0
|
1 |
// Copyright (c) 2002-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32test\heap\t_heap2.cpp
|
|
15 |
// Overview:
|
|
16 |
// Tests RHeap class, including a stress test and a "grow in place"
|
|
17 |
// ReAlloc test.
|
|
18 |
// API Information:
|
|
19 |
// RHeap
|
|
20 |
// Details:
|
|
21 |
// - Test allocation on fixed length heaps in local, disconnected chunks for
|
|
22 |
// different heap sizes and alignments. Assumes knowledge of heap
|
|
23 |
// implementation.
|
|
24 |
// - Test allocation, free, reallocation and compression on chunk heaps with
|
|
25 |
// different maximum and minimum lengths and alignments. Assumes knowledge
|
|
26 |
// of heap implementation.
|
|
27 |
// - Stress test heap implementation with a single thread that allocates, frees
|
|
28 |
// and reallocates cells, and checks the heap.
|
|
29 |
// - Stress test heap implementation with two threads that run concurrently.
|
|
30 |
// - Create a chunk heap, test growing in place by allocating a cell and
|
|
31 |
// then reallocating additional space until failure, verify that the cell
|
|
32 |
// did not move and the size was increased.
|
|
33 |
// - The heap is checked to verify that no cells remain allocated after the
|
|
34 |
// tests are complete.
|
|
35 |
// Platforms/Drives/Compatibility:
|
|
36 |
// All
|
|
37 |
// Assumptions/Requirement/Pre-requisites:
|
|
38 |
// Failures and causes:
|
|
39 |
// Base Port information:
|
|
40 |
//
|
|
41 |
//
|
|
42 |
|
|
43 |
#include <e32test.h>
|
|
44 |
#include <e32hal.h>
|
|
45 |
#include <e32def.h>
|
|
46 |
#include <e32def_private.h>
|
|
47 |
|
|
48 |
// Needed for KHeapShrinkHysRatio which is now ROM 'patchdata'
|
|
49 |
#include "TestRHeapShrink.h"
|
|
50 |
|
|
51 |
#define DECL_GET(T,x) inline T x() const {return i##x;}
|
|
52 |
#define DECL_GET2(T,x,y) inline T y() const {return i##x;}
|
|
53 |
|
|
54 |
|
|
55 |
#ifdef __EABI__
|
|
56 |
IMPORT_D extern const TInt KHeapMinCellSize;
|
|
57 |
#else
|
|
58 |
const TInt KHeapMinCellSize = 0;
|
|
59 |
#endif
|
|
60 |
|
|
61 |
RTest test(_L("T_HEAP2"));
|
|
62 |
|
|
63 |
#define TEST_ALIGN(p,a) test((TLinAddr(p)&((a)-1))==0)
|
|
64 |
|
|
65 |
struct STestCell
|
|
66 |
{
|
|
67 |
enum {EMagic = 0xb8aa3b29};
|
|
68 |
|
|
69 |
TUint32 iLength;
|
|
70 |
TUint32 iData[1];
|
|
71 |
|
|
72 |
void Set(TInt aLength);
|
|
73 |
void Verify(TInt aLength);
|
|
74 |
void Verify(const TAny* aInitPtr, TInt aInitLength, TInt aLength);
|
|
75 |
};
|
|
76 |
|
|
77 |
void STestCell::Set(TInt aLength)
|
|
78 |
{
|
|
79 |
TInt i;
|
|
80 |
TUint32 x = (TUint32)this ^ (TUint32)aLength ^ (TUint32)EMagic;
|
44
|
81 |
aLength -= RHeap::EAllocCellSize;
|
0
|
82 |
if (aLength==0)
|
|
83 |
return;
|
|
84 |
iLength = x;
|
|
85 |
aLength /= sizeof(TUint32);
|
|
86 |
for (i=0; i<aLength-1; ++i)
|
|
87 |
{
|
|
88 |
x *= 69069;
|
|
89 |
x += 41;
|
|
90 |
iData[i] = x;
|
|
91 |
}
|
|
92 |
}
|
|
93 |
|
|
94 |
void STestCell::Verify(TInt aLength)
|
|
95 |
{
|
|
96 |
Verify(this, aLength, aLength);
|
|
97 |
}
|
|
98 |
|
|
99 |
void STestCell::Verify(const TAny* aInitPtr, TInt aInitLength, TInt aLength)
|
|
100 |
{
|
|
101 |
TInt i;
|
|
102 |
TUint32 x = (TUint32)aInitPtr ^ (TUint32)aInitLength ^ (TUint32)EMagic;
|
44
|
103 |
aLength -= RHeap::EAllocCellSize;
|
|
104 |
if (aLength==0)
|
0
|
105 |
return;
|
|
106 |
test(iLength == x);
|
|
107 |
aLength /= sizeof(TUint32);
|
|
108 |
for (i=0; i<aLength-1; ++i)
|
|
109 |
{
|
|
110 |
x *= 69069;
|
|
111 |
x += 41;
|
|
112 |
test(iData[i] == x);
|
|
113 |
}
|
|
114 |
}
|
|
115 |
|
|
116 |
class RTestHeap : public RHeap
|
|
117 |
{
|
|
118 |
public:
|
44
|
119 |
DECL_GET(TInt,AccessCount)
|
|
120 |
DECL_GET(TInt,HandleCount)
|
|
121 |
DECL_GET(TInt*,Handles)
|
|
122 |
DECL_GET(TUint32,Flags)
|
|
123 |
DECL_GET(TInt,CellCount)
|
|
124 |
DECL_GET(TInt,TotalAllocSize)
|
|
125 |
DECL_GET(TInt,MinLength)
|
|
126 |
DECL_GET(TInt,Offset)
|
|
127 |
DECL_GET(TInt,GrowBy)
|
|
128 |
DECL_GET(TInt,ChunkHandle)
|
|
129 |
DECL_GET2(const RFastLock&,Lock,LockRef)
|
|
130 |
DECL_GET(TUint8*,Top)
|
|
131 |
DECL_GET(TInt,Align)
|
|
132 |
DECL_GET(TInt,MinCell)
|
|
133 |
DECL_GET(TInt,PageSize)
|
|
134 |
DECL_GET2(const SCell&,Free,FreeRef)
|
|
135 |
public:
|
0
|
136 |
TInt CheckAllocatedCell(const TAny* aCell) const;
|
|
137 |
void FullCheckAllocatedCell(const TAny* aCell) const;
|
|
138 |
TAny* TestAlloc(TInt aSize);
|
|
139 |
void TestFree(TAny* aPtr);
|
|
140 |
TAny* TestReAlloc(TAny* aPtr, TInt aSize, TInt aMode=0);
|
|
141 |
void FullCheck();
|
|
142 |
static void WalkFullCheckCell(TAny* aPtr, TCellType aType, TAny* aCell, TInt aLen);
|
44
|
143 |
TInt FreeCellLen(const TAny* aPtr) const;
|
|
144 |
static RTestHeap* FixedHeap(TInt aMaxLength, TInt aAlign=0, TBool aSingleThread=ETrue);
|
|
145 |
void TakeChunkOwnership(RChunk aChunk);
|
|
146 |
TInt LastFreeCellLen(void) const;
|
|
147 |
TInt CalcComp(TInt aCompSize);
|
|
148 |
void ForceCompress(TInt aFreed);
|
0
|
149 |
};
|
|
150 |
|
|
151 |
TInt RTestHeap::CheckAllocatedCell(const TAny* aCell) const
|
|
152 |
{
|
44
|
153 |
SCell* pC = GetAddress(aCell);
|
|
154 |
TInt len = pC->len;
|
|
155 |
TUint8* pEnd = (TUint8*)pC + len;
|
|
156 |
TEST_ALIGN(aCell, iAlign);
|
|
157 |
TEST_ALIGN(len, iAlign);
|
|
158 |
test(len >= iMinCell);
|
|
159 |
test((TUint8*)pC>=iBase && pEnd<=iTop);
|
0
|
160 |
return len;
|
|
161 |
}
|
|
162 |
|
|
163 |
void RTestHeap::FullCheckAllocatedCell(const TAny* aCell) const
|
|
164 |
{
|
|
165 |
((STestCell*)aCell)->Verify(CheckAllocatedCell(aCell));
|
|
166 |
}
|
|
167 |
|
|
168 |
TAny* RTestHeap::TestAlloc(TInt aSize)
|
|
169 |
{
|
|
170 |
TAny* p = Alloc(aSize);
|
|
171 |
if (p)
|
|
172 |
{
|
|
173 |
TInt len = CheckAllocatedCell(p);
|
44
|
174 |
test((len-RHeap::EAllocCellSize)>=aSize);
|
0
|
175 |
((STestCell*)p)->Set(len);
|
|
176 |
}
|
|
177 |
return p;
|
|
178 |
}
|
|
179 |
|
|
180 |
void RTestHeap::TestFree(TAny* aPtr)
|
|
181 |
{
|
|
182 |
if (aPtr)
|
|
183 |
FullCheckAllocatedCell(aPtr);
|
|
184 |
Free(aPtr);
|
|
185 |
}
|
|
186 |
|
|
187 |
TAny* RTestHeap::TestReAlloc(TAny* aPtr, TInt aSize, TInt aMode)
|
|
188 |
{
|
|
189 |
TInt old_len = aPtr ? CheckAllocatedCell(aPtr) : 0;
|
|
190 |
if (aPtr)
|
|
191 |
((STestCell*)aPtr)->Verify(old_len);
|
|
192 |
TAny* p = ReAlloc(aPtr, aSize, aMode);
|
|
193 |
if (!p)
|
|
194 |
{
|
|
195 |
((STestCell*)aPtr)->Verify(old_len);
|
|
196 |
return p;
|
|
197 |
}
|
|
198 |
TInt new_len = CheckAllocatedCell(p);
|
44
|
199 |
test((new_len-RHeap::EAllocCellSize)>=aSize);
|
0
|
200 |
if (p == aPtr)
|
|
201 |
{
|
|
202 |
((STestCell*)p)->Verify(p, old_len, Min(old_len, new_len));
|
|
203 |
if (new_len != old_len)
|
|
204 |
((STestCell*)p)->Set(new_len);
|
|
205 |
return p;
|
|
206 |
}
|
|
207 |
test(!(aMode & ENeverMove));
|
|
208 |
test((new_len > old_len) || (aMode & EAllowMoveOnShrink));
|
|
209 |
if (old_len)
|
44
|
210 |
((STestCell*)p)->Verify(aPtr, old_len, Min(old_len, new_len));
|
|
211 |
if (new_len != old_len)
|
|
212 |
((STestCell*)p)->Set(new_len);
|
0
|
213 |
return p;
|
|
214 |
}
|
|
215 |
|
|
216 |
struct SHeapCellInfo
|
|
217 |
{
|
|
218 |
RTestHeap* iHeap;
|
|
219 |
TInt iTotalAlloc;
|
|
220 |
TInt iTotalAllocSize;
|
|
221 |
TInt iTotalFree;
|
|
222 |
TUint8* iNextCell;
|
|
223 |
};
|
|
224 |
|
|
225 |
void RTestHeap::WalkFullCheckCell(TAny* aPtr, TCellType aType, TAny* aCell, TInt aLen)
|
|
226 |
{
|
|
227 |
(void)aCell;
|
|
228 |
::SHeapCellInfo& info = *(::SHeapCellInfo*)aPtr;
|
|
229 |
switch(aType)
|
|
230 |
{
|
|
231 |
case EGoodAllocatedCell:
|
|
232 |
{
|
44
|
233 |
test(aCell == info.iNextCell);
|
|
234 |
TInt len = ((SCell*)aCell)->len;
|
|
235 |
test(len == aLen);
|
|
236 |
info.iNextCell += len;
|
0
|
237 |
++info.iTotalAlloc;
|
44
|
238 |
info.iTotalAllocSize += (aLen-EAllocCellSize);
|
|
239 |
STestCell* pT = (STestCell*)((TUint8*)aCell + EAllocCellSize);
|
0
|
240 |
pT->Verify(len);
|
|
241 |
break;
|
|
242 |
}
|
|
243 |
case EGoodFreeCell:
|
|
244 |
{
|
44
|
245 |
test(aCell == info.iNextCell);
|
|
246 |
TInt len = ((SCell*)aCell)->len;
|
|
247 |
test(len == aLen);
|
|
248 |
info.iNextCell += len;
|
0
|
249 |
++info.iTotalFree;
|
|
250 |
break;
|
|
251 |
}
|
|
252 |
default:
|
|
253 |
test.Printf(_L("TYPE=%d ??\n"),aType);
|
|
254 |
test(0);
|
|
255 |
break;
|
|
256 |
}
|
|
257 |
}
|
|
258 |
|
|
259 |
void RTestHeap::FullCheck()
|
|
260 |
{
|
|
261 |
::SHeapCellInfo info;
|
|
262 |
Mem::FillZ(&info, sizeof(info));
|
|
263 |
info.iHeap = this;
|
44
|
264 |
info.iNextCell = iBase;
|
0
|
265 |
DebugFunction(EWalk, (TAny*)&WalkFullCheckCell, &info);
|
44
|
266 |
test(info.iNextCell == iTop);
|
|
267 |
test(info.iTotalAlloc == iCellCount);
|
0
|
268 |
test(info.iTotalAllocSize == iTotalAllocSize);
|
44
|
269 |
}
|
0
|
270 |
|
44
|
271 |
TInt RTestHeap::FreeCellLen(const TAny* aPtr) const
|
|
272 |
{
|
|
273 |
SCell* p = iFree.next;
|
|
274 |
SCell* q = (SCell*)((TUint8*)aPtr - EAllocCellSize);
|
|
275 |
for (; p && p!=q; p = p->next) {}
|
|
276 |
if (p == q)
|
|
277 |
return p->len - EAllocCellSize;
|
|
278 |
return -1;
|
|
279 |
}
|
|
280 |
|
|
281 |
TInt RTestHeap::LastFreeCellLen(void) const
|
|
282 |
{
|
|
283 |
SCell* p = iFree.next;
|
|
284 |
if (p==NULL)
|
|
285 |
return -1;
|
|
286 |
for (; p->next; p=p->next){}
|
|
287 |
return p->len;
|
|
288 |
}
|
|
289 |
|
|
290 |
|
|
291 |
/** Checks whether a call to Compress() will actually perform a reduction
|
|
292 |
of the heap.
|
|
293 |
Relies on the free last cell on the heap being cell that has just been freed
|
|
294 |
plus any extra.
|
|
295 |
Intended for use by t_heap2.cpp - DoTest4().
|
|
296 |
@param aFreedSize The size in bytes of the cell that was freed
|
|
297 |
*/
|
|
298 |
TInt RTestHeap::CalcComp(TInt aFreedSize)
|
|
299 |
{
|
|
300 |
TInt largestCell=0;
|
|
301 |
largestCell = LastFreeCellLen();
|
|
302 |
// if the largest cell is too small or it would have been compressed by the
|
|
303 |
// free operation then return 0.
|
|
304 |
if (largestCell < iPageSize || aFreedSize >= KHeapShrinkHysRatio*(iGrowBy>>8))
|
|
305 |
{
|
|
306 |
return 0;
|
|
307 |
}
|
|
308 |
else
|
|
309 |
{
|
|
310 |
return _ALIGN_DOWN(aFreedSize,iPageSize);
|
|
311 |
}
|
0
|
312 |
}
|
|
313 |
|
44
|
314 |
/** compress the heap if the KHeapShrinkRatio is too large for what we are
|
|
315 |
expecting in DoTest4().
|
|
316 |
*/
|
|
317 |
void RTestHeap::ForceCompress(TInt aFreed)
|
|
318 |
{
|
|
319 |
if (aFreed < KHeapShrinkHysRatio*(iGrowBy>>8))
|
|
320 |
{
|
|
321 |
Compress();
|
|
322 |
}
|
|
323 |
}
|
|
324 |
RTestHeap* RTestHeap::FixedHeap(TInt aMaxLength, TInt aAlign, TBool aSingleThread)
|
|
325 |
{
|
|
326 |
RChunk c;
|
|
327 |
TInt bottom = 0x40000;
|
|
328 |
TInt top = bottom + aMaxLength;
|
|
329 |
TInt r = c.CreateDisconnectedLocal(bottom, top, top + bottom, EOwnerThread);
|
|
330 |
if (r!=KErrNone)
|
|
331 |
return NULL;
|
|
332 |
TUint8* base = c.Base() + bottom;
|
|
333 |
RTestHeap* h = (RTestHeap*)UserHeap::FixedHeap(base, aMaxLength, aAlign, aSingleThread);
|
|
334 |
if (!aAlign)
|
|
335 |
aAlign = RHeap::ECellAlignment;
|
|
336 |
test((TUint8*)h == base);
|
|
337 |
test(h->AccessCount() == 1);
|
|
338 |
test(h->HandleCount() == (aSingleThread ? 0 : 1));
|
|
339 |
test(h->Handles() == (aSingleThread ? NULL : (TInt*)&h->LockRef()));
|
|
340 |
test(h->Flags() == TUint32(RAllocator::EFixedSize | (aSingleThread ? RAllocator::ESingleThreaded : 0)));
|
|
341 |
test(h->CellCount() == 0);
|
|
342 |
test(h->TotalAllocSize() == 0);
|
|
343 |
test(h->MaxLength() == aMaxLength);
|
|
344 |
test(h->MinLength() == h->Top() - (TUint8*)h);
|
|
345 |
test(h->Offset() == 0);
|
|
346 |
test(h->GrowBy() == 0);
|
|
347 |
test(h->ChunkHandle() == 0);
|
|
348 |
test(h->Align() == aAlign);
|
|
349 |
TInt min_cell = _ALIGN_UP((KHeapMinCellSize + Max((TInt)RHeap::EAllocCellSize, (TInt)RHeap::EFreeCellSize)), aAlign);
|
|
350 |
TInt hdr_len = _ALIGN_UP(sizeof(RHeap) + RHeap::EAllocCellSize, aAlign) - RHeap::EAllocCellSize;
|
|
351 |
TInt user_len = _ALIGN_DOWN(aMaxLength - hdr_len, aAlign);
|
|
352 |
test(h->Base() == base + hdr_len);
|
|
353 |
test(h->MinCell() == min_cell);
|
|
354 |
test(h->Top() - h->Base() == user_len);
|
|
355 |
test(h->FreeRef().next == (RHeap::SCell*)h->Base());
|
|
356 |
h->TakeChunkOwnership(c);
|
|
357 |
return h;
|
|
358 |
}
|
|
359 |
|
|
360 |
void RTestHeap::TakeChunkOwnership(RChunk aChunk)
|
|
361 |
{
|
|
362 |
iChunkHandle = aChunk.Handle();
|
|
363 |
++iHandleCount;
|
|
364 |
iHandles = &iChunkHandle;
|
|
365 |
}
|
|
366 |
|
|
367 |
|
|
368 |
#define ACCESS_COUNT(h) (((RTestHeap*)h)->AccessCount())
|
|
369 |
#define HANDLE_COUNT(h) (((RTestHeap*)h)->HandleCount())
|
|
370 |
#define HANDLES(h) (((RTestHeap*)h)->Handles())
|
|
371 |
#define FLAGS(h) (((RTestHeap*)h)->Flags())
|
|
372 |
#define CELL_COUNT(h) (((RTestHeap*)h)->CellCount())
|
|
373 |
#define TOTAL_ALLOC_SIZE(h) (((RTestHeap*)h)->TotalAllocSize())
|
|
374 |
#define MIN_LENGTH(h) (((RTestHeap*)h)->MinLength())
|
|
375 |
#define OFFSET(h) (((RTestHeap*)h)->Offset())
|
|
376 |
#define GROW_BY(h) (((RTestHeap*)h)->GrowBy())
|
|
377 |
#define CHUNK_HANDLE(h) (((RTestHeap*)h)->ChunkHandle())
|
|
378 |
#define LOCK_REF(h) (((RTestHeap*)h)->LockRef())
|
|
379 |
#define TOP(h) (((RTestHeap*)h)->Top())
|
|
380 |
#define ALIGN(h) (((RTestHeap*)h)->Align())
|
|
381 |
#define MIN_CELL(h) (((RTestHeap*)h)->MinCell())
|
|
382 |
#define PAGE_SIZE(h) (((RTestHeap*)h)->PageSize())
|
|
383 |
#define FREE_REF(h) (((RTestHeap*)h)->FreeRef())
|
|
384 |
|
|
385 |
void DoTest1(RHeap* aH)
|
|
386 |
{
|
|
387 |
RTestHeap* h = (RTestHeap*)aH;
|
|
388 |
test.Printf(_L("Test Alloc: min=%x max=%x align=%d growby=%d\n"),
|
|
389 |
h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy());
|
|
390 |
TInt l;
|
|
391 |
TAny* p = NULL;
|
|
392 |
TUint8* next = h->Base();
|
|
393 |
TUint8* top = h->Top();
|
|
394 |
TUint8* limit = (TUint8*)h + h->MaxLength();
|
|
395 |
TBool fixed = h->Flags() & RAllocator::EFixedSize;
|
|
396 |
for (l=1; l<=1024; ++l)
|
|
397 |
{
|
|
398 |
TInt remain1 = top - next;
|
|
399 |
TInt xl1 = _ALIGN_UP(Max((l+RHeap::EAllocCellSize), h->MinCell()), h->Align());
|
|
400 |
p = h->TestAlloc(l);
|
|
401 |
if ( (fixed && remain1 < xl1) || (next + xl1 > limit) )
|
|
402 |
{
|
|
403 |
test(p == NULL);
|
|
404 |
test(top == h->Top());
|
|
405 |
test.Printf(_L("Alloc failed at l=%d next=%08x\n"), l, next);
|
|
406 |
break;
|
|
407 |
}
|
|
408 |
test(p == next + RHeap::EAllocCellSize);
|
|
409 |
if (xl1 > remain1)
|
|
410 |
{
|
|
411 |
// no room for this cell
|
|
412 |
TInt g = h->GrowBy();
|
|
413 |
while (xl1 > remain1)
|
|
414 |
{
|
|
415 |
top += g;
|
|
416 |
remain1 += g;
|
|
417 |
}
|
|
418 |
}
|
|
419 |
test(top == h->Top());
|
|
420 |
if (xl1 + h->MinCell() > remain1)
|
|
421 |
{
|
|
422 |
// this cell fits but remainder is too small or nonexistent
|
|
423 |
xl1 = top - next;
|
|
424 |
next = top;
|
|
425 |
test(h->FreeRef().next == NULL);
|
|
426 |
}
|
|
427 |
else
|
|
428 |
{
|
|
429 |
// this cell fits and remainder can be reused
|
|
430 |
next += xl1;
|
|
431 |
}
|
|
432 |
test(aH->AllocLen(p) == xl1 - RHeap::EAllocCellSize);
|
|
433 |
}
|
|
434 |
h->FullCheck();
|
|
435 |
}
|
|
436 |
|
|
437 |
void DoTest2(RHeap* aH)
|
|
438 |
{
|
|
439 |
RTestHeap* h = (RTestHeap*)aH;
|
|
440 |
test.Printf(_L("Test Free: min=%x max=%x align=%d growby=%d\n"),
|
|
441 |
h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy());
|
|
442 |
TInt al;
|
|
443 |
TInt min = h->MinCell();
|
|
444 |
TBool pad = EFalse;
|
|
445 |
for (al=1; al<256; (void)((pad=!pad)!=0 || (al+=al+1)) )
|
|
446 |
{
|
|
447 |
TAny* p[32];
|
|
448 |
TInt last_len = 0;
|
|
449 |
TAny* last = NULL;
|
|
450 |
TInt i;
|
|
451 |
test.Printf(_L("al=%d pad=%d\n"), al, pad);
|
|
452 |
TUint8* top=0;
|
|
453 |
TAny* spare=0;
|
|
454 |
TBool heapReduced = EFalse;
|
|
455 |
for (i=0; i<32; ++i)
|
|
456 |
{
|
|
457 |
// Check whether the cell created for the allocation of al would end up
|
|
458 |
// including extra bytes from the last free cell that aren't enough
|
|
459 |
// to create a new free cell.
|
|
460 |
top = h->Top();
|
|
461 |
TInt freeLen=h->LastFreeCellLen();
|
|
462 |
TInt actualAllocBytes = Max(_ALIGN_UP(al + RHeap::EAllocCellSize, h->Align()), min);
|
|
463 |
TInt remainingBytes = freeLen - actualAllocBytes;
|
|
464 |
if (remainingBytes < min)
|
|
465 |
{
|
|
466 |
// Force the heap to grow so that once this allocation is freed
|
|
467 |
// the free cell left will be large enough to include the al allocation
|
|
468 |
// and to create a new free cell if necessary.
|
|
469 |
actualAllocBytes = _ALIGN_UP(actualAllocBytes + min, h->Align());
|
|
470 |
TAny* q = h->TestAlloc(actualAllocBytes);
|
|
471 |
// Check heap has grown
|
|
472 |
test(top < h->Top());
|
|
473 |
top = h->Top();
|
|
474 |
test(q!=NULL);
|
|
475 |
// Have grown the heap so allocate a cell as a place holder to stop
|
|
476 |
// the heap being shrunk and the actual cell we want to allocate from being the
|
|
477 |
// wrong size
|
|
478 |
spare=h->TestAlloc(8);
|
|
479 |
h->TestFree(q);
|
|
480 |
// Ensure heap wasn't shrunk after free
|
|
481 |
test(top == h->Top());
|
|
482 |
}
|
|
483 |
top = h->Top();
|
|
484 |
// Allocate the new
|
|
485 |
p[i] = h->TestAlloc(al);
|
|
486 |
test(p[i]!=NULL);
|
|
487 |
if (remainingBytes < min)
|
|
488 |
{// now safe to free any padding as p[i] now allocated and its size can't change
|
|
489 |
h->TestFree(spare);
|
|
490 |
}
|
|
491 |
TInt tmp1=h->AllocLen(p[i]);
|
|
492 |
TInt tmp2=Max(_ALIGN_UP(al+RHeap::EAllocCellSize,h->Align()), min)-RHeap::EAllocCellSize;
|
|
493 |
test(tmp1 == tmp2);
|
|
494 |
}
|
|
495 |
last = (TUint8*)p[31] + _ALIGN_UP(Max((al + RHeap::EAllocCellSize), min), h->Align());
|
|
496 |
last_len = h->FreeCellLen(last);
|
|
497 |
test(last_len > 0);
|
|
498 |
if (pad)
|
|
499 |
{
|
|
500 |
test(h->TestAlloc(last_len) == last);
|
|
501 |
test(h->FreeRef().next == NULL);
|
|
502 |
}
|
|
503 |
else
|
|
504 |
last = NULL;
|
|
505 |
top = h->Top();
|
|
506 |
for (i=0,heapReduced=EFalse; i<32; ++i)
|
|
507 |
{
|
|
508 |
h->TestFree(p[i]);
|
|
509 |
TInt fl = h->FreeCellLen(p[i]);
|
|
510 |
TInt xfl = _ALIGN_UP(Max((al + RHeap::EAllocCellSize), h->MinCell()), h->Align()) - RHeap::EAllocCellSize;
|
|
511 |
if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize
|
|
512 |
{
|
|
513 |
top = h->Top();
|
|
514 |
heapReduced = ETrue;
|
|
515 |
}
|
|
516 |
|
|
517 |
if (i < 31 || pad)
|
|
518 |
test(fl == xfl);
|
|
519 |
else
|
|
520 |
{
|
|
521 |
if (!heapReduced)
|
|
522 |
test(fl == xfl + RHeap::EAllocCellSize + last_len);
|
|
523 |
else
|
|
524 |
{
|
|
525 |
heapReduced = EFalse;
|
|
526 |
}
|
|
527 |
}
|
|
528 |
test(h->TestAlloc(al)==p[i]);
|
|
529 |
}
|
|
530 |
for (i=0,heapReduced=EFalse; i<31; ++i)
|
|
531 |
{
|
|
532 |
TInt j = i+1;
|
|
533 |
TUint8* q;
|
|
534 |
// Free to adjacent cells and check that the free cell left is the combined
|
|
535 |
// size of the 2 adjacent cells just freed
|
|
536 |
h->TestFree(p[i]);
|
|
537 |
h->TestFree(p[j]);
|
|
538 |
TInt fl = h->FreeCellLen(p[i]);
|
|
539 |
if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize
|
|
540 |
{
|
|
541 |
top = h->Top();
|
|
542 |
heapReduced = ETrue;
|
|
543 |
}
|
|
544 |
TInt xfl = 2 * _ALIGN_UP(Max((al + RHeap::EAllocCellSize), h->MinCell()), h->Align()) - RHeap::EAllocCellSize;
|
|
545 |
if (j < 31 || pad)
|
|
546 |
test(fl == xfl);
|
|
547 |
else
|
|
548 |
{
|
|
549 |
if (!heapReduced)
|
|
550 |
test(fl == xfl + RHeap::EAllocCellSize + last_len);
|
|
551 |
else
|
|
552 |
{
|
|
553 |
heapReduced = EFalse;
|
|
554 |
}
|
|
555 |
}
|
|
556 |
test(h->FreeCellLen(p[j]) < 0);
|
|
557 |
test(h->TestAlloc(fl)==p[i]);
|
|
558 |
test(h->Top() == top);
|
|
559 |
h->TestFree(p[i]);
|
|
560 |
test(h->FreeCellLen(p[i]) == fl);
|
|
561 |
// test when you alloc a cell that is larger than cells just freed
|
|
562 |
// that its position is not the same as the freed cells
|
|
563 |
// will hold for all cells except top/last one
|
|
564 |
if (j < 31 && !pad && fl < last_len)
|
|
565 |
{
|
|
566 |
q = (TUint8*)h->TestAlloc(fl+1);
|
|
567 |
if (h->Top() > top)
|
|
568 |
top = h->Top();
|
|
569 |
test(h->Top() == top);
|
|
570 |
test(q > p[i]);
|
|
571 |
h->TestFree(q);
|
|
572 |
if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize
|
|
573 |
{
|
|
574 |
top = h->Top();
|
|
575 |
heapReduced = ETrue;
|
|
576 |
}
|
|
577 |
}
|
|
578 |
// check cell that is just smaller than space but not small enough
|
|
579 |
// for a new free cell to be created, is the size of whole free cell
|
|
580 |
test(h->TestAlloc(fl-min+1)==p[i]);
|
|
581 |
test(h->Top() == top);
|
|
582 |
test(h->AllocLen(p[i])==fl);
|
|
583 |
h->TestFree(p[i]);
|
|
584 |
// Check cell that is small enough for new free cell and alloc'd cell to be
|
|
585 |
// created at p[i] cell is created at p[i]
|
|
586 |
test(h->TestAlloc(fl-min)==p[i]);
|
|
587 |
test(h->Top() == top);
|
|
588 |
// check free cell is at expected position
|
|
589 |
q = (TUint8*)p[i] + fl - min + RHeap::EAllocCellSize;
|
|
590 |
test(h->FreeCellLen(q) == min - RHeap::EAllocCellSize);
|
|
591 |
// alloc 0 length cell at q, will work as new cell of min length will be created
|
|
592 |
test(h->TestAlloc(0) == q);
|
|
593 |
test(h->Top() == top);
|
|
594 |
h->TestFree(p[i]);
|
|
595 |
test(h->FreeCellLen(p[i]) == fl - min);
|
|
596 |
h->TestFree(q);
|
|
597 |
// again check free cells are combined
|
|
598 |
test(h->FreeCellLen(q) < 0);
|
|
599 |
test(h->FreeCellLen(p[i]) == fl);
|
|
600 |
// check reallocating the cells places them back to same positions
|
|
601 |
test(h->TestAlloc(al)==p[i]);
|
|
602 |
test(h->Top() == top);
|
|
603 |
test(h->TestAlloc(al)==p[j]);
|
|
604 |
test(h->Top() == top);
|
|
605 |
if (pad)
|
|
606 |
test(h->FreeRef().next == NULL);
|
|
607 |
}
|
|
608 |
for (i=0,heapReduced=EFalse; i<30; ++i)
|
|
609 |
{
|
|
610 |
TInt j = i+1;
|
|
611 |
TInt k = i+2;
|
|
612 |
TUint8* q;
|
|
613 |
// Free 3 adjacent cells and check free cell created is combined size
|
|
614 |
h->TestFree(p[i]);
|
|
615 |
h->TestFree(p[k]);
|
|
616 |
h->TestFree(p[j]);
|
|
617 |
h->FullCheck();
|
|
618 |
if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize
|
|
619 |
{
|
|
620 |
top = h->Top();
|
|
621 |
heapReduced = ETrue;
|
|
622 |
}
|
|
623 |
TInt fl = h->FreeCellLen(p[i]);
|
|
624 |
TInt xfl = 3 * _ALIGN_UP(Max((al + RHeap::EAllocCellSize), h->MinCell()), h->Align()) - RHeap::EAllocCellSize;
|
|
625 |
if (k < 31 || pad)
|
|
626 |
test(fl == xfl);
|
|
627 |
else
|
|
628 |
{
|
|
629 |
if (!heapReduced)
|
|
630 |
test(fl == xfl + RHeap::EAllocCellSize + last_len);
|
|
631 |
else
|
|
632 |
{
|
|
633 |
heapReduced = EFalse;
|
|
634 |
}
|
|
635 |
}
|
|
636 |
test(h->FreeCellLen(p[j]) < 0);
|
|
637 |
test(h->FreeCellLen(p[k]) < 0);
|
|
638 |
//ensure created free cell is allocated to new cell of free cell size
|
|
639 |
test(h->TestAlloc(fl)==p[i]);
|
|
640 |
test(h->Top() == top);
|
|
641 |
h->TestFree(p[i]);
|
|
642 |
test(h->FreeCellLen(p[i]) == fl);
|
|
643 |
if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize
|
|
644 |
top = h->Top();
|
|
645 |
if (k < 31 && !pad && fl < last_len)
|
|
646 |
{
|
|
647 |
// Test new cell one larger than free cell size is allocated somewhere else
|
|
648 |
q = (TUint8*)h->TestAlloc(fl+1);
|
|
649 |
if (h->Top() > top)
|
|
650 |
top = h->Top();
|
|
651 |
test(h->Top() == top);
|
|
652 |
test(q > p[i]);
|
|
653 |
h->TestFree(q);
|
|
654 |
if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize
|
|
655 |
{
|
|
656 |
top = h->Top();
|
|
657 |
heapReduced = ETrue;
|
|
658 |
}
|
|
659 |
}
|
|
660 |
// check allocating cell just smaller than free cell size but
|
|
661 |
// too large for neew free cell to be created, is size of whole free cell
|
|
662 |
test(h->TestAlloc(fl-min+1)==p[i]);
|
|
663 |
test(h->Top() == top);
|
|
664 |
test(h->AllocLen(p[i])==fl);
|
|
665 |
h->TestFree(p[i]);
|
|
666 |
// ensure free cell is created this time as well as alloc'd cell
|
|
667 |
test(h->TestAlloc(fl-min)==p[i]);
|
|
668 |
test(h->Top() == top);
|
|
669 |
q = (TUint8*)p[i] + fl - min + RHeap::EAllocCellSize;
|
|
670 |
test(h->FreeCellLen(q) == min - RHeap::EAllocCellSize);
|
|
671 |
test(h->TestAlloc(0) == q);
|
|
672 |
test(h->Top() == top);
|
|
673 |
h->TestFree(p[i]);
|
|
674 |
test(h->FreeCellLen(p[i]) == fl - min);
|
|
675 |
h->TestFree(q);
|
|
676 |
test(h->FreeCellLen(q) < 0);
|
|
677 |
test(h->FreeCellLen(p[i]) == fl);
|
|
678 |
// realloc all cells and check heap not expanded
|
|
679 |
test(h->TestAlloc(al)==p[i]);
|
|
680 |
test(h->Top() == top);
|
|
681 |
test(h->TestAlloc(al)==p[j]);
|
|
682 |
test(h->Top() == top);
|
|
683 |
test(h->TestAlloc(al)==p[k]);
|
|
684 |
test(h->Top() == top);
|
|
685 |
// If padding than no space should left on heap
|
|
686 |
if (pad)
|
|
687 |
test(h->FreeRef().next == NULL);
|
|
688 |
}
|
|
689 |
// when padding this will free padding from top of heap
|
|
690 |
h->TestFree(last);
|
|
691 |
}
|
|
692 |
h->FullCheck();
|
|
693 |
}
|
|
694 |
|
|
695 |
void DoTest3(RHeap* aH)
|
|
696 |
{
|
|
697 |
RTestHeap* h = (RTestHeap*)aH;
|
|
698 |
test.Printf(_L("Test ReAlloc: min=%x max=%x align=%d growby=%d\n"),
|
|
699 |
h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy());
|
|
700 |
// allocate continuous heap cell, then free them and reallocate again
|
|
701 |
TInt al;
|
|
702 |
for (al=1; al<256; al+=al+1)
|
|
703 |
{
|
|
704 |
TAny* p0 = h->TestAlloc(al);
|
|
705 |
TInt al0 = h->AllocLen(p0);
|
|
706 |
h->TestFree(p0);
|
|
707 |
TAny* p1 = h->TestReAlloc(NULL, al, 0);
|
|
708 |
TInt al1 = h->AllocLen(p1);
|
|
709 |
test(p1 == p0);
|
|
710 |
test(al1 == al0);
|
|
711 |
h->TestFree(p1);
|
|
712 |
TAny* p2 = h->TestAlloc(1);
|
|
713 |
TAny* p3 = h->TestReAlloc(p2, al, 0);
|
|
714 |
test(p3 == p0);
|
|
715 |
TInt al3 = h->AllocLen(p3);
|
|
716 |
test(al3 == al0);
|
|
717 |
h->TestFree(p3);
|
|
718 |
TAny* p4 = h->TestAlloc(1024);
|
|
719 |
TAny* p5 = h->TestReAlloc(p4, al, 0);
|
|
720 |
test(p5 == p0);
|
|
721 |
TInt al5 = h->AllocLen(p5);
|
|
722 |
test(al5 == al0);
|
|
723 |
h->TestFree(p5);
|
|
724 |
}
|
|
725 |
TInt i;
|
|
726 |
TInt j;
|
|
727 |
for (j=0; j<30; j+=3)
|
|
728 |
{
|
|
729 |
TAny* p[30];
|
|
730 |
TInt ala[30];
|
|
731 |
TInt fla[30];
|
|
732 |
h->Reset();
|
|
733 |
for (i=0; i<30; ++i)
|
|
734 |
{
|
|
735 |
p[i] = h->TestAlloc(8*i*i);
|
|
736 |
ala[i] = h->AllocLen(p[i]);
|
|
737 |
fla[i] = 0;
|
|
738 |
}
|
|
739 |
for (i=1; i<30; i+=3)
|
|
740 |
{
|
|
741 |
h->TestFree(p[i]);
|
|
742 |
fla[i] = h->FreeCellLen(p[i]);
|
|
743 |
test(fla[i] == ala[i]);
|
|
744 |
test(h->FreeCellLen(p[i-1]) < 0);
|
|
745 |
test(h->FreeCellLen(p[i+1]) < 0);
|
|
746 |
}
|
|
747 |
h->FullCheck();
|
|
748 |
TInt al1 = _ALIGN_UP(Max((RHeap::EAllocCellSize + 1), h->MinCell()), h->Align());
|
|
749 |
// adjust al1 for some case when reallocated heap cell will not be shrinked because remainder will not big enough
|
|
750 |
// to form a new free cell due to a big KHeapMinCellSize value
|
|
751 |
TInt alaj = ala[j] + RHeap::EAllocCellSize;
|
|
752 |
if (al1 < alaj && alaj - al1 < h->MinCell())
|
|
753 |
al1 = alaj;
|
|
754 |
TAny* p1 = h->TestReAlloc(p[j], 1, RHeap::ENeverMove);
|
|
755 |
test(p1 == p[j]);
|
|
756 |
test(h->AllocLen(p1) == al1 - RHeap::EAllocCellSize);
|
|
757 |
TAny* p1b = (TUint8*)p1 + al1;
|
|
758 |
test(h->FreeCellLen(p1b) == fla[j+1] + RHeap::EAllocCellSize + ala[j] - al1);
|
|
759 |
TInt l2 = ala[j] + fla[j+1] + RHeap::EAllocCellSize; // max without moving
|
|
760 |
TInt l3 = l2 - h->MinCell();
|
|
761 |
TAny* p3 = h->TestReAlloc(p[j], l3, RHeap::ENeverMove);
|
|
762 |
test(p3 == p[j]);
|
|
763 |
TAny* p3b = (TUint8*)p3 + h->AllocLen(p3) + RHeap::EAllocCellSize;
|
|
764 |
test(h->FreeCellLen(p3b) == h->MinCell() - RHeap::EAllocCellSize);
|
|
765 |
TAny* p2 = h->TestReAlloc(p[j], l2, RHeap::ENeverMove);
|
|
766 |
test(p2 == p[j]);
|
|
767 |
test(h->AllocLen(p2) == l2);
|
|
768 |
TAny* p4 = h->TestReAlloc(p[j], l2+1, RHeap::ENeverMove);
|
|
769 |
test(p4 == NULL);
|
|
770 |
test(h->AllocLen(p2) == l2);
|
|
771 |
TAny* p5 = h->TestReAlloc(p[j], l2+1, 0);
|
|
772 |
TInt k = 0;
|
|
773 |
for (; k<30 && fla[k] <= l2; ++k) {}
|
|
774 |
if (k < 30)
|
|
775 |
test(p5 == p[k]);
|
|
776 |
else
|
|
777 |
test(p5 >= (TUint8*)p[29] + ala[29]);
|
|
778 |
test(h->FreeCellLen(p2) == ala[j] + ala[j+1] + RHeap::EAllocCellSize);
|
|
779 |
TInt ali = _ALIGN_UP(RHeap::EAllocCellSize,h->Align());
|
|
780 |
TAny* p6b = (TUint8*)p[j+2] + ala[j+2] - ali + RHeap::EAllocCellSize;
|
|
781 |
test(h->FreeCellLen(p6b) < 0);
|
|
782 |
TAny* p6 = h->TestReAlloc(p[j+2], ala[j+2] - ali , 0);
|
|
783 |
test(p6 == p[j+2]);
|
|
784 |
if (h->AllocLen(p6) != ala[j+2]) // allocated heap cell size changed
|
|
785 |
test(h->FreeCellLen(p6b) == h->MinCell() - RHeap::EAllocCellSize);
|
|
786 |
TInt g = h->GrowBy();
|
|
787 |
TAny* p7 = h->TestReAlloc(p5, 8*g, 0);
|
|
788 |
test(p7 >= p5);
|
|
789 |
TUint8* p8 = (TUint8*)p7 - RHeap::EAllocCellSize + al1;
|
|
790 |
TUint8* p9 = (TUint8*)_ALIGN_UP(TLinAddr(p8), h->PageSize());
|
|
791 |
if (p9-p8 < h->MinCell())
|
|
792 |
p9 += h->PageSize();
|
|
793 |
TAny* p7b = h->TestReAlloc(p7, 1, 0);
|
|
794 |
test(p7b == p7);
|
|
795 |
test(h->Top() + (RHeap::EAllocCellSize & (h->Align()-1)) == p9);
|
|
796 |
|
|
797 |
h->FullCheck();
|
|
798 |
}
|
|
799 |
}
|
|
800 |
|
|
801 |
// Test compression
|
|
802 |
// {1 free cell, >1 free cell} x {reduce cell, eliminate cell, reduce cell but too small}
|
|
803 |
//
|
|
804 |
void DoTest4(RHeap* aH)
|
|
805 |
{
|
|
806 |
RTestHeap* h = (RTestHeap*)aH;
|
|
807 |
test.Printf(_L("Test Compress: min=%x max=%x align=%d growby=%d\n"),
|
|
808 |
h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy());
|
|
809 |
TInt page_size;
|
|
810 |
UserHal::PageSizeInBytes(page_size);
|
|
811 |
test(page_size == h->PageSize());
|
|
812 |
TInt g = h->GrowBy();
|
|
813 |
TEST_ALIGN(g, page_size);
|
|
814 |
test(g >= page_size);
|
|
815 |
RChunk c;
|
|
816 |
c.SetHandle(h->ChunkHandle());
|
|
817 |
TInt align = h->Align();
|
|
818 |
TInt minc = h->MinCell();
|
|
819 |
|
|
820 |
TInt orig_size = c.Size();
|
|
821 |
TUint8* orig_top = h->Top();
|
|
822 |
|
|
823 |
// size in bytes that last free cell on the top of the heap must be
|
|
824 |
// before the heap will be shrunk, size must include the no of bytes to
|
|
825 |
// store the cell data/header i.e RHeap::EAllocCellSize
|
|
826 |
TInt shrinkThres = KHeapShrinkHysRatio*(g>>8);
|
|
827 |
|
|
828 |
TInt pass;
|
|
829 |
for (pass=0; pass<2; ++pass)
|
|
830 |
{
|
|
831 |
TUint8* p0 = (TUint8*)h->TestAlloc(4);
|
|
832 |
test(p0 == h->Base() + RHeap::EAllocCellSize);
|
|
833 |
TInt l1 = h->Top() - (TUint8*)h->FreeRef().next;
|
|
834 |
TEST_ALIGN(l1, align);
|
|
835 |
l1 -= RHeap::EAllocCellSize;
|
|
836 |
TUint8* p1;
|
|
837 |
// Grow heap by 2*iGrowBy bytes
|
|
838 |
p1 = (TUint8*)h->TestAlloc(l1 + 2*g);
|
|
839 |
test(p1 == p0 + h->AllocLen(p0) + RHeap::EAllocCellSize);
|
|
840 |
test(h->Top() - orig_top == 2*g);
|
|
841 |
test(c.Size() - orig_size == 2*g);
|
|
842 |
// May compress heap, may not
|
|
843 |
h->TestFree(p1);
|
|
844 |
h->ForceCompress(2*g);
|
|
845 |
test(h->Top() == orig_top);
|
|
846 |
test(c.Size() == orig_size);
|
|
847 |
test((TUint8*)h->FreeRef().next == p1 - RHeap::EAllocCellSize);
|
|
848 |
h->FullCheck();
|
|
849 |
//if KHeapShrinkHysRatio is > 2.0 then heap compression will occur here
|
|
850 |
test(h->Compress() == 0);
|
|
851 |
test(h->TestAlloc(l1) == p1);
|
|
852 |
test(h->FreeRef().next == NULL);
|
|
853 |
if (pass)
|
|
854 |
h->TestFree(p0); // leave another free cell on second pass
|
|
855 |
TInt l2 = g - RHeap::EAllocCellSize;
|
|
856 |
// Will grow heap by iGrowBy bytes
|
|
857 |
TUint8* p2 = (TUint8*)h->TestAlloc(l2);
|
|
858 |
test(p2 == orig_top + RHeap::EAllocCellSize);
|
|
859 |
test(h->Top() - orig_top == g);
|
|
860 |
test(c.Size() - orig_size == g);
|
|
861 |
// may or may not compress heap
|
|
862 |
h->TestFree(p2);
|
|
863 |
if (l2+RHeap::EAllocCellSize >= shrinkThres)
|
|
864 |
{
|
|
865 |
// When KHeapShrinkRatio small enough heap will have been compressed
|
|
866 |
test(h->Top() == orig_top);
|
|
867 |
if (pass)
|
|
868 |
{
|
|
869 |
test((TUint8*)h->FreeRef().next == p0 - RHeap::EAllocCellSize);
|
|
870 |
test((TUint8*)h->FreeRef().next->next == NULL);
|
|
871 |
}
|
|
872 |
else
|
|
873 |
test((TUint8*)h->FreeRef().next == NULL);
|
|
874 |
}
|
|
875 |
else
|
|
876 |
{
|
|
877 |
test(h->Top() - orig_top == g);
|
|
878 |
if (pass)
|
|
879 |
{
|
|
880 |
test((TUint8*)h->FreeRef().next == p0 - RHeap::EAllocCellSize);
|
|
881 |
test((TUint8*)h->FreeRef().next->next == orig_top);
|
|
882 |
}
|
|
883 |
else
|
|
884 |
test((TUint8*)h->FreeRef().next == orig_top);
|
|
885 |
}
|
|
886 |
// this compress will only do anything if the KHeapShrinkRatio is large
|
|
887 |
// enough to introduce hysteresis otherwise the heap would have been compressed
|
|
888 |
// by the free operation itself
|
|
889 |
TInt tmp1,tmp2;
|
|
890 |
tmp2=h->CalcComp(g);
|
|
891 |
tmp1=h->Compress();
|
|
892 |
test(tmp1 == tmp2);
|
|
893 |
test(h->Top() == orig_top);
|
|
894 |
test(c.Size() == orig_size);
|
|
895 |
h->FullCheck();
|
|
896 |
// shouldn't compress heap as already compressed
|
|
897 |
test(h->Compress() == 0);
|
|
898 |
//grow heap by iGrowBy bytes
|
|
899 |
test(h->TestAlloc(l2) == p2);
|
|
900 |
//grow heap by iGrowBy bytes
|
|
901 |
TUint8* p3 = (TUint8*)h->TestAlloc(l2);
|
|
902 |
test(p3 == p2 + g);
|
|
903 |
test(h->Top() - orig_top == 2*g);
|
|
904 |
test(c.Size() - orig_size == 2*g);
|
|
905 |
// may or may not reduce heap
|
|
906 |
h->TestFree(p2);
|
|
907 |
// may or may not reduce heap
|
|
908 |
h->TestFree(p3);
|
|
909 |
h->ForceCompress(2*g);
|
|
910 |
test(h->Top() == orig_top);
|
|
911 |
test(c.Size() == orig_size);
|
|
912 |
h->FullCheck();
|
|
913 |
if (pass)
|
|
914 |
{
|
|
915 |
test((TUint8*)h->FreeRef().next == p0 - RHeap::EAllocCellSize);
|
|
916 |
test((TUint8*)h->FreeRef().next->next == NULL);
|
|
917 |
}
|
|
918 |
else
|
|
919 |
test((TUint8*)h->FreeRef().next == NULL);
|
|
920 |
//grow heap by iGrowBy bytes
|
|
921 |
test(h->TestAlloc(l2) == p2);
|
|
922 |
//grow heap by iGrowBy*2 + page size bytes
|
|
923 |
test(h->TestAlloc(l2 + g + page_size) == p3);
|
|
924 |
test(h->Top() - orig_top == 4*g);
|
|
925 |
test(c.Size() - orig_size == 4*g);
|
|
926 |
// will compress heap if KHeapShrinkHysRatio <= KHeapShrinkRatioDflt
|
|
927 |
test(h->TestReAlloc(p3, page_size - RHeap::EAllocCellSize, 0) == p3);
|
|
928 |
h->ForceCompress(g+page_size);
|
|
929 |
test(h->Top() - orig_top == g + page_size);
|
|
930 |
test(c.Size() - orig_size == g + page_size);
|
|
931 |
h->FullCheck();
|
|
932 |
// will compress heap if KHeapShrinkHysRatio <= KHeapShrinkRatio1
|
|
933 |
h->TestFree(p2);
|
|
934 |
// will compress heap if KHeapShrinkHysRatio <= KHeapShrinkRatio1 && g<=page_size
|
|
935 |
// or KHeapShrinkHysRatio >= 2.0 and g==page_size
|
|
936 |
h->TestFree(p3);
|
|
937 |
// may or may not perform further compression
|
|
938 |
tmp1=h->CalcComp(g+page_size);
|
|
939 |
tmp2=h->Compress();
|
|
940 |
test(tmp1 == tmp2);
|
|
941 |
test(h->Top() == orig_top);
|
|
942 |
test(c.Size() == orig_size);
|
|
943 |
h->FullCheck();
|
|
944 |
test(h->TestAlloc(l2 - minc) == p2);
|
|
945 |
test(h->TestAlloc(l2 + g + page_size + minc) == p3 - minc);
|
|
946 |
test(h->Top() - orig_top == 4*g);
|
|
947 |
test(c.Size() - orig_size == 4*g);
|
|
948 |
h->TestFree(p3 - minc);
|
|
949 |
h->ForceCompress(l2 + g + page_size + minc);
|
|
950 |
test(h->Top() - orig_top == g);
|
|
951 |
test(c.Size() - orig_size == g);
|
|
952 |
h->FullCheck();
|
|
953 |
if (pass)
|
|
954 |
{
|
|
955 |
test((TUint8*)h->FreeRef().next == p0 - RHeap::EAllocCellSize);
|
|
956 |
test((TUint8*)h->FreeRef().next->next == p3 - minc - RHeap::EAllocCellSize);
|
|
957 |
}
|
|
958 |
else
|
|
959 |
test((TUint8*)h->FreeRef().next == p3 - minc - RHeap::EAllocCellSize);
|
|
960 |
h->TestFree(p2);
|
|
961 |
if (l2+RHeap::EAllocCellSize >= shrinkThres)
|
|
962 |
{
|
|
963 |
// When KHeapShrinkRatio small enough heap will have been compressed
|
|
964 |
test(h->Top() == orig_top);
|
|
965 |
test(c.Size() - orig_size == 0);
|
|
966 |
}
|
|
967 |
else
|
|
968 |
{
|
|
969 |
test(h->Top() - orig_top == g);
|
|
970 |
test(c.Size() - orig_size == g);
|
|
971 |
}
|
|
972 |
h->FullCheck();
|
|
973 |
if ( ((TLinAddr)orig_top & (align-1)) == 0)
|
|
974 |
{
|
|
975 |
TAny* free;
|
|
976 |
TEST_ALIGN(p2 - RHeap::EAllocCellSize, page_size);
|
|
977 |
// will have free space of g-minc
|
|
978 |
test(h->TestAlloc(l2 + minc) == p2);
|
|
979 |
test(h->Top() - orig_top == 2*g);
|
|
980 |
test(c.Size() - orig_size == 2*g);
|
|
981 |
free = pass ? h->FreeRef().next->next : h->FreeRef().next;
|
|
982 |
test(free != NULL);
|
|
983 |
test(h->TestReAlloc(p2, l2 - 4, 0) == p2);
|
|
984 |
TInt freeSp = g-minc + (l2+minc - (l2-4));
|
|
985 |
TInt adjust = 0;
|
|
986 |
if (freeSp >= shrinkThres && freeSp-page_size >= minc)
|
|
987 |
{
|
|
988 |
// if page_size is less than growBy (g) then heap will be shrunk
|
|
989 |
// by less than a whole g.
|
|
990 |
adjust = g-((page_size<g)?page_size:0);
|
|
991 |
}
|
|
992 |
test(h->Top() - orig_top == 2*g - adjust);
|
|
993 |
test(c.Size() - orig_size == 2*g - adjust);
|
|
994 |
free = pass ? h->FreeRef().next->next : h->FreeRef().next;
|
|
995 |
test(free != NULL);
|
|
996 |
TEST_ALIGN(TLinAddr(free)+4, page_size);
|
|
997 |
test(h->TestAlloc(l2 + g + page_size + 4) == p3 - 4);
|
|
998 |
test(h->Top() - orig_top == 4*g - adjust);
|
|
999 |
test(c.Size() - orig_size == 4*g - adjust);
|
|
1000 |
h->TestFree(p3 - 4);
|
|
1001 |
h->ForceCompress(l2 + g + page_size + 4);
|
|
1002 |
test(h->Top() - orig_top == g + page_size);
|
|
1003 |
test(c.Size() - orig_size == g + page_size);
|
|
1004 |
h->FullCheck();
|
|
1005 |
h->TestFree(p2);
|
|
1006 |
h->ForceCompress(l2-4);
|
|
1007 |
test(h->Compress() == 0);
|
|
1008 |
// check heap is grown, will have free space of g-minc
|
|
1009 |
test(h->TestAlloc(l2 + minc) == p2);
|
|
1010 |
test(h->Top() - orig_top == 2*g);
|
|
1011 |
test(c.Size() - orig_size == 2*g);
|
|
1012 |
free = pass ? h->FreeRef().next->next : h->FreeRef().next;
|
|
1013 |
test(free != NULL);
|
|
1014 |
// may shrink heap as will now have g+minc free bytes
|
|
1015 |
test(h->TestReAlloc(p2, l2 - minc, 0) == p2);
|
|
1016 |
if (g+minc >= shrinkThres)
|
|
1017 |
{
|
|
1018 |
test(h->Top() - orig_top == g);
|
|
1019 |
test(c.Size() - orig_size == g);
|
|
1020 |
}
|
|
1021 |
else
|
|
1022 |
{
|
|
1023 |
test(h->Top() - orig_top == 2*g);
|
|
1024 |
test(c.Size() - orig_size == 2*g);
|
|
1025 |
}
|
|
1026 |
free = pass ? h->FreeRef().next->next : h->FreeRef().next;
|
|
1027 |
test(free != NULL);
|
|
1028 |
TEST_ALIGN(TLinAddr(free)+minc, page_size);
|
|
1029 |
test(h->TestAlloc(l2 + g + page_size + minc) == p3 - minc);
|
|
1030 |
test(h->Top() - orig_top == 4*g);
|
|
1031 |
test(c.Size() - orig_size == 4*g);
|
|
1032 |
h->TestFree(p3 - minc);
|
|
1033 |
h->ForceCompress(l2 + g + page_size + minc);
|
|
1034 |
test(h->Top() - orig_top == g);
|
|
1035 |
test(c.Size() - orig_size == g);
|
|
1036 |
h->FullCheck();
|
|
1037 |
h->TestFree(p2);
|
|
1038 |
}
|
|
1039 |
|
|
1040 |
h->TestFree(p1);
|
|
1041 |
if (pass == 0)
|
|
1042 |
h->TestFree(p0);
|
|
1043 |
h->Compress();
|
|
1044 |
}
|
|
1045 |
h->FullCheck();
|
|
1046 |
}
|
|
1047 |
|
|
1048 |
void Test1()
|
|
1049 |
{
|
|
1050 |
RHeap* h;
|
|
1051 |
h = RTestHeap::FixedHeap(0x1000, 0);
|
|
1052 |
test(h != NULL);
|
|
1053 |
DoTest1(h);
|
|
1054 |
h->Close();
|
|
1055 |
h = RTestHeap::FixedHeap(0x1000, 0, EFalse);
|
|
1056 |
test(h != NULL);
|
|
1057 |
DoTest1(h);
|
|
1058 |
h->Close();
|
|
1059 |
h = RTestHeap::FixedHeap(0x10000, 64);
|
|
1060 |
test(h != NULL);
|
|
1061 |
DoTest1(h);
|
|
1062 |
h->Close();
|
|
1063 |
h = RTestHeap::FixedHeap(0x100000, 4096);
|
|
1064 |
test(h != NULL);
|
|
1065 |
DoTest1(h);
|
|
1066 |
h->Close();
|
|
1067 |
h = RTestHeap::FixedHeap(0x100000, 8192);
|
|
1068 |
test(h != NULL);
|
|
1069 |
DoTest1(h);
|
|
1070 |
h->Close();
|
|
1071 |
h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x1000, 0x1000, 4);
|
|
1072 |
test(h != NULL);
|
|
1073 |
DoTest1(h);
|
|
1074 |
h->Close();
|
|
1075 |
h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x10000, 0x1000, 4);
|
|
1076 |
test(h != NULL);
|
|
1077 |
DoTest1(h);
|
|
1078 |
h->Close();
|
|
1079 |
h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 4096);
|
|
1080 |
test(h != NULL);
|
|
1081 |
DoTest1(h);
|
|
1082 |
h->Close();
|
|
1083 |
h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 4);
|
|
1084 |
test(h != NULL);
|
|
1085 |
DoTest1(h);
|
|
1086 |
h->Reset();
|
|
1087 |
DoTest2(h);
|
|
1088 |
h->Reset();
|
|
1089 |
DoTest3(h);
|
|
1090 |
h->Reset();
|
|
1091 |
DoTest4(h);
|
|
1092 |
h->Close();
|
|
1093 |
h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 8);
|
|
1094 |
test(h != NULL);
|
|
1095 |
DoTest1(h);
|
|
1096 |
h->Reset();
|
|
1097 |
DoTest2(h);
|
|
1098 |
h->Reset();
|
|
1099 |
DoTest3(h);
|
|
1100 |
h->Reset();
|
|
1101 |
DoTest4(h);
|
|
1102 |
h->Close();
|
|
1103 |
h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 16);
|
|
1104 |
test(h != NULL);
|
|
1105 |
DoTest1(h);
|
|
1106 |
h->Reset();
|
|
1107 |
DoTest2(h);
|
|
1108 |
h->Reset();
|
|
1109 |
DoTest3(h);
|
|
1110 |
h->Reset();
|
|
1111 |
DoTest4(h);
|
|
1112 |
h->Close();
|
|
1113 |
h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 32);
|
|
1114 |
test(h != NULL);
|
|
1115 |
DoTest1(h);
|
|
1116 |
h->Reset();
|
|
1117 |
DoTest2(h);
|
|
1118 |
h->Reset();
|
|
1119 |
DoTest3(h);
|
|
1120 |
h->Reset();
|
|
1121 |
DoTest4(h);
|
|
1122 |
h->Close();
|
|
1123 |
h = UserHeap::ChunkHeap(&KNullDesC(), 0x3000, 0x100000, 0x3000, 4);
|
|
1124 |
test(h != NULL);
|
|
1125 |
DoTest1(h);
|
|
1126 |
h->Reset();
|
|
1127 |
DoTest2(h);
|
|
1128 |
h->Reset();
|
|
1129 |
DoTest3(h);
|
|
1130 |
h->Reset();
|
|
1131 |
DoTest4(h);
|
|
1132 |
h->Close();
|
|
1133 |
}
|
|
1134 |
|
0
|
1135 |
struct SHeapStress
|
|
1136 |
{
|
|
1137 |
RThread iThread;
|
|
1138 |
volatile TBool iStop;
|
|
1139 |
TInt iAllocs;
|
|
1140 |
TInt iFailedAllocs;
|
|
1141 |
TInt iFrees;
|
|
1142 |
TInt iReAllocs;
|
|
1143 |
TInt iFailedReAllocs;
|
|
1144 |
TInt iChecks;
|
|
1145 |
TUint32 iSeed;
|
|
1146 |
RAllocator* iAllocator;
|
|
1147 |
|
|
1148 |
TUint32 Random();
|
|
1149 |
};
|
|
1150 |
|
|
1151 |
TUint32 SHeapStress::Random()
|
|
1152 |
{
|
|
1153 |
iSeed *= 69069;
|
|
1154 |
iSeed += 41;
|
|
1155 |
return iSeed;
|
|
1156 |
}
|
|
1157 |
|
|
1158 |
TInt RandomLength(TUint32 aRandom)
|
|
1159 |
{
|
|
1160 |
TUint8 x = (TUint8)aRandom;
|
|
1161 |
if (x & 0x80)
|
|
1162 |
return (x & 0x7f) << 7;
|
|
1163 |
return x & 0x7f;
|
|
1164 |
}
|
|
1165 |
|
|
1166 |
TInt HeapStress(TAny* aPtr)
|
|
1167 |
{
|
|
1168 |
SHeapStress& hs = *(SHeapStress*)aPtr;
|
|
1169 |
RTestHeap* h = (RTestHeap*)&User::Allocator();
|
|
1170 |
TUint8* cell[256];
|
|
1171 |
TInt len[256];
|
|
1172 |
|
|
1173 |
Mem::FillZ(cell, sizeof(cell));
|
|
1174 |
Mem::FillZ(len, sizeof(len));
|
|
1175 |
|
|
1176 |
RThread::Rendezvous(KErrNone);
|
|
1177 |
while (!hs.iStop)
|
|
1178 |
{
|
|
1179 |
// allocate all cells
|
|
1180 |
TInt i;
|
|
1181 |
for (i=0; i<256; ++i)
|
|
1182 |
{
|
|
1183 |
if (!cell[i])
|
|
1184 |
{
|
|
1185 |
++hs.iAllocs;
|
|
1186 |
cell[i] = (TUint8*)h->TestAlloc(RandomLength(hs.Random()));
|
|
1187 |
if (cell[i])
|
|
1188 |
len[i] = h->AllocLen(cell[i]);
|
|
1189 |
else
|
|
1190 |
++hs.iFailedAllocs;
|
|
1191 |
}
|
|
1192 |
}
|
|
1193 |
|
|
1194 |
// free some cells
|
|
1195 |
TInt n = 64 + (hs.Random() & 127);
|
|
1196 |
while (--n)
|
|
1197 |
{
|
|
1198 |
i = hs.Random() & 0xff;
|
|
1199 |
if (cell[i])
|
|
1200 |
{
|
|
1201 |
test(h->AllocLen(cell[i]) == len[i]);
|
|
1202 |
h->TestFree(cell[i]);
|
|
1203 |
cell[i] = NULL;
|
|
1204 |
len[i] = 0;
|
|
1205 |
++hs.iFrees;
|
|
1206 |
}
|
|
1207 |
}
|
|
1208 |
|
|
1209 |
// realloc some cells
|
|
1210 |
n = 64 + (hs.Random() & 127);
|
|
1211 |
while (--n)
|
|
1212 |
{
|
|
1213 |
TUint32 rn = hs.Random();
|
|
1214 |
i = (rn >> 8) & 0xff;
|
|
1215 |
TInt new_len = RandomLength(rn);
|
|
1216 |
if (cell[i])
|
|
1217 |
{
|
|
1218 |
test(h->AllocLen(cell[i]) == len[i]);
|
|
1219 |
++hs.iReAllocs;
|
|
1220 |
TUint8* p = (TUint8*)h->TestReAlloc(cell[i], new_len, rn >> 16);
|
|
1221 |
if (p)
|
|
1222 |
{
|
|
1223 |
cell[i] = p;
|
|
1224 |
len[i] = h->AllocLen(p);
|
|
1225 |
}
|
|
1226 |
else
|
|
1227 |
++hs.iFailedReAllocs;
|
|
1228 |
}
|
|
1229 |
}
|
|
1230 |
|
|
1231 |
// check the heap
|
|
1232 |
h->Check();
|
|
1233 |
++hs.iChecks;
|
|
1234 |
}
|
|
1235 |
return 0;
|
|
1236 |
}
|
|
1237 |
|
|
1238 |
void CreateStressThread(SHeapStress& aInfo)
|
|
1239 |
{
|
|
1240 |
Mem::FillZ(&aInfo, _FOFF(SHeapStress, iSeed));
|
|
1241 |
RThread& t = aInfo.iThread;
|
|
1242 |
TInt r = t.Create(KNullDesC(), &HeapStress, 0x2000, aInfo.iAllocator, &aInfo);
|
|
1243 |
test(r==KErrNone);
|
|
1244 |
t.SetPriority(EPriorityLess);
|
|
1245 |
TRequestStatus s;
|
|
1246 |
t.Rendezvous(s);
|
|
1247 |
test(s == KRequestPending);
|
|
1248 |
t.Resume();
|
|
1249 |
User::WaitForRequest(s);
|
|
1250 |
test(s == KErrNone);
|
|
1251 |
test(t.ExitType() == EExitPending);
|
|
1252 |
t.SetPriority(EPriorityMuchLess);
|
|
1253 |
}
|
|
1254 |
|
|
1255 |
void StopStressThread(SHeapStress& aInfo)
|
|
1256 |
{
|
|
1257 |
RThread& t = aInfo.iThread;
|
|
1258 |
TRequestStatus s;
|
|
1259 |
t.Logon(s);
|
|
1260 |
aInfo.iStop = ETrue;
|
|
1261 |
User::WaitForRequest(s);
|
|
1262 |
const TDesC& exitCat = t.ExitCategory();
|
|
1263 |
TInt exitReason = t.ExitReason();
|
|
1264 |
TInt exitType = t.ExitType();
|
|
1265 |
test.Printf(_L("Exit type %d,%d,%S\n"), exitType, exitReason, &exitCat);
|
|
1266 |
test(exitType == EExitKill);
|
|
1267 |
test(exitReason == KErrNone);
|
|
1268 |
test(s == KErrNone);
|
|
1269 |
test.Printf(_L("Total Allocs : %d\n"), aInfo.iAllocs);
|
|
1270 |
test.Printf(_L("Failed Allocs : %d\n"), aInfo.iFailedAllocs);
|
|
1271 |
test.Printf(_L("Total Frees : %d\n"), aInfo.iFrees);
|
|
1272 |
test.Printf(_L("Total ReAllocs : %d\n"), aInfo.iReAllocs);
|
|
1273 |
test.Printf(_L("Failed ReAllocs : %d\n"), aInfo.iFailedReAllocs);
|
|
1274 |
test.Printf(_L("Heap checks : %d\n"), aInfo.iChecks);
|
|
1275 |
}
|
|
1276 |
|
|
1277 |
void DoStressTest1(RAllocator* aAllocator)
|
|
1278 |
{
|
|
1279 |
RTestHeap* h = (RTestHeap*)aAllocator;
|
44
|
1280 |
test.Printf(_L("Test Stress 1: min=%x max=%x align=%d growby=%d\n"),
|
|
1281 |
h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy());
|
0
|
1282 |
SHeapStress hs;
|
|
1283 |
hs.iSeed = 0xb504f334;
|
|
1284 |
hs.iAllocator = aAllocator;
|
|
1285 |
CreateStressThread(hs);
|
|
1286 |
User::After(10*1000000);
|
|
1287 |
StopStressThread(hs);
|
|
1288 |
CLOSE_AND_WAIT(hs.iThread);
|
|
1289 |
h->FullCheck();
|
|
1290 |
}
|
|
1291 |
|
|
1292 |
void DoStressTest2(RAllocator* aAllocator)
|
|
1293 |
{
|
|
1294 |
RTestHeap* h = (RTestHeap*)aAllocator;
|
44
|
1295 |
test.Printf(_L("Test Stress 2: min=%x max=%x align=%d growby=%d\n"),
|
|
1296 |
h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy());
|
0
|
1297 |
SHeapStress hs1;
|
|
1298 |
SHeapStress hs2;
|
|
1299 |
hs1.iSeed = 0xb504f334;
|
|
1300 |
hs1.iAllocator = aAllocator;
|
|
1301 |
hs2.iSeed = 0xddb3d743;
|
|
1302 |
hs2.iAllocator = aAllocator;
|
|
1303 |
CreateStressThread(hs1);
|
|
1304 |
CreateStressThread(hs2);
|
|
1305 |
User::After(20*1000000);
|
|
1306 |
StopStressThread(hs1);
|
|
1307 |
StopStressThread(hs2);
|
|
1308 |
CLOSE_AND_WAIT(hs1.iThread);
|
|
1309 |
CLOSE_AND_WAIT(hs2.iThread);
|
|
1310 |
h->FullCheck();
|
|
1311 |
}
|
|
1312 |
|
|
1313 |
void StressTests()
|
|
1314 |
{
|
|
1315 |
RHeap* h;
|
|
1316 |
h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 4);
|
|
1317 |
test(h != NULL);
|
|
1318 |
DoStressTest1(h);
|
|
1319 |
h->Reset();
|
|
1320 |
DoStressTest2(h);
|
|
1321 |
h->Close();
|
|
1322 |
h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 8);
|
|
1323 |
test(h != NULL);
|
|
1324 |
DoStressTest1(h);
|
|
1325 |
h->Reset();
|
|
1326 |
DoStressTest2(h);
|
|
1327 |
h->Close();
|
|
1328 |
}
|
|
1329 |
|
|
1330 |
TInt TestHeapGrowInPlace(TInt aMode)
|
|
1331 |
{
|
|
1332 |
TBool reAllocs=EFalse;
|
44
|
1333 |
TBool heapGrew=EFalse;
|
|
1334 |
|
0
|
1335 |
RHeap* myHeap;
|
44
|
1336 |
|
|
1337 |
myHeap = UserHeap::ChunkHeap(NULL,0x1000,0x4000,0x1000);
|
0
|
1338 |
|
|
1339 |
TAny *testBuffer,*testBuffer2;
|
|
1340 |
// Start size chosen so that 1st realloc will use up exactly all the heap.
|
|
1341 |
// Later iterations wont, and there will be a free cell at the end of the heap.
|
44
|
1342 |
TInt currentSize = ((0x800) - sizeof(RHeap)) - RHeap::EAllocCellSize;
|
0
|
1343 |
TInt growBy = 0x800;
|
44
|
1344 |
TInt newSpace, space;
|
|
1345 |
|
0
|
1346 |
testBuffer2 = myHeap->Alloc(currentSize);
|
|
1347 |
|
44
|
1348 |
newSpace = myHeap->Size();
|
0
|
1349 |
do
|
|
1350 |
{
|
44
|
1351 |
space = newSpace;
|
|
1352 |
testBuffer = testBuffer2;
|
0
|
1353 |
currentSize+=growBy;
|
|
1354 |
testBuffer2 = myHeap->ReAlloc(testBuffer,currentSize,aMode);
|
|
1355 |
|
44
|
1356 |
newSpace = myHeap->Size();
|
|
1357 |
|
0
|
1358 |
if (testBuffer2)
|
|
1359 |
{
|
|
1360 |
|
|
1361 |
if (testBuffer!=testBuffer2)
|
|
1362 |
reAllocs = ETrue;
|
44
|
1363 |
|
|
1364 |
if (newSpace>space)
|
|
1365 |
heapGrew = ETrue;
|
0
|
1366 |
}
|
|
1367 |
growBy-=16;
|
|
1368 |
} while (testBuffer2);
|
|
1369 |
currentSize-=growBy;
|
|
1370 |
|
|
1371 |
myHeap->Free(testBuffer);
|
|
1372 |
myHeap->Close();
|
|
1373 |
|
|
1374 |
// How did we do?
|
|
1375 |
if (reAllocs)
|
|
1376 |
{
|
|
1377 |
test.Printf(_L("Failure - Memory was moved!\n"));
|
|
1378 |
return -100;
|
|
1379 |
}
|
44
|
1380 |
if (!heapGrew)
|
|
1381 |
{
|
|
1382 |
test.Printf(_L("Failure - Heap Never Grew!\n"));
|
|
1383 |
return -200;
|
|
1384 |
}
|
0
|
1385 |
if (currentSize<= 0x3000)
|
|
1386 |
{
|
|
1387 |
test.Printf(_L("Failed to grow by a reasonable amount!\n"));
|
|
1388 |
return -300;
|
|
1389 |
}
|
|
1390 |
|
|
1391 |
return KErrNone;
|
|
1392 |
}
|
|
1393 |
|
|
1394 |
void ReAllocTests()
|
|
1395 |
{
|
|
1396 |
test.Next(_L("Testing Grow In Place"));
|
|
1397 |
test(TestHeapGrowInPlace(0)==KErrNone);
|
|
1398 |
test(TestHeapGrowInPlace(RHeap::ENeverMove)==KErrNone);
|
|
1399 |
}
|
|
1400 |
|
|
1401 |
RHeap* TestDEF078391Heap = 0;
|
|
1402 |
|
|
1403 |
TInt TestDEF078391ThreadFunction(TAny*)
|
|
1404 |
{
|
|
1405 |
TestDEF078391Heap = UserHeap::ChunkHeap(NULL,0x1000,0x100000,KMinHeapGrowBy,0,EFalse);
|
|
1406 |
return TestDEF078391Heap ? KErrNone : KErrGeneral;
|
|
1407 |
}
|
|
1408 |
|
|
1409 |
void TestDEF078391()
|
|
1410 |
{
|
|
1411 |
// Test that creating a multithreaded heap with UserHeap::ChunkHeap
|
|
1412 |
// doesn't create any reference counts on the creating thread.
|
|
1413 |
// This is done by creating a heap in a named thread, then exiting
|
|
1414 |
// the thread and re-creating it with the same name.
|
|
1415 |
// This will fail with KErrAlreadyExists if the orinal thread has
|
|
1416 |
// not died because of an unclosed reference count.
|
|
1417 |
test.Next(_L("Test that creating a multithreaded heap doesn't open references of creator"));
|
|
1418 |
_LIT(KThreadName,"ThreadName");
|
|
1419 |
RThread t;
|
|
1420 |
TInt r=t.Create(KThreadName,TestDEF078391ThreadFunction,0x1000,0x1000,0x100000,NULL);
|
|
1421 |
test(r==KErrNone);
|
|
1422 |
TRequestStatus status;
|
|
1423 |
t.Logon(status);
|
|
1424 |
t.Resume();
|
|
1425 |
User::WaitForRequest(status);
|
|
1426 |
test(status==KErrNone);
|
|
1427 |
test(t.ExitType()==EExitKill);
|
|
1428 |
test(t.ExitReason()==KErrNone);
|
|
1429 |
CLOSE_AND_WAIT(t);
|
|
1430 |
test(TestDEF078391Heap!=0);
|
|
1431 |
User::After(1000000); // give more opportunity for thread cleanup to happen
|
|
1432 |
|
|
1433 |
// create thread a second time
|
|
1434 |
r=t.Create(KThreadName,TestDEF078391ThreadFunction,0x1000,0x1000,0x100000,NULL);
|
|
1435 |
test(r==KErrNone);
|
|
1436 |
t.Kill(0);
|
|
1437 |
CLOSE_AND_WAIT(t);
|
|
1438 |
|
|
1439 |
// close the heap that got created earlier
|
|
1440 |
TestDEF078391Heap->Close();
|
|
1441 |
}
|
|
1442 |
|
|
1443 |
TInt E32Main()
|
|
1444 |
{
|
|
1445 |
test.Title();
|
|
1446 |
__KHEAP_MARK;
|
|
1447 |
test.Start(_L("Testing heaps"));
|
|
1448 |
TestDEF078391();
|
44
|
1449 |
Test1();
|
0
|
1450 |
StressTests();
|
|
1451 |
ReAllocTests();
|
|
1452 |
test.End();
|
|
1453 |
__KHEAP_MARKEND;
|
|
1454 |
return 0;
|
|
1455 |
}
|