|
1 // Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // Implements the avdtp protocol object |
|
15 // |
|
16 // |
|
17 |
|
18 /** |
|
19 @file |
|
20 @internalComponent |
|
21 */ |
|
22 |
|
23 #include <bluetooth/logger.h> |
|
24 #include <e32def.h> |
|
25 #include <bluetoothav.h> |
|
26 #include <bluetooth/avctptypes.h> // for PID used for pre-authorisation |
|
27 #include "IncomingConnListener.h" |
|
28 #include "avdtp.h" |
|
29 #include "avdtpsap.h" |
|
30 #include "avdtpTransportChannel.h" |
|
31 #include "avdtpTransportSession.h" |
|
32 #include "avdtpSignallingChannel.h" |
|
33 #include "avdtpStream.h" |
|
34 #include "avdtputil.h" |
|
35 |
|
36 #ifdef __FLOG_ACTIVE |
|
37 _LIT8(KLogComponent, LOG_COMPONENT_AVDTP); |
|
38 #endif |
|
39 |
|
40 /** |
|
41 Protocol object constructor. |
|
42 |
|
43 @internalComponent |
|
44 @param aSecMan The bluetooth security manager |
|
45 @see CBTSecMan |
|
46 @return A pointer to the AVDTP protocol object |
|
47 */ |
|
48 CAvdtpProtocol::CAvdtpProtocol(CBTSecMan& aSecMan, RBTControlPlane& aControlPlane, CBTCodServiceMan& aCodMan) |
|
49 : CBluetoothProtocolBase(aSecMan, aControlPlane, aCodMan), |
|
50 iTransportChannels(_FOFF(CTransportChannel, iProtocolQLink)), |
|
51 iClosingTransportChannels(_FOFF(CTransportChannel, iProtocolQLink)), |
|
52 iSignallingChannels(_FOFF(CSignallingChannel, iProtocolQLink)), |
|
53 iStreams(_FOFF(CAVStream, iProtocolQLink)), |
|
54 iSecondarySAPs(_FOFF(CAvdtpSAP, iLink)) |
|
55 { |
|
56 CONNECT_LOGGER |
|
57 LOG_FUNC |
|
58 TCallBack cb(TryToClose, this); |
|
59 iIdleTimerEntry.Set(cb); |
|
60 } |
|
61 |
|
62 /** |
|
63 Protocol object destructor. |
|
64 We don't clear up the SAPs as they are owned by ESock and it is up to it to destroy them. |
|
65 |
|
66 @internalComponent |
|
67 */ |
|
68 CAvdtpProtocol::~CAvdtpProtocol() |
|
69 { |
|
70 LOG_FUNC |
|
71 __ASSERT_DEBUG(!iIdleEntryQueued, Panic(EAvdtpProtocolDeletionWhilstIdling)); |
|
72 RemoveIdleTimerEntry(); |
|
73 |
|
74 if (iLowerProtocol) |
|
75 iLowerProtocol->Close(); // Matches the bind |
|
76 |
|
77 delete iLogicalChannelFactory; |
|
78 delete iStreamStateFactory; |
|
79 delete iRemoteSEPCache; |
|
80 |
|
81 __ASSERT_ALWAYS(iStreams.IsEmpty(), Panic(EAvdtpProtocolDyingWithStreamsOnQueue)); |
|
82 __ASSERT_ALWAYS(iSignallingChannels.IsEmpty(), Panic(EAvdtpProtocolDyingWithSignallingChannelsOnQueue)); |
|
83 __ASSERT_ALWAYS(iTransportChannels.IsEmpty(), Panic(EAvdtpProtocolDyingWithTransportChannelsOnQueue)); |
|
84 __ASSERT_ALWAYS(iClosingTransportChannels.IsEmpty(), Panic(EAvdtpProtocolDyingWithTransportChannelsOnQueue)); |
|
85 |
|
86 CLOSE_LOGGER |
|
87 } |
|
88 |
|
89 /** |
|
90 Static protocol object factory function. |
|
91 Leaves the protocol object on the cleanup stack. |
|
92 |
|
93 @internalComponent |
|
94 @see CBTSecMan |
|
95 @leave KErrNoMemory if the protocol object could not be created |
|
96 @param aSecMan The bluetooth security manager |
|
97 |
|
98 @return A pointer to the AVDTP protocol object |
|
99 */ |
|
100 CAvdtpProtocol* CAvdtpProtocol::NewLC(CBTSecMan& aSecMan, RBTControlPlane& aControlPlane, CBTCodServiceMan& aCodMan) |
|
101 { |
|
102 LOG_STATIC_FUNC |
|
103 CAvdtpProtocol* self = new(ELeave) CAvdtpProtocol(aSecMan, aControlPlane, aCodMan); |
|
104 CleanupStack::PushL(self); |
|
105 self->ConstructL(); |
|
106 return self; |
|
107 } |
|
108 |
|
109 /** |
|
110 Static protocol object factory function. |
|
111 |
|
112 @internalComponent |
|
113 @see CBTSecMan |
|
114 @leave KErrNoMemory if the protocol object could not be created |
|
115 @param aSecMan The bluetooth security manager |
|
116 @return A pointer to the AVDTP protocol object |
|
117 */ |
|
118 CAvdtpProtocol* CAvdtpProtocol::NewL(CBTSecMan& aSecMan, RBTControlPlane& aControlPlane, CBTCodServiceMan& aCodMan) |
|
119 { |
|
120 LOG_STATIC_FUNC |
|
121 CAvdtpProtocol* self = CAvdtpProtocol::NewLC(aSecMan, aControlPlane, aCodMan); |
|
122 CleanupStack::Pop(self); |
|
123 return self; |
|
124 } |
|
125 |
|
126 /** |
|
127 Protocol object second-phase construction |
|
128 |
|
129 @internalComponent |
|
130 */ |
|
131 void CAvdtpProtocol::ConstructL() |
|
132 { |
|
133 LOG_FUNC |
|
134 iStreamStateFactory = CAVStreamStateFactory::NewL(); |
|
135 iRemoteSEPCache = CRemoteSEPCache::NewL(); |
|
136 } |
|
137 |
|
138 /** |
|
139 Pre-binding initialise. |
|
140 |
|
141 Alloc any stuff we need. This will only ever be called once during the lifetime of this protocol. |
|
142 |
|
143 @internalComponent |
|
144 @leave KErrNoMemory if the state factory cannot be created |
|
145 @param aTag The string identifier for the protocol from the ESock ini file |
|
146 */ |
|
147 void CAvdtpProtocol::InitL(TDesC& /*aTag*/) |
|
148 { |
|
149 LOG_FUNC |
|
150 } |
|
151 |
|
152 /** |
|
153 Binding complete. |
|
154 |
|
155 @internalComponent |
|
156 */ |
|
157 void CAvdtpProtocol::StartL() |
|
158 { |
|
159 LOG_FUNC |
|
160 // Should check that we're bound now. |
|
161 if (!iLowerProtocol) |
|
162 { |
|
163 User::Leave(KErrAvdtpNotBound); |
|
164 } |
|
165 |
|
166 iLogicalChannelFactory = CLogicalChannelFactory::NewL(*this, *iLowerProtocol); |
|
167 } |
|
168 |
|
169 // From higher protocol |
|
170 void CAvdtpProtocol::BindL(CProtocolBase* /*protocol*/, TUint /* id*/) |
|
171 { |
|
172 LOG_FUNC |
|
173 // Could register the protocol that's bound to us |
|
174 // (e.g. "see" whether we support RTCP/RTP-FEC (if that |
|
175 // protocol suite becomes ESOCK-side!) |
|
176 } |
|
177 |
|
178 /** |
|
179 Request by Protocol Mgr to bind to the specified protocol. We can only be bound |
|
180 to one lower layer protocol, so the function leaves if we are already bound. |
|
181 |
|
182 @internalComponent |
|
183 @leave KErrAvdtpAlreadyBound if we are already bound, and any other leave from |
|
184 the lower protocol's BindL() |
|
185 @param aProtocol The protocol we need to bind to. |
|
186 */ |
|
187 void CAvdtpProtocol::BindToL(CProtocolBase* aProtocol) |
|
188 { |
|
189 LOG_FUNC |
|
190 if(!iLowerProtocol) |
|
191 { |
|
192 #ifdef _DEBUG |
|
193 TServerProtocolDesc prtDesc; |
|
194 aProtocol->Identify(&prtDesc); |
|
195 |
|
196 if(prtDesc.iAddrFamily!=KBTAddrFamily || |
|
197 prtDesc.iProtocol!=KL2CAP) |
|
198 { |
|
199 User::Leave(KErrBtEskError); |
|
200 } |
|
201 #endif |
|
202 |
|
203 iLowerProtocol=static_cast<CBluetoothProtocolBase*>(aProtocol); |
|
204 iLowerProtocol->BindL(this, 0); // id not used |
|
205 iLowerProtocol->Open(); |
|
206 } |
|
207 else |
|
208 { |
|
209 User::Leave(KErrAvdtpAlreadyBound); |
|
210 } |
|
211 } |
|
212 |
|
213 void CAvdtpProtocol::Close() |
|
214 { |
|
215 LOG_FUNC |
|
216 CProtocolBase::Close(); |
|
217 } |
|
218 |
|
219 |
|
220 /** |
|
221 Create a new SAP: all SAPs are datagram. |
|
222 |
|
223 The SAP will eventually construct a session, to which the SAP delegates |
|
224 most of its work. This is reminiscent of the Adaptor pattern. |
|
225 |
|
226 The delegate represents a session as per the AVDTP specification. |
|
227 |
|
228 Note that this implmentation adds to the available session types with |
|
229 the signalling session. This allows for multiplexed use of the signalling |
|
230 channel. |
|
231 |
|
232 The SAP returned is owned by the caller -- this protocol will not clean it up. |
|
233 ESock uses this function to create a new SAP, and ESock will delete when it is |
|
234 finished with it. |
|
235 |
|
236 In future this could take care of secondary saps - make them !datagram |
|
237 |
|
238 @internalComponent |
|
239 @leave KErrNotSupported if aSockType is not datagram |
|
240 |
|
241 @param aSockType The socket type for the SAP: |
|
242 @return A pointer to a new SAP |
|
243 */ |
|
244 CServProviderBase* CAvdtpProtocol::NewSAPL(TUint aSockType) |
|
245 { |
|
246 LOG_FUNC |
|
247 CAvdtpSAP* sap = NULL; |
|
248 |
|
249 switch(aSockType) |
|
250 { |
|
251 case KSockDatagram: |
|
252 sap = CAvdtpSAP::NewL(*this); |
|
253 break; |
|
254 default: |
|
255 User::Leave(KErrNotSupported); |
|
256 break; |
|
257 } |
|
258 |
|
259 return sap; |
|
260 } |
|
261 |
|
262 /** |
|
263 Identify the protocol. |
|
264 |
|
265 The descriptor is filled in to identify the protocol to ESock. |
|
266 |
|
267 @internalComponent |
|
268 @param aDesc A pointer to the descriptor to be filled in |
|
269 */ |
|
270 void CAvdtpProtocol::Identify(TServerProtocolDesc* aDesc) const |
|
271 { |
|
272 LOG_FUNC |
|
273 ProtocolIdentity(aDesc); |
|
274 } |
|
275 |
|
276 /** |
|
277 Fill in the protocol descriptor. |
|
278 |
|
279 This is a static utility function to fill in the protocol details. |
|
280 Called from family too. |
|
281 |
|
282 @internalComponent |
|
283 @param aDesc A pointer to the descriptor to be filled in |
|
284 */ |
|
285 void CAvdtpProtocol::ProtocolIdentity(TServerProtocolDesc* aDesc) |
|
286 { |
|
287 LOG_STATIC_FUNC |
|
288 aDesc->iName = KAVDTPProtocolName; |
|
289 aDesc->iAddrFamily = KBTAddrFamily; |
|
290 aDesc->iSockType = KSockDatagram; // because of bearing rtp |
|
291 aDesc->iProtocol = KAVDTP; |
|
292 aDesc->iVersion = TVersion(KBTMajor,KBTMinor,KBTBuild); |
|
293 aDesc->iByteOrder = ELittleEndian; |
|
294 aDesc->iServiceInfo = KAvdtpServiceInfo; |
|
295 aDesc->iNamingServices = NULL; |
|
296 aDesc->iSecurity = KSocketNoSecurity; |
|
297 aDesc->iMessageSize = KSocketMessageSizeUndefined; // whatever l2cap dynamically. not static knowledge of max |
|
298 aDesc->iServiceTypeInfo = ESocketSupport | ECantProcessMBufChains | |
|
299 EPreferDescriptors | EUseCanSend; |
|
300 aDesc->iNumSockets = 100; |
|
301 } |
|
302 |
|
303 |
|
304 /** |
|
305 Our reference is now zero, so start to close. |
|
306 |
|
307 We don't actually close, merely Q a timer for a later close down. |
|
308 This close can be prempted by another open. |
|
309 |
|
310 @internalComponent |
|
311 */ |
|
312 void CAvdtpProtocol::CloseNow() |
|
313 { |
|
314 LOG_FUNC |
|
315 iClosePending = ETrue; |
|
316 QueIdleTimerEntry(); |
|
317 } |
|
318 |
|
319 void CAvdtpProtocol::Open() |
|
320 /** |
|
321 Request to open the protocol. |
|
322 |
|
323 The protocol may be repeatedly opened and closed. The order of calls is |
|
324 InitL, [Open *n , Close * n, CloseNow] * m etc. |
|
325 |
|
326 @internalComponent |
|
327 */ |
|
328 { |
|
329 LOG_FUNC |
|
330 iClosePending = EFalse; |
|
331 RemoveIdleTimerEntry(); |
|
332 CProtocolBase::Open(); |
|
333 } |
|
334 |
|
335 |
|
336 /** |
|
337 Create a signalling channel for listening - this has the special address of 0 |
|
338 */ |
|
339 CSignallingChannel* CAvdtpProtocol::CreateSignallingChannelForListening() |
|
340 { |
|
341 // the signalling channel with addr=0 *is* the listener |
|
342 LOG_FUNC |
|
343 return GetSignallingChannel(TBTDevAddr(0)); |
|
344 } |
|
345 |
|
346 /** |
|
347 For an open platform we need to support shared use of the Signalling Channel |
|
348 Signalling sessions ask for this then and attach themselves to it |
|
349 */ |
|
350 CSignallingChannel* CAvdtpProtocol::FindSignallingChannel(const TBTDevAddr& aRemoteAddr) |
|
351 { |
|
352 LOG_FUNC |
|
353 CSignallingChannel* c = NULL; |
|
354 TDblQueIter<CSignallingChannel> iter(iSignallingChannels); |
|
355 |
|
356 while (iter) |
|
357 { |
|
358 c = iter++; |
|
359 if (c->iRemoteAddress==aRemoteAddr) |
|
360 { |
|
361 return c; |
|
362 } |
|
363 } |
|
364 return NULL; |
|
365 } |
|
366 |
|
367 CSignallingChannel* CAvdtpProtocol::FindListeningSignallingChannel() |
|
368 { |
|
369 LOG_FUNC |
|
370 CSignallingChannel* c = NULL; |
|
371 TDblQueIter<CSignallingChannel> iter(iSignallingChannels); |
|
372 |
|
373 while (iter) |
|
374 { |
|
375 c = iter++; |
|
376 if (c->IsListening()) |
|
377 { |
|
378 return c; |
|
379 } |
|
380 } |
|
381 return NULL; |
|
382 } |
|
383 |
|
384 CSignallingChannel* CAvdtpProtocol::GetSignallingChannel(const TBTDevAddr& aRemoteAddr) |
|
385 { |
|
386 LOG_FUNC |
|
387 // if not found, create one else return it |
|
388 CSignallingChannel* ch = FindSignallingChannel(aRemoteAddr); |
|
389 if (!ch) |
|
390 { |
|
391 TRAP_IGNORE(ch = CSignallingChannel::NewL(*this, *iLogicalChannelFactory, aRemoteAddr)); |
|
392 if (ch) |
|
393 { |
|
394 iSignallingChannels.AddFirst(*ch); |
|
395 } |
|
396 } |
|
397 return ch; |
|
398 } |
|
399 |
|
400 /** |
|
401 This function transfers sessions attached to a listening channel to the connected signalling |
|
402 channel. It is only effective if the connected channel is the result of an active open rather |
|
403 than an incoming connection. This function does nothing in the latter case. |
|
404 */ |
|
405 void CAvdtpProtocol::ConnectSignallingListeners(CSignallingChannel& aConnectedSignallingChannel) |
|
406 { |
|
407 LOG_FUNC |
|
408 CSignallingChannel* listeningChannel = FindListeningSignallingChannel(); |
|
409 |
|
410 if (listeningChannel) |
|
411 { |
|
412 // take off all the sessions, and re-attach to the connected signalling channel |
|
413 TDblQueIter<XAvdtpSignalReceiver> listeningIter(const_cast<TDblQue<XAvdtpSignalReceiver>&> |
|
414 (listeningChannel->Users())); |
|
415 XAvdtpSignalReceiver* user; |
|
416 |
|
417 while ((user = listeningIter++) != NULL) |
|
418 { |
|
419 listeningChannel->DetachSignallingUser(*user); |
|
420 aConnectedSignallingChannel.AttachSignallingUser(*user); |
|
421 } |
|
422 } |
|
423 // else do nothing |
|
424 } |
|
425 |
|
426 /** |
|
427 Find a transport channel for a transport session to bind to, allocate if needed |
|
428 Ownership is NOT returned - channels own themselves |
|
429 The protocol keeps a reference to the channel in a queue |
|
430 so that it can hand out further references (in the form of pointers) as needed |
|
431 |
|
432 Algorithm is thus: |
|
433 |
|
434 1) Deduce session type this channel would be for: s |
|
435 2) Deduce device address this channel would be for: d |
|
436 3) Deduce Stream this channel would be for: S |
|
437 4) Find the stream container object for S - this say if we can mux |
|
438 5) If mux then find a TC with different S if s = Recovery |
|
439 6) elseif !mux then create new TC |
|
440 */ |
|
441 CTransportChannel* CAvdtpProtocol::GetTransportChannel(const TAvdtpSockAddr& aRemoteAddr, |
|
442 TBool aUseMux, |
|
443 TTCID aRemotelyAssignedTTCID/*=KInvalidTCID*/) |
|
444 { |
|
445 LOG_FUNC |
|
446 |
|
447 CTransportChannel* tc = NULL; |
|
448 |
|
449 if (aUseMux) |
|
450 { |
|
451 // try to find a TC we already have on which this session can go |
|
452 TDblQueIter<CTransportChannel> iter(iTransportChannels); |
|
453 |
|
454 while (iter) |
|
455 { |
|
456 CTransportChannel* possibleChannel = iter++; |
|
457 if (possibleChannel->CouldAttachSession(aRemoteAddr)) |
|
458 { |
|
459 // found one |
|
460 tc = possibleChannel; |
|
461 break; |
|
462 } |
|
463 } |
|
464 } |
|
465 |
|
466 if (!tc) |
|
467 { |
|
468 // we now know we do actually need a new TC |
|
469 // ***but don't connect it yet*** |
|
470 __ASSERT_DEBUG(FindSignallingChannel(aRemoteAddr.BTAddr()), Panic(EAvdtpSignallingChannelShouldExist)); |
|
471 // spec is unclear but it is the case that only mux channels get assigned TCIDs |
|
472 TInt err = KErrNone; |
|
473 if (aUseMux) |
|
474 { |
|
475 TRAP(err, tc = CTransportChannel::NewMuxChannelL(*this, |
|
476 aRemoteAddr.BTAddr(), |
|
477 aRemotelyAssignedTTCID)); |
|
478 } |
|
479 else |
|
480 { |
|
481 TRAP(err, tc = CTransportChannel::NewDirectChannelL(*this, |
|
482 aRemoteAddr.BTAddr())); |
|
483 } |
|
484 if (err==KErrNone) |
|
485 { |
|
486 iTransportChannels.AddFirst(*tc); |
|
487 } |
|
488 } |
|
489 |
|
490 return tc; |
|
491 } |
|
492 |
|
493 |
|
494 /** |
|
495 Find transport channel with TCID==aTCID |
|
496 If not found return NULL - do not create (like the Get method) |
|
497 There is no need to search for Direct Channels so this is asserted against |
|
498 */ |
|
499 CTransportChannel* CAvdtpProtocol::FindMuxChannel(TTCID aTCID) |
|
500 { |
|
501 LOG_FUNC |
|
502 __ASSERT_DEBUG(aTCID!=KDirectChannelTCID, Panic(EAvdtpSearchingForDirectChannel)); |
|
503 |
|
504 TDblQueIter<CTransportChannel> iter(iTransportChannels); |
|
505 CTransportChannel* tc = NULL; |
|
506 |
|
507 while (iter) |
|
508 { |
|
509 tc = iter++; |
|
510 if (tc->TCID() == aTCID) |
|
511 { |
|
512 // found it |
|
513 __ASSERT_DEBUG(tc->TCID()!=KDirectChannelTCID, Panic(EAvdtpIncorrectlyFoundDirectChannel)); |
|
514 break; |
|
515 } |
|
516 } |
|
517 |
|
518 return tc; |
|
519 } |
|
520 |
|
521 /** |
|
522 Called by the transport channel when it's dead |
|
523 eg when link lost, or graceful close completed |
|
524 |
|
525 @internalComponent |
|
526 @param aTransportChannel The channel that's down |
|
527 */ |
|
528 void CAvdtpProtocol::TransportChannelDown(CTransportChannel& aTransportChannel) |
|
529 { |
|
530 LOG_FUNC |
|
531 #ifdef _DEBUG |
|
532 TDblQueIter<CTransportChannel> openiter(iTransportChannels); |
|
533 TBool found = EFalse; |
|
534 while (openiter) |
|
535 { |
|
536 // look on open queue |
|
537 if (openiter++ == &aTransportChannel) |
|
538 { |
|
539 found = ETrue; |
|
540 break; |
|
541 } |
|
542 } |
|
543 if (!found) |
|
544 { |
|
545 // look on closing queue |
|
546 TDblQueIter<CTransportChannel> closingiter(iClosingTransportChannels); |
|
547 while (closingiter) |
|
548 { |
|
549 // look on open queue |
|
550 if (closingiter++ == &aTransportChannel) |
|
551 { |
|
552 found = ETrue; |
|
553 break; |
|
554 } |
|
555 } |
|
556 } |
|
557 if (!found) Panic(EAvdtpProtocolToldToRemoveUnknownTransportChannel); |
|
558 #endif |
|
559 // take off our queue, and leave the channel to delete itself |
|
560 |
|
561 aTransportChannel.iProtocolQLink.Deque(); |
|
562 |
|
563 if (ShouldClose()) |
|
564 { |
|
565 QueIdleTimerEntry(); |
|
566 } |
|
567 } |
|
568 |
|
569 /** |
|
570 Called by transport channel when it is no longer able to be used, but is closing |
|
571 */ |
|
572 void CAvdtpProtocol::TransportChannelClosing(CTransportChannel& aTransportChannel) |
|
573 { |
|
574 LOG_FUNC |
|
575 #ifdef _DEBUG |
|
576 TDblQueIter<CTransportChannel> iter(iTransportChannels); |
|
577 TBool found = EFalse; |
|
578 while (iter) |
|
579 { |
|
580 if (iter++ == &aTransportChannel) |
|
581 { |
|
582 found = ETrue; |
|
583 break; |
|
584 } |
|
585 } |
|
586 if (!found) Panic(EAvdtpProtocolToldToRemoveUnknownTransportChannel); |
|
587 #endif |
|
588 // take off our queue, and leave the channel to delete itself |
|
589 |
|
590 aTransportChannel.iProtocolQLink.Deque(); |
|
591 iClosingTransportChannels.AddFirst(aTransportChannel); |
|
592 |
|
593 // don't start looking to see if idle yet |
|
594 } |
|
595 |
|
596 /** |
|
597 Called by the signalling channel when it's dead. |
|
598 |
|
599 @internalComponent |
|
600 @param aSignallingChannel The channel that's down |
|
601 */ |
|
602 void CAvdtpProtocol::SignallingChannelDown(CSignallingChannel& aSignallingChannel) |
|
603 { |
|
604 LOG_FUNC |
|
605 #ifdef _DEBUG |
|
606 TDblQueIter<CSignallingChannel> iter(iSignallingChannels); |
|
607 CSignallingChannel* sigch = NULL; |
|
608 while (iter) |
|
609 { |
|
610 sigch = iter++; |
|
611 if (sigch==&aSignallingChannel) |
|
612 { |
|
613 break; |
|
614 } |
|
615 } |
|
616 #ifndef _OOM_TEST |
|
617 __ASSERT_DEBUG(sigch, Panic(EAvdtpSignallingChannelShouldExist)); |
|
618 #endif |
|
619 #endif |
|
620 |
|
621 aSignallingChannel.iProtocolQLink.Deque(); |
|
622 |
|
623 if (ShouldClose()) |
|
624 { |
|
625 QueIdleTimerEntry(); |
|
626 } |
|
627 } |
|
628 |
|
629 /** |
|
630 Asynchronous callback function.toe check if should close |
|
631 |
|
632 @internalComponent |
|
633 @param aProtocol The protocol object |
|
634 @return EFalse to indicate the callback does not need to be reissued |
|
635 */ |
|
636 TInt CAvdtpProtocol::TryToClose(TAny* aProtocol) |
|
637 { |
|
638 LOG_STATIC_FUNC |
|
639 CAvdtpProtocol* protocol = static_cast<CAvdtpProtocol*>(aProtocol); |
|
640 protocol->iIdleEntryQueued = EFalse; |
|
641 |
|
642 if (protocol->ShouldClose()) |
|
643 { |
|
644 protocol->CanClose(); |
|
645 } |
|
646 |
|
647 return EFalse; // don't try to callback again |
|
648 } |
|
649 |
|
650 void CAvdtpProtocol::RemoveIdleTimerEntry() |
|
651 /** |
|
652 Takes us off the idle timer Q if we're on it. |
|
653 |
|
654 @internalComponent |
|
655 */ |
|
656 { |
|
657 LOG_FUNC |
|
658 if (iIdleEntryQueued) |
|
659 { |
|
660 BTSocketTimer::Remove(iIdleTimerEntry); |
|
661 iIdleEntryQueued = EFalse; |
|
662 } |
|
663 } |
|
664 |
|
665 /** |
|
666 Q a timer to delete us. If already running, not reset. |
|
667 |
|
668 @internalComponent |
|
669 */ |
|
670 void CAvdtpProtocol::QueIdleTimerEntry() |
|
671 { |
|
672 if (!iIdleEntryQueued) |
|
673 { |
|
674 BTSocketTimer::Queue(KAvdtpIdleTimeout, iIdleTimerEntry); |
|
675 iIdleEntryQueued = ETrue; |
|
676 } |
|
677 } |
|
678 |
|
679 /** |
|
680 Called to check whether we can close down. |
|
681 |
|
682 @internalComponent |
|
683 @return ETrue if the protocol can close, EFalse if not |
|
684 */ |
|
685 TBool CAvdtpProtocol::ShouldClose() |
|
686 { |
|
687 LOG_FUNC |
|
688 return (iClosePending && |
|
689 iTransportChannels.IsEmpty() && |
|
690 iClosingTransportChannels.IsEmpty() && |
|
691 iSignallingChannels.IsEmpty()); |
|
692 } |
|
693 |
|
694 /** |
|
695 Called from logical channel factory when bearer listening is required |
|
696 @internalComponent |
|
697 */ |
|
698 TInt CAvdtpProtocol::StartProtocolListening() |
|
699 { |
|
700 LOG_FUNC |
|
701 // because we do non-default security we override the base class |
|
702 // and new the incoming listener ourselves |
|
703 TRAPD(err, DoStartAvdtpListeningL()); |
|
704 return err; |
|
705 } |
|
706 |
|
707 /** |
|
708 Helper to actually start listening. This protocol doesn't use the base class |
|
709 implementation as it needs to do a bit more. |
|
710 @internalComponent |
|
711 */ |
|
712 void CAvdtpProtocol::DoStartAvdtpListeningL() |
|
713 { |
|
714 LOG_FUNC |
|
715 // Check that we haven't already got an iListener. |
|
716 // NOTE: in production code we will leak an iListener |
|
717 // these are fairly small so not too severe. |
|
718 __ASSERT_DEBUG(iListener == NULL, Panic(EAvdtpStartedListeningAgain)); |
|
719 CServProviderBase* sap = iLowerProtocol->NewSAPL(KSockSeqPacket); |
|
720 |
|
721 // We listen with streaming mode by default. This allows fallback to eRTM |
|
722 // or basic mode if the remote requests it. We have to do it this way round |
|
723 // and assume the remote will correctly request a reliable channel for signalling |
|
724 // as if we listen expecting a reliable channel we can't fall back to unreliable. |
|
725 |
|
726 TPckgBuf<TL2CapConfig> configBuf; |
|
727 sap->GetOption(KSolBtL2CAP, KL2CAPUpdateChannelConfig, configBuf); |
|
728 |
|
729 configBuf().ConfigureUnreliableChannel(500); |
|
730 configBuf().ConfigureUnreliableDesiredChannel(500, TL2CapConfig::EDefaultRetransmission); |
|
731 sap->SetOption(KSolBtL2CAP, KL2CAPUpdateChannelConfig, configBuf); |
|
732 |
|
733 TBTSockAddr localAddr; |
|
734 localAddr.SetPort(0x19); |
|
735 |
|
736 // the security settings are: |
|
737 // for signalling channel, authenticate, authorise |
|
738 // (though see CIncomingConnectionListner:Preauthorise()) |
|
739 TBTServiceSecurity sec; |
|
740 sec.SetAuthentication(EMitmDesired); |
|
741 sec.SetAuthorisation(ETrue); |
|
742 sec.SetEncryption(ETrue); |
|
743 sec.SetDenied(EFalse); |
|
744 |
|
745 sec.SetUid(KAvdtpUID); |
|
746 |
|
747 // as logical channels come in these settings are changed to stop |
|
748 // multiple authorises for the stream bearers |
|
749 |
|
750 localAddr.SetSecurity(sec); |
|
751 |
|
752 // set the MTU into SAP here - for now we put the same on all logical channels - chosen with 5 slot packets in mind |
|
753 // TPckgBuf<TUint16> mtu; |
|
754 // mtu() = 339; |
|
755 |
|
756 iListener=CIncomingConnectionListener::NewL(*this, sap, localAddr, 3); |
|
757 } |
|
758 |
|
759 /** |
|
760 AVDTP being a weird protocol has to to use the Logical Channel Factory for bearer listening |
|
761 So just forward to it... |
|
762 |
|
763 @param aSAP The SAP for the new lower layer connection |
|
764 @internalComponent |
|
765 */ |
|
766 TInt CAvdtpProtocol::BearerConnectComplete(const TBTDevAddr& aAddr, CServProviderBase* aSAP) |
|
767 { |
|
768 LOG_FUNC |
|
769 return LogicalChannelFactory().BearerConnectComplete(aAddr, aSAP); |
|
770 } |
|
771 |
|
772 /** |
|
773 A stream has been created and is being made known to the protocol |
|
774 @param aStream the stream being created |
|
775 @panic if protocol already knows about stream |
|
776 @internalComponent |
|
777 */ |
|
778 void CAvdtpProtocol::StreamCreated(CAVStream& aStream) |
|
779 { |
|
780 LOG_FUNC |
|
781 #ifdef _DEBUG |
|
782 // check not already added |
|
783 TDblQueIter<CAVStream> iter(iStreams); |
|
784 while (iter) |
|
785 { |
|
786 __ASSERT_DEBUG(iter!=&aStream, Panic(EAvdtpStreamAlreadyExists)); |
|
787 iter++; |
|
788 } |
|
789 #endif |
|
790 iStreams.AddFirst(aStream); |
|
791 } |
|
792 |
|
793 /** |
|
794 Find a stream based on it's remote address |
|
795 @panic if the SEID in the address is Local |
|
796 @param aRemoteAddr the remote address of the stream to find. The BTAddr and SEID are used |
|
797 @internalComponent |
|
798 */ |
|
799 CAVStream* CAvdtpProtocol::FindStream(const TAvdtpSockAddr& aRemoteAddr) |
|
800 { |
|
801 LOG_FUNC |
|
802 CAVStream* s = NULL; |
|
803 TDblQueIter<CAVStream> iter(iStreams); |
|
804 __ASSERT_DEBUG(!aRemoteAddr.SEID().IsLocal(), Panic(EAvdtpSEIDHasWrongDomain)); |
|
805 |
|
806 CAVStream* i; |
|
807 while (iter) |
|
808 { |
|
809 i = iter++; |
|
810 if (i->RemoteSEID()==aRemoteAddr.SEID() && |
|
811 i->DeviceAddress()==aRemoteAddr.BTAddr()) |
|
812 { |
|
813 s = i; |
|
814 break; |
|
815 } |
|
816 } |
|
817 |
|
818 return s; |
|
819 } |
|
820 |
|
821 |
|
822 /** |
|
823 A stream going is going down, and wishes for the protocol to remove knowledge of it |
|
824 @param aStream the stream going down |
|
825 @panic debug panic if the stream wasn't known originally |
|
826 @internalComponent |
|
827 */ |
|
828 void CAvdtpProtocol::RemoveStream(CAVStream& aStream) |
|
829 { |
|
830 LOG_FUNC |
|
831 CAVStream* s = NULL; |
|
832 TDblQueIter<CAVStream> iter(iStreams); |
|
833 |
|
834 while (iter) |
|
835 { |
|
836 s = iter++; |
|
837 if (s == &aStream) |
|
838 { |
|
839 s->iProtocolQLink.Deque(); |
|
840 break; |
|
841 } |
|
842 } |
|
843 __ASSERT_DEBUG(s!=NULL, Panic(EAVDTPBadRemoveStream)); |
|
844 } |
|
845 |
|
846 |
|
847 /* |
|
848 A secondary SAP has been created - we own it until a Primary SAP claims one |
|
849 @internalComponent |
|
850 */ |
|
851 void CAvdtpProtocol::AddSecondarySAP(CAvdtpSAP& aSecondarySAP) |
|
852 { |
|
853 LOG_FUNC |
|
854 iSecondarySAPs.AddFirst(aSecondarySAP); |
|
855 } |
|
856 |
|
857 /* |
|
858 Tidy up unclaimed secondary SAPs |
|
859 @internalComponent |
|
860 */ |
|
861 void CAvdtpProtocol::DestroySecondarySAPs() |
|
862 { |
|
863 LOG_FUNC |
|
864 while (!iSecondarySAPs.IsEmpty()) |
|
865 { |
|
866 CAvdtpSAP* secondarySAP = iSecondarySAPs.First(); |
|
867 iSecondarySAPs.Remove(*secondarySAP); |
|
868 delete secondarySAP; |
|
869 } |
|
870 } |
|
871 |
|
872 |
|
873 /* |
|
874 Primary SAP seeking (good-looking) Secondary SAP for protocol enjoyment |
|
875 just give it the first one |
|
876 ownership will remain with the socket |
|
877 @internalComponent |
|
878 */ |
|
879 CAvdtpSAP* CAvdtpProtocol::GetSecondarySAP() |
|
880 { |
|
881 LOG_FUNC |
|
882 CAvdtpSAP* secondarySAP = NULL; |
|
883 if (!iSecondarySAPs.IsEmpty()) |
|
884 { |
|
885 secondarySAP = iSecondarySAPs.First(); |
|
886 iSecondarySAPs.Remove(*secondarySAP); |
|
887 } |
|
888 __ASSERT_DEBUG(secondarySAP, Panic(EAvdtpProtocolAskedForSecondarySAPWhenNonExist)); |
|
889 return secondarySAP; |
|
890 } |
|
891 |
|
892 |
|
893 /** |
|
894 Control plane message delivery system between protocols |
|
895 @return error as a result of processing or not consuming the control message |
|
896 @param aMessage the message |
|
897 @param aParam arbitrary data for message - knowledge of aMessage allows casting |
|
898 @see CBTProtocolFamily |
|
899 @internalComponent |
|
900 */ |
|
901 TInt CAvdtpProtocol::ControlPlaneMessage(TBTControlPlaneMessage aMessage, TAny* aParam) |
|
902 { |
|
903 LOG_FUNC |
|
904 // only ones applicable to this protocol at present are |
|
905 // for preauthorising a device - must have come from AVCTP, with PID=RCP |
|
906 TInt ret = KErrNotSupported; |
|
907 |
|
908 switch (aMessage) |
|
909 { |
|
910 case EPreauthoriseDevice: |
|
911 { |
|
912 __ASSERT_DEBUG(aParam, Panic(EAvdtpProtocolReceivingBadlyFormedControlMessage)); |
|
913 const TOverrideAuthorise& override = *reinterpret_cast<const TOverrideAuthorise*>(aParam); |
|
914 __ASSERT_DEBUG(override.iAuthorisingProtocol == KAVCTP, Panic(EAvdtpProtocolReceivingControlFromUnexpectedProtocol)); |
|
915 __ASSERT_DEBUG(override.iAuthorisingPort == SymbianAvctp::KAvrcpPid, Panic(EAvdtpProtocolReceivingControlFromUnexpectedPort)); //magic |
|
916 |
|
917 SetPreauthorisation(override.iPreauthorisedRemoteAddress, |
|
918 override.iPreauthorise); |
|
919 ret = KErrNone; |
|
920 break; |
|
921 } |
|
922 default: |
|
923 __ASSERT_DEBUG(aParam, Panic(EAvdtpProtocolReceivingBadlyFormedControlMessage)); |
|
924 } |
|
925 return ret; |
|
926 } |
|
927 |
|
928 |
|
929 /** |
|
930 Helper to hide the need to supply the socket level to which preauthorisation pertains |
|
931 @param aPreauthorisedAddress the address of the device to preauthorise |
|
932 @param aPreauthorise ETrue if the device is allowed to be authorised for other AVDTP/AVCTP connection, EFalse to cancel |
|
933 @internalComponent |
|
934 */ |
|
935 TInt CAvdtpProtocol::SetPreauthorisation(const TBTDevAddr& aPreauthoriseAddress, TBool aSetPreauthorisation) |
|
936 { |
|
937 LOG_FUNC |
|
938 TInt ret = KErrNone; |
|
939 if (IsListening()) |
|
940 { |
|
941 if (aSetPreauthorisation && !Listener().IsPreauthorised(KSolBtL2CAP, aPreauthoriseAddress)) |
|
942 { |
|
943 Listener().SetPreauthorisation(KSolBtL2CAP, aPreauthoriseAddress, ETrue); |
|
944 |
|
945 TOverrideAuthorise override; |
|
946 override.iAuthorisingProtocol = KAVDTP; |
|
947 override.iPreauthorise = aSetPreauthorisation; |
|
948 override.iPreauthorisedRemoteAddress = aPreauthoriseAddress; |
|
949 |
|
950 ControlPlane().Preauthorise(KAVCTP, override); |
|
951 } |
|
952 else if (!aSetPreauthorisation) |
|
953 { |
|
954 Listener().SetPreauthorisation(KSolBtL2CAP, aPreauthoriseAddress, EFalse); |
|
955 } |
|
956 // else do nothing |
|
957 } |
|
958 else |
|
959 { |
|
960 ret = KErrNotReady; |
|
961 } |
|
962 |
|
963 return ret; |
|
964 } |