0
|
1 |
/*
|
|
2 |
* Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
3 |
* All rights reserved.
|
|
4 |
* This component and the accompanying materials are made available
|
|
5 |
* under the terms of the License "Eclipse Public License v1.0"
|
|
6 |
* which accompanies this distribution, and is available
|
|
7 |
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
8 |
*
|
|
9 |
* Initial Contributors:
|
|
10 |
* Nokia Corporation - initial contribution.
|
|
11 |
*
|
|
12 |
* Contributors:
|
|
13 |
*
|
|
14 |
* Description:
|
|
15 |
*
|
|
16 |
*/
|
|
17 |
|
|
18 |
|
|
19 |
#include <drivers/iic.h>
|
|
20 |
// #include <gpio.h> // Include if using GPIO functionality
|
|
21 |
#include "iic_psl.h"
|
|
22 |
#include "iic_master.h"
|
|
23 |
|
|
24 |
|
|
25 |
// Method called when transmission activity is ended. The method is used to indicate
|
|
26 |
// the success or failure reported in the first parameter
|
|
27 |
//
|
|
28 |
// All timers are cancelled, relevant interrupts are disabled and the transaction
|
|
29 |
// request is completed by calling the relevant PIL method.
|
|
30 |
//
|
|
31 |
void DIicBusChannelMasterPsl::ExitComplete(TInt aErr, TBool aComplete /*= ETrue*/)
|
|
32 |
{
|
|
33 |
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::ExitComplete, aErr %d, aComplete %d", aErr, aComplete));
|
|
34 |
|
|
35 |
// Disable interrupts for the channel
|
|
36 |
// with something similar to the following lines:
|
|
37 |
// Interrupt::Disable(iRxInterruptId);
|
|
38 |
// Interrupt::Disable(iTxInterruptId);
|
|
39 |
|
|
40 |
// Cancel timers and DFCs..
|
|
41 |
CancelTimeOut();
|
|
42 |
iHwGuardTimer.Cancel();
|
|
43 |
iTransferEndDfc.Cancel();
|
|
44 |
|
|
45 |
// Change the channel state to EIdle so that subsequent transaction requests can be accepted
|
|
46 |
// once the current one has been completed
|
|
47 |
iState = EIdle;
|
|
48 |
|
|
49 |
// Call the PIL method to complete the request
|
|
50 |
if(aComplete)
|
|
51 |
{
|
|
52 |
CompleteRequest(aErr);
|
|
53 |
}
|
|
54 |
}
|
|
55 |
|
|
56 |
// Callback function for the iHwGuardTimer timer.
|
|
57 |
//
|
|
58 |
// Called in ISR context if the iHwGuardTimer expires. Sets iTransactionStatus to KErrTimedOut
|
|
59 |
//
|
|
60 |
void DIicBusChannelMasterPsl::TimeoutCallback(TAny* aPtr)
|
|
61 |
{
|
|
62 |
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::TimeoutCallback"));
|
|
63 |
DIicBusChannelMasterPsl *a = (DIicBusChannelMasterPsl*) aPtr;
|
|
64 |
a->iTransactionStatus = KErrTimedOut;
|
|
65 |
}
|
|
66 |
|
|
67 |
// HandleSlaveTimeout
|
|
68 |
//
|
|
69 |
// This method is called by the PIL in the case of expiry of a timer started by the PSL. It is
|
|
70 |
// specificaly intended to guard against the Slave not responding within an expected time
|
|
71 |
//
|
|
72 |
// The PIL method StartSlaveTimeoutTimer is available for the PSL to start the timer (this is
|
|
73 |
// called from ProcessNextTransfers, below).
|
|
74 |
// The PIL method CancelTimeOut is available for the PSL to cancel the same timer (this is called
|
|
75 |
// from ExitComplete, above)
|
|
76 |
//
|
|
77 |
// The PIL will call CompleteRequest() after this function returns, so the PSL needs only to clean-up
|
|
78 |
//
|
|
79 |
TInt DIicBusChannelMasterPsl::HandleSlaveTimeout()
|
|
80 |
{
|
|
81 |
__KTRACE_OPT(KIIC, Kern::Printf("HandleSlaveTimeout"));
|
|
82 |
|
|
83 |
// Ensure that the hardware has ceased transfers, with something similar to the following line:
|
|
84 |
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusDisableBit);
|
|
85 |
// GPIO::SetPinMode(aPinId, GPIO::EDisabled);
|
|
86 |
|
|
87 |
// Stop the PSL's operation, and inform the PIL of the timeout
|
|
88 |
ExitComplete(KErrTimedOut, EFalse);
|
|
89 |
|
|
90 |
// Perform any further hardware manipulation necessary
|
|
91 |
//
|
|
92 |
|
|
93 |
return KErrTimedOut;
|
|
94 |
}
|
|
95 |
|
|
96 |
|
|
97 |
// DFC
|
|
98 |
//
|
|
99 |
// For execution when a Rx buffer has been filled or a Tx buffer has been emptied
|
|
100 |
//
|
|
101 |
void DIicBusChannelMasterPsl::TransferEndDfc(TAny* aPtr)
|
|
102 |
{
|
|
103 |
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::TransferEndDfc"));
|
|
104 |
DIicBusChannelMasterPsl *a = (DIicBusChannelMasterPsl*) aPtr;
|
|
105 |
|
|
106 |
// Start of optional processing - not necessary for all implementations
|
|
107 |
//
|
|
108 |
// When operating full-duplex transfers, one of the Rx and Tx operations may have caused an interrupt
|
|
109 |
// before the other has completed. For the example here, the Tx is assumed to have completed before the Rx
|
|
110 |
// and a timer is used to ensure that the outstanding Rx operation completes within an expected time.
|
|
111 |
//
|
|
112 |
// If there has been no error so far, may want to check if we are still receiving the data
|
|
113 |
if(a->iTransactionStatus == KErrNone)
|
|
114 |
{
|
|
115 |
// Use an active wait since this is likely to be a brief check.
|
|
116 |
// Start the guard timer (which will update iTransactionStatus with KErrTimedOut if it expires)
|
|
117 |
// while also polling the hardware to check if transmission has ceased.
|
|
118 |
//
|
|
119 |
// Polling the hardware would be something like the line below
|
|
120 |
// (AsspRegister::Read32(a->aRegisterSetBaseAddress + KStatusRegisterOffset) & KTransmissionActive));
|
|
121 |
// but for the template port will use a dummy condition (value of 1)
|
|
122 |
//
|
|
123 |
a->iHwGuardTimer.OneShot(NKern::TimerTicks(KTimeoutValue));
|
|
124 |
while((a->iTransactionStatus == KErrNone) && 1); // Replace 1 with a register read
|
|
125 |
}
|
|
126 |
//
|
|
127 |
// Now the timer has expired, deactivate the slave select until the current state has been processed, but only
|
|
128 |
// if this is not an extended transaction, in which case we want to leave the bus alone so that the multiple
|
|
129 |
// transactions making up the extended transaction become one big transaction as far as the bus is concerned.
|
|
130 |
// Do this with something similar to the following line:
|
|
131 |
// if (!(a->iCurrTransaction->Flags() & KTransactionWithMultiTransc))
|
|
132 |
// {
|
|
133 |
// GPIO::SetPinMode(aPinId, GPIO::EDisabled);
|
|
134 |
// }
|
|
135 |
//
|
|
136 |
// Disable the hardware from further transmissions
|
|
137 |
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusDisableBit);
|
|
138 |
//
|
|
139 |
// Check if the guard timer expired
|
|
140 |
if(a->iTransactionStatus != KErrNone)
|
|
141 |
{
|
|
142 |
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::TransferEndDfc(): error %d",a->iTransactionStatus));
|
|
143 |
a->ExitComplete(a->iTransactionStatus); // report the error
|
|
144 |
return;
|
|
145 |
}
|
|
146 |
else
|
|
147 |
{
|
|
148 |
// Transfer completed successfully, so just cancel the guard timer
|
|
149 |
a->iHwGuardTimer.Cancel();
|
|
150 |
}
|
|
151 |
// End of optional processing - not necessary for all implementations
|
|
152 |
|
|
153 |
// At this point, prepare for subsequent transfers by performing any necessary clean-up.
|
|
154 |
// As stated above, for this example, it is assumed that any Rx or Tx transfer has completed -
|
|
155 |
// the following just checks if an Rx, Tx operation was started, and assumes that they completed.
|
|
156 |
|
|
157 |
if(a->iOperation.iOp.iIsReceiving)
|
|
158 |
{
|
|
159 |
// If the channel has been receiving data, may need to ensure that any FIFO used has been drained
|
|
160 |
// The example here checks if one extra data item remains in the FIFO
|
|
161 |
// To check if data remains in a FIFO, something similar to the following could be used:
|
|
162 |
// TInt8 dataRemains = AsspRegister::Read32(a->aRegisterSetBaseAddress + KRxFifoLevel);
|
|
163 |
// Reading data from the FIFO would be achieved with something like the line below
|
|
164 |
// value = AsspRegister::Read32(a->aRegisterSetBaseAddress + KRxData);
|
|
165 |
// but for the template port will just use a dummy values (data remains=1, value = 1)
|
|
166 |
//
|
|
167 |
TInt8 dataRemains = 1; // Would be a check of a Rx FIFO level
|
|
168 |
|
|
169 |
// If data remains in the Rx FIFO and the Rx buffer is not full, copy the data to the buffer
|
|
170 |
if(dataRemains && (a->iRxDataEnd - a->iRxData >= a->iWordSize) )
|
|
171 |
{
|
|
172 |
TUint8 value = 1; // Would be a read of the Rx FIFO data
|
|
173 |
*a->iRxData = value; // For this example, assumes one byte of data has been read from the FIFO
|
|
174 |
// but if operating in 16-bit mode, two "values" would be written the buffer
|
|
175 |
a->iRxData += a->iWordSize; // In this example, 8-bit mode is assumed (iWordSize=1)
|
|
176 |
// but if operating in 16-bit mode a->iRxData would be incremented by
|
|
177 |
// the number of bytes specified in a->iWordSize
|
|
178 |
}
|
|
179 |
}
|
|
180 |
|
|
181 |
if(a->iOperation.iOp.iIsTransmitting)
|
|
182 |
{
|
|
183 |
// If the channel has been transmitting data, may need to ensure that any FIFO used has been flushed
|
|
184 |
// To check if data remains in a FIFO, something similar to the following could be used:
|
|
185 |
// TInt8 dataRemains = AsspRegister::Read32(a->aRegisterSetBaseAddress + KTxFifoLevel);
|
|
186 |
// The means to flush the FIFO will be platform specific, and so no example is given here.
|
|
187 |
}
|
|
188 |
|
|
189 |
// Start the next transfer for this transaction, if any remain
|
|
190 |
if(a->iState == EBusy)
|
|
191 |
{
|
|
192 |
TInt err = a->ProcessNextTransfers();
|
|
193 |
if(err != KErrNone)
|
|
194 |
{
|
|
195 |
// If the next transfer could not be started, complete the transaction with
|
|
196 |
// the returned error code
|
|
197 |
a->ExitComplete(err);
|
|
198 |
}
|
|
199 |
}
|
|
200 |
}
|
|
201 |
|
|
202 |
|
|
203 |
// ISR Handler
|
|
204 |
//
|
|
205 |
// If the channel is to be event driven, it will use interrupts that indicate the
|
|
206 |
// hardware has received or transmitted. To support this an ISR is required.
|
|
207 |
//
|
|
208 |
void DIicBusChannelMasterPsl::IicIsr(TAny* aPtr)
|
|
209 |
{
|
|
210 |
DIicBusChannelMasterPsl *a = (DIicBusChannelMasterPsl*) aPtr;
|
|
211 |
|
|
212 |
// The processing for Rx and Tx will differ, so must determine the status of the interrupts.
|
|
213 |
// This will be PSL-specific, but is likely to achieved by reading a status register, in a
|
|
214 |
// way similar to this:
|
|
215 |
// TUint32 status = AsspRegister::Read32(aRegisterSetBaseAddress + KStatusRegisterOffset);
|
|
216 |
//
|
|
217 |
// For the purposes of compiling the template port, just initialise status to zero.
|
|
218 |
TUint32 status = 0;
|
|
219 |
|
|
220 |
if(status & KIicPslTxInterrupt)
|
|
221 |
{
|
|
222 |
// Tx interrupt processing
|
|
223 |
|
|
224 |
// Clear the interrupt source, with something similar to the following line:
|
|
225 |
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KStatusRegisterOffset, KIicPslTxInterrupt);
|
|
226 |
|
|
227 |
// Then check whether all the required data has been transmitted.
|
|
228 |
if(a->iTxData == a->iTxDataEnd)
|
|
229 |
{
|
|
230 |
// All data sent, so disable the Tx interrupt and queue a DFC to handle the next steps.
|
|
231 |
// Interrupt::Disable(a->iTxInterruptId);
|
|
232 |
a->iTransferEndDfc.Add();
|
|
233 |
}
|
|
234 |
else
|
|
235 |
{
|
|
236 |
if(a->iOperation.iOp.iIsTransmitting)
|
|
237 |
{
|
|
238 |
// Data remaining - copy the next value to send to the Tx register
|
|
239 |
|
|
240 |
// TUint8 nextTxValue = *a->iTxData; // For this example, assumes one byte of data is to be transmitted
|
|
241 |
// but if operating in 16-bit mode, bytes may need arranging for
|
|
242 |
// endianness
|
|
243 |
|
|
244 |
// Write to the Tx register with something similar to the following:
|
|
245 |
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KTxRegisterOffset, nextTxValue);
|
|
246 |
|
|
247 |
a->iTxData += a->iWordSize; // Then increment the pointer to the data. In this example, 8-bit mode is assumed
|
|
248 |
// (iWordSize=1), but if operating in 16-bit mode a->iTxData would be incremented
|
|
249 |
// by the number of bytes specified in a->iWordSize
|
|
250 |
}
|
|
251 |
}
|
|
252 |
}
|
|
253 |
|
|
254 |
if(status & KIicPslRxInterrupt)
|
|
255 |
{
|
|
256 |
// Rx interrupt processing
|
|
257 |
|
|
258 |
// Copy the received data to the Rx buffer.
|
|
259 |
// Do this in a loop in case there are more than one units of data to be handled. Data availability
|
|
260 |
// will be indicated by a PSL-specific register, and so may be handled by code similar to the following:
|
|
261 |
// while(AsspRegister::Read32(a->aRegisterSetBaseAddress + KRxData))
|
|
262 |
//
|
|
263 |
// But, to allow compilation of the template port, just use a dummy condition (while(1)):
|
|
264 |
while(1)
|
|
265 |
{
|
|
266 |
// While there is space in the buffer, copy received data to it
|
|
267 |
if((a->iRxDataEnd - a->iRxData) >= a->iWordSize)
|
|
268 |
{
|
|
269 |
TUint8 nextRxValue = 0;
|
|
270 |
// Read from the Rx register with something similar to the following:
|
|
271 |
// TUint8 nextRxValue = AsspRegister::Read32(aRegisterSetBaseAddress + KRxRegisterOffset);
|
|
272 |
*a->iRxData = nextRxValue;
|
|
273 |
}
|
|
274 |
else
|
|
275 |
{
|
|
276 |
// If there is no space left in the buffer an Overrun has occurred
|
|
277 |
a->iTransactionStatus = KErrOverflow;
|
|
278 |
break;
|
|
279 |
}
|
|
280 |
|
|
281 |
// Increment the pointer to the received data
|
|
282 |
a->iRxData += a->iWordSize;
|
|
283 |
}
|
|
284 |
|
|
285 |
// If the Rx buffer is now full, finish the transmission.
|
|
286 |
if(a->iRxDataEnd == a->iRxData)
|
|
287 |
{
|
|
288 |
// Disable the interrupt since it is no longer required
|
|
289 |
// Interrupt::Disable(a->iRxInterruptId);
|
|
290 |
|
|
291 |
// Then queue a DFC to perform the next steps
|
|
292 |
a->iTransferEndDfc.Add();
|
|
293 |
}
|
|
294 |
|
|
295 |
// After processing the data, clear the interrupt source (do it last to prevent the ISR being
|
|
296 |
// re-invoked before this ISR is finished), with something similar to the following line:
|
|
297 |
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KStatusRegisterOffset, KIicPslRxInterrupt);
|
|
298 |
}
|
|
299 |
}
|
|
300 |
|
|
301 |
// Constructor, first stage
|
|
302 |
//
|
|
303 |
// The PSL is responsible for setting the channel number - this is passed as the first parameter to
|
|
304 |
// this overload of the base class constructor
|
|
305 |
//
|
|
306 |
DIicBusChannelMasterPsl::DIicBusChannelMasterPsl(TInt aChannelNumber, TBusType aBusType, TChannelDuplex aChanDuplex) :
|
|
307 |
DIicBusChannelMaster(aBusType, aChanDuplex), // Base class constructor
|
|
308 |
iTransferEndDfc(TransferEndDfc, this, KIicPslDfcPriority), // DFC to handle transfer completion
|
|
309 |
iHwGuardTimer(TimeoutCallback, this) // Timer to guard against hardware timeout
|
|
310 |
{
|
|
311 |
iChannelNumber = aChannelNumber; // Set the iChannelNumber of the Base Class
|
|
312 |
iState = EIdle; // Initialise channel state machine
|
|
313 |
|
|
314 |
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::DIicBusChannelMasterPsl: iChannelNumber = %d", iChannelNumber));
|
|
315 |
}
|
|
316 |
|
|
317 |
// Second stage construction
|
|
318 |
//
|
|
319 |
// Allocate and initialise objects required by the PSL channel implementation
|
|
320 |
//
|
|
321 |
TInt DIicBusChannelMasterPsl::DoCreate()
|
|
322 |
{
|
|
323 |
__KTRACE_OPT(KIIC, Kern::Printf("\nDIicBusChannelMasterPsl::DoCreate() ch: %d \n", iChannelNumber));
|
|
324 |
|
|
325 |
TInt r = KErrNone;
|
|
326 |
|
|
327 |
// Interrupt IDs (such as iRxInterruptId, iTxInterruptId, used in this file)would be initialised here.
|
|
328 |
//
|
|
329 |
// Also, information relevant to the channel number (such as the base register address,
|
|
330 |
// aRegisterSetBaseAddress) would be initialised here.
|
|
331 |
|
|
332 |
// Create the DFCQ to be used by the channel
|
|
333 |
if(!iDfcQ)
|
|
334 |
{
|
|
335 |
TBuf8<KMaxName> threadName (KIicPslThreadName);
|
|
336 |
threadName.AppendNum(iChannelNumber); // Optional: append the channel number to the name
|
|
337 |
r = Kern::DfcQCreate(iDfcQ, KIicPslThreadPriority, &threadName);
|
|
338 |
if(r != KErrNone)
|
|
339 |
{
|
|
340 |
__KTRACE_OPT(KIIC, Kern::Printf("DFC Queue creation failed, channel number: %d, r = %d\n", iChannelNumber, r));
|
|
341 |
return r;
|
|
342 |
}
|
|
343 |
}
|
|
344 |
|
|
345 |
// PIL Base class initialization - this must be called prior to SetDfcQ(iDfcQ)
|
|
346 |
r = Init();
|
|
347 |
if(r == KErrNone)
|
|
348 |
{
|
|
349 |
// Call base class function to set DFCQ pointers in the required objects
|
|
350 |
// This also enables the channel to process transaction requests
|
|
351 |
SetDfcQ(iDfcQ);
|
|
352 |
|
|
353 |
// PSL DFCQ initialisation for local DFC
|
|
354 |
iTransferEndDfc.SetDfcQ(iDfcQ);
|
|
355 |
|
|
356 |
#ifdef CPU_AFFINITY_ANY
|
|
357 |
NKern::ThreadSetCpuAffinity((NThread*)(iDfcQ->iThread), KCpuAffinityAny);
|
|
358 |
#endif
|
|
359 |
// Bind interrupts.
|
|
360 |
// This would be with something similar to the following lines:
|
|
361 |
// iMasterIntId = Interrupt::Bind(interruptIdToUse, IicPslIsr, this);
|
|
362 |
//
|
|
363 |
// Interrupt::Bind returns interruptId or an error code (negative value)
|
|
364 |
if(iMasterIntId < KErrNone)
|
|
365 |
{
|
|
366 |
__KTRACE_OPT(KIIC, Kern::Printf("ERROR: InterruptBind error.. %d", r));
|
|
367 |
r = iMasterIntId;
|
|
368 |
}
|
|
369 |
}
|
|
370 |
return r;
|
|
371 |
}
|
|
372 |
|
|
373 |
// New
|
|
374 |
//
|
|
375 |
// A static method used to construct the DIicBusChannelMasterPsl object.
|
|
376 |
DIicBusChannelMasterPsl* DIicBusChannelMasterPsl::New(TInt aChannelNumber, const TBusType aBusType, const TChannelDuplex aChanDuplex)
|
|
377 |
{
|
|
378 |
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::NewL(): ChannelNumber = %d, BusType =%d", aChannelNumber, aBusType));
|
|
379 |
DIicBusChannelMasterPsl *pChan = new DIicBusChannelMasterPsl(aChannelNumber, aBusType, aChanDuplex);
|
|
380 |
|
|
381 |
TInt r = KErrNoMemory;
|
|
382 |
if(pChan)
|
|
383 |
{
|
|
384 |
r = pChan->DoCreate();
|
|
385 |
}
|
|
386 |
if(r != KErrNone)
|
|
387 |
{
|
|
388 |
delete pChan;
|
|
389 |
pChan = NULL;
|
|
390 |
}
|
|
391 |
return pChan;
|
|
392 |
}
|
|
393 |
|
|
394 |
// Optional method - that determines if the previous transaction header is different to the current one.
|
|
395 |
// If configuration is the same, the hardware may not need to be re-initialized.
|
|
396 |
TBool DIicBusChannelMasterPsl::TransConfigDiffersFromPrev()
|
|
397 |
{
|
|
398 |
//
|
|
399 |
// The header will be specific to a particular bus type. Using a fictional
|
|
400 |
// bus type Abc, code similar to the following could be used to compare each
|
|
401 |
// member of the previous header with the current one
|
|
402 |
//
|
|
403 |
// TConfigAbcBufV01* oldHdrBuf = (TConfigAbcBufV01*) iPrevHeader;
|
|
404 |
// TConfigAbcV01 &oldHeader = (*oldHdrBuf)();
|
|
405 |
// TConfigAbcBufV01* newHdrBuf = (TConfigAbcBufV01*) iCurrHeader;
|
|
406 |
// TConfigAbcV01 &newHeader = (*newHdrBuf)();
|
|
407 |
// if( (newHeader.iHeaderMember != oldHeader.iHeaderMember) ||
|
|
408 |
// ... )
|
|
409 |
// {
|
|
410 |
// return EFalse;
|
|
411 |
// }
|
|
412 |
return ETrue;
|
|
413 |
}
|
|
414 |
|
|
415 |
|
|
416 |
// CheckHdr is called by the PIL when a transaction is queued, in function
|
|
417 |
// QueueTransaction. This is done in the context of the Client's thread.
|
|
418 |
//
|
|
419 |
// The PSL is required to check that the transaction header is valid for
|
|
420 |
// this channel.
|
|
421 |
//
|
|
422 |
// If the pointer to the header is NULL, return KErrArgument.
|
|
423 |
// If the content of the header is not valid for this channel, return KErrNotSupported.
|
|
424 |
//
|
|
425 |
TInt DIicBusChannelMasterPsl::CheckHdr(TDes8* aHdrBuff)
|
|
426 |
{
|
|
427 |
TInt r = KErrNone;
|
|
428 |
|
|
429 |
if(!aHdrBuff)
|
|
430 |
{
|
|
431 |
r = KErrArgument;
|
|
432 |
}
|
|
433 |
else
|
|
434 |
{
|
|
435 |
// Check that the contents of the header are valid
|
|
436 |
//
|
|
437 |
// The header will be specific to a particular bus type. Using a fictional
|
|
438 |
// bus type Abc,code similar to the following could be used to validate each
|
|
439 |
// member of the header:
|
|
440 |
//
|
|
441 |
// TConfigAbcBufV01* headerBuf = (TConfigAbcBufV01*) aHdrBuff;
|
|
442 |
// TConfigAbcV01 &abcHeader = (*headerBuf)();
|
|
443 |
// if( (abcHeader.iHeaderMember < ESomeMinValue) ||
|
|
444 |
// (abcHeader.iHeaderMember > ESomeMaxValue))
|
|
445 |
// {
|
|
446 |
// __KTRACE_OPT(KIIC, Kern::Printf("iHeaderMember %d not supported",abcHeader.iHeaderMember));
|
|
447 |
// r = KErrNotSupported;
|
|
448 |
// }
|
|
449 |
}
|
|
450 |
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::CheckHdr() r %d", r));
|
|
451 |
return r;
|
|
452 |
}
|
|
453 |
|
|
454 |
// Initialise the hardware with the data provided in the transaction and slave-address field
|
|
455 |
//
|
|
456 |
// If a specified configuration is not supported, return KErrNotSupported
|
|
457 |
// If a configuration is supported, but the implementing configuration fails, return KErrGeneral
|
|
458 |
//
|
|
459 |
TInt DIicBusChannelMasterPsl::ConfigureInterface()
|
|
460 |
{
|
|
461 |
__KTRACE_OPT(KIIC, Kern::Printf("ConfigureInterface()"));
|
|
462 |
|
|
463 |
// This method will be platform-specific and will configure the hardware as required to support
|
|
464 |
// the current transacation. This will be supported with something similar to the following:
|
|
465 |
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
|
|
466 |
// GPIO::SetPinMode(aPinId, GPIO::EEnabled);
|
|
467 |
|
|
468 |
// Depending on the platform, timers (such as iHwGuardTimer) may be used to check that the hardware
|
|
469 |
// responds in the required way within an allowed timeout. Since this is configuring the channel for
|
|
470 |
// an operation, it is acceptable to perform an active wait, with something similar to the following:
|
|
471 |
// iTransactionStatus = KErrNone;
|
|
472 |
// iHwGuardTimer.OneShot(NKern::TimerTicks(KTimeoutValue));
|
|
473 |
// while((iTransactionStatus == KErrNone) &&
|
|
474 |
// AsspRegister::Read32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
|
|
475 |
// if(iTransactionStatus != KErrNone)
|
|
476 |
// {
|
|
477 |
// return KErrGeneral;
|
|
478 |
// }
|
|
479 |
// else
|
|
480 |
// {
|
|
481 |
// iHwGuardTimer.Cancel();
|
|
482 |
// }
|
|
483 |
return KErrNone;
|
|
484 |
}
|
|
485 |
|
|
486 |
|
|
487 |
// Method called by StartTransfer to actually initiate the transfers. It manipulates the hardware to
|
|
488 |
// perform the required tasks.
|
|
489 |
//
|
|
490 |
TInt DIicBusChannelMasterPsl::DoTransfer(TInt8 *aBuff, TUint aNumOfBytes, TUint8 aType)
|
|
491 |
{
|
|
492 |
__KTRACE_OPT(KIIC, Kern::Printf("\nDIicBusChannelMasterPsl::DoTransfer() - aBuff=0x%x, aNumOfBytes=0x%x\n",aBuff,aNumOfBytes));
|
|
493 |
|
|
494 |
TInt r = KErrNone;
|
|
495 |
|
|
496 |
// Validate the input arguments
|
|
497 |
if((aBuff == NULL) || (aNumOfBytes == 0))
|
|
498 |
{
|
|
499 |
r = KErrArgument;
|
|
500 |
}
|
|
501 |
else
|
|
502 |
{
|
|
503 |
// This method will be platform-specific and will configure the hardware as required
|
|
504 |
// This will likely be supported with calls similar to the following:
|
|
505 |
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
|
|
506 |
// GPIO::SetPinMode(aPinId, GPIO::EEnabled);
|
|
507 |
// Interrupt::Enable(aInterruptId);
|
|
508 |
//
|
|
509 |
// Steps that may be typically required are described below
|
|
510 |
|
|
511 |
switch(aType)
|
|
512 |
{
|
|
513 |
case TIicBusTransfer::EMasterWrite:
|
|
514 |
{
|
|
515 |
// If using a Tx FIFO, may wish to disable transmission until the FIFO has been filled to certain level
|
|
516 |
// If using a Tx FIFO, may wish to flush it and re-initialise any counters or pointers used
|
|
517 |
|
|
518 |
// If using a FIFO, copy data to it until either the FIFO is full or all data has been copied
|
|
519 |
// Checking the FIFO is full will be reading a flag in a status register, by use of code similar the following
|
|
520 |
// TUint32 status = AsspRegister::Read32(aRegisterSetBaseAddress + KStatusRegisterOffset);
|
|
521 |
// if(status & KTxFifoFullBitMask)
|
|
522 |
// ... FIFO is full
|
|
523 |
//
|
|
524 |
// For this example base port, represent the FIFO full status by a dummy value (zero).
|
|
525 |
TUint8 txFifoFull = 0;
|
|
526 |
while(!txFifoFull && (iTxData != iTxDataEnd))
|
|
527 |
{
|
|
528 |
// TUint8 nextTxValue = *iTxData; // For this example, assumes one byte of data is to be transmitted
|
|
529 |
// but if operating in 16-bit mode, bytes may need arranging for
|
|
530 |
// endianness
|
|
531 |
|
|
532 |
// Write to the Tx FIFO register with something similar to the following:
|
|
533 |
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KTxRegisterOffset, nextTxValue);
|
|
534 |
|
|
535 |
iTxData += iWordSize; // Then increment the pointer to the data. In this example, 8-bit mode is assumed
|
|
536 |
// (iWordSize=1), but if operating in 16-bit mode a->iTxData would be incremented
|
|
537 |
// by the number of bytes specified in a->iWordSize
|
|
538 |
}
|
|
539 |
// May wish to enable transmission now - or wait until after the Read transfer has been initialised
|
|
540 |
break;
|
|
541 |
}
|
|
542 |
case TIicBusTransfer::EMasterRead:
|
|
543 |
{
|
|
544 |
// If using an Rx FIFO, it will already have been drained at the end of the last transfer by TransferEndDfc
|
|
545 |
// so no need to do it again here.
|
|
546 |
|
|
547 |
// May wish to enable reception now - or group with the code, below
|
|
548 |
break;
|
|
549 |
}
|
|
550 |
default:
|
|
551 |
{
|
|
552 |
__KTRACE_OPT(KIIC, Kern::Printf("Unsupported TransactionType %x", aType));
|
|
553 |
r = KErrArgument;
|
|
554 |
break;
|
|
555 |
}
|
|
556 |
}
|
|
557 |
|
|
558 |
// Final stages of hardware preparation
|
|
559 |
//
|
|
560 |
// Enable hardware interrupts
|
|
561 |
// Finally, enable (start) transmission and reception
|
|
562 |
}
|
|
563 |
|
|
564 |
return r;
|
|
565 |
}
|
|
566 |
|
|
567 |
|
|
568 |
// This method performs the initialisation required for either a read or write transfer
|
|
569 |
// and then invokes the next stage of the processing (DoTransfer)
|
|
570 |
//
|
|
571 |
TInt DIicBusChannelMasterPsl::StartTransfer(TIicBusTransfer* aTransferPtr, TUint8 aType)
|
|
572 |
{
|
|
573 |
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::StartTransfer() - aTransferPtr=0x%x, aType=%d",aTransferPtr,aType));
|
|
574 |
|
|
575 |
if(aTransferPtr == NULL)
|
|
576 |
{
|
|
577 |
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::StartTransfer - NULL pointer\n"));
|
|
578 |
return KErrArgument;
|
|
579 |
}
|
|
580 |
|
|
581 |
TInt r = KErrNone;
|
|
582 |
|
|
583 |
switch(aType)
|
|
584 |
{
|
|
585 |
case TIicBusTransfer::EMasterWrite:
|
|
586 |
{
|
|
587 |
__KTRACE_OPT(KIIC, Kern::Printf("Starting EMasterWrite, duplex=%d", iFullDTransfer));
|
|
588 |
|
|
589 |
// Get a pointer to the transfer object's buffer, to facilitate passing arguments to DoTransfer
|
|
590 |
const TDes8* aBufPtr = GetTferBuffer(aTransferPtr);
|
|
591 |
|
|
592 |
__KTRACE_OPT(KIIC, Kern::Printf("Length %d, iWordSize %d", aBufPtr->Length(), iWordSize));
|
|
593 |
|
|
594 |
// Store the current address and ending address for Transmission - they are required by the ISR and DFC
|
|
595 |
iTxData = (TInt8*) aBufPtr->Ptr();
|
|
596 |
iTxDataEnd = (TInt8*) (iTxData + aBufPtr->Length());
|
|
597 |
|
|
598 |
__KTRACE_OPT(KIIC, Kern::Printf("Tx: Start: %x, End %x, bytes %d\n\n", iTxData, iTxDataEnd, aBufPtr->Length()));
|
|
599 |
|
|
600 |
// Set the flag to indicate that we'll be transmitting data
|
|
601 |
iOperation.iOp.iIsTransmitting = ETrue;
|
|
602 |
|
|
603 |
// initiate the transmission..
|
|
604 |
r = DoTransfer((TInt8 *) aBufPtr->Ptr(), aBufPtr->Length(), aType);
|
|
605 |
if(r != KErrNone)
|
|
606 |
{
|
|
607 |
__KTRACE_OPT(KIIC, Kern::Printf("Starting Write failed, r = %d", r));
|
|
608 |
}
|
|
609 |
break;
|
|
610 |
}
|
|
611 |
|
|
612 |
case TIicBusTransfer::EMasterRead:
|
|
613 |
{
|
|
614 |
__KTRACE_OPT(KIIC, Kern::Printf("Starting EMasterRead, duplex=%x", iFullDTransfer));
|
|
615 |
|
|
616 |
// Get a pointer to the transfer object's buffer, to facilitate passing arguments to DoTransfer
|
|
617 |
const TDes8* aBufPtr = GetTferBuffer(aTransferPtr);
|
|
618 |
|
|
619 |
// Store the current address and ending address for Reception - they are required by the ISR and DFC
|
|
620 |
iRxData = (TInt8*) aBufPtr->Ptr();
|
|
621 |
iRxDataEnd = (TInt8*) (iRxData + aBufPtr->Length());
|
|
622 |
|
|
623 |
__KTRACE_OPT(KIIC, Kern::Printf("Rx: Start: %x, End %x, bytes %d", iRxData, iRxDataEnd, aBufPtr->Length()));
|
|
624 |
|
|
625 |
// Set the flag to indicate that we'll be receiving data
|
|
626 |
iOperation.iOp.iIsReceiving = ETrue;
|
|
627 |
|
|
628 |
// initiate the reception
|
|
629 |
r = DoTransfer((TInt8 *) aBufPtr->Ptr(), aBufPtr->Length(), aType);
|
|
630 |
if(r != KErrNone)
|
|
631 |
{
|
|
632 |
__KTRACE_OPT(KIIC, Kern::Printf("Starting Read failed, r = %d", r));
|
|
633 |
}
|
|
634 |
break;
|
|
635 |
}
|
|
636 |
|
|
637 |
default:
|
|
638 |
{
|
|
639 |
__KTRACE_OPT(KIIC, Kern::Printf("Unsupported TransactionType %x", aType));
|
|
640 |
r = KErrArgument;
|
|
641 |
break;
|
|
642 |
}
|
|
643 |
}
|
|
644 |
|
|
645 |
return r;
|
|
646 |
}
|
|
647 |
|
|
648 |
// This method determines the next transfers to be processed, and passes them to the next stage
|
|
649 |
// in the processing (StartTransfer).
|
|
650 |
//
|
|
651 |
// This is called from DoRequest (for the first transfer) and TransferEndDfc (after a transfer
|
|
652 |
// has completed)
|
|
653 |
//
|
|
654 |
TInt DIicBusChannelMasterPsl::ProcessNextTransfers()
|
|
655 |
{
|
|
656 |
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::ProcessNextTransfers(),BUSY=%d", iState));
|
|
657 |
|
|
658 |
// Since new transfers are strating, clear exisiting flags
|
|
659 |
iOperation.iValue = TIicOperationType::ENop;
|
|
660 |
|
|
661 |
// Some hardware preparation may be required before starting the transfer using something similar
|
|
662 |
// to the following line:
|
|
663 |
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
|
|
664 |
|
|
665 |
// If this is the first transfer in the transaction the channel will be in state EIdle
|
|
666 |
if(iState == EIdle)
|
|
667 |
{
|
|
668 |
// Get the pointer to half-duplex transfer object..
|
|
669 |
iHalfDTransfer = GetTransHalfDuplexTferPtr(iCurrTransaction);
|
|
670 |
|
|
671 |
// Get the pointer to full-duplex transfer object..
|
|
672 |
iFullDTransfer = GetTransFullDuplexTferPtr(iCurrTransaction);
|
|
673 |
|
|
674 |
// Update the channel state to EBusy and initialise the transaction status
|
|
675 |
iState = EBusy;
|
|
676 |
iTransactionStatus = KErrNone;
|
|
677 |
|
|
678 |
// Use the PIL funcitonality to start a timer that will timeout if the transaction
|
|
679 |
// is not completed within a specified time period (the client may have specified a period
|
|
680 |
// to use in the transaction header - some something similar tot he following could be used)
|
|
681 |
// StartSlaveTimeOutTimer(iCurrHeader->iTimeoutPeriod);
|
|
682 |
//
|
|
683 |
// If the timer expires, callback function HandleSlaveTimeout (implemented by the PSL, above)
|
|
684 |
// will be called. This will ensure that the hardware ceases transfer activity, and calls ExitComplete
|
|
685 |
// with KErrTImedOut, which will return the channel state to EIdle.
|
|
686 |
}
|
|
687 |
else
|
|
688 |
// If not in state EIdle, process the next transfer in the linked-list held by the transaction
|
|
689 |
{
|
|
690 |
// Get the pointer the next half-duplex transfer object..
|
|
691 |
iHalfDTransfer = GetTferNextTfer(iHalfDTransfer);
|
|
692 |
|
|
693 |
// Get the pointer to the next half-duplex transfer object..
|
|
694 |
if(iFullDTransfer)
|
|
695 |
{
|
|
696 |
iFullDTransfer = GetTferNextTfer(iFullDTransfer);
|
|
697 |
}
|
|
698 |
}
|
|
699 |
|
|
700 |
TInt r = KErrNone;
|
|
701 |
if(!iFullDTransfer && !iHalfDTransfer)
|
|
702 |
{
|
|
703 |
// If all of the transfers were completed, just notify the PIL and return.
|
|
704 |
// (if either Rx or Tx has not finished properly ExitComplete() would have been called
|
|
705 |
// from TransferEndDfc if there was an error during the transfer)
|
|
706 |
__KTRACE_OPT(KIIC, Kern::Printf("All transfers completed successfully"));
|
|
707 |
|
|
708 |
ExitComplete(KErrNone);
|
|
709 |
}
|
|
710 |
else
|
|
711 |
{
|
|
712 |
// Transfers remain to be processed
|
|
713 |
//
|
|
714 |
// For full-duplex transfers, the order in which read and write transfers are started may be significant.
|
|
715 |
// Below is an example where the read transfer is explicitly started before the write transfer.
|
|
716 |
TInt8 hDTrType = (TInt8) GetTferType(iHalfDTransfer);
|
|
717 |
|
|
718 |
if(iFullDTransfer)
|
|
719 |
{
|
|
720 |
if(hDTrType == TIicBusTransfer::EMasterRead)
|
|
721 |
{
|
|
722 |
r = StartTransfer(iHalfDTransfer, TIicBusTransfer::EMasterRead);
|
|
723 |
if(r != KErrNone)
|
|
724 |
{
|
|
725 |
return r;
|
|
726 |
}
|
|
727 |
r = StartTransfer(iFullDTransfer, TIicBusTransfer::EMasterWrite);
|
|
728 |
}
|
|
729 |
else // hDTrType == TIicBusTransfer::EMasterWrite)
|
|
730 |
{
|
|
731 |
r = StartTransfer(iFullDTransfer, TIicBusTransfer::EMasterRead);
|
|
732 |
if(r != KErrNone)
|
|
733 |
{
|
|
734 |
return r;
|
|
735 |
}
|
|
736 |
r = StartTransfer(iHalfDTransfer, TIicBusTransfer::EMasterWrite);
|
|
737 |
}
|
|
738 |
}
|
|
739 |
else
|
|
740 |
// This is a HalfDuplex transfer - so just start it
|
|
741 |
{
|
|
742 |
r = StartTransfer(iHalfDTransfer, hDTrType);
|
|
743 |
}
|
|
744 |
}
|
|
745 |
return r;
|
|
746 |
}
|
|
747 |
|
|
748 |
// The gateway function for PSL implementation
|
|
749 |
//
|
|
750 |
// This method is called by the PIL to initiate the transaction. After finishing it's processing,
|
|
751 |
// the PSL calls the PIL function CompleteRequest to indicate the success (or otherwise) of the request
|
|
752 |
//
|
|
753 |
TInt DIicBusChannelMasterPsl::DoRequest(TIicBusTransaction* aTransaction)
|
|
754 |
{
|
|
755 |
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::DoRequest (aTransaction=0x%x)\n", aTransaction));
|
|
756 |
|
|
757 |
// If the pointer to the transaction passed in as a parameter, or its associated pointer to the
|
|
758 |
// header information is NULL, return KErrArgument
|
|
759 |
if(!aTransaction || !GetTransactionHeader(aTransaction))
|
|
760 |
{
|
|
761 |
return KErrArgument;
|
|
762 |
}
|
|
763 |
|
|
764 |
// The PSL operates a simple state machine to ensure that only one transaction is processed
|
|
765 |
// at a time - if the channel is currently busy, reject the request with KErrInUse.
|
|
766 |
if(iState != EIdle)
|
|
767 |
{
|
|
768 |
return KErrInUse;
|
|
769 |
}
|
|
770 |
|
|
771 |
// Make a copy of the pointer to the transaction
|
|
772 |
iCurrTransaction = aTransaction;
|
|
773 |
|
|
774 |
// Configure the hardware to support the transaction
|
|
775 |
TInt r = KErrNone;
|
|
776 |
if(TransConfigDiffersFromPrev()) // Optional: check if hardware needs reconfiguration
|
|
777 |
{
|
|
778 |
r = ConfigureInterface();
|
|
779 |
if(r != KErrNone)
|
|
780 |
{
|
|
781 |
return r;
|
|
782 |
}
|
|
783 |
}
|
|
784 |
|
|
785 |
// start processing transfers of this transaction.
|
|
786 |
r = ProcessNextTransfers();
|
|
787 |
return r;
|
|
788 |
}
|
|
789 |
|