0
|
1 |
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32\euser\maths\um_sin.cpp
|
|
15 |
// Floating point sine and cosine functions
|
|
16 |
//
|
|
17 |
//
|
|
18 |
|
|
19 |
#include "um_std.h"
|
|
20 |
|
|
21 |
#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
|
|
22 |
#error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh
|
|
23 |
#endif
|
|
24 |
|
|
25 |
|
|
26 |
#ifndef __USE_VFP_MATH
|
|
27 |
|
|
28 |
LOCAL_D const TUint32 SinCoeffs[] =
|
|
29 |
{
|
|
30 |
0x2168C235,0xC90FDAA2,0x80000000, // polynomial approximation to sin(pi*x)
|
|
31 |
0x2DF200BF,0xA55DE731,0x80010001, // for |x| <= 0.25
|
|
32 |
0xAC273AA1,0xA335E33B,0x80000000,
|
|
33 |
0x5AB23F44,0x99696671,0x7FFE0001,
|
|
34 |
0xD585EAFE,0xA83C17D9,0x7FFB0000,
|
|
35 |
0xA30DE7AD,0xF1802BAC,0x7FF70001,
|
|
36 |
0xF57FD821,0xF1F6A1C9,0x7FF30000
|
|
37 |
};
|
|
38 |
|
|
39 |
LOCAL_D const TUint32 CosCoeffs[] =
|
|
40 |
{
|
|
41 |
0x00000000,0x80000000,0x7FFF0000, // polynomial approximation to cos(pi*x)
|
|
42 |
0xF22EF286,0x9DE9E64D,0x80010001, // for |x| <= 0.25
|
|
43 |
0xDAD59F90,0x81E0F840,0x80010000,
|
|
44 |
0xE4E45144,0xAAE9E3F1,0x7FFF0001,
|
|
45 |
0x3232D733,0xF0FA8342,0x7FFC0000,
|
|
46 |
0x03E16BB8,0xD368F6A3,0x7FF90001,
|
|
47 |
0x712FD084,0xFCE66DE2,0x7FF50000,
|
|
48 |
0x9E5353EE,0xD94951B0,0x7FF10001
|
|
49 |
};
|
|
50 |
|
|
51 |
LOCAL_D const TUint32 PiInvdata[] = {0x4E44152A,0xA2F9836E,0x7FFD0000}; // 1/pi
|
|
52 |
LOCAL_D const TUint32 Halfdata[] = {0x00000000,0x80000000,0x7FFE0000}; // 0.5
|
|
53 |
LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000}; // 1.0
|
|
54 |
|
|
55 |
LOCAL_C TInt CalcSinCos(TReal& aTrg, TRealX& aSrc, TBool aCos)
|
|
56 |
{
|
|
57 |
// Calculate sin(aSrc) if aCos=false or cos(aSrc) if aCos=true
|
|
58 |
// and write result to aTrg.
|
|
59 |
// Algorithm:
|
|
60 |
// Divide aSrc by pi and throw away integer part, but change sign
|
|
61 |
// of result if integer part odd. Replace aSrc with remainder.
|
|
62 |
// ( use identities sin(x+n*pi)=(-1)^n*sin(x)
|
|
63 |
// cos(x+n*pi)=(-1)^n*cos(x) )
|
|
64 |
// If aSrc>=0.5 replace aSrc with 1-aSrc, and change sign of result
|
|
65 |
// if cos required.
|
|
66 |
// ( use identities sin(pi-x)=sin(x), cos(pi-x)=-cos(x) )
|
|
67 |
// If aSrc>=0.25 replace aSrc with 0.5-aSrc and swap sin and cos
|
|
68 |
// ( use identities sin(pi/2-x)=cos(x), cos(pi/2-x)=sin(x) )
|
|
69 |
// Use polynomial approximation to evaluate sin(pi*x) or cos(pi*x)
|
|
70 |
// for |x|<=0.25
|
|
71 |
|
|
72 |
const TRealX& One = *(const TRealX*)Onedata;
|
|
73 |
const TRealX& Half = *(const TRealX*)Halfdata;
|
|
74 |
const TRealX& PiInv = *(const TRealX*)PiInvdata;
|
|
75 |
|
|
76 |
TRealX y;
|
|
77 |
aSrc*=PiInv;
|
|
78 |
TInt n=(TInt)aSrc;
|
|
79 |
if (n<KMaxTInt && n>KMinTInt)
|
|
80 |
{
|
|
81 |
aSrc-=TRealX(n);
|
|
82 |
TInt sign=0;
|
|
83 |
if (!aCos)
|
|
84 |
sign=aSrc.iSign & 1;
|
|
85 |
sign^=n;
|
|
86 |
aSrc.iSign=0;
|
|
87 |
if (aSrc.iExp>=0x7FFE) // if remainder>=pi/2
|
|
88 |
{
|
|
89 |
aSrc=One-aSrc;
|
|
90 |
if (aCos)
|
|
91 |
sign^=1;
|
|
92 |
}
|
|
93 |
if (aSrc.iExp>=0x7FFD) // if remainder>=pi/4
|
|
94 |
{
|
|
95 |
aSrc=Half-aSrc; // take complementary angle
|
|
96 |
aCos=!aCos; // and swap sin and cos
|
|
97 |
}
|
|
98 |
if (aCos)
|
|
99 |
Math::PolyX(y,aSrc*aSrc,7,(const TRealX*)CosCoeffs);
|
|
100 |
else
|
|
101 |
{
|
|
102 |
Math::PolyX(y,aSrc*aSrc,6,(const TRealX*)SinCoeffs);
|
|
103 |
y*=aSrc;
|
|
104 |
}
|
|
105 |
if (sign & 1)
|
|
106 |
y=-y;
|
|
107 |
return y.GetTReal(aTrg);
|
|
108 |
}
|
|
109 |
return KErrArgument;
|
|
110 |
}
|
|
111 |
|
|
112 |
|
|
113 |
|
|
114 |
|
|
115 |
EXPORT_C TInt Math::Sin(TReal& aTrg, const TReal& aSrc)
|
|
116 |
/**
|
|
117 |
Calculates the sine of a number.
|
|
118 |
|
|
119 |
@param aTrg A reference containing the result.
|
|
120 |
@param aSrc The argument of the sin function in radians.
|
|
121 |
|
|
122 |
@return KErrNone if successful, otherwise another of
|
|
123 |
the system-wide error codes.
|
|
124 |
*/
|
|
125 |
{
|
|
126 |
TRealX x;
|
|
127 |
TInt r=x.Set(aSrc);
|
|
128 |
if (r==KErrNone)
|
|
129 |
r=CalcSinCos(aTrg,x,EFalse);
|
|
130 |
if (r==KErrNone)
|
|
131 |
return r;
|
|
132 |
SetNaN(aTrg);
|
|
133 |
return KErrArgument;
|
|
134 |
}
|
|
135 |
|
|
136 |
|
|
137 |
|
|
138 |
|
|
139 |
EXPORT_C TInt Math::Cos(TReal& aTrg, const TReal& aSrc)
|
|
140 |
/**
|
|
141 |
Calculates the cosine of a number.
|
|
142 |
|
|
143 |
@param aTrg A reference containing the result.
|
|
144 |
@param aSrc The argument of the cos function in radians
|
|
145 |
|
|
146 |
@return KErrNone if successful, otherwise another of
|
|
147 |
the system-wide error codes.
|
|
148 |
*/
|
|
149 |
{
|
|
150 |
TRealX x;
|
|
151 |
TInt r=x.Set(aSrc);
|
|
152 |
if (r==KErrNone)
|
|
153 |
r=CalcSinCos(aTrg,x,ETrue);
|
|
154 |
if (r==KErrNone)
|
|
155 |
return r;
|
|
156 |
SetNaN(aTrg);
|
|
157 |
return KErrArgument;
|
|
158 |
}
|
|
159 |
|
|
160 |
#else // __USE_VFP_MATH
|
|
161 |
|
|
162 |
// definitions come from RVCT math library
|
|
163 |
extern "C" TReal sin(TReal);
|
|
164 |
extern "C" TReal cos(TReal);
|
|
165 |
|
|
166 |
EXPORT_C TInt Math::Sin(TReal& aTrg, const TReal& aSrc)
|
|
167 |
{
|
|
168 |
if (aSrc<KMaxTInt && aSrc>KMinTInt)
|
|
169 |
{
|
|
170 |
aTrg = sin(aSrc);
|
|
171 |
if (Math::IsFinite(aTrg))
|
|
172 |
return KErrNone;
|
|
173 |
}
|
|
174 |
SetNaN(aTrg);
|
|
175 |
return KErrArgument;
|
|
176 |
}
|
|
177 |
|
|
178 |
EXPORT_C TInt Math::Cos(TReal& aTrg, const TReal& aSrc)
|
|
179 |
{
|
|
180 |
if (aSrc<KMaxTInt && aSrc>KMinTInt)
|
|
181 |
{
|
|
182 |
aTrg = cos(aSrc);
|
|
183 |
if (Math::IsFinite(aTrg))
|
|
184 |
return KErrNone;
|
|
185 |
}
|
|
186 |
SetNaN(aTrg);
|
|
187 |
return KErrArgument;
|
|
188 |
}
|
|
189 |
|
|
190 |
#endif
|