/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains SQLite's grammar for SQL. Process this file
** using the lemon parser generator to generate C code that runs
** the parser. Lemon will also generate a header file containing
** numeric codes for all of the tokens.
**
** @(#) $Id: parse.y,v 1.204 2006/06/16 08:01:04 danielk1977 Exp $
*/
// All token codes are small integers with #defines that begin with "TK_"
%token_prefix TK_
// The type of the data attached to each token is Token. This is also the
// default type for non-terminals.
//
%token_type {Token}
%default_type {Token}
// The generated parser function takes a 4th argument as follows:
%extra_argument {Parse *pParse}
// This code runs whenever there is a syntax error
//
%syntax_error {
if( !pParse->parseError ){
if( TOKEN.z[0] ){
sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
}else{
sqlite3ErrorMsg(pParse, "incomplete SQL statement");
}
pParse->parseError = 1;
}
}
%stack_overflow {
sqlite3ErrorMsg(pParse, "parser stack overflow");
pParse->parseError = 1;
}
// The name of the generated procedure that implements the parser
// is as follows:
%name sqlite3Parser
// The following text is included near the beginning of the C source
// code file that implements the parser.
//
%include {
#include "sqliteInt.h"
#include "parse.h"
/*
** An instance of this structure holds information about the
** LIMIT clause of a SELECT statement.
*/
struct LimitVal {
Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */
Expr *pOffset; /* The OFFSET expression. NULL if there is none */
};
/*
** An instance of this structure is used to store the LIKE,
** GLOB, NOT LIKE, and NOT GLOB operators.
*/
struct LikeOp {
Token eOperator; /* "like" or "glob" or "regexp" */
int not; /* True if the NOT keyword is present */
};
/*
** An instance of the following structure describes the event of a
** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
** TK_DELETE, or TK_INSTEAD. If the event is of the form
**
** UPDATE ON (a,b,c)
**
** Then the "b" IdList records the list "a,b,c".
*/
struct TrigEvent { int a; IdList * b; };
/*
** An instance of this structure holds the ATTACH key and the key type.
*/
struct AttachKey { int type; Token key; };
} // end %include
// Input is a single SQL command
input ::= cmdlist.
cmdlist ::= cmdlist ecmd.
cmdlist ::= ecmd.
cmdx ::= cmd. { sqlite3FinishCoding(pParse); }
ecmd ::= SEMI.
ecmd ::= explain cmdx SEMI.
explain ::= . { sqlite3BeginParse(pParse, 0); }
%ifndef SQLITE_OMIT_EXPLAIN
explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); }
explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); }
%endif
///////////////////// Begin and end transactions. ////////////////////////////
//
cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);}
trans_opt ::= .
trans_opt ::= TRANSACTION.
trans_opt ::= TRANSACTION nm.
%type transtype {int}
transtype(A) ::= . {A = TK_DEFERRED;}
transtype(A) ::= DEFERRED(X). {A = @X;}
transtype(A) ::= IMMEDIATE(X). {A = @X;}
transtype(A) ::= EXCLUSIVE(X). {A = @X;}
cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);}
cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);}
cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);}
///////////////////// The CREATE TABLE statement ////////////////////////////
//
cmd ::= create_table create_table_args.
create_table ::= CREATE temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
}
%type ifnotexists {int}
ifnotexists(A) ::= . {A = 0;}
ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
%type temp {int}
%ifndef SQLITE_OMIT_TEMPDB
temp(A) ::= TEMP. {A = 1;}
%endif
temp(A) ::= . {A = 0;}
create_table_args ::= LP columnlist conslist_opt(X) RP(Y). {
sqlite3EndTable(pParse,&X,&Y,0);
}
create_table_args ::= AS select(S). {
sqlite3EndTable(pParse,0,0,S);
sqlite3SelectDelete(S);
}
columnlist ::= columnlist COMMA column.
columnlist ::= column.
// A "column" is a complete description of a single column in a
// CREATE TABLE statement. This includes the column name, its
// datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES,
// NOT NULL and so forth.
//
column(A) ::= columnid(X) type carglist. {
A.z = X.z;
A.n = (pParse->sLastToken.z-X.z) + pParse->sLastToken.n;
}
columnid(A) ::= nm(X). {
sqlite3AddColumn(pParse,&X);
A = X;
}
// An IDENTIFIER can be a generic identifier, or one of several
// keywords. Any non-standard keyword can also be an identifier.
//
%type id {Token}
id(A) ::= ID(X). {A = X;}
// The following directive causes tokens ABORT, AFTER, ASC, etc. to
// fallback to ID if they will not parse as their original value.
// This obviates the need for the "id" nonterminal.
//
%fallback ID
ABORT AFTER ANALYZE ASC ATTACH BEFORE BEGIN CASCADE CAST CONFLICT
DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH PLAN QUERY KEY
OF OFFSET PRAGMA RAISE REPLACE RESTRICT ROW STATEMENT
TEMP TRIGGER VACUUM VIEW VIRTUAL
%ifdef SQLITE_OMIT_COMPOUND_SELECT
EXCEPT INTERSECT UNION
%endif
REINDEX RENAME CTIME_KW IF
.
%wildcard ANY.
// Define operator precedence early so that this is the first occurance
// of the operator tokens in the grammer. Keeping the operators together
// causes them to be assigned integer values that are close together,
// which keeps parser tables smaller.
//
// The token values assigned to these symbols is determined by the order
// in which lemon first sees them. It must be the case that ISNULL/NOTNULL,
// NE/EQ, GT/LE, and GE/LT are separated by only a single value. See
// the sqlite3ExprIfFalse() routine for additional information on this
// constraint.
//
%left OR.
%left AND.
%right NOT.
%left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
%left GT LE LT GE.
%right ESCAPE.
%left BITAND BITOR LSHIFT RSHIFT.
%left PLUS MINUS.
%left STAR SLASH REM.
%left CONCAT.
%right UMINUS UPLUS BITNOT.
// And "ids" is an identifer-or-string.
//
%type ids {Token}
ids(A) ::= ID|STRING(X). {A = X;}
// The name of a column or table can be any of the following:
//
%type nm {Token}
nm(A) ::= ID(X). {A = X;}
nm(A) ::= STRING(X). {A = X;}
nm(A) ::= JOIN_KW(X). {A = X;}
// A typetoken is really one or more tokens that form a type name such
// as can be found after the column name in a CREATE TABLE statement.
// Multiple tokens are concatenated to form the value of the typetoken.
//
%type typetoken {Token}
type ::= .
type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);}
typetoken(A) ::= typename(X). {A = X;}
typetoken(A) ::= typename(X) LP signed RP(Y). {
A.z = X.z;
A.n = &Y.z[Y.n] - X.z;
}
typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). {
A.z = X.z;
A.n = &Y.z[Y.n] - X.z;
}
%type typename {Token}
typename(A) ::= ids(X). {A = X;}
typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(Y.z-X.z);}
%type signed {int}
signed(A) ::= plus_num(X). { A = atoi((char*)X.z); }
signed(A) ::= minus_num(X). { A = -atoi((char*)X.z); }
// "carglist" is a list of additional constraints that come after the
// column name and column type in a CREATE TABLE statement.
//
carglist ::= carglist carg.
carglist ::= .
carg ::= CONSTRAINT nm ccons.
carg ::= ccons.
carg ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,X);}
carg ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,X);}
carg ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,X);}
carg ::= DEFAULT MINUS term(X). {
Expr *p = sqlite3Expr(TK_UMINUS, X, 0, 0);
sqlite3AddDefaultValue(pParse,p);
}
carg ::= DEFAULT id(X). {
Expr *p = sqlite3Expr(TK_STRING, 0, 0, &X);
sqlite3AddDefaultValue(pParse,p);
}
// In addition to the type name, we also care about the primary key and
// UNIQUE constraints.
//
ccons ::= NULL onconf.
ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);}
ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
{sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);}
ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X);}
ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
{sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);}
ccons ::= COLLATE id(C). {sqlite3AddCollateType(pParse, (char*)C.z, C.n);}
// The optional AUTOINCREMENT keyword
%type autoinc {int}
autoinc(X) ::= . {X = 0;}
autoinc(X) ::= AUTOINCR. {X = 1;}
// The next group of rules parses the arguments to a REFERENCES clause
// that determine if the referential integrity checking is deferred or
// or immediate and which determine what action to take if a ref-integ
// check fails.
//
%type refargs {int}
refargs(A) ::= . { A = OE_Restrict * 0x010101; }
refargs(A) ::= refargs(X) refarg(Y). { A = (X & Y.mask) | Y.value; }
%type refarg {struct {int value; int mask;}}
refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; }
refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; }
refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; }
refarg(A) ::= ON INSERT refact(X). { A.value = X<<16; A.mask = 0xff0000; }
%type refact {int}
refact(A) ::= SET NULL. { A = OE_SetNull; }
refact(A) ::= SET DEFAULT. { A = OE_SetDflt; }
refact(A) ::= CASCADE. { A = OE_Cascade; }
refact(A) ::= RESTRICT. { A = OE_Restrict; }
%type defer_subclause {int}
defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt(X). {A = X;}
defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;}
%type init_deferred_pred_opt {int}
init_deferred_pred_opt(A) ::= . {A = 0;}
init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;}
init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;}
// For the time being, the only constraint we care about is the primary
// key and UNIQUE. Both create indices.
//
conslist_opt(A) ::= . {A.n = 0; A.z = 0;}
conslist_opt(A) ::= COMMA(X) conslist. {A = X;}
conslist ::= conslist COMMA tcons.
conslist ::= conslist tcons.
conslist ::= tcons.
tcons ::= CONSTRAINT nm.
tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R).
{sqlite3AddPrimaryKey(pParse,X,R,I,0);}
tcons ::= UNIQUE LP idxlist(X) RP onconf(R).
{sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);}
tcons ::= CHECK LP expr(E) RP onconf. {sqlite3AddCheckConstraint(pParse,E);}
tcons ::= FOREIGN KEY LP idxlist(FA) RP
REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). {
sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
sqlite3DeferForeignKey(pParse, D);
}
%type defer_subclause_opt {int}
defer_subclause_opt(A) ::= . {A = 0;}
defer_subclause_opt(A) ::= defer_subclause(X). {A = X;}
// The following is a non-standard extension that allows us to declare the
// default behavior when there is a constraint conflict.
//
%type onconf {int}
%type orconf {int}
%type resolvetype {int}
onconf(A) ::= . {A = OE_Default;}
onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;}
orconf(A) ::= . {A = OE_Default;}
orconf(A) ::= OR resolvetype(X). {A = X;}
resolvetype(A) ::= raisetype(X). {A = X;}
resolvetype(A) ::= IGNORE. {A = OE_Ignore;}
resolvetype(A) ::= REPLACE. {A = OE_Replace;}
////////////////////////// The DROP TABLE /////////////////////////////////////
//
cmd ::= DROP TABLE ifexists(E) fullname(X). {
sqlite3DropTable(pParse, X, 0, E);
}
%type ifexists {int}
ifexists(A) ::= IF EXISTS. {A = 1;}
ifexists(A) ::= . {A = 0;}
///////////////////// The CREATE VIEW statement /////////////////////////////
//
%ifndef SQLITE_OMIT_VIEW
cmd ::= CREATE(X) temp(T) VIEW nm(Y) dbnm(Z) AS select(S). {
sqlite3CreateView(pParse, &X, &Y, &Z, S, T);
}
cmd ::= DROP VIEW ifexists(E) fullname(X). {
sqlite3DropTable(pParse, X, 1, E);
}
%endif // SQLITE_OMIT_VIEW
//////////////////////// The SELECT statement /////////////////////////////////
//
cmd ::= select(X). {
sqlite3Select(pParse, X, SRT_Callback, 0, 0, 0, 0, 0);
sqlite3SelectDelete(X);
}
%type select {Select*}
%destructor select {sqlite3SelectDelete($$);}
%type oneselect {Select*}
%destructor oneselect {sqlite3SelectDelete($$);}
select(A) ::= oneselect(X). {A = X;}
%ifndef SQLITE_OMIT_COMPOUND_SELECT
select(A) ::= select(X) multiselect_op(Y) oneselect(Z). {
if( Z ){
Z->op = Y;
Z->pPrior = X;
}
A = Z;
}
%type multiselect_op {int}
multiselect_op(A) ::= UNION(OP). {A = @OP;}
multiselect_op(A) ::= UNION ALL. {A = TK_ALL;}
multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;}
%endif // SQLITE_OMIT_COMPOUND_SELECT
oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
A = sqlite3SelectNew(W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
}
// The "distinct" nonterminal is true (1) if the DISTINCT keyword is
// present and false (0) if it is not.
//
%type distinct {int}
distinct(A) ::= DISTINCT. {A = 1;}
distinct(A) ::= ALL. {A = 0;}
distinct(A) ::= . {A = 0;}
// selcollist is a list of expressions that are to become the return
// values of the SELECT statement. The "*" in statements like
// "SELECT * FROM ..." is encoded as a special expression with an
// opcode of TK_ALL.
//
%type selcollist {ExprList*}
%destructor selcollist {sqlite3ExprListDelete($$);}
%type sclp {ExprList*}
%destructor sclp {sqlite3ExprListDelete($$);}
sclp(A) ::= selcollist(X) COMMA. {A = X;}
sclp(A) ::= . {A = 0;}
selcollist(A) ::= sclp(P) expr(X) as(Y). {
A = sqlite3ExprListAppend(P,X,Y.n?&Y:0);
}
selcollist(A) ::= sclp(P) STAR. {
A = sqlite3ExprListAppend(P, sqlite3Expr(TK_ALL, 0, 0, 0), 0);
}
selcollist(A) ::= sclp(P) nm(X) DOT STAR. {
Expr *pRight = sqlite3Expr(TK_ALL, 0, 0, 0);
Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, &X);
A = sqlite3ExprListAppend(P, sqlite3Expr(TK_DOT, pLeft, pRight, 0), 0);
}
// An option "AS <id>" phrase that can follow one of the expressions that
// define the result set, or one of the tables in the FROM clause.
//
%type as {Token}
as(X) ::= AS nm(Y). {X = Y;}
as(X) ::= ids(Y). {X = Y;}
as(X) ::= . {X.n = 0;}
%type seltablist {SrcList*}
%destructor seltablist {sqlite3SrcListDelete($$);}
%type stl_prefix {SrcList*}
%destructor stl_prefix {sqlite3SrcListDelete($$);}
%type from {SrcList*}
%destructor from {sqlite3SrcListDelete($$);}
// A complete FROM clause.
//
from(A) ::= . {A = sqliteMalloc(sizeof(*A));}
from(A) ::= FROM seltablist(X). {A = X;}
// "seltablist" is a "Select Table List" - the content of the FROM clause
// in a SELECT statement. "stl_prefix" is a prefix of this list.
//
stl_prefix(A) ::= seltablist(X) joinop(Y). {
A = X;
if( A && A->nSrc>0 ) A->a[A->nSrc-1].jointype = Y;
}
stl_prefix(A) ::= . {A = 0;}
seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) on_opt(N) using_opt(U). {
A = sqlite3SrcListAppend(X,&Y,&D);
if( Z.n ) sqlite3SrcListAddAlias(A,&Z);
if( N ){
if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pOn = N; }
else { sqlite3ExprDelete(N); }
}
if( U ){
if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pUsing = U; }
else { sqlite3IdListDelete(U); }
}
}
%ifndef SQLITE_OMIT_SUBQUERY
seltablist(A) ::= stl_prefix(X) LP seltablist_paren(S) RP
as(Z) on_opt(N) using_opt(U). {
A = sqlite3SrcListAppend(X,0,0);
A->a[A->nSrc-1].pSelect = S;
if( Z.n ) sqlite3SrcListAddAlias(A,&Z);
if( N ){
if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pOn = N; }
else { sqlite3ExprDelete(N); }
}
if( U ){
if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pUsing = U; }
else { sqlite3IdListDelete(U); }
}
}
// A seltablist_paren nonterminal represents anything in a FROM that
// is contained inside parentheses. This can be either a subquery or
// a grouping of table and subqueries.
//
%type seltablist_paren {Select*}
%destructor seltablist_paren {sqlite3SelectDelete($$);}
seltablist_paren(A) ::= select(S). {A = S;}
seltablist_paren(A) ::= seltablist(F). {
A = sqlite3SelectNew(0,F,0,0,0,0,0,0,0);
}
%endif // SQLITE_OMIT_SUBQUERY
%type dbnm {Token}
dbnm(A) ::= . {A.z=0; A.n=0;}
dbnm(A) ::= DOT nm(X). {A = X;}
%type fullname {SrcList*}
%destructor fullname {sqlite3SrcListDelete($$);}
fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(0,&X,&Y);}
%type joinop {int}
%type joinop2 {int}
joinop(X) ::= COMMA|JOIN. { X = JT_INNER; }
joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); }
joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); }
joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
{ X = sqlite3JoinType(pParse,&A,&B,&C); }
%type on_opt {Expr*}
%destructor on_opt {sqlite3ExprDelete($$);}
on_opt(N) ::= ON expr(E). {N = E;}
on_opt(N) ::= . {N = 0;}
%type using_opt {IdList*}
%destructor using_opt {sqlite3IdListDelete($$);}
using_opt(U) ::= USING LP inscollist(L) RP. {U = L;}
using_opt(U) ::= . {U = 0;}
%type orderby_opt {ExprList*}
%destructor orderby_opt {sqlite3ExprListDelete($$);}
%type sortlist {ExprList*}
%destructor sortlist {sqlite3ExprListDelete($$);}
%type sortitem {Expr*}
%destructor sortitem {sqlite3ExprDelete($$);}
orderby_opt(A) ::= . {A = 0;}
orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;}
sortlist(A) ::= sortlist(X) COMMA sortitem(Y) collate(C) sortorder(Z). {
A = sqlite3ExprListAppend(X,Y,C.n>0?&C:0);
if( A ) A->a[A->nExpr-1].sortOrder = Z;
}
sortlist(A) ::= sortitem(Y) collate(C) sortorder(Z). {
A = sqlite3ExprListAppend(0,Y,C.n>0?&C:0);
if( A && A->a ) A->a[0].sortOrder = Z;
}
sortitem(A) ::= expr(X). {A = X;}
%type sortorder {int}
%type collate {Token}
sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;}
sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;}
sortorder(A) ::= . {A = SQLITE_SO_ASC;}
collate(C) ::= . {C.z = 0; C.n = 0;}
collate(C) ::= COLLATE id(X). {C = X;}
%type groupby_opt {ExprList*}
%destructor groupby_opt {sqlite3ExprListDelete($$);}
groupby_opt(A) ::= . {A = 0;}
groupby_opt(A) ::= GROUP BY exprlist(X). {A = X;}
%type having_opt {Expr*}
%destructor having_opt {sqlite3ExprDelete($$);}
having_opt(A) ::= . {A = 0;}
having_opt(A) ::= HAVING expr(X). {A = X;}
%type limit_opt {struct LimitVal}
%destructor limit_opt {
sqlite3ExprDelete($$.pLimit);
sqlite3ExprDelete($$.pOffset);
}
limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;}
limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X; A.pOffset = 0;}
limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
{A.pLimit = X; A.pOffset = Y;}
limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
{A.pOffset = X; A.pLimit = Y;}
/////////////////////////// The DELETE statement /////////////////////////////
//
cmd ::= DELETE FROM fullname(X) where_opt(Y). {sqlite3DeleteFrom(pParse,X,Y);}
%type where_opt {Expr*}
%destructor where_opt {sqlite3ExprDelete($$);}
where_opt(A) ::= . {A = 0;}
where_opt(A) ::= WHERE expr(X). {A = X;}
////////////////////////// The UPDATE command ////////////////////////////////
//
cmd ::= UPDATE orconf(R) fullname(X) SET setlist(Y) where_opt(Z).
{sqlite3Update(pParse,X,Y,Z,R);}
%type setlist {ExprList*}
%destructor setlist {sqlite3ExprListDelete($$);}
setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y).
{A = sqlite3ExprListAppend(Z,Y,&X);}
setlist(A) ::= nm(X) EQ expr(Y). {A = sqlite3ExprListAppend(0,Y,&X);}
////////////////////////// The INSERT command /////////////////////////////////
//
cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F)
VALUES LP itemlist(Y) RP.
{sqlite3Insert(pParse, X, Y, 0, F, R);}
cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S).
{sqlite3Insert(pParse, X, 0, S, F, R);}
%type insert_cmd {int}
insert_cmd(A) ::= INSERT orconf(R). {A = R;}
insert_cmd(A) ::= REPLACE. {A = OE_Replace;}
%type itemlist {ExprList*}
%destructor itemlist {sqlite3ExprListDelete($$);}
itemlist(A) ::= itemlist(X) COMMA expr(Y). {A = sqlite3ExprListAppend(X,Y,0);}
itemlist(A) ::= expr(X). {A = sqlite3ExprListAppend(0,X,0);}
%type inscollist_opt {IdList*}
%destructor inscollist_opt {sqlite3IdListDelete($$);}
%type inscollist {IdList*}
%destructor inscollist {sqlite3IdListDelete($$);}
inscollist_opt(A) ::= . {A = 0;}
inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;}
inscollist(A) ::= inscollist(X) COMMA nm(Y). {A = sqlite3IdListAppend(X,&Y);}
inscollist(A) ::= nm(Y). {A = sqlite3IdListAppend(0,&Y);}
/////////////////////////// Expression Processing /////////////////////////////
//
%type expr {Expr*}
%destructor expr {sqlite3ExprDelete($$);}
%type term {Expr*}
%destructor term {sqlite3ExprDelete($$);}
expr(A) ::= term(X). {A = X;}
expr(A) ::= LP(B) expr(X) RP(E). {A = X; sqlite3ExprSpan(A,&B,&E); }
term(A) ::= NULL(X). {A = sqlite3Expr(@X, 0, 0, &X);}
expr(A) ::= ID(X). {A = sqlite3Expr(TK_ID, 0, 0, &X);}
expr(A) ::= JOIN_KW(X). {A = sqlite3Expr(TK_ID, 0, 0, &X);}
expr(A) ::= nm(X) DOT nm(Y). {
Expr *temp1 = sqlite3Expr(TK_ID, 0, 0, &X);
Expr *temp2 = sqlite3Expr(TK_ID, 0, 0, &Y);
A = sqlite3Expr(TK_DOT, temp1, temp2, 0);
}
expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
Expr *temp1 = sqlite3Expr(TK_ID, 0, 0, &X);
Expr *temp2 = sqlite3Expr(TK_ID, 0, 0, &Y);
Expr *temp3 = sqlite3Expr(TK_ID, 0, 0, &Z);
Expr *temp4 = sqlite3Expr(TK_DOT, temp2, temp3, 0);
A = sqlite3Expr(TK_DOT, temp1, temp4, 0);
}
term(A) ::= INTEGER|FLOAT|BLOB(X). {A = sqlite3Expr(@X, 0, 0, &X);}
term(A) ::= STRING(X). {A = sqlite3Expr(@X, 0, 0, &X);}
expr(A) ::= REGISTER(X). {A = sqlite3RegisterExpr(pParse, &X);}
expr(A) ::= VARIABLE(X). {
Token *pToken = &X;
Expr *pExpr = A = sqlite3Expr(TK_VARIABLE, 0, 0, pToken);
sqlite3ExprAssignVarNumber(pParse, pExpr);
}
%ifndef SQLITE_OMIT_CAST
expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
A = sqlite3Expr(TK_CAST, E, 0, &T);
sqlite3ExprSpan(A,&X,&Y);
}
%endif // SQLITE_OMIT_CAST
expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). {
A = sqlite3ExprFunction(Y, &X);
sqlite3ExprSpan(A,&X,&E);
if( D && A ){
A->flags |= EP_Distinct;
}
}
expr(A) ::= ID(X) LP STAR RP(E). {
A = sqlite3ExprFunction(0, &X);
sqlite3ExprSpan(A,&X,&E);
}
term(A) ::= CTIME_KW(OP). {
/* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
** treated as functions that return constants */
A = sqlite3ExprFunction(0,&OP);
if( A ) A->op = TK_CONST_FUNC;
}
expr(A) ::= expr(X) AND(OP) expr(Y). {A = sqlite3Expr(@OP, X, Y, 0);}
expr(A) ::= expr(X) OR(OP) expr(Y). {A = sqlite3Expr(@OP, X, Y, 0);}
expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). {A = sqlite3Expr(@OP, X, Y, 0);}
expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {A = sqlite3Expr(@OP, X, Y, 0);}
expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
{A = sqlite3Expr(@OP, X, Y, 0);}
expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). {A = sqlite3Expr(@OP, X, Y, 0);}
expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). {A = sqlite3Expr(@OP, X, Y, 0);}
expr(A) ::= expr(X) CONCAT(OP) expr(Y). {A = sqlite3Expr(@OP, X, Y, 0);}
%type likeop {struct LikeOp}
likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.not = 0;}
likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;}
likeop(A) ::= MATCH(X). {A.eOperator = X; A.not = 0;}
likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.not = 1;}
%type escape {Expr*}
%destructor escape {sqlite3ExprDelete($$);}
escape(X) ::= ESCAPE expr(A). [ESCAPE] {X = A;}
escape(X) ::= . [ESCAPE] {X = 0;}
expr(A) ::= expr(X) likeop(OP) expr(Y) escape(E). [LIKE_KW] {
ExprList *pList;
pList = sqlite3ExprListAppend(0, Y, 0);
pList = sqlite3ExprListAppend(pList, X, 0);
if( E ){
pList = sqlite3ExprListAppend(pList, E, 0);
}
A = sqlite3ExprFunction(pList, &OP.eOperator);
if( OP.not ) A = sqlite3Expr(TK_NOT, A, 0, 0);
sqlite3ExprSpan(A, &X->span, &Y->span);
}
expr(A) ::= expr(X) ISNULL|NOTNULL(E). {
A = sqlite3Expr(@E, X, 0, 0);
sqlite3ExprSpan(A,&X->span,&E);
}
expr(A) ::= expr(X) IS NULL(E). {
A = sqlite3Expr(TK_ISNULL, X, 0, 0);
sqlite3ExprSpan(A,&X->span,&E);
}
expr(A) ::= expr(X) NOT NULL(E). {
A = sqlite3Expr(TK_NOTNULL, X, 0, 0);
sqlite3ExprSpan(A,&X->span,&E);
}
expr(A) ::= expr(X) IS NOT NULL(E). {
A = sqlite3Expr(TK_NOTNULL, X, 0, 0);
sqlite3ExprSpan(A,&X->span,&E);
}
expr(A) ::= NOT|BITNOT(B) expr(X). {
A = sqlite3Expr(@B, X, 0, 0);
sqlite3ExprSpan(A,&B,&X->span);
}
expr(A) ::= MINUS(B) expr(X). [UMINUS] {
A = sqlite3Expr(TK_UMINUS, X, 0, 0);
sqlite3ExprSpan(A,&B,&X->span);
}
expr(A) ::= PLUS(B) expr(X). [UPLUS] {
A = sqlite3Expr(TK_UPLUS, X, 0, 0);
sqlite3ExprSpan(A,&B,&X->span);
}
%type between_op {int}
between_op(A) ::= BETWEEN. {A = 0;}
between_op(A) ::= NOT BETWEEN. {A = 1;}
expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
ExprList *pList = sqlite3ExprListAppend(0, X, 0);
pList = sqlite3ExprListAppend(pList, Y, 0);
A = sqlite3Expr(TK_BETWEEN, W, 0, 0);
if( A ){
A->pList = pList;
}else{
sqlite3ExprListDelete(pList);
}
if( N ) A = sqlite3Expr(TK_NOT, A, 0, 0);
sqlite3ExprSpan(A,&W->span,&Y->span);
}
%ifndef SQLITE_OMIT_SUBQUERY
%type in_op {int}
in_op(A) ::= IN. {A = 0;}
in_op(A) ::= NOT IN. {A = 1;}
expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] {
A = sqlite3Expr(TK_IN, X, 0, 0);
if( A ){
A->pList = Y;
}else{
sqlite3ExprListDelete(Y);
}
if( N ) A = sqlite3Expr(TK_NOT, A, 0, 0);
sqlite3ExprSpan(A,&X->span,&E);
}
expr(A) ::= LP(B) select(X) RP(E). {
A = sqlite3Expr(TK_SELECT, 0, 0, 0);
if( A ){
A->pSelect = X;
}else{
sqlite3SelectDelete(X);
}
sqlite3ExprSpan(A,&B,&E);
}
expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] {
A = sqlite3Expr(TK_IN, X, 0, 0);
if( A ){
A->pSelect = Y;
}else{
sqlite3SelectDelete(Y);
}
if( N ) A = sqlite3Expr(TK_NOT, A, 0, 0);
sqlite3ExprSpan(A,&X->span,&E);
}
expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] {
SrcList *pSrc = sqlite3SrcListAppend(0,&Y,&Z);
A = sqlite3Expr(TK_IN, X, 0, 0);
if( A ){
A->pSelect = sqlite3SelectNew(0,pSrc,0,0,0,0,0,0,0);
}else{
sqlite3SrcListDelete(pSrc);
}
if( N ) A = sqlite3Expr(TK_NOT, A, 0, 0);
sqlite3ExprSpan(A,&X->span,Z.z?&Z:&Y);
}
expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
Expr *p = A = sqlite3Expr(TK_EXISTS, 0, 0, 0);
if( p ){
p->pSelect = Y;
sqlite3ExprSpan(p,&B,&E);
}else{
sqlite3SelectDelete(Y);
}
}
%endif // SQLITE_OMIT_SUBQUERY
/* CASE expressions */
expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
A = sqlite3Expr(TK_CASE, X, Z, 0);
if( A ){
A->pList = Y;
}else{
sqlite3ExprListDelete(Y);
}
sqlite3ExprSpan(A, &C, &E);
}
%type case_exprlist {ExprList*}
%destructor case_exprlist {sqlite3ExprListDelete($$);}
case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
A = sqlite3ExprListAppend(X, Y, 0);
A = sqlite3ExprListAppend(A, Z, 0);
}
case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
A = sqlite3ExprListAppend(0, Y, 0);
A = sqlite3ExprListAppend(A, Z, 0);
}
%type case_else {Expr*}
%destructor case_else {sqlite3ExprDelete($$);}
case_else(A) ::= ELSE expr(X). {A = X;}
case_else(A) ::= . {A = 0;}
%type case_operand {Expr*}
%destructor case_operand {sqlite3ExprDelete($$);}
case_operand(A) ::= expr(X). {A = X;}
case_operand(A) ::= . {A = 0;}
%type exprlist {ExprList*}
%destructor exprlist {sqlite3ExprListDelete($$);}
%type expritem {Expr*}
%destructor expritem {sqlite3ExprDelete($$);}
exprlist(A) ::= exprlist(X) COMMA expritem(Y).
{A = sqlite3ExprListAppend(X,Y,0);}
exprlist(A) ::= expritem(X). {A = sqlite3ExprListAppend(0,X,0);}
expritem(A) ::= expr(X). {A = X;}
expritem(A) ::= . {A = 0;}
///////////////////////////// The CREATE INDEX command ///////////////////////
//
cmd ::= CREATE(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
ON nm(Y) LP idxlist(Z) RP(E). {
sqlite3CreateIndex(pParse, &X, &D, sqlite3SrcListAppend(0,&Y,0), Z, U,
&S, &E, SQLITE_SO_ASC, NE);
}
%type uniqueflag {int}
uniqueflag(A) ::= UNIQUE. {A = OE_Abort;}
uniqueflag(A) ::= . {A = OE_None;}
%type idxlist {ExprList*}
%destructor idxlist {sqlite3ExprListDelete($$);}
%type idxlist_opt {ExprList*}
%destructor idxlist_opt {sqlite3ExprListDelete($$);}
%type idxitem {Token}
idxlist_opt(A) ::= . {A = 0;}
idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;}
idxlist(A) ::= idxlist(X) COMMA idxitem(Y) collate(C) sortorder(Z). {
Expr *p = 0;
if( C.n>0 ){
p = sqlite3Expr(TK_COLUMN, 0, 0, 0);
if( p ) p->pColl = sqlite3LocateCollSeq(pParse, (char*)C.z, C.n);
}
A = sqlite3ExprListAppend(X, p, &Y);
if( A ) A->a[A->nExpr-1].sortOrder = Z;
}
idxlist(A) ::= idxitem(Y) collate(C) sortorder(Z). {
Expr *p = 0;
if( C.n>0 ){
p = sqlite3Expr(TK_COLUMN, 0, 0, 0);
if( p ) p->pColl = sqlite3LocateCollSeq(pParse, (char*)C.z, C.n);
}
A = sqlite3ExprListAppend(0, p, &Y);
if( A ) A->a[A->nExpr-1].sortOrder = Z;
}
idxitem(A) ::= nm(X). {A = X;}
///////////////////////////// The DROP INDEX command /////////////////////////
//
cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);}
///////////////////////////// The VACUUM command /////////////////////////////
//
cmd ::= VACUUM. {sqlite3Vacuum(pParse);}
cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);}
///////////////////////////// The PRAGMA command /////////////////////////////
//
%ifndef SQLITE_OMIT_PRAGMA
cmd ::= PRAGMA nm(X) dbnm(Z) EQ nm(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
cmd ::= PRAGMA nm(X) dbnm(Z) EQ ON(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
cmd ::= PRAGMA nm(X) dbnm(Z) EQ plus_num(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). {
sqlite3Pragma(pParse,&X,&Z,&Y,1);
}
cmd ::= PRAGMA nm(X) dbnm(Z) LP nm(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);}
%endif // SQLITE_OMIT_PRAGMA
plus_num(A) ::= plus_opt number(X). {A = X;}
minus_num(A) ::= MINUS number(X). {A = X;}
number(A) ::= INTEGER|FLOAT(X). {A = X;}
plus_opt ::= PLUS.
plus_opt ::= .
//////////////////////////// The CREATE TRIGGER command /////////////////////
%ifndef SQLITE_OMIT_TRIGGER
cmd ::= CREATE trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
Token all;
all.z = A.z;
all.n = (Z.z - A.z) + Z.n;
sqlite3FinishTrigger(pParse, S, &all);
}
trigger_decl(A) ::= temp(T) TRIGGER nm(B) dbnm(Z) trigger_time(C)
trigger_event(D)
ON fullname(E) foreach_clause(F) when_clause(G). {
sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, F, G, T);
A = (Z.n==0?B:Z);
}
%type trigger_time {int}
trigger_time(A) ::= BEFORE. { A = TK_BEFORE; }
trigger_time(A) ::= AFTER. { A = TK_AFTER; }
trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;}
trigger_time(A) ::= . { A = TK_BEFORE; }
%type trigger_event {struct TrigEvent}
%destructor trigger_event {sqlite3IdListDelete($$.b);}
trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;}
trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;}
trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;}
%type foreach_clause {int}
foreach_clause(A) ::= . { A = TK_ROW; }
foreach_clause(A) ::= FOR EACH ROW. { A = TK_ROW; }
foreach_clause(A) ::= FOR EACH STATEMENT. { A = TK_STATEMENT; }
%type when_clause {Expr*}
%destructor when_clause {sqlite3ExprDelete($$);}
when_clause(A) ::= . { A = 0; }
when_clause(A) ::= WHEN expr(X). { A = X; }
%type trigger_cmd_list {TriggerStep*}
%destructor trigger_cmd_list {sqlite3DeleteTriggerStep($$);}
trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. {
if( Y ){
Y->pLast->pNext = X;
}else{
Y = X;
}
Y->pLast = X;
A = Y;
}
trigger_cmd_list(A) ::= . { A = 0; }
%type trigger_cmd {TriggerStep*}
%destructor trigger_cmd {sqlite3DeleteTriggerStep($$);}
// UPDATE
trigger_cmd(A) ::= UPDATE orconf(R) nm(X) SET setlist(Y) where_opt(Z).
{ A = sqlite3TriggerUpdateStep(&X, Y, Z, R); }
// INSERT
trigger_cmd(A) ::= insert_cmd(R) INTO nm(X) inscollist_opt(F)
VALUES LP itemlist(Y) RP.
{A = sqlite3TriggerInsertStep(&X, F, Y, 0, R);}
trigger_cmd(A) ::= insert_cmd(R) INTO nm(X) inscollist_opt(F) select(S).
{A = sqlite3TriggerInsertStep(&X, F, 0, S, R);}
// DELETE
trigger_cmd(A) ::= DELETE FROM nm(X) where_opt(Y).
{A = sqlite3TriggerDeleteStep(&X, Y);}
// SELECT
trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(X); }
// The special RAISE expression that may occur in trigger programs
expr(A) ::= RAISE(X) LP IGNORE RP(Y). {
A = sqlite3Expr(TK_RAISE, 0, 0, 0);
if( A ){
A->iColumn = OE_Ignore;
sqlite3ExprSpan(A, &X, &Y);
}
}
expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). {
A = sqlite3Expr(TK_RAISE, 0, 0, &Z);
if( A ) {
A->iColumn = T;
sqlite3ExprSpan(A, &X, &Y);
}
}
%endif // !SQLITE_OMIT_TRIGGER
%type raisetype {int}
raisetype(A) ::= ROLLBACK. {A = OE_Rollback;}
raisetype(A) ::= ABORT. {A = OE_Abort;}
raisetype(A) ::= FAIL. {A = OE_Fail;}
//////////////////////// DROP TRIGGER statement //////////////////////////////
%ifndef SQLITE_OMIT_TRIGGER
cmd ::= DROP TRIGGER fullname(X). {
sqlite3DropTrigger(pParse,X);
}
%endif // !SQLITE_OMIT_TRIGGER
//////////////////////// ATTACH DATABASE file AS name /////////////////////////
cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
sqlite3Attach(pParse, F, D, K);
}
%type key_opt {Expr *}
%destructor key_opt {sqlite3ExprDelete($$);}
key_opt(A) ::= . { A = 0; }
key_opt(A) ::= KEY expr(X). { A = X; }
database_kw_opt ::= DATABASE.
database_kw_opt ::= .
//////////////////////// DETACH DATABASE name /////////////////////////////////
cmd ::= DETACH database_kw_opt expr(D). {
sqlite3Detach(pParse, D);
}
////////////////////////// REINDEX collation //////////////////////////////////
%ifndef SQLITE_OMIT_REINDEX
cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);}
cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);}
%endif
/////////////////////////////////// ANALYZE ///////////////////////////////////
%ifndef SQLITE_OMIT_ANALYZE
cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);}
cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);}
%endif
//////////////////////// ALTER TABLE table ... ////////////////////////////////
%ifndef SQLITE_OMIT_ALTERTABLE
cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
sqlite3AlterRenameTable(pParse,X,&Z);
}
cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). {
sqlite3AlterFinishAddColumn(pParse, &Y);
}
add_column_fullname ::= fullname(X). {
sqlite3AlterBeginAddColumn(pParse, X);
}
kwcolumn_opt ::= .
kwcolumn_opt ::= COLUMNKW.
%endif
//////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
%ifndef SQLITE_OMIT_VIRTUALTABLE
cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);}
cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);}
create_vtab ::= CREATE VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). {
sqlite3VtabBeginParse(pParse, &X, &Y, &Z);
}
vtabarglist ::= vtabarg.
vtabarglist ::= vtabarglist COMMA vtabarg.
vtabarg ::= . {sqlite3VtabArgInit(pParse);}
vtabarg ::= vtabarg vtabargtoken.
vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);}
vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);}
lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);}
anylist ::= .
anylist ::= anylist ANY(X). {sqlite3VtabArgExtend(pParse,&X);}
%endif