_GT|WO_GE;
       
  2188       }else{
       
  2189         topOp = WO_GT|WO_GE;
       
  2190         btmOp = WO_LT|WO_LE;
       
  2191         SWAP(int, topLimit, btmLimit);
       
  2192       }
       
  2193 
       
  2194       /* Generate the termination key.  This is the key value that
       
  2195       ** will end the search.  There is no termination key if there
       
  2196       ** are no equality terms and no "X<..." term.
       
  2197       **
       
  2198       ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
       
  2199       ** key computed here really ends up being the start key.
       
  2200       */
       
  2201       if( topLimit ){
       
  2202         Expr *pX;
       
  2203         int k = pIdx->aiColumn[j];
       
  2204         pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
       
  2205         assert( pTerm!=0 );
       
  2206         pX = pTerm->pExpr;
       
  2207         assert( (pTerm->flags & TERM_CODED)==0 );
       
  2208         sqlite3ExprCode(pParse, pX->pRight);
       
  2209         topEq = pTerm->eOperator & (WO_LE|WO_GE);
       
  2210         disableTerm(pLevel, pTerm);
       
  2211         testOp = OP_IdxGE;
       
  2212       }else{
       
  2213         testOp = nEq>0 ? OP_IdxGE : OP_Noop;
       
  2214         topEq = 1;
       
  2215       }
       
  2216       if( testOp!=OP_Noop ){
       
  2217         int nCol = nEq + topLimit;
       
  2218         pLevel->iMem = pParse->nMem++;
       
  2219         buildIndexProbe(v, nCol, nEq, brk, pIdx);
       
  2220         if( bRev ){
       
  2221           int op = topEq ? OP_MoveLe : OP_MoveLt;
       
  2222           sqlite3VdbeAddOp(v, op, iIdxCur, brk);
       
  2223         }else{
       
  2224           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
       
  2225         }
       
  2226       }else if( bRev ){
       
  2227         sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
       
  2228       }
       
  2229 
       
  2230       /* Generate the start key.  This is the key that defines the lower
       
  2231       ** bound on the search.  There is no start key if there are no
       
  2232       ** equality terms and if there is no "X>..." term.  In
       
  2233       ** that case, generate a "Rewind" instruction in place of the
       
  2234       ** start key search.
       
  2235       **
       
  2236       ** 2002-Dec-04: In the case of a reverse-order search, the so-called
       
  2237       ** "start" key really ends up being used as the termination key.
       
  2238       */
       
  2239       if( btmLimit ){
       
  2240         Expr *pX;
       
  2241         int k = pIdx->aiColumn[j];
       
  2242         pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
       
  2243         assert( pTerm!=0 );
       
  2244         pX = pTerm->pExpr;
       
  2245         assert( (pTerm->flags & TERM_CODED)==0 );
       
  2246         sqlite3ExprCode(pParse, pX->pRight);
       
  2247         btmEq = pTerm->eOperator & (WO_LE|WO_GE);
       
  2248         disableTerm(pLevel, pTerm);
       
  2249       }else{
       
  2250         btmEq = 1;
       
  2251       }
       
  2252       if( nEq>0 || btmLimit ){
       
  2253         int nCol = nEq + btmLimit;
       
  2254         buildIndexProbe(v, nCol, 0, brk, pIdx);
       
  2255         if( bRev ){
       
  2256           pLevel->iMem = pParse->nMem++;
       
  2257           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
       
  2258           testOp = OP_IdxLT;
       
  2259         }else{
       
  2260           int op = btmEq ? OP_MoveGe : OP_MoveGt;
       
  2261           sqlite3VdbeAddOp(v, op, iIdxCur, brk);
       
  2262         }
       
  2263       }else if( bRev ){
       
  2264         testOp = OP_Noop;
       
  2265       }else{
       
  2266         sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
       
  2267       }
       
  2268 
       
  2269       /* Generate the the top of the loop.  If there is a termination
       
  2270       ** key we have to test for that key and abort at the top of the
       
  2271       ** loop.
       
  2272       */
       
  2273       start = sqlite3VdbeCurrentAddr(v);
       
  2274       if( testOp!=OP_Noop ){
       
  2275         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
       
  2276         sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
       
  2277         if( (topEq && !bRev) || (!btmEq && bRev) ){
       
  2278           sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
       
  2279         }
       
  2280       }
       
  2281       sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
       
  2282       sqlite3VdbeAddOp(v, OP_IdxIsNull, nNotNull, cont);
       
  2283       if( !omitTable ){
       
  2284         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
       
  2285         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
       
  2286       }
       
  2287 
       
  2288       /* Record the instruction used to terminate the loop.
       
  2289       */
       
  2290       pLevel->op = bRev ? OP_Prev : OP_Next;
       
  2291       pLevel->p1 = iIdxCur;
       
  2292       pLevel->p2 = start;
       
  2293     }else if( pLevel->flags & WHERE_COLUMN_EQ ){
       
  2294       /* Case 4:  There is an index and all terms of the WHERE clause that
       
  2295       **          refer to the index using the "==" or "IN" operators.
       
  2296       */
       
  2297       int start;
       
  2298       int nEq = pLevel->nEq;
       
  2299 
       
  2300       /* Generate code to evaluate all constraint terms using == or IN
       
  2301       ** and leave the values of those terms on the stack.
       
  2302       */
       
  2303       codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);
       
  2304 
       
  2305       /* Generate a single key that will be used to both start and terminate
       
  2306       ** the search
       
  2307       */
       
  2308       buildIndexProbe(v, nEq, 0, brk, pIdx);
       
  2309       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
       
  2310 
       
  2311       /* Generate code (1) to move to the first matching element of the table.
       
  2312       ** Then generate code (2) that jumps to "brk" after the cursor is past
       
  2313       ** the last matching element of the table.  The code (1) is executed
       
  2314       ** once to initialize the search, the code (2) is executed before each
       
  2315       ** iteration of the scan to see if the scan has finished. */
       
  2316       if( bRev ){
       
  2317         /* Scan in reverse order */
       
  2318         sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk);
       
  2319         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
       
  2320         sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk);
       
  2321         pLevel->op = OP_Prev;
       
  2322       }else{
       
  2323         /* Scan in the forward order */
       
  2324         sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk);
       
  2325         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
       
  2326         sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC);
       
  2327         pLevel->op = OP_Next;
       
  2328       }
       
  2329       sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
       
  2330       sqlite3VdbeAddOp(v, OP_IdxIsNull, nEq, cont);
       
  2331       if( !omitTable ){
       
  2332         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
       
  2333         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
       
  2334       }
       
  2335       pLevel->p1 = iIdxCur;
       
  2336       pLevel->p2 = start;
       
  2337     }else{
       
  2338       /* Case 5:  There is no usable index.  We must do a complete
       
  2339       **          scan of the entire table.
       
  2340       */
       
  2341       assert( omitTable==0 );
       
  2342       assert( bRev==0 );
       
  2343       pLevel->op = OP_Next;
       
  2344       pLevel->p1 = iCur;
       
  2345       pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
       
  2346     }
       
  2347     notReady &= ~getMask(&maskSet, iCur);
       
  2348 
       
  2349     /* Insert code to test every subexpression that can be completely
       
  2350     ** computed using the current set of tables.
       
  2351     */
       
  2352     for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
       
  2353       Expr *pE;
       
  2354       if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
       
  2355       if( (pTerm->prereqAll & notReady)!=0 ) continue;
       
  2356       pE = pTerm->pExpr;
       
  2357       assert( pE!=0 );
       
  2358       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
       
  2359         continue;
       
  2360       }
       
  2361       sqlite3ExprIfFalse(pParse, pE, cont, 1);
       
  2362       pTerm->flags |= TERM_CODED;
       
  2363     }
       
  2364 
       
  2365     /* For a LEFT OUTER JOIN, generate code that will record the fact that
       
  2366     ** at least one row of the right table has matched the left table.  
       
  2367     */
       
  2368     if( pLevel->iLeftJoin ){
       
  2369       pLevel->top = sqlite3VdbeCurrentAddr(v);
       
  2370       sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin);
       
  2371       VdbeComment((v, "# record LEFT JOIN hit"));
       
  2372       for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
       
  2373         if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
       
  2374         if( (pTerm->prereqAll & notReady)!=0 ) continue;
       
  2375         assert( pTerm->pExpr );
       
  2376         sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
       
  2377         pTerm->flags |= TERM_CODED;
       
  2378       }
       
  2379     }
       
  2380   }
       
  2381 
       
  2382 #ifdef SQLITE_TEST  /* For testing and debugging use only */
       
  2383   /* Record in the query plan information about the current table
       
  2384   ** and the index used to access it (if any).  If the table itself
       
  2385   ** is not used, its name is just '{}'.  If no index is used
       
  2386   ** the index is listed as "{}".  If the primary key is used the
       
  2387   ** index name is '*'.
       
  2388   */
       
  2389   for(i=0; i<pTabList->nSrc; i++){
       
  2390     char *z;
       
  2391     int n;
       
  2392     pLevel = &pWInfo->a[i];
       
  2393     pTabItem = &pTabList->a[pLevel->iFrom];
       
  2394     z = pTabItem->zAlias;
       
  2395     if( z==0 ) z = pTabItem->pTab->zName;
       
  2396     n = strlen(z);
       
  2397     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
       
  2398       if( pLevel->flags & WHERE_IDX_ONLY ){
       
  2399         strcpy(&sqlite3_query_plan[nQPlan], "{}");
       
  2400         nQPlan += 2;
       
  2401       }else{
       
  2402         strcpy(&sqlite3_query_plan[nQPlan], z);
       
  2403         nQPlan += n;
       
  2404       }
       
  2405       sqlite3_query_plan[nQPlan++] = ' ';
       
  2406     }
       
  2407     if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
       
  2408       strcpy(&sqlite3_query_plan[nQPlan], "* ");
       
  2409       nQPlan += 2;
       
  2410     }else if( pLevel->pIdx==0 ){
       
  2411       strcpy(&sqlite3_query_plan[nQPlan], "{} ");
       
  2412       nQPlan += 3;
       
  2413     }else{
       
  2414       n = strlen(pLevel->pIdx->zName);
       
  2415       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
       
  2416         strcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName);
       
  2417         nQPlan += n;
       
  2418         sqlite3_query_plan[nQPlan++] = ' ';
       
  2419       }
       
  2420     }
       
  2421   }
       
  2422   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
       
  2423     sqlite3_query_plan[--nQPlan] = 0;
       
  2424   }
       
  2425   sqlite3_query_plan[nQPlan] = 0;
       
  2426   nQPlan = 0;
       
  2427 #endif /* SQLITE_TEST // Testing and debugging use only */
       
  2428 
       
  2429   /* Record the continuation address in the WhereInfo structure.  Then
       
  2430   ** clean up and return.
       
  2431   */
       
  2432   pWInfo->iContinue = cont;
       
  2433   whereClauseClear(&wc);
       
  2434   return pWInfo;
       
  2435 
       
  2436   /* Jump here if malloc fails */
       
  2437 whereBeginNoMem:
       
  2438   whereClauseClear(&wc);
       
  2439   whereInfoFree(pWInfo);
       
  2440   return 0;
       
  2441 }
       
  2442 
       
  2443 /*
       
  2444 ** Generate the end of the WHERE loop.  See comments on 
       
  2445 ** sqlite3WhereBegin() for additional information.
       
  2446 */
       
  2447 void sqlite3WhereEnd(WhereInfo *pWInfo){
       
  2448   Vdbe *v = pWInfo->pParse->pVdbe;
       
  2449   int i;
       
  2450   WhereLevel *pLevel;
       
  2451   SrcList *pTabList = pWInfo->pTabList;
       
  2452 
       
  2453   /* Generate loop termination code.
       
  2454   */
       
  2455   for(i=pTabList->nSrc-1; i>=0; i--){
       
  2456     pLevel = &pWInfo->a[i];
       
  2457     sqlite3VdbeResolveLabel(v, pLevel->cont);
       
  2458     if( pLevel->op!=OP_Noop ){
       
  2459       sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
       
  2460     }
       
  2461     sqlite3VdbeResolveLabel(v, pLevel->brk);
       
  2462     if( pLevel->nIn ){
       
  2463       int *a;
       
  2464       int j;
       
  2465       for(j=pLevel->nIn, a=&pLevel->aInLoop[j*2-2]; j>0; j--, a-=2){
       
  2466         sqlite3VdbeAddOp(v, OP_Next, a[0], a[1]);
       
  2467         sqlite3VdbeJumpHere(v, a[1]-1);
       
  2468       }
       
  2469       sqliteFree(pLevel->aInLoop);
       
  2470     }
       
  2471     if( pLevel->iLeftJoin ){
       
  2472       int addr;
       
  2473       addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
       
  2474       sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
       
  2475       if( pLevel->iIdxCur>=0 ){
       
  2476         sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
       
  2477       }
       
  2478       sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
       
  2479       sqlite3VdbeJumpHere(v, addr);
       
  2480     }
       
  2481   }
       
  2482 
       
  2483   /* The "break" point is here, just past the end of the outer loop.
       
  2484   ** Set it.
       
  2485   */
       
  2486   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
       
  2487 
       
  2488   /* Close all of the cursors that were opened by sqlite3WhereBegin.
       
  2489   */
       
  2490   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
       
  2491     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
       
  2492     Table *pTab = pTabItem->pTab;
       
  2493     assert( pTab!=0 );
       
  2494     if( pTab->isEphem || pTab->pSelect ) continue;
       
  2495     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
       
  2496       sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
       
  2497     }
       
  2498     if( pLevel->pIdx!=0 ){
       
  2499       sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
       
  2500     }
       
  2501 
       
  2502     /* Make cursor substitutions for cases where we want to use
       
  2503     ** just the index and never reference the table.
       
  2504     ** 
       
  2505     ** Calls to the code generator in between sqlite3WhereBegin and
       
  2506     ** sqlite3WhereEnd will have created code that references the table
       
  2507     ** directly.  This loop scans all that code looking for opcodes
       
  2508     ** that reference the table and converts them into opcodes that
       
  2509     ** reference the index.
       
  2510     */
       
  2511     if( pLevel->flags & WHERE_IDX_ONLY ){
       
  2512       int k, j, last;
       
  2513       VdbeOp *pOp;
       
  2514       Index *pIdx = pLevel->pIdx;
       
  2515 
       
  2516       assert( pIdx!=0 );
       
  2517       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
       
  2518       last = sqlite3VdbeCurrentAddr(v);
       
  2519       for(k=pWInfo->iTop; k<last; k++, pOp++){
       
  2520         if( pOp->p1!=pLevel->iTabCur ) continue;
       
  2521         if( pOp->opcode==OP_Column ){
       
  2522           pOp->p1 = pLevel->iIdxCur;
       
  2523           for(j=0; j<pIdx->nColumn; j++){
       
  2524             if( pOp->p2==pIdx->aiColumn[j] ){
       
  2525               pOp->p2 = j;
       
  2526               break;
       
  2527             }
       
  2528           }
       
  2529         }else if( pOp->opcode==OP_Rowid ){
       
  2530           pOp->p1 = pLevel->iIdxCur;
       
  2531           pOp->opcode = OP_IdxRowid;
       
  2532         }else if( pOp->opcode==OP_NullRow ){
       
  2533           pOp->opcode = OP_Noop;
       
  2534         }
       
  2535       }
       
  2536     }
       
  2537   }
       
  2538 
       
  2539   /* Final cleanup
       
  2540   */
       
  2541   whereInfoFree(pWInfo);
       
  2542   return;
       
  2543 }