|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This module contains C code that generates VDBE code used to process |
|
13 ** the WHERE clause of SQL statements. This module is reponsible for |
|
14 ** generating the code that loops through a table looking for applicable |
|
15 ** rows. Indices are selected and used to speed the search when doing |
|
16 ** so is applicable. Because this module is responsible for selecting |
|
17 ** indices, you might also think of this module as the "query optimizer". |
|
18 ** |
|
19 ** $Id: where.c,v 1.228 2006/06/27 13:20:22 drh Exp $ |
|
20 */ |
|
21 #include "sqliteInt.h" |
|
22 |
|
23 /* |
|
24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". |
|
25 */ |
|
26 #define BMS (sizeof(Bitmask)*8) |
|
27 |
|
28 /* |
|
29 ** Determine the number of elements in an array. |
|
30 */ |
|
31 #define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0])) |
|
32 |
|
33 /* |
|
34 ** Trace output macros |
|
35 */ |
|
36 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) |
|
37 int sqlite3_where_trace = 0; |
|
38 # define TRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X |
|
39 #else |
|
40 # define TRACE(X) |
|
41 #endif |
|
42 |
|
43 /* Forward reference |
|
44 */ |
|
45 typedef struct WhereClause WhereClause; |
|
46 |
|
47 /* |
|
48 ** The query generator uses an array of instances of this structure to |
|
49 ** help it analyze the subexpressions of the WHERE clause. Each WHERE |
|
50 ** clause subexpression is separated from the others by an AND operator. |
|
51 ** |
|
52 ** All WhereTerms are collected into a single WhereClause structure. |
|
53 ** The following identity holds: |
|
54 ** |
|
55 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm |
|
56 ** |
|
57 ** When a term is of the form: |
|
58 ** |
|
59 ** X <op> <expr> |
|
60 ** |
|
61 ** where X is a column name and <op> is one of certain operators, |
|
62 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the |
|
63 ** cursor number and column number for X. WhereTerm.operator records |
|
64 ** the <op> using a bitmask encoding defined by WO_xxx below. The |
|
65 ** use of a bitmask encoding for the operator allows us to search |
|
66 ** quickly for terms that match any of several different operators. |
|
67 ** |
|
68 ** prereqRight and prereqAll record sets of cursor numbers, |
|
69 ** but they do so indirectly. A single ExprMaskSet structure translates |
|
70 ** cursor number into bits and the translated bit is stored in the prereq |
|
71 ** fields. The translation is used in order to maximize the number of |
|
72 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be |
|
73 ** spread out over the non-negative integers. For example, the cursor |
|
74 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet |
|
75 ** translates these sparse cursor numbers into consecutive integers |
|
76 ** beginning with 0 in order to make the best possible use of the available |
|
77 ** bits in the Bitmask. So, in the example above, the cursor numbers |
|
78 ** would be mapped into integers 0 through 7. |
|
79 */ |
|
80 typedef struct WhereTerm WhereTerm; |
|
81 struct WhereTerm { |
|
82 Expr *pExpr; /* Pointer to the subexpression */ |
|
83 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ |
|
84 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ |
|
85 i16 leftColumn; /* Column number of X in "X <op> <expr>" */ |
|
86 u16 eOperator; /* A WO_xx value describing <op> */ |
|
87 u8 flags; /* Bit flags. See below */ |
|
88 u8 nChild; /* Number of children that must disable us */ |
|
89 WhereClause *pWC; /* The clause this term is part of */ |
|
90 Bitmask prereqRight; /* Bitmask of tables used by pRight */ |
|
91 Bitmask prereqAll; /* Bitmask of tables referenced by p */ |
|
92 }; |
|
93 |
|
94 /* |
|
95 ** Allowed values of WhereTerm.flags |
|
96 */ |
|
97 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */ |
|
98 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ |
|
99 #define TERM_CODED 0x04 /* This term is already coded */ |
|
100 #define TERM_COPIED 0x08 /* Has a child */ |
|
101 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ |
|
102 |
|
103 /* |
|
104 ** An instance of the following structure holds all information about a |
|
105 ** WHERE clause. Mostly this is a container for one or more WhereTerms. |
|
106 */ |
|
107 struct WhereClause { |
|
108 Parse *pParse; /* The parser context */ |
|
109 int nTerm; /* Number of terms */ |
|
110 int nSlot; /* Number of entries in a[] */ |
|
111 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ |
|
112 WhereTerm aStatic[10]; /* Initial static space for a[] */ |
|
113 }; |
|
114 |
|
115 /* |
|
116 ** An instance of the following structure keeps track of a mapping |
|
117 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. |
|
118 ** |
|
119 ** The VDBE cursor numbers are small integers contained in |
|
120 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE |
|
121 ** clause, the cursor numbers might not begin with 0 and they might |
|
122 ** contain gaps in the numbering sequence. But we want to make maximum |
|
123 ** use of the bits in our bitmasks. This structure provides a mapping |
|
124 ** from the sparse cursor numbers into consecutive integers beginning |
|
125 ** with 0. |
|
126 ** |
|
127 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask |
|
128 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. |
|
129 ** |
|
130 ** For example, if the WHERE clause expression used these VDBE |
|
131 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure |
|
132 ** would map those cursor numbers into bits 0 through 5. |
|
133 ** |
|
134 ** Note that the mapping is not necessarily ordered. In the example |
|
135 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, |
|
136 ** 57->5, 73->4. Or one of 719 other combinations might be used. It |
|
137 ** does not really matter. What is important is that sparse cursor |
|
138 ** numbers all get mapped into bit numbers that begin with 0 and contain |
|
139 ** no gaps. |
|
140 */ |
|
141 typedef struct ExprMaskSet ExprMaskSet; |
|
142 struct ExprMaskSet { |
|
143 int n; /* Number of assigned cursor values */ |
|
144 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ |
|
145 }; |
|
146 |
|
147 |
|
148 /* |
|
149 ** Bitmasks for the operators that indices are able to exploit. An |
|
150 ** OR-ed combination of these values can be used when searching for |
|
151 ** terms in the where clause. |
|
152 */ |
|
153 #define WO_IN 1 |
|
154 #define WO_EQ 2 |
|
155 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) |
|
156 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) |
|
157 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) |
|
158 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) |
|
159 #define WO_MATCH 64 |
|
160 |
|
161 /* |
|
162 ** Value for flags returned by bestIndex() |
|
163 */ |
|
164 #define WHERE_ROWID_EQ 0x0001 /* rowid=EXPR or rowid IN (...) */ |
|
165 #define WHERE_ROWID_RANGE 0x0002 /* rowid<EXPR and/or rowid>EXPR */ |
|
166 #define WHERE_COLUMN_EQ 0x0010 /* x=EXPR or x IN (...) */ |
|
167 #define WHERE_COLUMN_RANGE 0x0020 /* x<EXPR and/or x>EXPR */ |
|
168 #define WHERE_COLUMN_IN 0x0040 /* x IN (...) */ |
|
169 #define WHERE_TOP_LIMIT 0x0100 /* x<EXPR or x<=EXPR constraint */ |
|
170 #define WHERE_BTM_LIMIT 0x0200 /* x>EXPR or x>=EXPR constraint */ |
|
171 #define WHERE_IDX_ONLY 0x0800 /* Use index only - omit table */ |
|
172 #define WHERE_ORDERBY 0x1000 /* Output will appear in correct order */ |
|
173 #define WHERE_REVERSE 0x2000 /* Scan in reverse order */ |
|
174 #define WHERE_UNIQUE 0x4000 /* Selects no more than one row */ |
|
175 #define WHERE_VIRTUALTABLE 0x8000 /* Use virtual-table processing */ |
|
176 |
|
177 /* |
|
178 ** Initialize a preallocated WhereClause structure. |
|
179 */ |
|
180 static void whereClauseInit(WhereClause *pWC, Parse *pParse){ |
|
181 pWC->pParse = pParse; |
|
182 pWC->nTerm = 0; |
|
183 pWC->nSlot = ARRAYSIZE(pWC->aStatic); |
|
184 pWC->a = pWC->aStatic; |
|
185 } |
|
186 |
|
187 /* |
|
188 ** Deallocate a WhereClause structure. The WhereClause structure |
|
189 ** itself is not freed. This routine is the inverse of whereClauseInit(). |
|
190 */ |
|
191 static void whereClauseClear(WhereClause *pWC){ |
|
192 int i; |
|
193 WhereTerm *a; |
|
194 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ |
|
195 if( a->flags & TERM_DYNAMIC ){ |
|
196 sqlite3ExprDelete(a->pExpr); |
|
197 } |
|
198 } |
|
199 if( pWC->a!=pWC->aStatic ){ |
|
200 sqliteFree(pWC->a); |
|
201 } |
|
202 } |
|
203 |
|
204 /* |
|
205 ** Add a new entries to the WhereClause structure. Increase the allocated |
|
206 ** space as necessary. |
|
207 ** |
|
208 ** WARNING: This routine might reallocate the space used to store |
|
209 ** WhereTerms. All pointers to WhereTerms should be invalided after |
|
210 ** calling this routine. Such pointers may be reinitialized by referencing |
|
211 ** the pWC->a[] array. |
|
212 */ |
|
213 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ |
|
214 WhereTerm *pTerm; |
|
215 int idx; |
|
216 if( pWC->nTerm>=pWC->nSlot ){ |
|
217 WhereTerm *pOld = pWC->a; |
|
218 pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 ); |
|
219 if( pWC->a==0 ) return 0; |
|
220 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); |
|
221 if( pOld!=pWC->aStatic ){ |
|
222 sqliteFree(pOld); |
|
223 } |
|
224 pWC->nSlot *= 2; |
|
225 } |
|
226 pTerm = &pWC->a[idx = pWC->nTerm]; |
|
227 pWC->nTerm++; |
|
228 pTerm->pExpr = p; |
|
229 pTerm->flags = flags; |
|
230 pTerm->pWC = pWC; |
|
231 pTerm->iParent = -1; |
|
232 return idx; |
|
233 } |
|
234 |
|
235 /* |
|
236 ** This routine identifies subexpressions in the WHERE clause where |
|
237 ** each subexpression is separated by the AND operator or some other |
|
238 ** operator specified in the op parameter. The WhereClause structure |
|
239 ** is filled with pointers to subexpressions. For example: |
|
240 ** |
|
241 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) |
|
242 ** \________/ \_______________/ \________________/ |
|
243 ** slot[0] slot[1] slot[2] |
|
244 ** |
|
245 ** The original WHERE clause in pExpr is unaltered. All this routine |
|
246 ** does is make slot[] entries point to substructure within pExpr. |
|
247 ** |
|
248 ** In the previous sentence and in the diagram, "slot[]" refers to |
|
249 ** the WhereClause.a[] array. This array grows as needed to contain |
|
250 ** all terms of the WHERE clause. |
|
251 */ |
|
252 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ |
|
253 if( pExpr==0 ) return; |
|
254 if( pExpr->op!=op ){ |
|
255 whereClauseInsert(pWC, pExpr, 0); |
|
256 }else{ |
|
257 whereSplit(pWC, pExpr->pLeft, op); |
|
258 whereSplit(pWC, pExpr->pRight, op); |
|
259 } |
|
260 } |
|
261 |
|
262 /* |
|
263 ** Initialize an expression mask set |
|
264 */ |
|
265 #define initMaskSet(P) memset(P, 0, sizeof(*P)) |
|
266 |
|
267 /* |
|
268 ** Return the bitmask for the given cursor number. Return 0 if |
|
269 ** iCursor is not in the set. |
|
270 */ |
|
271 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ |
|
272 int i; |
|
273 for(i=0; i<pMaskSet->n; i++){ |
|
274 if( pMaskSet->ix[i]==iCursor ){ |
|
275 return ((Bitmask)1)<<i; |
|
276 } |
|
277 } |
|
278 return 0; |
|
279 } |
|
280 |
|
281 /* |
|
282 ** Create a new mask for cursor iCursor. |
|
283 ** |
|
284 ** There is one cursor per table in the FROM clause. The number of |
|
285 ** tables in the FROM clause is limited by a test early in the |
|
286 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] |
|
287 ** array will never overflow. |
|
288 */ |
|
289 static void createMask(ExprMaskSet *pMaskSet, int iCursor){ |
|
290 assert( pMaskSet->n < ARRAYSIZE(pMaskSet->ix) ); |
|
291 pMaskSet->ix[pMaskSet->n++] = iCursor; |
|
292 } |
|
293 |
|
294 /* |
|
295 ** This routine walks (recursively) an expression tree and generates |
|
296 ** a bitmask indicating which tables are used in that expression |
|
297 ** tree. |
|
298 ** |
|
299 ** In order for this routine to work, the calling function must have |
|
300 ** previously invoked sqlite3ExprResolveNames() on the expression. See |
|
301 ** the header comment on that routine for additional information. |
|
302 ** The sqlite3ExprResolveNames() routines looks for column names and |
|
303 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to |
|
304 ** the VDBE cursor number of the table. This routine just has to |
|
305 ** translate the cursor numbers into bitmask values and OR all |
|
306 ** the bitmasks together. |
|
307 */ |
|
308 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); |
|
309 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); |
|
310 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ |
|
311 Bitmask mask = 0; |
|
312 if( p==0 ) return 0; |
|
313 if( p->op==TK_COLUMN ){ |
|
314 mask = getMask(pMaskSet, p->iTable); |
|
315 return mask; |
|
316 } |
|
317 mask = exprTableUsage(pMaskSet, p->pRight); |
|
318 mask |= exprTableUsage(pMaskSet, p->pLeft); |
|
319 mask |= exprListTableUsage(pMaskSet, p->pList); |
|
320 mask |= exprSelectTableUsage(pMaskSet, p->pSelect); |
|
321 return mask; |
|
322 } |
|
323 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ |
|
324 int i; |
|
325 Bitmask mask = 0; |
|
326 if( pList ){ |
|
327 for(i=0; i<pList->nExpr; i++){ |
|
328 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); |
|
329 } |
|
330 } |
|
331 return mask; |
|
332 } |
|
333 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ |
|
334 Bitmask mask; |
|
335 if( pS==0 ){ |
|
336 mask = 0; |
|
337 }else{ |
|
338 mask = exprListTableUsage(pMaskSet, pS->pEList); |
|
339 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); |
|
340 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); |
|
341 mask |= exprTableUsage(pMaskSet, pS->pWhere); |
|
342 mask |= exprTableUsage(pMaskSet, pS->pHaving); |
|
343 } |
|
344 return mask; |
|
345 } |
|
346 |
|
347 /* |
|
348 ** Return TRUE if the given operator is one of the operators that is |
|
349 ** allowed for an indexable WHERE clause term. The allowed operators are |
|
350 ** "=", "<", ">", "<=", ">=", and "IN". |
|
351 */ |
|
352 static int allowedOp(int op){ |
|
353 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); |
|
354 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); |
|
355 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); |
|
356 assert( TK_GE==TK_EQ+4 ); |
|
357 return op==TK_IN || (op>=TK_EQ && op<=TK_GE); |
|
358 } |
|
359 |
|
360 /* |
|
361 ** Swap two objects of type T. |
|
362 */ |
|
363 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} |
|
364 |
|
365 /* |
|
366 ** Commute a comparision operator. Expressions of the form "X op Y" |
|
367 ** are converted into "Y op X". |
|
368 */ |
|
369 static void exprCommute(Expr *pExpr){ |
|
370 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); |
|
371 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); |
|
372 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); |
|
373 if( pExpr->op>=TK_GT ){ |
|
374 assert( TK_LT==TK_GT+2 ); |
|
375 assert( TK_GE==TK_LE+2 ); |
|
376 assert( TK_GT>TK_EQ ); |
|
377 assert( TK_GT<TK_LE ); |
|
378 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); |
|
379 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; |
|
380 } |
|
381 } |
|
382 |
|
383 /* |
|
384 ** Translate from TK_xx operator to WO_xx bitmask. |
|
385 */ |
|
386 static int operatorMask(int op){ |
|
387 int c; |
|
388 assert( allowedOp(op) ); |
|
389 if( op==TK_IN ){ |
|
390 c = WO_IN; |
|
391 }else{ |
|
392 c = WO_EQ<<(op-TK_EQ); |
|
393 } |
|
394 assert( op!=TK_IN || c==WO_IN ); |
|
395 assert( op!=TK_EQ || c==WO_EQ ); |
|
396 assert( op!=TK_LT || c==WO_LT ); |
|
397 assert( op!=TK_LE || c==WO_LE ); |
|
398 assert( op!=TK_GT || c==WO_GT ); |
|
399 assert( op!=TK_GE || c==WO_GE ); |
|
400 return c; |
|
401 } |
|
402 |
|
403 /* |
|
404 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" |
|
405 ** where X is a reference to the iColumn of table iCur and <op> is one of |
|
406 ** the WO_xx operator codes specified by the op parameter. |
|
407 ** Return a pointer to the term. Return 0 if not found. |
|
408 */ |
|
409 static WhereTerm *findTerm( |
|
410 WhereClause *pWC, /* The WHERE clause to be searched */ |
|
411 int iCur, /* Cursor number of LHS */ |
|
412 int iColumn, /* Column number of LHS */ |
|
413 Bitmask notReady, /* RHS must not overlap with this mask */ |
|
414 u16 op, /* Mask of WO_xx values describing operator */ |
|
415 Index *pIdx /* Must be compatible with this index, if not NULL */ |
|
416 ){ |
|
417 WhereTerm *pTerm; |
|
418 int k; |
|
419 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ |
|
420 if( pTerm->leftCursor==iCur |
|
421 && (pTerm->prereqRight & notReady)==0 |
|
422 && pTerm->leftColumn==iColumn |
|
423 && (pTerm->eOperator & op)!=0 |
|
424 ){ |
|
425 if( iCur>=0 && pIdx ){ |
|
426 Expr *pX = pTerm->pExpr; |
|
427 CollSeq *pColl; |
|
428 char idxaff; |
|
429 int j; |
|
430 Parse *pParse = pWC->pParse; |
|
431 |
|
432 idxaff = pIdx->pTable->aCol[iColumn].affinity; |
|
433 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; |
|
434 pColl = sqlite3ExprCollSeq(pParse, pX->pLeft); |
|
435 if( !pColl ){ |
|
436 if( pX->pRight ){ |
|
437 pColl = sqlite3ExprCollSeq(pParse, pX->pRight); |
|
438 } |
|
439 if( !pColl ){ |
|
440 pColl = pParse->db->pDfltColl; |
|
441 } |
|
442 } |
|
443 for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){} |
|
444 assert( j<pIdx->nColumn ); |
|
445 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; |
|
446 } |
|
447 return pTerm; |
|
448 } |
|
449 } |
|
450 return 0; |
|
451 } |
|
452 |
|
453 /* Forward reference */ |
|
454 static void exprAnalyze(SrcList*, ExprMaskSet*, WhereClause*, int); |
|
455 |
|
456 /* |
|
457 ** Call exprAnalyze on all terms in a WHERE clause. |
|
458 ** |
|
459 ** |
|
460 */ |
|
461 static void exprAnalyzeAll( |
|
462 SrcList *pTabList, /* the FROM clause */ |
|
463 ExprMaskSet *pMaskSet, /* table masks */ |
|
464 WhereClause *pWC /* the WHERE clause to be analyzed */ |
|
465 ){ |
|
466 int i; |
|
467 for(i=pWC->nTerm-1; i>=0; i--){ |
|
468 exprAnalyze(pTabList, pMaskSet, pWC, i); |
|
469 } |
|
470 } |
|
471 |
|
472 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
|
473 /* |
|
474 ** Check to see if the given expression is a LIKE or GLOB operator that |
|
475 ** can be optimized using inequality constraints. Return TRUE if it is |
|
476 ** so and false if not. |
|
477 ** |
|
478 ** In order for the operator to be optimizible, the RHS must be a string |
|
479 ** literal that does not begin with a wildcard. |
|
480 */ |
|
481 static int isLikeOrGlob( |
|
482 sqlite3 *db, /* The database */ |
|
483 Expr *pExpr, /* Test this expression */ |
|
484 int *pnPattern, /* Number of non-wildcard prefix characters */ |
|
485 int *pisComplete /* True if the only wildcard is % in the last character */ |
|
486 ){ |
|
487 const char *z; |
|
488 Expr *pRight, *pLeft; |
|
489 ExprList *pList; |
|
490 int c, cnt; |
|
491 int noCase; |
|
492 char wc[3]; |
|
493 CollSeq *pColl; |
|
494 |
|
495 if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){ |
|
496 return 0; |
|
497 } |
|
498 pList = pExpr->pList; |
|
499 pRight = pList->a[0].pExpr; |
|
500 if( pRight->op!=TK_STRING ){ |
|
501 return 0; |
|
502 } |
|
503 pLeft = pList->a[1].pExpr; |
|
504 if( pLeft->op!=TK_COLUMN ){ |
|
505 return 0; |
|
506 } |
|
507 pColl = pLeft->pColl; |
|
508 if( pColl==0 ){ |
|
509 pColl = db->pDfltColl; |
|
510 } |
|
511 if( (pColl->type!=SQLITE_COLL_BINARY || noCase) && |
|
512 (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){ |
|
513 return 0; |
|
514 } |
|
515 sqlite3DequoteExpr(pRight); |
|
516 z = (char *)pRight->token.z; |
|
517 for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){} |
|
518 if( cnt==0 || 255==(u8)z[cnt] ){ |
|
519 return 0; |
|
520 } |
|
521 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; |
|
522 *pnPattern = cnt; |
|
523 return 1; |
|
524 } |
|
525 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
|
526 |
|
527 |
|
528 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
529 /* |
|
530 ** Check to see if the given expression is of the form |
|
531 ** |
|
532 ** column MATCH expr |
|
533 ** |
|
534 ** If it is then return TRUE. If not, return FALSE. |
|
535 */ |
|
536 static int isMatchOfColumn( |
|
537 Expr *pExpr /* Test this expression */ |
|
538 ){ |
|
539 ExprList *pList; |
|
540 |
|
541 if( pExpr->op!=TK_FUNCTION ){ |
|
542 return 0; |
|
543 } |
|
544 if( pExpr->token.n!=5 || |
|
545 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ |
|
546 return 0; |
|
547 } |
|
548 pList = pExpr->pList; |
|
549 if( pList->nExpr!=2 ){ |
|
550 return 0; |
|
551 } |
|
552 if( pList->a[1].pExpr->op != TK_COLUMN ){ |
|
553 return 0; |
|
554 } |
|
555 return 1; |
|
556 } |
|
557 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
558 |
|
559 /* |
|
560 ** If the pBase expression originated in the ON or USING clause of |
|
561 ** a join, then transfer the appropriate markings over to derived. |
|
562 */ |
|
563 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ |
|
564 pDerived->flags |= pBase->flags & EP_FromJoin; |
|
565 pDerived->iRightJoinTable = pBase->iRightJoinTable; |
|
566 } |
|
567 |
|
568 |
|
569 /* |
|
570 ** The input to this routine is an WhereTerm structure with only the |
|
571 ** "pExpr" field filled in. The job of this routine is to analyze the |
|
572 ** subexpression and populate all the other fields of the WhereTerm |
|
573 ** structure. |
|
574 ** |
|
575 ** If the expression is of the form "<expr> <op> X" it gets commuted |
|
576 ** to the standard form of "X <op> <expr>". If the expression is of |
|
577 ** the form "X <op> Y" where both X and Y are columns, then the original |
|
578 ** expression is unchanged and a new virtual expression of the form |
|
579 ** "Y <op> X" is added to the WHERE clause and analyzed separately. |
|
580 */ |
|
581 static void exprAnalyze( |
|
582 SrcList *pSrc, /* the FROM clause */ |
|
583 ExprMaskSet *pMaskSet, /* table masks */ |
|
584 WhereClause *pWC, /* the WHERE clause */ |
|
585 int idxTerm /* Index of the term to be analyzed */ |
|
586 ){ |
|
587 WhereTerm *pTerm = &pWC->a[idxTerm]; |
|
588 Expr *pExpr = pTerm->pExpr; |
|
589 Bitmask prereqLeft; |
|
590 Bitmask prereqAll; |
|
591 int nPattern; |
|
592 int isComplete; |
|
593 |
|
594 if( sqlite3MallocFailed() ) return; |
|
595 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); |
|
596 if( pExpr->op==TK_IN ){ |
|
597 assert( pExpr->pRight==0 ); |
|
598 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) |
|
599 | exprSelectTableUsage(pMaskSet, pExpr->pSelect); |
|
600 }else{ |
|
601 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); |
|
602 } |
|
603 prereqAll = exprTableUsage(pMaskSet, pExpr); |
|
604 if( ExprHasProperty(pExpr, EP_FromJoin) ){ |
|
605 prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable); |
|
606 } |
|
607 pTerm->prereqAll = prereqAll; |
|
608 pTerm->leftCursor = -1; |
|
609 pTerm->iParent = -1; |
|
610 pTerm->eOperator = 0; |
|
611 if( allowedOp(pExpr->op) && (pTerm->prereqRight & prereqLeft)==0 ){ |
|
612 Expr *pLeft = pExpr->pLeft; |
|
613 Expr *pRight = pExpr->pRight; |
|
614 if( pLeft->op==TK_COLUMN ){ |
|
615 pTerm->leftCursor = pLeft->iTable; |
|
616 pTerm->leftColumn = pLeft->iColumn; |
|
617 pTerm->eOperator = operatorMask(pExpr->op); |
|
618 } |
|
619 if( pRight && pRight->op==TK_COLUMN ){ |
|
620 WhereTerm *pNew; |
|
621 Expr *pDup; |
|
622 if( pTerm->leftCursor>=0 ){ |
|
623 int idxNew; |
|
624 pDup = sqlite3ExprDup(pExpr); |
|
625 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); |
|
626 if( idxNew==0 ) return; |
|
627 pNew = &pWC->a[idxNew]; |
|
628 pNew->iParent = idxTerm; |
|
629 pTerm = &pWC->a[idxTerm]; |
|
630 pTerm->nChild = 1; |
|
631 pTerm->flags |= TERM_COPIED; |
|
632 }else{ |
|
633 pDup = pExpr; |
|
634 pNew = pTerm; |
|
635 } |
|
636 exprCommute(pDup); |
|
637 pLeft = pDup->pLeft; |
|
638 pNew->leftCursor = pLeft->iTable; |
|
639 pNew->leftColumn = pLeft->iColumn; |
|
640 pNew->prereqRight = prereqLeft; |
|
641 pNew->prereqAll = prereqAll; |
|
642 pNew->eOperator = operatorMask(pDup->op); |
|
643 } |
|
644 } |
|
645 |
|
646 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION |
|
647 /* If a term is the BETWEEN operator, create two new virtual terms |
|
648 ** that define the range that the BETWEEN implements. |
|
649 */ |
|
650 else if( pExpr->op==TK_BETWEEN ){ |
|
651 ExprList *pList = pExpr->pList; |
|
652 int i; |
|
653 static const u8 ops[] = {TK_GE, TK_LE}; |
|
654 assert( pList!=0 ); |
|
655 assert( pList->nExpr==2 ); |
|
656 for(i=0; i<2; i++){ |
|
657 Expr *pNewExpr; |
|
658 int idxNew; |
|
659 pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft), |
|
660 sqlite3ExprDup(pList->a[i].pExpr), 0); |
|
661 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
|
662 exprAnalyze(pSrc, pMaskSet, pWC, idxNew); |
|
663 pTerm = &pWC->a[idxTerm]; |
|
664 pWC->a[idxNew].iParent = idxTerm; |
|
665 } |
|
666 pTerm->nChild = 2; |
|
667 } |
|
668 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ |
|
669 |
|
670 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
|
671 /* Attempt to convert OR-connected terms into an IN operator so that |
|
672 ** they can make use of indices. Example: |
|
673 ** |
|
674 ** x = expr1 OR expr2 = x OR x = expr3 |
|
675 ** |
|
676 ** is converted into |
|
677 ** |
|
678 ** x IN (expr1,expr2,expr3) |
|
679 ** |
|
680 ** This optimization must be omitted if OMIT_SUBQUERY is defined because |
|
681 ** the compiler for the the IN operator is part of sub-queries. |
|
682 */ |
|
683 else if( pExpr->op==TK_OR ){ |
|
684 int ok; |
|
685 int i, j; |
|
686 int iColumn, iCursor; |
|
687 WhereClause sOr; |
|
688 WhereTerm *pOrTerm; |
|
689 |
|
690 assert( (pTerm->flags & TERM_DYNAMIC)==0 ); |
|
691 whereClauseInit(&sOr, pWC->pParse); |
|
692 whereSplit(&sOr, pExpr, TK_OR); |
|
693 exprAnalyzeAll(pSrc, pMaskSet, &sOr); |
|
694 assert( sOr.nTerm>0 ); |
|
695 j = 0; |
|
696 do{ |
|
697 iColumn = sOr.a[j].leftColumn; |
|
698 iCursor = sOr.a[j].leftCursor; |
|
699 ok = iCursor>=0; |
|
700 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ |
|
701 if( pOrTerm->eOperator!=WO_EQ ){ |
|
702 goto or_not_possible; |
|
703 } |
|
704 if( pOrTerm->leftCursor==iCursor && pOrTerm->leftColumn==iColumn ){ |
|
705 pOrTerm->flags |= TERM_OR_OK; |
|
706 }else if( (pOrTerm->flags & TERM_COPIED)!=0 || |
|
707 ((pOrTerm->flags & TERM_VIRTUAL)!=0 && |
|
708 (sOr.a[pOrTerm->iParent].flags & TERM_OR_OK)!=0) ){ |
|
709 pOrTerm->flags &= ~TERM_OR_OK; |
|
710 }else{ |
|
711 ok = 0; |
|
712 } |
|
713 } |
|
714 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<sOr.nTerm ); |
|
715 if( ok ){ |
|
716 ExprList *pList = 0; |
|
717 Expr *pNew, *pDup; |
|
718 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ |
|
719 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; |
|
720 pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight); |
|
721 pList = sqlite3ExprListAppend(pList, pDup, 0); |
|
722 } |
|
723 pDup = sqlite3Expr(TK_COLUMN, 0, 0, 0); |
|
724 if( pDup ){ |
|
725 pDup->iTable = iCursor; |
|
726 pDup->iColumn = iColumn; |
|
727 } |
|
728 pNew = sqlite3Expr(TK_IN, pDup, 0, 0); |
|
729 if( pNew ){ |
|
730 int idxNew; |
|
731 transferJoinMarkings(pNew, pExpr); |
|
732 pNew->pList = pList; |
|
733 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
|
734 exprAnalyze(pSrc, pMaskSet, pWC, idxNew); |
|
735 pTerm = &pWC->a[idxTerm]; |
|
736 pWC->a[idxNew].iParent = idxTerm; |
|
737 pTerm->nChild = 1; |
|
738 }else{ |
|
739 sqlite3ExprListDelete(pList); |
|
740 } |
|
741 } |
|
742 or_not_possible: |
|
743 whereClauseClear(&sOr); |
|
744 } |
|
745 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
|
746 |
|
747 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
|
748 /* Add constraints to reduce the search space on a LIKE or GLOB |
|
749 ** operator. |
|
750 */ |
|
751 if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){ |
|
752 Expr *pLeft, *pRight; |
|
753 Expr *pStr1, *pStr2; |
|
754 Expr *pNewExpr1, *pNewExpr2; |
|
755 int idxNew1, idxNew2; |
|
756 |
|
757 pLeft = pExpr->pList->a[1].pExpr; |
|
758 pRight = pExpr->pList->a[0].pExpr; |
|
759 pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0); |
|
760 if( pStr1 ){ |
|
761 sqlite3TokenCopy(&pStr1->token, &pRight->token); |
|
762 pStr1->token.n = nPattern; |
|
763 } |
|
764 pStr2 = sqlite3ExprDup(pStr1); |
|
765 if( pStr2 ){ |
|
766 assert( pStr2->token.dyn ); |
|
767 ++*(u8*)&pStr2->token.z[nPattern-1]; |
|
768 } |
|
769 pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0); |
|
770 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); |
|
771 exprAnalyze(pSrc, pMaskSet, pWC, idxNew1); |
|
772 pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0); |
|
773 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); |
|
774 exprAnalyze(pSrc, pMaskSet, pWC, idxNew2); |
|
775 pTerm = &pWC->a[idxTerm]; |
|
776 if( isComplete ){ |
|
777 pWC->a[idxNew1].iParent = idxTerm; |
|
778 pWC->a[idxNew2].iParent = idxTerm; |
|
779 pTerm->nChild = 2; |
|
780 } |
|
781 } |
|
782 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
|
783 |
|
784 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
785 /* Add a WO_MATCH auxiliary term to the constraint set if the |
|
786 ** current expression is of the form: column MATCH expr. |
|
787 ** This information is used by the xBestIndex methods of |
|
788 ** virtual tables. The native query optimizer does not attempt |
|
789 ** to do anything with MATCH functions. |
|
790 */ |
|
791 if( isMatchOfColumn(pExpr) ){ |
|
792 int idxNew; |
|
793 Expr *pRight, *pLeft; |
|
794 WhereTerm *pNewTerm; |
|
795 Bitmask prereqColumn, prereqExpr; |
|
796 |
|
797 pRight = pExpr->pList->a[0].pExpr; |
|
798 pLeft = pExpr->pList->a[1].pExpr; |
|
799 prereqExpr = exprTableUsage(pMaskSet, pRight); |
|
800 prereqColumn = exprTableUsage(pMaskSet, pLeft); |
|
801 if( (prereqExpr & prereqColumn)==0 ){ |
|
802 Expr *pNewExpr; |
|
803 pNewExpr = sqlite3Expr(TK_MATCH, 0, sqlite3ExprDup(pRight), 0); |
|
804 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
|
805 pNewTerm = &pWC->a[idxNew]; |
|
806 pNewTerm->prereqRight = prereqExpr; |
|
807 pNewTerm->leftCursor = pLeft->iTable; |
|
808 pNewTerm->leftColumn = pLeft->iColumn; |
|
809 pNewTerm->eOperator = WO_MATCH; |
|
810 pNewTerm->iParent = idxTerm; |
|
811 pTerm = &pWC->a[idxTerm]; |
|
812 pTerm->nChild = 1; |
|
813 pTerm->flags |= TERM_COPIED; |
|
814 pNewTerm->prereqAll = pTerm->prereqAll; |
|
815 } |
|
816 } |
|
817 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
818 } |
|
819 |
|
820 |
|
821 /* |
|
822 ** This routine decides if pIdx can be used to satisfy the ORDER BY |
|
823 ** clause. If it can, it returns 1. If pIdx cannot satisfy the |
|
824 ** ORDER BY clause, this routine returns 0. |
|
825 ** |
|
826 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the |
|
827 ** left-most table in the FROM clause of that same SELECT statement and |
|
828 ** the table has a cursor number of "base". pIdx is an index on pTab. |
|
829 ** |
|
830 ** nEqCol is the number of columns of pIdx that are used as equality |
|
831 ** constraints. Any of these columns may be missing from the ORDER BY |
|
832 ** clause and the match can still be a success. |
|
833 ** |
|
834 ** All terms of the ORDER BY that match against the index must be either |
|
835 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE |
|
836 ** index do not need to satisfy this constraint.) The *pbRev value is |
|
837 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if |
|
838 ** the ORDER BY clause is all ASC. |
|
839 */ |
|
840 static int isSortingIndex( |
|
841 Parse *pParse, /* Parsing context */ |
|
842 Index *pIdx, /* The index we are testing */ |
|
843 int base, /* Cursor number for the table to be sorted */ |
|
844 ExprList *pOrderBy, /* The ORDER BY clause */ |
|
845 int nEqCol, /* Number of index columns with == constraints */ |
|
846 int *pbRev /* Set to 1 if ORDER BY is DESC */ |
|
847 ){ |
|
848 int i, j; /* Loop counters */ |
|
849 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ |
|
850 int nTerm; /* Number of ORDER BY terms */ |
|
851 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ |
|
852 sqlite3 *db = pParse->db; |
|
853 |
|
854 assert( pOrderBy!=0 ); |
|
855 nTerm = pOrderBy->nExpr; |
|
856 assert( nTerm>0 ); |
|
857 |
|
858 /* Match terms of the ORDER BY clause against columns of |
|
859 ** the index. |
|
860 */ |
|
861 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){ |
|
862 Expr *pExpr; /* The expression of the ORDER BY pTerm */ |
|
863 CollSeq *pColl; /* The collating sequence of pExpr */ |
|
864 int termSortOrder; /* Sort order for this term */ |
|
865 |
|
866 pExpr = pTerm->pExpr; |
|
867 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ |
|
868 /* Can not use an index sort on anything that is not a column in the |
|
869 ** left-most table of the FROM clause */ |
|
870 return 0; |
|
871 } |
|
872 pColl = sqlite3ExprCollSeq(pParse, pExpr); |
|
873 if( !pColl ) pColl = db->pDfltColl; |
|
874 if( pExpr->iColumn!=pIdx->aiColumn[i] || |
|
875 sqlite3StrICmp(pColl->zName, pIdx->azColl[i]) ){ |
|
876 /* Term j of the ORDER BY clause does not match column i of the index */ |
|
877 if( i<nEqCol ){ |
|
878 /* If an index column that is constrained by == fails to match an |
|
879 ** ORDER BY term, that is OK. Just ignore that column of the index |
|
880 */ |
|
881 continue; |
|
882 }else{ |
|
883 /* If an index column fails to match and is not constrained by == |
|
884 ** then the index cannot satisfy the ORDER BY constraint. |
|
885 */ |
|
886 return 0; |
|
887 } |
|
888 } |
|
889 assert( pIdx->aSortOrder!=0 ); |
|
890 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); |
|
891 assert( pIdx->aSortOrder[i]==0 || pIdx->aSortOrder[i]==1 ); |
|
892 termSortOrder = pIdx->aSortOrder[i] ^ pTerm->sortOrder; |
|
893 if( i>nEqCol ){ |
|
894 if( termSortOrder!=sortOrder ){ |
|
895 /* Indices can only be used if all ORDER BY terms past the |
|
896 ** equality constraints are all either DESC or ASC. */ |
|
897 return 0; |
|
898 } |
|
899 }else{ |
|
900 sortOrder = termSortOrder; |
|
901 } |
|
902 j++; |
|
903 pTerm++; |
|
904 } |
|
905 |
|
906 /* The index can be used for sorting if all terms of the ORDER BY clause |
|
907 ** are covered. |
|
908 */ |
|
909 if( j>=nTerm ){ |
|
910 *pbRev = sortOrder!=0; |
|
911 return 1; |
|
912 } |
|
913 return 0; |
|
914 } |
|
915 |
|
916 /* |
|
917 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied |
|
918 ** by sorting in order of ROWID. Return true if so and set *pbRev to be |
|
919 ** true for reverse ROWID and false for forward ROWID order. |
|
920 */ |
|
921 static int sortableByRowid( |
|
922 int base, /* Cursor number for table to be sorted */ |
|
923 ExprList *pOrderBy, /* The ORDER BY clause */ |
|
924 int *pbRev /* Set to 1 if ORDER BY is DESC */ |
|
925 ){ |
|
926 Expr *p; |
|
927 |
|
928 assert( pOrderBy!=0 ); |
|
929 assert( pOrderBy->nExpr>0 ); |
|
930 p = pOrderBy->a[0].pExpr; |
|
931 if( pOrderBy->nExpr==1 && p->op==TK_COLUMN && p->iTable==base |
|
932 && p->iColumn==-1 ){ |
|
933 *pbRev = pOrderBy->a[0].sortOrder; |
|
934 return 1; |
|
935 } |
|
936 return 0; |
|
937 } |
|
938 |
|
939 /* |
|
940 ** Prepare a crude estimate of the logarithm of the input value. |
|
941 ** The results need not be exact. This is only used for estimating |
|
942 ** the total cost of performing operatings with O(logN) or O(NlogN) |
|
943 ** complexity. Because N is just a guess, it is no great tragedy if |
|
944 ** logN is a little off. |
|
945 */ |
|
946 static double estLog(double N){ |
|
947 double logN = 1; |
|
948 double x = 10; |
|
949 while( N>x ){ |
|
950 logN += 1; |
|
951 x *= 10; |
|
952 } |
|
953 return logN; |
|
954 } |
|
955 |
|
956 /* |
|
957 ** Two routines for printing the content of an sqlite3_index_info |
|
958 ** structure. Used for testing and debugging only. If neither |
|
959 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines |
|
960 ** are no-ops. |
|
961 */ |
|
962 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && \ |
|
963 (defined(SQLITE_TEST) || defined(SQLITE_DEBUG)) |
|
964 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ |
|
965 int i; |
|
966 if( !sqlite3_where_trace ) return; |
|
967 for(i=0; i<p->nConstraint; i++){ |
|
968 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", |
|
969 i, |
|
970 p->aConstraint[i].iColumn, |
|
971 p->aConstraint[i].iTermOffset, |
|
972 p->aConstraint[i].op, |
|
973 p->aConstraint[i].usable); |
|
974 } |
|
975 for(i=0; i<p->nOrderBy; i++){ |
|
976 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", |
|
977 i, |
|
978 p->aOrderBy[i].iColumn, |
|
979 p->aOrderBy[i].desc); |
|
980 } |
|
981 } |
|
982 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ |
|
983 int i; |
|
984 if( !sqlite3_where_trace ) return; |
|
985 for(i=0; i<p->nConstraint; i++){ |
|
986 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", |
|
987 i, |
|
988 p->aConstraintUsage[i].argvIndex, |
|
989 p->aConstraintUsage[i].omit); |
|
990 } |
|
991 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); |
|
992 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); |
|
993 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); |
|
994 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); |
|
995 } |
|
996 #else |
|
997 #define TRACE_IDX_INPUTS(A) |
|
998 #define TRACE_IDX_OUTPUTS(A) |
|
999 #endif |
|
1000 |
|
1001 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
1002 /* |
|
1003 ** Compute the best index for a virtual table. |
|
1004 ** |
|
1005 ** The best index is computed by the xBestIndex method of the virtual |
|
1006 ** table module. This routine is really just a wrapper that sets up |
|
1007 ** the sqlite3_index_info structure that is used to communicate with |
|
1008 ** xBestIndex. |
|
1009 ** |
|
1010 ** In a join, this routine might be called multiple times for the |
|
1011 ** same virtual table. The sqlite3_index_info structure is created |
|
1012 ** and initialized on the first invocation and reused on all subsequent |
|
1013 ** invocations. The sqlite3_index_info structure is also used when |
|
1014 ** code is generated to access the virtual table. The whereInfoDelete() |
|
1015 ** routine takes care of freeing the sqlite3_index_info structure after |
|
1016 ** everybody has finished with it. |
|
1017 */ |
|
1018 static double bestVirtualIndex( |
|
1019 Parse *pParse, /* The parsing context */ |
|
1020 WhereClause *pWC, /* The WHERE clause */ |
|
1021 struct SrcList_item *pSrc, /* The FROM clause term to search */ |
|
1022 Bitmask notReady, /* Mask of cursors that are not available */ |
|
1023 ExprList *pOrderBy, /* The order by clause */ |
|
1024 int orderByUsable, /* True if we can potential sort */ |
|
1025 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ |
|
1026 ){ |
|
1027 Table *pTab = pSrc->pTab; |
|
1028 sqlite3_index_info *pIdxInfo; |
|
1029 struct sqlite3_index_constraint *pIdxCons; |
|
1030 struct sqlite3_index_orderby *pIdxOrderBy; |
|
1031 struct sqlite3_index_constraint_usage *pUsage; |
|
1032 WhereTerm *pTerm; |
|
1033 int i, j; |
|
1034 int nOrderBy; |
|
1035 int rc; |
|
1036 |
|
1037 /* If the sqlite3_index_info structure has not been previously |
|
1038 ** allocated and initialized for this virtual table, then allocate |
|
1039 ** and initialize it now |
|
1040 */ |
|
1041 pIdxInfo = *ppIdxInfo; |
|
1042 if( pIdxInfo==0 ){ |
|
1043 WhereTerm *pTerm; |
|
1044 int nTerm; |
|
1045 TRACE(("Recomputing index info for %s...\n", pTab->zName)); |
|
1046 |
|
1047 /* Count the number of possible WHERE clause constraints referring |
|
1048 ** to this virtual table */ |
|
1049 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
|
1050 if( pTerm->leftCursor != pSrc->iCursor ) continue; |
|
1051 if( pTerm->eOperator==WO_IN ) continue; |
|
1052 nTerm++; |
|
1053 } |
|
1054 |
|
1055 /* If the ORDER BY clause contains only columns in the current |
|
1056 ** virtual table then allocate space for the aOrderBy part of |
|
1057 ** the sqlite3_index_info structure. |
|
1058 */ |
|
1059 nOrderBy = 0; |
|
1060 if( pOrderBy ){ |
|
1061 for(i=0; i<pOrderBy->nExpr; i++){ |
|
1062 Expr *pExpr = pOrderBy->a[i].pExpr; |
|
1063 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; |
|
1064 } |
|
1065 if( i==pOrderBy->nExpr ){ |
|
1066 nOrderBy = pOrderBy->nExpr; |
|
1067 } |
|
1068 } |
|
1069 |
|
1070 /* Allocate the sqlite3_index_info structure |
|
1071 */ |
|
1072 pIdxInfo = sqliteMalloc( sizeof(*pIdxInfo) |
|
1073 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm |
|
1074 + sizeof(*pIdxOrderBy)*nOrderBy ); |
|
1075 if( pIdxInfo==0 ){ |
|
1076 sqlite3ErrorMsg(pParse, "out of memory"); |
|
1077 return 0.0; |
|
1078 } |
|
1079 *ppIdxInfo = pIdxInfo; |
|
1080 |
|
1081 /* Initialize the structure. The sqlite3_index_info structure contains |
|
1082 ** many fields that are declared "const" to prevent xBestIndex from |
|
1083 ** changing them. We have to do some funky casting in order to |
|
1084 ** initialize those fields. |
|
1085 */ |
|
1086 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; |
|
1087 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; |
|
1088 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; |
|
1089 *(int*)&pIdxInfo->nConstraint = nTerm; |
|
1090 *(int*)&pIdxInfo->nOrderBy = nOrderBy; |
|
1091 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; |
|
1092 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; |
|
1093 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = |
|
1094 pUsage; |
|
1095 |
|
1096 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
|
1097 if( pTerm->leftCursor != pSrc->iCursor ) continue; |
|
1098 if( pTerm->eOperator==WO_IN ) continue; |
|
1099 pIdxCons[j].iColumn = pTerm->leftColumn; |
|
1100 pIdxCons[j].iTermOffset = i; |
|
1101 pIdxCons[j].op = pTerm->eOperator; |
|
1102 /* The direct assignment in the previous line is possible only because |
|
1103 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The |
|
1104 ** following asserts verify this fact. */ |
|
1105 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); |
|
1106 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); |
|
1107 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); |
|
1108 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); |
|
1109 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); |
|
1110 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); |
|
1111 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); |
|
1112 j++; |
|
1113 } |
|
1114 for(i=0; i<nOrderBy; i++){ |
|
1115 Expr *pExpr = pOrderBy->a[i].pExpr; |
|
1116 pIdxOrderBy[i].iColumn = pExpr->iColumn; |
|
1117 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; |
|
1118 } |
|
1119 } |
|
1120 |
|
1121 /* At this point, the sqlite3_index_info structure that pIdxInfo points |
|
1122 ** to will have been initialized, either during the current invocation or |
|
1123 ** during some prior invocation. Now we just have to customize the |
|
1124 ** details of pIdxInfo for the current invocation and pass it to |
|
1125 ** xBestIndex. |
|
1126 */ |
|
1127 |
|
1128 /* The module name must be defined */ |
|
1129 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); |
|
1130 if( pTab->pVtab==0 ){ |
|
1131 sqlite3ErrorMsg(pParse, "undefined module %s for table %s", |
|
1132 pTab->azModuleArg[0], pTab->zName); |
|
1133 return 0.0; |
|
1134 } |
|
1135 |
|
1136 /* Set the aConstraint[].usable fields and initialize all |
|
1137 ** output variables to zero. |
|
1138 ** |
|
1139 ** aConstraint[].usable is true for constraints where the right-hand |
|
1140 ** side contains only references to tables to the left of the current |
|
1141 ** table. In other words, if the constraint is of the form: |
|
1142 ** |
|
1143 ** column = expr |
|
1144 ** |
|
1145 ** and we are evaluating a join, then the constraint on column is |
|
1146 ** only valid if all tables referenced in expr occur to the left |
|
1147 ** of the table containing column. |
|
1148 ** |
|
1149 ** The aConstraints[] array contains entries for all constraints |
|
1150 ** on the current table. That way we only have to compute it once |
|
1151 ** even though we might try to pick the best index multiple times. |
|
1152 ** For each attempt at picking an index, the order of tables in the |
|
1153 ** join might be different so we have to recompute the usable flag |
|
1154 ** each time. |
|
1155 */ |
|
1156 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
|
1157 pUsage = pIdxInfo->aConstraintUsage; |
|
1158 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ |
|
1159 j = pIdxCons->iTermOffset; |
|
1160 pTerm = &pWC->a[j]; |
|
1161 pIdxCons->usable = (pTerm->prereqRight & notReady)==0; |
|
1162 } |
|
1163 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); |
|
1164 if( pIdxInfo->needToFreeIdxStr ){ |
|
1165 sqlite3_free(pIdxInfo->idxStr); |
|
1166 } |
|
1167 pIdxInfo->idxStr = 0; |
|
1168 pIdxInfo->idxNum = 0; |
|
1169 pIdxInfo->needToFreeIdxStr = 0; |
|
1170 pIdxInfo->orderByConsumed = 0; |
|
1171 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; |
|
1172 nOrderBy = pIdxInfo->nOrderBy; |
|
1173 if( pIdxInfo->nOrderBy && !orderByUsable ){ |
|
1174 *(int*)&pIdxInfo->nOrderBy = 0; |
|
1175 } |
|
1176 |
|
1177 sqlite3SafetyOff(pParse->db); |
|
1178 TRACE(("xBestIndex for %s\n", pTab->zName)); |
|
1179 TRACE_IDX_INPUTS(pIdxInfo); |
|
1180 rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo); |
|
1181 TRACE_IDX_OUTPUTS(pIdxInfo); |
|
1182 if( rc!=SQLITE_OK ){ |
|
1183 if( rc==SQLITE_NOMEM ){ |
|
1184 sqlite3FailedMalloc(); |
|
1185 }else { |
|
1186 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); |
|
1187 } |
|
1188 sqlite3SafetyOn(pParse->db); |
|
1189 }else{ |
|
1190 rc = sqlite3SafetyOn(pParse->db); |
|
1191 } |
|
1192 *(int*)&pIdxInfo->nOrderBy = nOrderBy; |
|
1193 return pIdxInfo->estimatedCost; |
|
1194 } |
|
1195 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
1196 |
|
1197 /* |
|
1198 ** Find the best index for accessing a particular table. Return a pointer |
|
1199 ** to the index, flags that describe how the index should be used, the |
|
1200 ** number of equality constraints, and the "cost" for this index. |
|
1201 ** |
|
1202 ** The lowest cost index wins. The cost is an estimate of the amount of |
|
1203 ** CPU and disk I/O need to process the request using the selected index. |
|
1204 ** Factors that influence cost include: |
|
1205 ** |
|
1206 ** * The estimated number of rows that will be retrieved. (The |
|
1207 ** fewer the better.) |
|
1208 ** |
|
1209 ** * Whether or not sorting must occur. |
|
1210 ** |
|
1211 ** * Whether or not there must be separate lookups in the |
|
1212 ** index and in the main table. |
|
1213 ** |
|
1214 */ |
|
1215 static double bestIndex( |
|
1216 Parse *pParse, /* The parsing context */ |
|
1217 WhereClause *pWC, /* The WHERE clause */ |
|
1218 struct SrcList_item *pSrc, /* The FROM clause term to search */ |
|
1219 Bitmask notReady, /* Mask of cursors that are not available */ |
|
1220 ExprList *pOrderBy, /* The order by clause */ |
|
1221 Index **ppIndex, /* Make *ppIndex point to the best index */ |
|
1222 int *pFlags, /* Put flags describing this choice in *pFlags */ |
|
1223 int *pnEq /* Put the number of == or IN constraints here */ |
|
1224 ){ |
|
1225 WhereTerm *pTerm; |
|
1226 Index *bestIdx = 0; /* Index that gives the lowest cost */ |
|
1227 double lowestCost; /* The cost of using bestIdx */ |
|
1228 int bestFlags = 0; /* Flags associated with bestIdx */ |
|
1229 int bestNEq = 0; /* Best value for nEq */ |
|
1230 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ |
|
1231 Index *pProbe; /* An index we are evaluating */ |
|
1232 int rev; /* True to scan in reverse order */ |
|
1233 int flags; /* Flags associated with pProbe */ |
|
1234 int nEq; /* Number of == or IN constraints */ |
|
1235 double cost; /* Cost of using pProbe */ |
|
1236 |
|
1237 TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady)); |
|
1238 lowestCost = SQLITE_BIG_DBL; |
|
1239 pProbe = pSrc->pTab->pIndex; |
|
1240 |
|
1241 /* If the table has no indices and there are no terms in the where |
|
1242 ** clause that refer to the ROWID, then we will never be able to do |
|
1243 ** anything other than a full table scan on this table. We might as |
|
1244 ** well put it first in the join order. That way, perhaps it can be |
|
1245 ** referenced by other tables in the join. |
|
1246 */ |
|
1247 if( pProbe==0 && |
|
1248 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && |
|
1249 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, &rev)) ){ |
|
1250 *pFlags = 0; |
|
1251 *ppIndex = 0; |
|
1252 *pnEq = 0; |
|
1253 return 0.0; |
|
1254 } |
|
1255 |
|
1256 /* Check for a rowid=EXPR or rowid IN (...) constraints |
|
1257 */ |
|
1258 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); |
|
1259 if( pTerm ){ |
|
1260 Expr *pExpr; |
|
1261 *ppIndex = 0; |
|
1262 bestFlags = WHERE_ROWID_EQ; |
|
1263 if( pTerm->eOperator & WO_EQ ){ |
|
1264 /* Rowid== is always the best pick. Look no further. Because only |
|
1265 ** a single row is generated, output is always in sorted order */ |
|
1266 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; |
|
1267 *pnEq = 1; |
|
1268 TRACE(("... best is rowid\n")); |
|
1269 return 0.0; |
|
1270 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ |
|
1271 /* Rowid IN (LIST): cost is NlogN where N is the number of list |
|
1272 ** elements. */ |
|
1273 lowestCost = pExpr->pList->nExpr; |
|
1274 lowestCost *= estLog(lowestCost); |
|
1275 }else{ |
|
1276 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows |
|
1277 ** in the result of the inner select. We have no way to estimate |
|
1278 ** that value so make a wild guess. */ |
|
1279 lowestCost = 200; |
|
1280 } |
|
1281 TRACE(("... rowid IN cost: %.9g\n", lowestCost)); |
|
1282 } |
|
1283 |
|
1284 /* Estimate the cost of a table scan. If we do not know how many |
|
1285 ** entries are in the table, use 1 million as a guess. |
|
1286 */ |
|
1287 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; |
|
1288 TRACE(("... table scan base cost: %.9g\n", cost)); |
|
1289 flags = WHERE_ROWID_RANGE; |
|
1290 |
|
1291 /* Check for constraints on a range of rowids in a table scan. |
|
1292 */ |
|
1293 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); |
|
1294 if( pTerm ){ |
|
1295 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ |
|
1296 flags |= WHERE_TOP_LIMIT; |
|
1297 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */ |
|
1298 } |
|
1299 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ |
|
1300 flags |= WHERE_BTM_LIMIT; |
|
1301 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ |
|
1302 } |
|
1303 TRACE(("... rowid range reduces cost to %.9g\n", cost)); |
|
1304 }else{ |
|
1305 flags = 0; |
|
1306 } |
|
1307 |
|
1308 /* If the table scan does not satisfy the ORDER BY clause, increase |
|
1309 ** the cost by NlogN to cover the expense of sorting. */ |
|
1310 if( pOrderBy ){ |
|
1311 if( sortableByRowid(iCur, pOrderBy, &rev) ){ |
|
1312 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; |
|
1313 if( rev ){ |
|
1314 flags |= WHERE_REVERSE; |
|
1315 } |
|
1316 }else{ |
|
1317 cost += cost*estLog(cost); |
|
1318 TRACE(("... sorting increases cost to %.9g\n", cost)); |
|
1319 } |
|
1320 } |
|
1321 if( cost<lowestCost ){ |
|
1322 lowestCost = cost; |
|
1323 bestFlags = flags; |
|
1324 } |
|
1325 |
|
1326 /* Look at each index. |
|
1327 */ |
|
1328 for(; pProbe; pProbe=pProbe->pNext){ |
|
1329 int i; /* Loop counter */ |
|
1330 double inMultiplier = 1; |
|
1331 |
|
1332 TRACE(("... index %s:\n", pProbe->zName)); |
|
1333 |
|
1334 /* Count the number of columns in the index that are satisfied |
|
1335 ** by x=EXPR constraints or x IN (...) constraints. |
|
1336 */ |
|
1337 flags = 0; |
|
1338 for(i=0; i<pProbe->nColumn; i++){ |
|
1339 int j = pProbe->aiColumn[i]; |
|
1340 pTerm = findTerm(pWC, iCur, j, notReady, WO_EQ|WO_IN, pProbe); |
|
1341 if( pTerm==0 ) break; |
|
1342 flags |= WHERE_COLUMN_EQ; |
|
1343 if( pTerm->eOperator & WO_IN ){ |
|
1344 Expr *pExpr = pTerm->pExpr; |
|
1345 flags |= WHERE_COLUMN_IN; |
|
1346 if( pExpr->pSelect!=0 ){ |
|
1347 inMultiplier *= 25; |
|
1348 }else if( pExpr->pList!=0 ){ |
|
1349 inMultiplier *= pExpr->pList->nExpr + 1; |
|
1350 } |
|
1351 } |
|
1352 } |
|
1353 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); |
|
1354 nEq = i; |
|
1355 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 |
|
1356 && nEq==pProbe->nColumn ){ |
|
1357 flags |= WHERE_UNIQUE; |
|
1358 } |
|
1359 TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost)); |
|
1360 |
|
1361 /* Look for range constraints |
|
1362 */ |
|
1363 if( nEq<pProbe->nColumn ){ |
|
1364 int j = pProbe->aiColumn[nEq]; |
|
1365 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); |
|
1366 if( pTerm ){ |
|
1367 flags |= WHERE_COLUMN_RANGE; |
|
1368 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ |
|
1369 flags |= WHERE_TOP_LIMIT; |
|
1370 cost /= 3; |
|
1371 } |
|
1372 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ |
|
1373 flags |= WHERE_BTM_LIMIT; |
|
1374 cost /= 3; |
|
1375 } |
|
1376 TRACE(("...... range reduces cost to %.9g\n", cost)); |
|
1377 } |
|
1378 } |
|
1379 |
|
1380 /* Add the additional cost of sorting if that is a factor. |
|
1381 */ |
|
1382 if( pOrderBy ){ |
|
1383 if( (flags & WHERE_COLUMN_IN)==0 && |
|
1384 isSortingIndex(pParse,pProbe,iCur,pOrderBy,nEq,&rev) ){ |
|
1385 if( flags==0 ){ |
|
1386 flags = WHERE_COLUMN_RANGE; |
|
1387 } |
|
1388 flags |= WHERE_ORDERBY; |
|
1389 if( rev ){ |
|
1390 flags |= WHERE_REVERSE; |
|
1391 } |
|
1392 }else{ |
|
1393 cost += cost*estLog(cost); |
|
1394 TRACE(("...... orderby increases cost to %.9g\n", cost)); |
|
1395 } |
|
1396 } |
|
1397 |
|
1398 /* Check to see if we can get away with using just the index without |
|
1399 ** ever reading the table. If that is the case, then halve the |
|
1400 ** cost of this index. |
|
1401 */ |
|
1402 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ |
|
1403 Bitmask m = pSrc->colUsed; |
|
1404 int j; |
|
1405 for(j=0; j<pProbe->nColumn; j++){ |
|
1406 int x = pProbe->aiColumn[j]; |
|
1407 if( x<BMS-1 ){ |
|
1408 m &= ~(((Bitmask)1)<<x); |
|
1409 } |
|
1410 } |
|
1411 if( m==0 ){ |
|
1412 flags |= WHERE_IDX_ONLY; |
|
1413 cost /= 2; |
|
1414 TRACE(("...... idx-only reduces cost to %.9g\n", cost)); |
|
1415 } |
|
1416 } |
|
1417 |
|
1418 /* If this index has achieved the lowest cost so far, then use it. |
|
1419 */ |
|
1420 if( cost < lowestCost ){ |
|
1421 bestIdx = pProbe; |
|
1422 lowestCost = cost; |
|
1423 assert( flags!=0 ); |
|
1424 bestFlags = flags; |
|
1425 bestNEq = nEq; |
|
1426 } |
|
1427 } |
|
1428 |
|
1429 /* Report the best result |
|
1430 */ |
|
1431 *ppIndex = bestIdx; |
|
1432 TRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", |
|
1433 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); |
|
1434 *pFlags = bestFlags; |
|
1435 *pnEq = bestNEq; |
|
1436 return lowestCost; |
|
1437 } |
|
1438 |
|
1439 |
|
1440 /* |
|
1441 ** Disable a term in the WHERE clause. Except, do not disable the term |
|
1442 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON |
|
1443 ** or USING clause of that join. |
|
1444 ** |
|
1445 ** Consider the term t2.z='ok' in the following queries: |
|
1446 ** |
|
1447 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' |
|
1448 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' |
|
1449 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' |
|
1450 ** |
|
1451 ** The t2.z='ok' is disabled in the in (2) because it originates |
|
1452 ** in the ON clause. The term is disabled in (3) because it is not part |
|
1453 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. |
|
1454 ** |
|
1455 ** Disabling a term causes that term to not be tested in the inner loop |
|
1456 ** of the join. Disabling is an optimization. When terms are satisfied |
|
1457 ** by indices, we disable them to prevent redundant tests in the inner |
|
1458 ** loop. We would get the correct results if nothing were ever disabled, |
|
1459 ** but joins might run a little slower. The trick is to disable as much |
|
1460 ** as we can without disabling too much. If we disabled in (1), we'd get |
|
1461 ** the wrong answer. See ticket #813. |
|
1462 */ |
|
1463 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ |
|
1464 if( pTerm |
|
1465 && (pTerm->flags & TERM_CODED)==0 |
|
1466 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
|
1467 ){ |
|
1468 pTerm->flags |= TERM_CODED; |
|
1469 if( pTerm->iParent>=0 ){ |
|
1470 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; |
|
1471 if( (--pOther->nChild)==0 ){ |
|
1472 disableTerm(pLevel, pOther); |
|
1473 } |
|
1474 } |
|
1475 } |
|
1476 } |
|
1477 |
|
1478 /* |
|
1479 ** Generate code that builds a probe for an index. Details: |
|
1480 ** |
|
1481 ** * Check the top nColumn entries on the stack. If any |
|
1482 ** of those entries are NULL, jump immediately to brk, |
|
1483 ** which is the loop exit, since no index entry will match |
|
1484 ** if any part of the key is NULL. Pop (nColumn+nExtra) |
|
1485 ** elements from the stack. |
|
1486 ** |
|
1487 ** * Construct a probe entry from the top nColumn entries in |
|
1488 ** the stack with affinities appropriate for index pIdx. |
|
1489 ** Only nColumn elements are popped from the stack in this case |
|
1490 ** (by OP_MakeRecord). |
|
1491 ** |
|
1492 */ |
|
1493 static void buildIndexProbe( |
|
1494 Vdbe *v, |
|
1495 int nColumn, |
|
1496 int nExtra, |
|
1497 int brk, |
|
1498 Index *pIdx |
|
1499 ){ |
|
1500 sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3); |
|
1501 sqlite3VdbeAddOp(v, OP_Pop, nColumn+nExtra, 0); |
|
1502 sqlite3VdbeAddOp(v, OP_Goto, 0, brk); |
|
1503 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); |
|
1504 sqlite3IndexAffinityStr(v, pIdx); |
|
1505 } |
|
1506 |
|
1507 |
|
1508 /* |
|
1509 ** Generate code for a single equality term of the WHERE clause. An equality |
|
1510 ** term can be either X=expr or X IN (...). pTerm is the term to be |
|
1511 ** coded. |
|
1512 ** |
|
1513 ** The current value for the constraint is left on the top of the stack. |
|
1514 ** |
|
1515 ** For a constraint of the form X=expr, the expression is evaluated and its |
|
1516 ** result is left on the stack. For constraints of the form X IN (...) |
|
1517 ** this routine sets up a loop that will iterate over all values of X. |
|
1518 */ |
|
1519 static void codeEqualityTerm( |
|
1520 Parse *pParse, /* The parsing context */ |
|
1521 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ |
|
1522 int brk, /* Jump here to abandon the loop */ |
|
1523 WhereLevel *pLevel /* When level of the FROM clause we are working on */ |
|
1524 ){ |
|
1525 Expr *pX = pTerm->pExpr; |
|
1526 if( pX->op!=TK_IN ){ |
|
1527 assert( pX->op==TK_EQ ); |
|
1528 sqlite3ExprCode(pParse, pX->pRight); |
|
1529 #ifndef SQLITE_OMIT_SUBQUERY |
|
1530 }else{ |
|
1531 int iTab; |
|
1532 int *aIn; |
|
1533 Vdbe *v = pParse->pVdbe; |
|
1534 |
|
1535 sqlite3CodeSubselect(pParse, pX); |
|
1536 iTab = pX->iTable; |
|
1537 sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); |
|
1538 VdbeComment((v, "# %.*s", pX->span.n, pX->span.z)); |
|
1539 pLevel->nIn++; |
|
1540 sqliteReallocOrFree((void**)&pLevel->aInLoop, |
|
1541 sizeof(pLevel->aInLoop[0])*2*pLevel->nIn); |
|
1542 aIn = pLevel->aInLoop; |
|
1543 if( aIn ){ |
|
1544 aIn += pLevel->nIn*2 - 2; |
|
1545 aIn[0] = iTab; |
|
1546 aIn[1] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0); |
|
1547 }else{ |
|
1548 pLevel->nIn = 0; |
|
1549 } |
|
1550 #endif |
|
1551 } |
|
1552 disableTerm(pLevel, pTerm); |
|
1553 } |
|
1554 |
|
1555 /* |
|
1556 ** Generate code that will evaluate all == and IN constraints for an |
|
1557 ** index. The values for all constraints are left on the stack. |
|
1558 ** |
|
1559 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). |
|
1560 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 |
|
1561 ** The index has as many as three equality constraints, but in this |
|
1562 ** example, the third "c" value is an inequality. So only two |
|
1563 ** constraints are coded. This routine will generate code to evaluate |
|
1564 ** a==5 and b IN (1,2,3). The current values for a and b will be left |
|
1565 ** on the stack - a is the deepest and b the shallowest. |
|
1566 ** |
|
1567 ** In the example above nEq==2. But this subroutine works for any value |
|
1568 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. |
|
1569 ** The only thing it does is allocate the pLevel->iMem memory cell. |
|
1570 ** |
|
1571 ** This routine always allocates at least one memory cell and puts |
|
1572 ** the address of that memory cell in pLevel->iMem. The code that |
|
1573 ** calls this routine will use pLevel->iMem to store the termination |
|
1574 ** key value of the loop. If one or more IN operators appear, then |
|
1575 ** this routine allocates an additional nEq memory cells for internal |
|
1576 ** use. |
|
1577 */ |
|
1578 static void codeAllEqualityTerms( |
|
1579 Parse *pParse, /* Parsing context */ |
|
1580 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ |
|
1581 WhereClause *pWC, /* The WHERE clause */ |
|
1582 Bitmask notReady, /* Which parts of FROM have not yet been coded */ |
|
1583 int brk /* Jump here to end the loop */ |
|
1584 ){ |
|
1585 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ |
|
1586 int termsInMem = 0; /* If true, store value in mem[] cells */ |
|
1587 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ |
|
1588 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ |
|
1589 int iCur = pLevel->iTabCur; /* The cursor of the table */ |
|
1590 WhereTerm *pTerm; /* A single constraint term */ |
|
1591 int j; /* Loop counter */ |
|
1592 |
|
1593 /* Figure out how many memory cells we will need then allocate them. |
|
1594 ** We always need at least one used to store the loop terminator |
|
1595 ** value. If there are IN operators we'll need one for each == or |
|
1596 ** IN constraint. |
|
1597 */ |
|
1598 pLevel->iMem = pParse->nMem++; |
|
1599 if( pLevel->flags & WHERE_COLUMN_IN ){ |
|
1600 pParse->nMem += pLevel->nEq; |
|
1601 termsInMem = 1; |
|
1602 } |
|
1603 |
|
1604 /* Evaluate the equality constraints |
|
1605 */ |
|
1606 for(j=0; j<pIdx->nColumn; j++){ |
|
1607 int k = pIdx->aiColumn[j]; |
|
1608 pTerm = findTerm(pWC, iCur, k, notReady, WO_EQ|WO_IN, pIdx); |
|
1609 if( pTerm==0 ) break; |
|
1610 assert( (pTerm->flags & TERM_CODED)==0 ); |
|
1611 codeEqualityTerm(pParse, pTerm, brk, pLevel); |
|
1612 if( termsInMem ){ |
|
1613 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1); |
|
1614 } |
|
1615 } |
|
1616 assert( j==nEq ); |
|
1617 |
|
1618 /* Make sure all the constraint values are on the top of the stack |
|
1619 */ |
|
1620 if( termsInMem ){ |
|
1621 for(j=0; j<nEq; j++){ |
|
1622 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0); |
|
1623 } |
|
1624 } |
|
1625 } |
|
1626 |
|
1627 #if defined(SQLITE_TEST) |
|
1628 /* |
|
1629 ** The following variable holds a text description of query plan generated |
|
1630 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin |
|
1631 ** overwrites the previous. This information is used for testing and |
|
1632 ** analysis only. |
|
1633 */ |
|
1634 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ |
|
1635 static int nQPlan = 0; /* Next free slow in _query_plan[] */ |
|
1636 |
|
1637 #endif /* SQLITE_TEST */ |
|
1638 |
|
1639 |
|
1640 /* |
|
1641 ** Free a WhereInfo structure |
|
1642 */ |
|
1643 static void whereInfoFree(WhereInfo *pWInfo){ |
|
1644 if( pWInfo ){ |
|
1645 int i; |
|
1646 for(i=0; i<pWInfo->nLevel; i++){ |
|
1647 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; |
|
1648 if( pInfo ){ |
|
1649 if( pInfo->needToFreeIdxStr ){ |
|
1650 sqlite3_free(pInfo->idxStr); |
|
1651 } |
|
1652 sqliteFree(pInfo); |
|
1653 } |
|
1654 } |
|
1655 sqliteFree(pWInfo); |
|
1656 } |
|
1657 } |
|
1658 |
|
1659 |
|
1660 /* |
|
1661 ** Generate the beginning of the loop used for WHERE clause processing. |
|
1662 ** The return value is a pointer to an opaque structure that contains |
|
1663 ** information needed to terminate the loop. Later, the calling routine |
|
1664 ** should invoke sqlite3WhereEnd() with the return value of this function |
|
1665 ** in order to complete the WHERE clause processing. |
|
1666 ** |
|
1667 ** If an error occurs, this routine returns NULL. |
|
1668 ** |
|
1669 ** The basic idea is to do a nested loop, one loop for each table in |
|
1670 ** the FROM clause of a select. (INSERT and UPDATE statements are the |
|
1671 ** same as a SELECT with only a single table in the FROM clause.) For |
|
1672 ** example, if the SQL is this: |
|
1673 ** |
|
1674 ** SELECT * FROM t1, t2, t3 WHERE ...; |
|
1675 ** |
|
1676 ** Then the code generated is conceptually like the following: |
|
1677 ** |
|
1678 ** foreach row1 in t1 do \ Code generated |
|
1679 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() |
|
1680 ** foreach row3 in t3 do / |
|
1681 ** ... |
|
1682 ** end \ Code generated |
|
1683 ** end |-- by sqlite3WhereEnd() |
|
1684 ** end / |
|
1685 ** |
|
1686 ** Note that the loops might not be nested in the order in which they |
|
1687 ** appear in the FROM clause if a different order is better able to make |
|
1688 ** use of indices. Note also that when the IN operator appears in |
|
1689 ** the WHERE clause, it might result in additional nested loops for |
|
1690 ** scanning through all values on the right-hand side of the IN. |
|
1691 ** |
|
1692 ** There are Btree cursors associated with each table. t1 uses cursor |
|
1693 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. |
|
1694 ** And so forth. This routine generates code to open those VDBE cursors |
|
1695 ** and sqlite3WhereEnd() generates the code to close them. |
|
1696 ** |
|
1697 ** The code that sqlite3WhereBegin() generates leaves the cursors named |
|
1698 ** in pTabList pointing at their appropriate entries. The [...] code |
|
1699 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract |
|
1700 ** data from the various tables of the loop. |
|
1701 ** |
|
1702 ** If the WHERE clause is empty, the foreach loops must each scan their |
|
1703 ** entire tables. Thus a three-way join is an O(N^3) operation. But if |
|
1704 ** the tables have indices and there are terms in the WHERE clause that |
|
1705 ** refer to those indices, a complete table scan can be avoided and the |
|
1706 ** code will run much faster. Most of the work of this routine is checking |
|
1707 ** to see if there are indices that can be used to speed up the loop. |
|
1708 ** |
|
1709 ** Terms of the WHERE clause are also used to limit which rows actually |
|
1710 ** make it to the "..." in the middle of the loop. After each "foreach", |
|
1711 ** terms of the WHERE clause that use only terms in that loop and outer |
|
1712 ** loops are evaluated and if false a jump is made around all subsequent |
|
1713 ** inner loops (or around the "..." if the test occurs within the inner- |
|
1714 ** most loop) |
|
1715 ** |
|
1716 ** OUTER JOINS |
|
1717 ** |
|
1718 ** An outer join of tables t1 and t2 is conceptally coded as follows: |
|
1719 ** |
|
1720 ** foreach row1 in t1 do |
|
1721 ** flag = 0 |
|
1722 ** foreach row2 in t2 do |
|
1723 ** start: |
|
1724 ** ... |
|
1725 ** flag = 1 |
|
1726 ** end |
|
1727 ** if flag==0 then |
|
1728 ** move the row2 cursor to a null row |
|
1729 ** goto start |
|
1730 ** fi |
|
1731 ** end |
|
1732 ** |
|
1733 ** ORDER BY CLAUSE PROCESSING |
|
1734 ** |
|
1735 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, |
|
1736 ** if there is one. If there is no ORDER BY clause or if this routine |
|
1737 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. |
|
1738 ** |
|
1739 ** If an index can be used so that the natural output order of the table |
|
1740 ** scan is correct for the ORDER BY clause, then that index is used and |
|
1741 ** *ppOrderBy is set to NULL. This is an optimization that prevents an |
|
1742 ** unnecessary sort of the result set if an index appropriate for the |
|
1743 ** ORDER BY clause already exists. |
|
1744 ** |
|
1745 ** If the where clause loops cannot be arranged to provide the correct |
|
1746 ** output order, then the *ppOrderBy is unchanged. |
|
1747 */ |
|
1748 WhereInfo *sqlite3WhereBegin( |
|
1749 Parse *pParse, /* The parser context */ |
|
1750 SrcList *pTabList, /* A list of all tables to be scanned */ |
|
1751 Expr *pWhere, /* The WHERE clause */ |
|
1752 ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ |
|
1753 ){ |
|
1754 int i; /* Loop counter */ |
|
1755 WhereInfo *pWInfo; /* Will become the return value of this function */ |
|
1756 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ |
|
1757 int brk, cont = 0; /* Addresses used during code generation */ |
|
1758 Bitmask notReady; /* Cursors that are not yet positioned */ |
|
1759 WhereTerm *pTerm; /* A single term in the WHERE clause */ |
|
1760 ExprMaskSet maskSet; /* The expression mask set */ |
|
1761 WhereClause wc; /* The WHERE clause is divided into these terms */ |
|
1762 struct SrcList_item *pTabItem; /* A single entry from pTabList */ |
|
1763 WhereLevel *pLevel; /* A single level in the pWInfo list */ |
|
1764 int iFrom; /* First unused FROM clause element */ |
|
1765 int andFlags; /* AND-ed combination of all wc.a[].flags */ |
|
1766 |
|
1767 /* The number of tables in the FROM clause is limited by the number of |
|
1768 ** bits in a Bitmask |
|
1769 */ |
|
1770 if( pTabList->nSrc>BMS ){ |
|
1771 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); |
|
1772 return 0; |
|
1773 } |
|
1774 |
|
1775 /* Split the WHERE clause into separate subexpressions where each |
|
1776 ** subexpression is separated by an AND operator. |
|
1777 */ |
|
1778 initMaskSet(&maskSet); |
|
1779 whereClauseInit(&wc, pParse); |
|
1780 whereSplit(&wc, pWhere, TK_AND); |
|
1781 |
|
1782 /* Allocate and initialize the WhereInfo structure that will become the |
|
1783 ** return value. |
|
1784 */ |
|
1785 pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); |
|
1786 if( sqlite3MallocFailed() ){ |
|
1787 goto whereBeginNoMem; |
|
1788 } |
|
1789 pWInfo->nLevel = pTabList->nSrc; |
|
1790 pWInfo->pParse = pParse; |
|
1791 pWInfo->pTabList = pTabList; |
|
1792 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); |
|
1793 |
|
1794 /* Special case: a WHERE clause that is constant. Evaluate the |
|
1795 ** expression and either jump over all of the code or fall thru. |
|
1796 */ |
|
1797 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){ |
|
1798 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); |
|
1799 pWhere = 0; |
|
1800 } |
|
1801 |
|
1802 /* Analyze all of the subexpressions. Note that exprAnalyze() might |
|
1803 ** add new virtual terms onto the end of the WHERE clause. We do not |
|
1804 ** want to analyze these virtual terms, so start analyzing at the end |
|
1805 ** and work forward so that the added virtual terms are never processed. |
|
1806 */ |
|
1807 for(i=0; i<pTabList->nSrc; i++){ |
|
1808 createMask(&maskSet, pTabList->a[i].iCursor); |
|
1809 } |
|
1810 exprAnalyzeAll(pTabList, &maskSet, &wc); |
|
1811 if( sqlite3MallocFailed() ){ |
|
1812 goto whereBeginNoMem; |
|
1813 } |
|
1814 |
|
1815 /* Chose the best index to use for each table in the FROM clause. |
|
1816 ** |
|
1817 ** This loop fills in the following fields: |
|
1818 ** |
|
1819 ** pWInfo->a[].pIdx The index to use for this level of the loop. |
|
1820 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx |
|
1821 ** pWInfo->a[].nEq The number of == and IN constraints |
|
1822 ** pWInfo->a[].iFrom When term of the FROM clause is being coded |
|
1823 ** pWInfo->a[].iTabCur The VDBE cursor for the database table |
|
1824 ** pWInfo->a[].iIdxCur The VDBE cursor for the index |
|
1825 ** |
|
1826 ** This loop also figures out the nesting order of tables in the FROM |
|
1827 ** clause. |
|
1828 */ |
|
1829 notReady = ~(Bitmask)0; |
|
1830 pTabItem = pTabList->a; |
|
1831 pLevel = pWInfo->a; |
|
1832 andFlags = ~0; |
|
1833 TRACE(("*** Optimizer Start ***\n")); |
|
1834 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
|
1835 Index *pIdx; /* Index for FROM table at pTabItem */ |
|
1836 int flags; /* Flags asssociated with pIdx */ |
|
1837 int nEq; /* Number of == or IN constraints */ |
|
1838 double cost; /* The cost for pIdx */ |
|
1839 int j; /* For looping over FROM tables */ |
|
1840 Index *pBest = 0; /* The best index seen so far */ |
|
1841 int bestFlags = 0; /* Flags associated with pBest */ |
|
1842 int bestNEq = 0; /* nEq associated with pBest */ |
|
1843 double lowestCost; /* Cost of the pBest */ |
|
1844 int bestJ = 0; /* The value of j */ |
|
1845 Bitmask m; /* Bitmask value for j or bestJ */ |
|
1846 int once = 0; /* True when first table is seen */ |
|
1847 sqlite3_index_info *pIndex; /* Current virtual index */ |
|
1848 |
|
1849 lowestCost = SQLITE_BIG_DBL; |
|
1850 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ |
|
1851 int doNotReorder; /* True if this table should not be reordered */ |
|
1852 |
|
1853 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0 |
|
1854 || (j>0 && (pTabItem[-1].jointype & (JT_LEFT|JT_CROSS))!=0); |
|
1855 if( once && doNotReorder ) break; |
|
1856 m = getMask(&maskSet, pTabItem->iCursor); |
|
1857 if( (m & notReady)==0 ){ |
|
1858 if( j==iFrom ) iFrom++; |
|
1859 continue; |
|
1860 } |
|
1861 assert( pTabItem->pTab ); |
|
1862 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
1863 if( IsVirtual(pTabItem->pTab) ){ |
|
1864 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; |
|
1865 cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, |
|
1866 ppOrderBy ? *ppOrderBy : 0, i==0, |
|
1867 ppIdxInfo); |
|
1868 flags = WHERE_VIRTUALTABLE; |
|
1869 pIndex = *ppIdxInfo; |
|
1870 if( pIndex && pIndex->orderByConsumed ){ |
|
1871 flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; |
|
1872 } |
|
1873 pIdx = 0; |
|
1874 nEq = 0; |
|
1875 }else |
|
1876 #endif |
|
1877 { |
|
1878 cost = bestIndex(pParse, &wc, pTabItem, notReady, |
|
1879 (i==0 && ppOrderBy) ? *ppOrderBy : 0, |
|
1880 &pIdx, &flags, &nEq); |
|
1881 pIndex = 0; |
|
1882 } |
|
1883 if( cost<lowestCost ){ |
|
1884 once = 1; |
|
1885 lowestCost = cost; |
|
1886 pBest = pIdx; |
|
1887 bestFlags = flags; |
|
1888 bestNEq = nEq; |
|
1889 bestJ = j; |
|
1890 pLevel->pBestIdx = pIndex; |
|
1891 } |
|
1892 if( doNotReorder ) break; |
|
1893 } |
|
1894 TRACE(("*** Optimizer choose table %d for loop %d\n", bestJ, |
|
1895 pLevel-pWInfo->a)); |
|
1896 if( (bestFlags & WHERE_ORDERBY)!=0 ){ |
|
1897 *ppOrderBy = 0; |
|
1898 } |
|
1899 andFlags &= bestFlags; |
|
1900 pLevel->flags = bestFlags; |
|
1901 pLevel->pIdx = pBest; |
|
1902 pLevel->nEq = bestNEq; |
|
1903 pLevel->aInLoop = 0; |
|
1904 pLevel->nIn = 0; |
|
1905 if( pBest ){ |
|
1906 pLevel->iIdxCur = pParse->nTab++; |
|
1907 }else{ |
|
1908 pLevel->iIdxCur = -1; |
|
1909 } |
|
1910 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); |
|
1911 pLevel->iFrom = bestJ; |
|
1912 } |
|
1913 TRACE(("*** Optimizer Finished ***\n")); |
|
1914 |
|
1915 /* If the total query only selects a single row, then the ORDER BY |
|
1916 ** clause is irrelevant. |
|
1917 */ |
|
1918 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ |
|
1919 *ppOrderBy = 0; |
|
1920 } |
|
1921 |
|
1922 /* Open all tables in the pTabList and any indices selected for |
|
1923 ** searching those tables. |
|
1924 */ |
|
1925 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ |
|
1926 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
|
1927 Table *pTab; /* Table to open */ |
|
1928 Index *pIx; /* Index used to access pTab (if any) */ |
|
1929 int iDb; /* Index of database containing table/index */ |
|
1930 int iIdxCur = pLevel->iIdxCur; |
|
1931 |
|
1932 #ifndef SQLITE_OMIT_EXPLAIN |
|
1933 if( pParse->explain==2 ){ |
|
1934 char *zMsg; |
|
1935 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; |
|
1936 zMsg = sqlite3MPrintf("TABLE %s", pItem->zName); |
|
1937 if( pItem->zAlias ){ |
|
1938 zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias); |
|
1939 } |
|
1940 if( (pIx = pLevel->pIdx)!=0 ){ |
|
1941 zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName); |
|
1942 }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ |
|
1943 zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg); |
|
1944 } |
|
1945 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
1946 else if( pLevel->pBestIdx ){ |
|
1947 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; |
|
1948 zMsg = sqlite3MPrintf("%z VIRTUAL TABLE INDEX %d:%s", zMsg, |
|
1949 pBestIdx->idxNum, pBestIdx->idxStr); |
|
1950 } |
|
1951 #endif |
|
1952 if( pLevel->flags & WHERE_ORDERBY ){ |
|
1953 zMsg = sqlite3MPrintf("%z ORDER BY", zMsg); |
|
1954 } |
|
1955 sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC); |
|
1956 } |
|
1957 #endif /* SQLITE_OMIT_EXPLAIN */ |
|
1958 pTabItem = &pTabList->a[pLevel->iFrom]; |
|
1959 pTab = pTabItem->pTab; |
|
1960 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
|
1961 if( pTab->isEphem || pTab->pSelect ) continue; |
|
1962 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
1963 if( pLevel->pBestIdx ){ |
|
1964 int iCur = pTabItem->iCursor; |
|
1965 sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB); |
|
1966 }else |
|
1967 #endif |
|
1968 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ |
|
1969 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead); |
|
1970 if( pTab->nCol<(sizeof(Bitmask)*8) ){ |
|
1971 Bitmask b = pTabItem->colUsed; |
|
1972 int n = 0; |
|
1973 for(; b; b=b>>1, n++){} |
|
1974 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n); |
|
1975 assert( n<=pTab->nCol ); |
|
1976 } |
|
1977 }else{ |
|
1978 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
|
1979 } |
|
1980 pLevel->iTabCur = pTabItem->iCursor; |
|
1981 if( (pIx = pLevel->pIdx)!=0 ){ |
|
1982 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); |
|
1983 assert( pIx->pSchema==pTab->pSchema ); |
|
1984 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); |
|
1985 VdbeComment((v, "# %s", pIx->zName)); |
|
1986 sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum, |
|
1987 (char*)pKey, P3_KEYINFO_HANDOFF); |
|
1988 } |
|
1989 if( (pLevel->flags & WHERE_IDX_ONLY)!=0 ){ |
|
1990 sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1); |
|
1991 } |
|
1992 sqlite3CodeVerifySchema(pParse, iDb); |
|
1993 } |
|
1994 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); |
|
1995 |
|
1996 /* Generate the code to do the search. Each iteration of the for |
|
1997 ** loop below generates code for a single nested loop of the VM |
|
1998 ** program. |
|
1999 */ |
|
2000 notReady = ~(Bitmask)0; |
|
2001 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
|
2002 int j; |
|
2003 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ |
|
2004 Index *pIdx; /* The index we will be using */ |
|
2005 int iIdxCur; /* The VDBE cursor for the index */ |
|
2006 int omitTable; /* True if we use the index only */ |
|
2007 int bRev; /* True if we need to scan in reverse order */ |
|
2008 |
|
2009 pTabItem = &pTabList->a[pLevel->iFrom]; |
|
2010 iCur = pTabItem->iCursor; |
|
2011 pIdx = pLevel->pIdx; |
|
2012 iIdxCur = pLevel->iIdxCur; |
|
2013 bRev = (pLevel->flags & WHERE_REVERSE)!=0; |
|
2014 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; |
|
2015 |
|
2016 /* Create labels for the "break" and "continue" instructions |
|
2017 ** for the current loop. Jump to brk to break out of a loop. |
|
2018 ** Jump to cont to go immediately to the next iteration of the |
|
2019 ** loop. |
|
2020 */ |
|
2021 brk = pLevel->brk = sqlite3VdbeMakeLabel(v); |
|
2022 cont = pLevel->cont = sqlite3VdbeMakeLabel(v); |
|
2023 |
|
2024 /* If this is the right table of a LEFT OUTER JOIN, allocate and |
|
2025 ** initialize a memory cell that records if this table matches any |
|
2026 ** row of the left table of the join. |
|
2027 */ |
|
2028 if( pLevel->iFrom>0 && (pTabItem[-1].jointype & JT_LEFT)!=0 ){ |
|
2029 if( !pParse->nMem ) pParse->nMem++; |
|
2030 pLevel->iLeftJoin = pParse->nMem++; |
|
2031 sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin); |
|
2032 VdbeComment((v, "# init LEFT JOIN no-match flag")); |
|
2033 } |
|
2034 |
|
2035 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
2036 if( pLevel->pBestIdx ){ |
|
2037 /* Case 0: The table is a virtual-table. Use the VFilter and VNext |
|
2038 ** to access the data. |
|
2039 */ |
|
2040 int j; |
|
2041 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; |
|
2042 int nConstraint = pBestIdx->nConstraint; |
|
2043 struct sqlite3_index_constraint_usage *aUsage = |
|
2044 pBestIdx->aConstraintUsage; |
|
2045 const struct sqlite3_index_constraint *aConstraint = |
|
2046 pBestIdx->aConstraint; |
|
2047 |
|
2048 for(j=1; j<=nConstraint; j++){ |
|
2049 int k; |
|
2050 for(k=0; k<nConstraint; k++){ |
|
2051 if( aUsage[k].argvIndex==j ){ |
|
2052 int iTerm = aConstraint[k].iTermOffset; |
|
2053 sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight); |
|
2054 break; |
|
2055 } |
|
2056 } |
|
2057 if( k==nConstraint ) break; |
|
2058 } |
|
2059 sqlite3VdbeAddOp(v, OP_Integer, j-1, 0); |
|
2060 sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0); |
|
2061 sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr, |
|
2062 pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC); |
|
2063 pBestIdx->needToFreeIdxStr = 0; |
|
2064 for(j=0; j<pBestIdx->nConstraint; j++){ |
|
2065 if( aUsage[j].omit ){ |
|
2066 int iTerm = aConstraint[j].iTermOffset; |
|
2067 disableTerm(pLevel, &wc.a[iTerm]); |
|
2068 } |
|
2069 } |
|
2070 pLevel->op = OP_VNext; |
|
2071 pLevel->p1 = iCur; |
|
2072 pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
|
2073 }else |
|
2074 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
2075 |
|
2076 if( pLevel->flags & WHERE_ROWID_EQ ){ |
|
2077 /* Case 1: We can directly reference a single row using an |
|
2078 ** equality comparison against the ROWID field. Or |
|
2079 ** we reference multiple rows using a "rowid IN (...)" |
|
2080 ** construct. |
|
2081 */ |
|
2082 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); |
|
2083 assert( pTerm!=0 ); |
|
2084 assert( pTerm->pExpr!=0 ); |
|
2085 assert( pTerm->leftCursor==iCur ); |
|
2086 assert( omitTable==0 ); |
|
2087 codeEqualityTerm(pParse, pTerm, brk, pLevel); |
|
2088 sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk); |
|
2089 sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk); |
|
2090 VdbeComment((v, "pk")); |
|
2091 pLevel->op = OP_Noop; |
|
2092 }else if( pLevel->flags & WHERE_ROWID_RANGE ){ |
|
2093 /* Case 2: We have an inequality comparison against the ROWID field. |
|
2094 */ |
|
2095 int testOp = OP_Noop; |
|
2096 int start; |
|
2097 WhereTerm *pStart, *pEnd; |
|
2098 |
|
2099 assert( omitTable==0 ); |
|
2100 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); |
|
2101 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); |
|
2102 if( bRev ){ |
|
2103 pTerm = pStart; |
|
2104 pStart = pEnd; |
|
2105 pEnd = pTerm; |
|
2106 } |
|
2107 if( pStart ){ |
|
2108 Expr *pX; |
|
2109 pX = pStart->pExpr; |
|
2110 assert( pX!=0 ); |
|
2111 assert( pStart->leftCursor==iCur ); |
|
2112 sqlite3ExprCode(pParse, pX->pRight); |
|
2113 sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk); |
|
2114 sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk); |
|
2115 VdbeComment((v, "pk")); |
|
2116 disableTerm(pLevel, pStart); |
|
2117 }else{ |
|
2118 sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk); |
|
2119 } |
|
2120 if( pEnd ){ |
|
2121 Expr *pX; |
|
2122 pX = pEnd->pExpr; |
|
2123 assert( pX!=0 ); |
|
2124 assert( pEnd->leftCursor==iCur ); |
|
2125 sqlite3ExprCode(pParse, pX->pRight); |
|
2126 pLevel->iMem = pParse->nMem++; |
|
2127 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
|
2128 if( pX->op==TK_LT || pX->op==TK_GT ){ |
|
2129 testOp = bRev ? OP_Le : OP_Ge; |
|
2130 }else{ |
|
2131 testOp = bRev ? OP_Lt : OP_Gt; |
|
2132 } |
|
2133 disableTerm(pLevel, pEnd); |
|
2134 } |
|
2135 start = sqlite3VdbeCurrentAddr(v); |
|
2136 pLevel->op = bRev ? OP_Prev : OP_Next; |
|
2137 pLevel->p1 = iCur; |
|
2138 pLevel->p2 = start; |
|
2139 if( testOp!=OP_Noop ){ |
|
2140 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); |
|
2141 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
|
2142 sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC, brk); |
|
2143 } |
|
2144 }else if( pLevel->flags & WHERE_COLUMN_RANGE ){ |
|
2145 /* Case 3: The WHERE clause term that refers to the right-most |
|
2146 ** column of the index is an inequality. For example, if |
|
2147 ** the index is on (x,y,z) and the WHERE clause is of the |
|
2148 ** form "x=5 AND y<10" then this case is used. Only the |
|
2149 ** right-most column can be an inequality - the rest must |
|
2150 ** use the "==" and "IN" operators. |
|
2151 ** |
|
2152 ** This case is also used when there are no WHERE clause |
|
2153 ** constraints but an index is selected anyway, in order |
|
2154 ** to force the output order to conform to an ORDER BY. |
|
2155 */ |
|
2156 int start; |
|
2157 int nEq = pLevel->nEq; |
|
2158 int topEq=0; /* True if top limit uses ==. False is strictly < */ |
|
2159 int btmEq=0; /* True if btm limit uses ==. False if strictly > */ |
|
2160 int topOp, btmOp; /* Operators for the top and bottom search bounds */ |
|
2161 int testOp; |
|
2162 int nNotNull; /* Number of rows of index that must be non-NULL */ |
|
2163 int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0; |
|
2164 int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0; |
|
2165 |
|
2166 /* Generate code to evaluate all constraint terms using == or IN |
|
2167 ** and level the values of those terms on the stack. |
|
2168 */ |
|
2169 codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk); |
|
2170 |
|
2171 /* Duplicate the equality term values because they will all be |
|
2172 ** used twice: once to make the termination key and once to make the |
|
2173 ** start key. |
|
2174 */ |
|
2175 for(j=0; j<nEq; j++){ |
|
2176 sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0); |
|
2177 } |
|
2178 |
|
2179 /* Figure out what comparison operators to use for top and bottom |
|
2180 ** search bounds. For an ascending index, the bottom bound is a > or >= |
|
2181 ** operator and the top bound is a < or <= operator. For a descending |
|
2182 ** index the operators are reversed. |
|
2183 */ |
|
2184 nNotNull = nEq + topLimit; |
|
2185 if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){ |
|
2186 topOp = WO_LT|WO_LE; |
|
2187 btmOp = WO_GT|WO_GE; |
|
2188 }else{ |
|
2189 topOp = WO_GT|WO_GE; |
|
2190 btmOp = WO_LT|WO_LE; |
|
2191 SWAP(int, topLimit, btmLimit); |
|
2192 } |
|
2193 |
|
2194 /* Generate the termination key. This is the key value that |
|
2195 ** will end the search. There is no termination key if there |
|
2196 ** are no equality terms and no "X<..." term. |
|
2197 ** |
|
2198 ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" |
|
2199 ** key computed here really ends up being the start key. |
|
2200 */ |
|
2201 if( topLimit ){ |
|
2202 Expr *pX; |
|
2203 int k = pIdx->aiColumn[j]; |
|
2204 pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx); |
|
2205 assert( pTerm!=0 ); |
|
2206 pX = pTerm->pExpr; |
|
2207 assert( (pTerm->flags & TERM_CODED)==0 ); |
|
2208 sqlite3ExprCode(pParse, pX->pRight); |
|
2209 topEq = pTerm->eOperator & (WO_LE|WO_GE); |
|
2210 disableTerm(pLevel, pTerm); |
|
2211 testOp = OP_IdxGE; |
|
2212 }else{ |
|
2213 testOp = nEq>0 ? OP_IdxGE : OP_Noop; |
|
2214 topEq = 1; |
|
2215 } |
|
2216 if( testOp!=OP_Noop ){ |
|
2217 int nCol = nEq + topLimit; |
|
2218 pLevel->iMem = pParse->nMem++; |
|
2219 buildIndexProbe(v, nCol, nEq, brk, pIdx); |
|
2220 if( bRev ){ |
|
2221 int op = topEq ? OP_MoveLe : OP_MoveLt; |
|
2222 sqlite3VdbeAddOp(v, op, iIdxCur, brk); |
|
2223 }else{ |
|
2224 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
|
2225 } |
|
2226 }else if( bRev ){ |
|
2227 sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk); |
|
2228 } |
|
2229 |
|
2230 /* Generate the start key. This is the key that defines the lower |
|
2231 ** bound on the search. There is no start key if there are no |
|
2232 ** equality terms and if there is no "X>..." term. In |
|
2233 ** that case, generate a "Rewind" instruction in place of the |
|
2234 ** start key search. |
|
2235 ** |
|
2236 ** 2002-Dec-04: In the case of a reverse-order search, the so-called |
|
2237 ** "start" key really ends up being used as the termination key. |
|
2238 */ |
|
2239 if( btmLimit ){ |
|
2240 Expr *pX; |
|
2241 int k = pIdx->aiColumn[j]; |
|
2242 pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx); |
|
2243 assert( pTerm!=0 ); |
|
2244 pX = pTerm->pExpr; |
|
2245 assert( (pTerm->flags & TERM_CODED)==0 ); |
|
2246 sqlite3ExprCode(pParse, pX->pRight); |
|
2247 btmEq = pTerm->eOperator & (WO_LE|WO_GE); |
|
2248 disableTerm(pLevel, pTerm); |
|
2249 }else{ |
|
2250 btmEq = 1; |
|
2251 } |
|
2252 if( nEq>0 || btmLimit ){ |
|
2253 int nCol = nEq + btmLimit; |
|
2254 buildIndexProbe(v, nCol, 0, brk, pIdx); |
|
2255 if( bRev ){ |
|
2256 pLevel->iMem = pParse->nMem++; |
|
2257 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
|
2258 testOp = OP_IdxLT; |
|
2259 }else{ |
|
2260 int op = btmEq ? OP_MoveGe : OP_MoveGt; |
|
2261 sqlite3VdbeAddOp(v, op, iIdxCur, brk); |
|
2262 } |
|
2263 }else if( bRev ){ |
|
2264 testOp = OP_Noop; |
|
2265 }else{ |
|
2266 sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk); |
|
2267 } |
|
2268 |
|
2269 /* Generate the the top of the loop. If there is a termination |
|
2270 ** key we have to test for that key and abort at the top of the |
|
2271 ** loop. |
|
2272 */ |
|
2273 start = sqlite3VdbeCurrentAddr(v); |
|
2274 if( testOp!=OP_Noop ){ |
|
2275 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
|
2276 sqlite3VdbeAddOp(v, testOp, iIdxCur, brk); |
|
2277 if( (topEq && !bRev) || (!btmEq && bRev) ){ |
|
2278 sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); |
|
2279 } |
|
2280 } |
|
2281 sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0); |
|
2282 sqlite3VdbeAddOp(v, OP_IdxIsNull, nNotNull, cont); |
|
2283 if( !omitTable ){ |
|
2284 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); |
|
2285 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); |
|
2286 } |
|
2287 |
|
2288 /* Record the instruction used to terminate the loop. |
|
2289 */ |
|
2290 pLevel->op = bRev ? OP_Prev : OP_Next; |
|
2291 pLevel->p1 = iIdxCur; |
|
2292 pLevel->p2 = start; |
|
2293 }else if( pLevel->flags & WHERE_COLUMN_EQ ){ |
|
2294 /* Case 4: There is an index and all terms of the WHERE clause that |
|
2295 ** refer to the index using the "==" or "IN" operators. |
|
2296 */ |
|
2297 int start; |
|
2298 int nEq = pLevel->nEq; |
|
2299 |
|
2300 /* Generate code to evaluate all constraint terms using == or IN |
|
2301 ** and leave the values of those terms on the stack. |
|
2302 */ |
|
2303 codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk); |
|
2304 |
|
2305 /* Generate a single key that will be used to both start and terminate |
|
2306 ** the search |
|
2307 */ |
|
2308 buildIndexProbe(v, nEq, 0, brk, pIdx); |
|
2309 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); |
|
2310 |
|
2311 /* Generate code (1) to move to the first matching element of the table. |
|
2312 ** Then generate code (2) that jumps to "brk" after the cursor is past |
|
2313 ** the last matching element of the table. The code (1) is executed |
|
2314 ** once to initialize the search, the code (2) is executed before each |
|
2315 ** iteration of the scan to see if the scan has finished. */ |
|
2316 if( bRev ){ |
|
2317 /* Scan in reverse order */ |
|
2318 sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk); |
|
2319 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
|
2320 sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk); |
|
2321 pLevel->op = OP_Prev; |
|
2322 }else{ |
|
2323 /* Scan in the forward order */ |
|
2324 sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk); |
|
2325 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
|
2326 sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC); |
|
2327 pLevel->op = OP_Next; |
|
2328 } |
|
2329 sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0); |
|
2330 sqlite3VdbeAddOp(v, OP_IdxIsNull, nEq, cont); |
|
2331 if( !omitTable ){ |
|
2332 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); |
|
2333 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); |
|
2334 } |
|
2335 pLevel->p1 = iIdxCur; |
|
2336 pLevel->p2 = start; |
|
2337 }else{ |
|
2338 /* Case 5: There is no usable index. We must do a complete |
|
2339 ** scan of the entire table. |
|
2340 */ |
|
2341 assert( omitTable==0 ); |
|
2342 assert( bRev==0 ); |
|
2343 pLevel->op = OP_Next; |
|
2344 pLevel->p1 = iCur; |
|
2345 pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk); |
|
2346 } |
|
2347 notReady &= ~getMask(&maskSet, iCur); |
|
2348 |
|
2349 /* Insert code to test every subexpression that can be completely |
|
2350 ** computed using the current set of tables. |
|
2351 */ |
|
2352 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ |
|
2353 Expr *pE; |
|
2354 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
|
2355 if( (pTerm->prereqAll & notReady)!=0 ) continue; |
|
2356 pE = pTerm->pExpr; |
|
2357 assert( pE!=0 ); |
|
2358 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ |
|
2359 continue; |
|
2360 } |
|
2361 sqlite3ExprIfFalse(pParse, pE, cont, 1); |
|
2362 pTerm->flags |= TERM_CODED; |
|
2363 } |
|
2364 |
|
2365 /* For a LEFT OUTER JOIN, generate code that will record the fact that |
|
2366 ** at least one row of the right table has matched the left table. |
|
2367 */ |
|
2368 if( pLevel->iLeftJoin ){ |
|
2369 pLevel->top = sqlite3VdbeCurrentAddr(v); |
|
2370 sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin); |
|
2371 VdbeComment((v, "# record LEFT JOIN hit")); |
|
2372 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ |
|
2373 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
|
2374 if( (pTerm->prereqAll & notReady)!=0 ) continue; |
|
2375 assert( pTerm->pExpr ); |
|
2376 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1); |
|
2377 pTerm->flags |= TERM_CODED; |
|
2378 } |
|
2379 } |
|
2380 } |
|
2381 |
|
2382 #ifdef SQLITE_TEST /* For testing and debugging use only */ |
|
2383 /* Record in the query plan information about the current table |
|
2384 ** and the index used to access it (if any). If the table itself |
|
2385 ** is not used, its name is just '{}'. If no index is used |
|
2386 ** the index is listed as "{}". If the primary key is used the |
|
2387 ** index name is '*'. |
|
2388 */ |
|
2389 for(i=0; i<pTabList->nSrc; i++){ |
|
2390 char *z; |
|
2391 int n; |
|
2392 pLevel = &pWInfo->a[i]; |
|
2393 pTabItem = &pTabList->a[pLevel->iFrom]; |
|
2394 z = pTabItem->zAlias; |
|
2395 if( z==0 ) z = pTabItem->pTab->zName; |
|
2396 n = strlen(z); |
|
2397 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ |
|
2398 if( pLevel->flags & WHERE_IDX_ONLY ){ |
|
2399 strcpy(&sqlite3_query_plan[nQPlan], "{}"); |
|
2400 nQPlan += 2; |
|
2401 }else{ |
|
2402 strcpy(&sqlite3_query_plan[nQPlan], z); |
|
2403 nQPlan += n; |
|
2404 } |
|
2405 sqlite3_query_plan[nQPlan++] = ' '; |
|
2406 } |
|
2407 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ |
|
2408 strcpy(&sqlite3_query_plan[nQPlan], "* "); |
|
2409 nQPlan += 2; |
|
2410 }else if( pLevel->pIdx==0 ){ |
|
2411 strcpy(&sqlite3_query_plan[nQPlan], "{} "); |
|
2412 nQPlan += 3; |
|
2413 }else{ |
|
2414 n = strlen(pLevel->pIdx->zName); |
|
2415 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ |
|
2416 strcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName); |
|
2417 nQPlan += n; |
|
2418 sqlite3_query_plan[nQPlan++] = ' '; |
|
2419 } |
|
2420 } |
|
2421 } |
|
2422 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ |
|
2423 sqlite3_query_plan[--nQPlan] = 0; |
|
2424 } |
|
2425 sqlite3_query_plan[nQPlan] = 0; |
|
2426 nQPlan = 0; |
|
2427 #endif /* SQLITE_TEST // Testing and debugging use only */ |
|
2428 |
|
2429 /* Record the continuation address in the WhereInfo structure. Then |
|
2430 ** clean up and return. |
|
2431 */ |
|
2432 pWInfo->iContinue = cont; |
|
2433 whereClauseClear(&wc); |
|
2434 return pWInfo; |
|
2435 |
|
2436 /* Jump here if malloc fails */ |
|
2437 whereBeginNoMem: |
|
2438 whereClauseClear(&wc); |
|
2439 whereInfoFree(pWInfo); |
|
2440 return 0; |
|
2441 } |
|
2442 |
|
2443 /* |
|
2444 ** Generate the end of the WHERE loop. See comments on |
|
2445 ** sqlite3WhereBegin() for additional information. |
|
2446 */ |
|
2447 void sqlite3WhereEnd(WhereInfo *pWInfo){ |
|
2448 Vdbe *v = pWInfo->pParse->pVdbe; |
|
2449 int i; |
|
2450 WhereLevel *pLevel; |
|
2451 SrcList *pTabList = pWInfo->pTabList; |
|
2452 |
|
2453 /* Generate loop termination code. |
|
2454 */ |
|
2455 for(i=pTabList->nSrc-1; i>=0; i--){ |
|
2456 pLevel = &pWInfo->a[i]; |
|
2457 sqlite3VdbeResolveLabel(v, pLevel->cont); |
|
2458 if( pLevel->op!=OP_Noop ){ |
|
2459 sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); |
|
2460 } |
|
2461 sqlite3VdbeResolveLabel(v, pLevel->brk); |
|
2462 if( pLevel->nIn ){ |
|
2463 int *a; |
|
2464 int j; |
|
2465 for(j=pLevel->nIn, a=&pLevel->aInLoop[j*2-2]; j>0; j--, a-=2){ |
|
2466 sqlite3VdbeAddOp(v, OP_Next, a[0], a[1]); |
|
2467 sqlite3VdbeJumpHere(v, a[1]-1); |
|
2468 } |
|
2469 sqliteFree(pLevel->aInLoop); |
|
2470 } |
|
2471 if( pLevel->iLeftJoin ){ |
|
2472 int addr; |
|
2473 addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0); |
|
2474 sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); |
|
2475 if( pLevel->iIdxCur>=0 ){ |
|
2476 sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0); |
|
2477 } |
|
2478 sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top); |
|
2479 sqlite3VdbeJumpHere(v, addr); |
|
2480 } |
|
2481 } |
|
2482 |
|
2483 /* The "break" point is here, just past the end of the outer loop. |
|
2484 ** Set it. |
|
2485 */ |
|
2486 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); |
|
2487 |
|
2488 /* Close all of the cursors that were opened by sqlite3WhereBegin. |
|
2489 */ |
|
2490 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
|
2491 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; |
|
2492 Table *pTab = pTabItem->pTab; |
|
2493 assert( pTab!=0 ); |
|
2494 if( pTab->isEphem || pTab->pSelect ) continue; |
|
2495 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ |
|
2496 sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0); |
|
2497 } |
|
2498 if( pLevel->pIdx!=0 ){ |
|
2499 sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0); |
|
2500 } |
|
2501 |
|
2502 /* Make cursor substitutions for cases where we want to use |
|
2503 ** just the index and never reference the table. |
|
2504 ** |
|
2505 ** Calls to the code generator in between sqlite3WhereBegin and |
|
2506 ** sqlite3WhereEnd will have created code that references the table |
|
2507 ** directly. This loop scans all that code looking for opcodes |
|
2508 ** that reference the table and converts them into opcodes that |
|
2509 ** reference the index. |
|
2510 */ |
|
2511 if( pLevel->flags & WHERE_IDX_ONLY ){ |
|
2512 int k, j, last; |
|
2513 VdbeOp *pOp; |
|
2514 Index *pIdx = pLevel->pIdx; |
|
2515 |
|
2516 assert( pIdx!=0 ); |
|
2517 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); |
|
2518 last = sqlite3VdbeCurrentAddr(v); |
|
2519 for(k=pWInfo->iTop; k<last; k++, pOp++){ |
|
2520 if( pOp->p1!=pLevel->iTabCur ) continue; |
|
2521 if( pOp->opcode==OP_Column ){ |
|
2522 pOp->p1 = pLevel->iIdxCur; |
|
2523 for(j=0; j<pIdx->nColumn; j++){ |
|
2524 if( pOp->p2==pIdx->aiColumn[j] ){ |
|
2525 pOp->p2 = j; |
|
2526 break; |
|
2527 } |
|
2528 } |
|
2529 }else if( pOp->opcode==OP_Rowid ){ |
|
2530 pOp->p1 = pLevel->iIdxCur; |
|
2531 pOp->opcode = OP_IdxRowid; |
|
2532 }else if( pOp->opcode==OP_NullRow ){ |
|
2533 pOp->opcode = OP_Noop; |
|
2534 } |
|
2535 } |
|
2536 } |
|
2537 } |
|
2538 |
|
2539 /* Final cleanup |
|
2540 */ |
|
2541 whereInfoFree(pWInfo); |
|
2542 return; |
|
2543 } |