0
|
1 |
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32\euser\us_time.cpp
|
|
15 |
// System date and time functions
|
|
16 |
//
|
|
17 |
//
|
|
18 |
|
|
19 |
|
|
20 |
#include "us_std.h"
|
|
21 |
|
|
22 |
// Date and time related constants
|
|
23 |
|
|
24 |
static const TInt KMinutesToMicroSeconds = 60000000;
|
|
25 |
static const TInt KSecondsToMicroSeconds = 1000000;
|
|
26 |
static const TInt64 KDaysToMicroSeconds = I64LIT(86400000000);
|
|
27 |
static const TInt64 KHoursToMicroSeconds = I64LIT(3600000000);
|
|
28 |
|
|
29 |
// Days in each month
|
|
30 |
LOCAL_D const TInt8 mTab[2][12]=
|
|
31 |
{
|
|
32 |
{31,28,31,30,31,30,31,31,30,31,30,31}, // 28 days in Feb
|
|
33 |
{31,29,31,30,31,30,31,31,30,31,30,31} // 29 days in Feb
|
|
34 |
};
|
|
35 |
|
|
36 |
// Days in year before 1st of each month
|
|
37 |
LOCAL_D const TInt cmTab[2][12]=
|
|
38 |
{
|
|
39 |
{0,31,59,90,120,151,181,212,243,273,304,334},
|
|
40 |
{0,31,60,91,121,152,182,213,244,274,305,335}
|
|
41 |
};
|
|
42 |
|
|
43 |
//
|
|
44 |
// Time::FormatL overflow handler
|
|
45 |
//
|
|
46 |
#if defined(_UNICODE)
|
|
47 |
NONSHARABLE_CLASS(TTimeOverflowLeave) : public TDes16Overflow
|
|
48 |
{
|
|
49 |
public:
|
|
50 |
virtual void Overflow(TDes16 &aDes);
|
|
51 |
};
|
|
52 |
void TTimeOverflowLeave::Overflow(TDes16 &/*aDes*/)
|
|
53 |
{
|
|
54 |
User::Leave(KErrOverflow);
|
|
55 |
}
|
|
56 |
#else
|
|
57 |
NONSHARABLE_CLASS(TTimeOverflowLeave) : public TDes8Overflow
|
|
58 |
{
|
|
59 |
public:
|
|
60 |
virtual void Overflow(TDes8 &aDes);
|
|
61 |
};
|
|
62 |
void TTimeOverflowLeave::Overflow(TDes8 &/*aDes*/)
|
|
63 |
{
|
|
64 |
User::Leave(KErrOverflow);
|
|
65 |
}
|
|
66 |
#endif
|
|
67 |
//
|
|
68 |
|
|
69 |
EXPORT_C TDateTime::TDateTime(TInt aYear,TMonth aMonth,TInt aDay,TInt aHour,TInt aMinute,TInt aSecond,TInt aMicroSecond)
|
|
70 |
//
|
|
71 |
// always panic on a bad date/time field
|
|
72 |
//
|
|
73 |
/**
|
|
74 |
Constructs the TDateTime object with the seven fields which comprise a date
|
|
75 |
and time.
|
|
76 |
|
|
77 |
@param aYear The year. No check is made for validity.
|
|
78 |
@param aMonth The month. Range is EJanuary to EDecember.
|
|
79 |
@param aDay The day. Range is zero to number of days in month minus one.
|
|
80 |
@param aHour The hour. Range is 0 to 23.
|
|
81 |
@param aMinute The minute. Range is 0 to 59.
|
|
82 |
@param aSecond The second. Range is 0 to 59
|
|
83 |
@param aMicroSecond The microsecond. Range is 0 to 999999
|
|
84 |
|
|
85 |
@panic USER 3, if an attempt is made to set an invalid value for any of
|
|
86 |
the fields, except for the year. No check is made upon the validity
|
|
87 |
of the year.
|
|
88 |
*/
|
|
89 |
{
|
|
90 |
|
|
91 |
TInt ret=Set(aYear,aMonth,aDay,aHour,aMinute,aSecond,aMicroSecond);
|
|
92 |
__ASSERT_ALWAYS(ret==KErrNone,Panic(ETDateTimeBadDateTime));
|
|
93 |
}
|
|
94 |
|
|
95 |
EXPORT_C TInt TDateTime::Set(TInt aYear,TMonth aMonth,TInt aDay,TInt aHour,TInt aMinute,TInt aSecond,TInt aMicroSecond)
|
|
96 |
//
|
|
97 |
// set the various time fields checking that each is valid
|
|
98 |
// bomb out as soon as invalid field is set to forestall causing a panic
|
|
99 |
//
|
|
100 |
/**
|
|
101 |
Sets all date and time components.
|
|
102 |
|
|
103 |
Note:
|
|
104 |
|
|
105 |
1. When setting the day and month, subtract one because the ranges are offset
|
|
106 |
from zero.
|
|
107 |
|
|
108 |
2. If the function returns an error, only those fields preceding the field which
|
|
109 |
caused the error will be changed. For example, if the hour is out of range,
|
|
110 |
the year, month and day will be set, all other components will remain unchanged.
|
|
111 |
|
|
112 |
@param aYear Year. No check is made on its validity, except that if the
|
|
113 |
date is set to February 29th, the year can only be set to a
|
|
114 |
leap year, otherwise an error is returned.
|
|
115 |
@param aMonth Month. The valid range is EJanuary to EDecember. If an
|
|
116 |
attempt is made to set an invalid month, or if the current
|
|
117 |
day number in the month is greater than or equal to the
|
|
118 |
number of days in the new month, an error is returned.
|
|
119 |
@param aDay The number of the day within the month, offset from zero.
|
|
120 |
If greater than or equal to the total number of days in
|
|
121 |
the month,an error is returned.
|
|
122 |
@param aHour Hour. Range is 0 to 23.
|
|
123 |
@param aMinute Minute. Range is 0 to 59.
|
|
124 |
@param aSecond Second. Range is 0 to 59.
|
|
125 |
@param aMicroSecond Microsecond. Range is 0 to 999999.
|
|
126 |
|
|
127 |
@return KErrNone if successful, KErrGeneral if not.
|
|
128 |
*/
|
|
129 |
{
|
|
130 |
|
|
131 |
iYear=aYear;
|
|
132 |
|
|
133 |
if (aMonth<EJanuary || aMonth>EDecember)
|
|
134 |
return KErrGeneral;
|
|
135 |
iMonth=aMonth;
|
|
136 |
|
|
137 |
if (aDay<0 || aDay>=Time::DaysInMonth(iYear,iMonth))
|
|
138 |
return KErrGeneral;
|
|
139 |
iDay=aDay;
|
|
140 |
|
|
141 |
if (aHour<0 || aHour>=24)
|
|
142 |
return KErrGeneral;
|
|
143 |
iHour=aHour;
|
|
144 |
|
|
145 |
if (aMinute<0 || aMinute>=60)
|
|
146 |
return KErrGeneral;
|
|
147 |
iMinute=aMinute;
|
|
148 |
|
|
149 |
if (aSecond<0 || aSecond>=60)
|
|
150 |
return KErrGeneral;
|
|
151 |
iSecond=aSecond;
|
|
152 |
|
|
153 |
if (aMicroSecond<0 || aMicroSecond>=1000000)
|
|
154 |
return KErrGeneral;
|
|
155 |
iMicroSecond=aMicroSecond;
|
|
156 |
|
|
157 |
return KErrNone;
|
|
158 |
}
|
|
159 |
|
|
160 |
EXPORT_C TInt TDateTime::SetYear(TInt aYear)
|
|
161 |
//
|
|
162 |
// doesnt let you reset 29th February to non-leap year, no check on year range
|
|
163 |
//
|
|
164 |
/**
|
|
165 |
Sets the year without a leap year check.
|
|
166 |
|
|
167 |
No check is made on the validity of the year except that if the current date
|
|
168 |
is February 29th, the year can only be changed to another leap year, otherwise
|
|
169 |
an error is returned.
|
|
170 |
|
|
171 |
@param aYear The year.
|
|
172 |
|
|
173 |
@return KErrNone if successful, KErrGeneral if not.
|
|
174 |
*/
|
|
175 |
{
|
|
176 |
|
|
177 |
if (iDay>=Time::DaysInMonth(aYear,iMonth))
|
|
178 |
return KErrGeneral;
|
|
179 |
iYear=aYear;
|
|
180 |
return KErrNone;
|
|
181 |
}
|
|
182 |
|
|
183 |
EXPORT_C TInt TDateTime::SetYearLeapCheck(TInt aYear)
|
|
184 |
//
|
|
185 |
// lets you reset 29th February to non-leap year(moves date to 28th/Feb), no check on year range
|
|
186 |
//
|
|
187 |
/**
|
|
188 |
Sets the year with a leap year check.
|
|
189 |
|
|
190 |
Unlike SetYear(), if the date is the 29th February, this function allows
|
|
191 |
the year to be set to a non-leap year. In this case, the date is reset to
|
|
192 |
the 28th February.
|
|
193 |
|
|
194 |
@param aYear The year.
|
|
195 |
|
|
196 |
@return KErrNone if successful, KErrGeneral if not.
|
|
197 |
|
|
198 |
@see TDateTime::SetYear
|
|
199 |
*/
|
|
200 |
{
|
|
201 |
|
|
202 |
if (iDay>=Time::DaysInMonth(aYear,iMonth))
|
|
203 |
iDay=27;
|
|
204 |
iYear=aYear;
|
|
205 |
return KErrNone;
|
|
206 |
}
|
|
207 |
|
|
208 |
EXPORT_C TInt TDateTime::SetMonth(TMonth aMonth)
|
|
209 |
/**
|
|
210 |
Sets the month component of the date/time.
|
|
211 |
|
|
212 |
@param aMonth The month to be set. The range is from EJanuary to EDecember.
|
|
213 |
If an attempt is made to set an invalid month, or if the current
|
|
214 |
day number in the month is greater than or equal to the number of
|
|
215 |
days in the new month, an error is returned.
|
|
216 |
|
|
217 |
@return KErrNone if successful, KErrGeneral if not.
|
|
218 |
*/
|
|
219 |
{
|
|
220 |
|
|
221 |
if (aMonth<EJanuary || aMonth>EDecember || iDay>=Time::DaysInMonth(iYear,aMonth))
|
|
222 |
return KErrGeneral;
|
|
223 |
iMonth=aMonth;
|
|
224 |
return KErrNone;
|
|
225 |
}
|
|
226 |
|
|
227 |
EXPORT_C TInt TDateTime::SetDay(TInt aDay)
|
|
228 |
/**
|
|
229 |
Sets the day component of the date/time.
|
|
230 |
|
|
231 |
@param aDay The number of the day within the month, offset from zero. If equal
|
|
232 |
to or greater than the total number of days in the month, an error
|
|
233 |
is returned.
|
|
234 |
|
|
235 |
@return KErrNone if successful, KErrGeneral if not.
|
|
236 |
*/
|
|
237 |
{
|
|
238 |
|
|
239 |
if (aDay<0 || aDay>=Time::DaysInMonth(iYear,iMonth))
|
|
240 |
return KErrGeneral;
|
|
241 |
iDay=aDay;
|
|
242 |
return KErrNone;
|
|
243 |
}
|
|
244 |
|
|
245 |
EXPORT_C TInt TDateTime::SetHour(TInt aHour)
|
|
246 |
/**
|
|
247 |
Sets the hour component of the date/time.
|
|
248 |
|
|
249 |
@param aHour The hour. Range is 0 to 23.
|
|
250 |
|
|
251 |
@return KErrNone if successful, KErrGeneral if not.
|
|
252 |
*/
|
|
253 |
{
|
|
254 |
|
|
255 |
if (aHour<0 || aHour>=24) // GC - bug fix
|
|
256 |
return KErrGeneral;
|
|
257 |
iHour=aHour;
|
|
258 |
return KErrNone;
|
|
259 |
}
|
|
260 |
|
|
261 |
EXPORT_C TInt TDateTime::SetMinute(TInt aMinute)
|
|
262 |
/**
|
|
263 |
Sets the minute component of the date/time.
|
|
264 |
|
|
265 |
@param aMinute The minute. Range is 0 to 59.
|
|
266 |
|
|
267 |
@return KErrNone if successful, KErrGeneral if not.
|
|
268 |
*/
|
|
269 |
{
|
|
270 |
|
|
271 |
if (aMinute<0 || aMinute>=60)
|
|
272 |
return KErrGeneral;
|
|
273 |
iMinute=aMinute;
|
|
274 |
return KErrNone;
|
|
275 |
}
|
|
276 |
|
|
277 |
EXPORT_C TInt TDateTime::SetSecond(TInt aSecond)
|
|
278 |
/**
|
|
279 |
Sets the second component of the date/time.
|
|
280 |
|
|
281 |
@param aSecond The second. Range is 0 to 59.
|
|
282 |
|
|
283 |
@return KErrNone if successful, KErrGeneral if not.
|
|
284 |
*/
|
|
285 |
{
|
|
286 |
|
|
287 |
if (aSecond<0 || aSecond>=60)
|
|
288 |
return KErrGeneral;
|
|
289 |
iSecond=aSecond;
|
|
290 |
return KErrNone;
|
|
291 |
}
|
|
292 |
|
|
293 |
EXPORT_C TInt TDateTime::SetMicroSecond(TInt aMicroSecond)
|
|
294 |
/**
|
|
295 |
Sets the microsecond component of the date/time.
|
|
296 |
|
|
297 |
@param aMicroSecond The microsecond. Range is 0 to 999999.
|
|
298 |
|
|
299 |
@return KErrNone if successful, KErrGeneral if not.
|
|
300 |
*/
|
|
301 |
{
|
|
302 |
|
|
303 |
if (aMicroSecond<0 || aMicroSecond>=1000000)
|
|
304 |
return KErrGeneral;
|
|
305 |
iMicroSecond=aMicroSecond;
|
|
306 |
return KErrNone;
|
|
307 |
}
|
|
308 |
|
|
309 |
// class TTime
|
|
310 |
|
|
311 |
EXPORT_C TTime::TTime(const TDesC &aString)
|
|
312 |
/**
|
|
313 |
Constructs a TTime object with a text string.
|
|
314 |
|
|
315 |
The string consists of up to three components, any or all of which
|
|
316 |
may be omitted:
|
|
317 |
|
|
318 |
1. year, month and day, followed by a colon
|
|
319 |
|
|
320 |
2. hour, minute and second, followed by a dot
|
|
321 |
|
|
322 |
3. microsecond
|
|
323 |
|
|
324 |
When all three components are present, the string should take the form:
|
|
325 |
|
|
326 |
YYYYMMDD:HHMMSS.MMMMMM
|
|
327 |
|
|
328 |
The conversion from text to time is carried out in the same manner as that
|
|
329 |
used in TTime::Set().
|
|
330 |
|
|
331 |
For a list of the range of valid values for date and time components,
|
|
332 |
see TDateTime::Set().
|
|
333 |
|
|
334 |
@param aString Date and time string for initializing the TTime object.
|
|
335 |
|
|
336 |
@panic USER 113, if the string is syntactically incorrect, for example, if
|
|
337 |
neither a colon nor a dot is present, or if any component of
|
|
338 |
the date or time is assigned an invalid value, or the year
|
|
339 |
is negative.
|
|
340 |
|
|
341 |
@see TTime::Set
|
|
342 |
@see TDateTime::Set
|
|
343 |
*/
|
|
344 |
{
|
|
345 |
|
|
346 |
__ASSERT_ALWAYS(Set(aString)==KErrNone,Panic(ETTimeValueOutOfRange));
|
|
347 |
}
|
|
348 |
|
|
349 |
EXPORT_C TTime::TTime(const TDateTime &aDateTime) : iTime(Convert(aDateTime).Int64())
|
|
350 |
/**
|
|
351 |
Constructs a TTime object with the seven fields which comprise a date and time.
|
|
352 |
|
|
353 |
@param aDateTime Date and time to which to initialise the TTime object.
|
|
354 |
*/
|
|
355 |
|
|
356 |
{}
|
|
357 |
|
|
358 |
EXPORT_C TInt TTime::Set(const TDesC &aString)
|
|
359 |
//
|
|
360 |
// Convert string to time. String is in the format:
|
|
361 |
//
|
|
362 |
// YYYYMMDD:HHMMSS.MMMMMM
|
|
363 |
//
|
|
364 |
// Any part may be ommitted, but either the
|
|
365 |
// dot or colon or both must be present
|
|
366 |
//
|
|
367 |
/**
|
|
368 |
Assigns a date and time contained in a descriptor to this TTime object.
|
|
369 |
|
|
370 |
The string consists of up to three components, any or all of which may
|
|
371 |
be omitted:
|
|
372 |
|
|
373 |
1. year, month and day, followed by a colon
|
|
374 |
|
|
375 |
2. hour, minute and second, followed by a dot
|
|
376 |
|
|
377 |
3. microsecond
|
|
378 |
|
|
379 |
When all three components are present, the string should take the form:
|
|
380 |
|
|
381 |
YYYYMMDD:HHMMSS.MMMMMM
|
|
382 |
|
|
383 |
If omitted, the first component is set to January 1st 0 AD nominal Gregorian.
|
|
384 |
If either the second or third components are omitted, they are set to zero.
|
|
385 |
|
|
386 |
Notes:
|
|
387 |
|
|
388 |
1. The month and day values are offset from zero.
|
|
389 |
|
|
390 |
2. The only situations in which either the colon or dot may be omitted are as
|
|
391 |
follows:
|
|
392 |
|
|
393 |
2.1 If the microsecond component is omitted, the preceding dot may also
|
|
394 |
be omitted.
|
|
395 |
|
|
396 |
2.2 The colon can be omitted only if a dot is located at string position
|
|
397 |
zero (indicating that the first two components are missing), or at
|
|
398 |
string position six (indicating that the first component only is
|
|
399 |
missing).
|
|
400 |
|
|
401 |
@param aString The date and time to be assigned to this TTime object.
|
|
402 |
|
|
403 |
@return KErrNone if successful,
|
|
404 |
KErrGeneral if the string is syntactically incorrect, for example,
|
|
405 |
if neither a colon nor a dot is present, or if any component of the
|
|
406 |
date or time is given an invalid value, or the year is negative.
|
|
407 |
For a list of valid values for date and time components,
|
|
408 |
see TDateTime::Set().
|
|
409 |
If an error occurs, the date and time will remain unchanged.
|
|
410 |
*/
|
|
411 |
{
|
|
412 |
|
|
413 |
//
|
|
414 |
// Get position of the colon and dot separators
|
|
415 |
//
|
|
416 |
TInt colon=aString.Locate(':');
|
|
417 |
TInt dot=aString.Locate('.');
|
|
418 |
|
|
419 |
if(colon==KErrNotFound && dot==KErrNotFound)
|
|
420 |
return(KErrGeneral);
|
|
421 |
//
|
|
422 |
// Zero parts that aren't supplied
|
|
423 |
//
|
|
424 |
TInt yy=0;
|
|
425 |
TInt mm=0;
|
|
426 |
TInt dd=0;
|
|
427 |
TInt hr=0;
|
|
428 |
TInt mi=0;
|
|
429 |
TInt se=0;
|
|
430 |
TInt ms=0;
|
|
431 |
//
|
|
432 |
// Convert YYYYMMDD if present
|
|
433 |
//
|
|
434 |
switch(colon)
|
|
435 |
{
|
|
436 |
case 0:
|
|
437 |
break;
|
|
438 |
case KErrNotFound:
|
|
439 |
if(dot!=0 && dot!=6)
|
|
440 |
return(KErrGeneral);
|
|
441 |
colon=-1;
|
|
442 |
break;
|
|
443 |
case 8:
|
|
444 |
{
|
|
445 |
TLex y=aString.Left(4);
|
|
446 |
TLex m=aString.Mid(4,2);
|
|
447 |
TLex d=aString.Mid(6,2);
|
|
448 |
y.Val(yy);
|
|
449 |
m.Val(mm);
|
|
450 |
d.Val(dd);
|
|
451 |
}
|
|
452 |
break;
|
|
453 |
default: // Colon in wrong position - return error
|
|
454 |
return(KErrGeneral);
|
|
455 |
}
|
|
456 |
//
|
|
457 |
// Convert HHMMSS if present
|
|
458 |
//
|
|
459 |
if(dot==KErrNotFound)
|
|
460 |
dot=aString.Length();
|
|
461 |
|
|
462 |
if(dot==colon+7)
|
|
463 |
{
|
|
464 |
TLex h=aString.Mid(dot-6,2);
|
|
465 |
TLex m=aString.Mid(dot-4,2);
|
|
466 |
TLex s=aString.Mid(dot-2,2);
|
|
467 |
h.Val(hr);
|
|
468 |
m.Val(mi);
|
|
469 |
s.Val(se);
|
|
470 |
}
|
|
471 |
else if(dot!=KErrNotFound && dot!=0 && dot!=colon+1)
|
|
472 |
return(KErrGeneral);
|
|
473 |
|
|
474 |
if(dot!=KErrNotFound)
|
|
475 |
{
|
|
476 |
if(aString.Length()>dot+7)
|
|
477 |
return(KErrGeneral); // microseconds is more than 6 digits
|
|
478 |
if(dot<aString.Length())
|
|
479 |
{
|
|
480 |
TLex m=aString.Mid(dot+1);
|
|
481 |
m.Val(ms);
|
|
482 |
}
|
|
483 |
}
|
|
484 |
|
|
485 |
//
|
|
486 |
// Set the time! Do not construct newtime using the values or
|
|
487 |
// it may cause TTime::Set() to panic rather than return an error
|
|
488 |
//
|
|
489 |
TDateTime newtime;
|
|
490 |
if(newtime.Set(yy,TMonth(mm),dd,hr,mi,se,ms)!=KErrNone)
|
|
491 |
return(KErrGeneral);
|
|
492 |
(*this)=newtime;
|
|
493 |
return KErrNone;
|
|
494 |
}
|
|
495 |
|
|
496 |
EXPORT_C TInt TTime::HomeTimeSecure()
|
|
497 |
/**
|
|
498 |
Sets the date and time of this TTime to the secure home time.
|
|
499 |
Returns KErrNoSecureTime if there is no secure time source
|
|
500 |
*/
|
|
501 |
{
|
|
502 |
TInt utOffset=0;
|
|
503 |
TInt r = Exec::TimeNowSecure(*(TInt64*)this,utOffset);
|
|
504 |
operator+=(TTimeIntervalSeconds(utOffset));
|
|
505 |
return r;
|
|
506 |
}
|
|
507 |
|
|
508 |
EXPORT_C TInt TTime::UniversalTimeSecure()
|
|
509 |
/**
|
|
510 |
Sets the date and time of this TTime to the secure universal time.
|
|
511 |
*/
|
|
512 |
{
|
|
513 |
TInt utOffset=0;
|
|
514 |
return Exec::TimeNowSecure(*(TInt64*)this,utOffset);
|
|
515 |
}
|
|
516 |
|
|
517 |
EXPORT_C void TTime::HomeTime()
|
|
518 |
/**
|
|
519 |
Sets the date and time of this TTime to the home time.
|
|
520 |
*/
|
|
521 |
{
|
|
522 |
TInt utOffset=0;
|
|
523 |
Exec::TimeNow(*(TInt64*)this,utOffset);
|
|
524 |
operator+=(TTimeIntervalSeconds(utOffset));
|
|
525 |
}
|
|
526 |
|
|
527 |
EXPORT_C void TTime::UniversalTime()
|
|
528 |
/**
|
|
529 |
Sets the date and time of this TTime to the universal time.
|
|
530 |
*/
|
|
531 |
{
|
|
532 |
TInt utOffset=0;
|
|
533 |
Exec::TimeNow(*(TInt64*)this,utOffset);
|
|
534 |
}
|
|
535 |
|
|
536 |
EXPORT_C void TTime::RoundUpToNextMinute()
|
|
537 |
/**
|
|
538 |
Rounds this TTime up to the next minute.
|
|
539 |
|
|
540 |
Both the seconds and microseconds components are set to zero.
|
|
541 |
*/
|
|
542 |
{
|
|
543 |
|
|
544 |
if (iTime>0)
|
|
545 |
iTime+=59999999;
|
|
546 |
//* TInt64 remainder;
|
|
547 |
//* Int64().DivMod(60000000,remainder);
|
|
548 |
//* iTime-=remainder;
|
|
549 |
iTime-=iTime%60000000;
|
|
550 |
}
|
|
551 |
|
|
552 |
TTime TTime::Convert(const TDateTime &aDateTime)
|
|
553 |
//
|
|
554 |
// converts TDateTime into a TTime, doesnt check for overflows
|
|
555 |
//
|
|
556 |
{
|
|
557 |
|
|
558 |
TInt days=365*aDateTime.Year()+Time::LeapYearsUpTo(aDateTime.Year());
|
|
559 |
TBool isleap=Time::IsLeapYear(aDateTime.Year());
|
|
560 |
days+=cmTab[isleap][aDateTime.Month()];
|
|
561 |
days+=aDateTime.Day();
|
|
562 |
|
|
563 |
TUint sum=aDateTime.MicroSecond()+aDateTime.Second()*KSecondsToMicroSeconds+aDateTime.Minute()*KMinutesToMicroSeconds;
|
|
564 |
return(((TInt64(days*3)<<3)+TInt64(aDateTime.Hour()))*KHoursToMicroSeconds+TInt64(sum));
|
|
565 |
}
|
|
566 |
|
|
567 |
EXPORT_C TTime &TTime::operator=(const TDateTime &aDateTime)
|
|
568 |
/**
|
|
569 |
Assigns a TDateTime object to this TTime object.
|
|
570 |
|
|
571 |
@param aDateTime The date and time to assign to this TTime object.
|
|
572 |
|
|
573 |
@return This TTime object.
|
|
574 |
*/
|
|
575 |
{
|
|
576 |
|
|
577 |
iTime=Convert(aDateTime).Int64();
|
|
578 |
return(*this);
|
|
579 |
}
|
|
580 |
|
|
581 |
EXPORT_C TDateTime TTime::DateTime() const
|
|
582 |
//
|
|
583 |
// converts iTime back into its TDateTime components
|
|
584 |
//
|
|
585 |
/**
|
|
586 |
Converts the TTime object into a TDateTime object.
|
|
587 |
|
|
588 |
This conversion must be done before the seven fields which comprise a date
|
|
589 |
and time can be accessed.
|
|
590 |
|
|
591 |
@return The components of the time, indicating year, month, day, hour, minute,
|
|
592 |
second, microsecond.
|
|
593 |
*/
|
|
594 |
{
|
|
595 |
|
|
596 |
TInt64 rem;
|
|
597 |
TInt64 daysSince0AD64(iTime);
|
|
598 |
|
|
599 |
rem = daysSince0AD64 % KDaysToMicroSeconds;
|
|
600 |
daysSince0AD64 /= KDaysToMicroSeconds;
|
|
601 |
|
|
602 |
TInt daysSince0AD = static_cast<TInt>(daysSince0AD64);
|
|
603 |
|
|
604 |
TInt year;
|
|
605 |
TInt daysLeft;
|
|
606 |
if (iTime<0)
|
|
607 |
{ // -1 to make daysLeft +ve and assume leap year every 4 years
|
|
608 |
if (rem!=TInt64(0))
|
|
609 |
{
|
|
610 |
daysSince0AD--;
|
|
611 |
rem=iTime-TInt64(daysSince0AD)*KDaysToMicroSeconds;
|
|
612 |
}
|
|
613 |
year=(4*daysSince0AD)/((4*365)+1);
|
|
614 |
if ((4*daysSince0AD)%((4*365)+1))
|
|
615 |
year--;
|
|
616 |
daysLeft=daysSince0AD-((year*365)+Time::LeapYearsUpTo(year));
|
|
617 |
}
|
|
618 |
else
|
|
619 |
{ // after 1600 leap years less than every four years
|
|
620 |
year=(4*daysSince0AD)/((4*365)+1);
|
|
621 |
daysLeft=daysSince0AD-((year*365)+Time::LeapYearsUpTo(year));
|
|
622 |
TInt daysInYear=365+Time::IsLeapYear(year);
|
|
623 |
while (daysLeft>=daysInYear)
|
|
624 |
{
|
|
625 |
year++;
|
|
626 |
daysLeft-=daysInYear;
|
|
627 |
daysInYear=365+Time::IsLeapYear(year);
|
|
628 |
}
|
|
629 |
}
|
|
630 |
|
|
631 |
TDateTime result(0,EJanuary,0,0,0,0,0);
|
|
632 |
result.SetYear(year);
|
|
633 |
|
|
634 |
TBool isleap=Time::IsLeapYear(year);
|
|
635 |
TInt month=11;
|
|
636 |
const TInt* pCM=&(cmTab[isleap][11])+1;
|
|
637 |
while(daysLeft<*--pCM)
|
|
638 |
month--;
|
|
639 |
daysLeft-=*pCM;
|
|
640 |
|
|
641 |
result.SetMonth((TMonth)month);
|
|
642 |
result.SetDay(daysLeft);
|
|
643 |
|
|
644 |
TInt hour = static_cast<TInt>(rem >> 10) / 3515625; // 3515625=KHoursToMicroSeconds/1024
|
|
645 |
result.SetHour(hour);
|
|
646 |
TUint rem32=I64LOW(rem-(TInt64(hour*3515625)<<10));
|
|
647 |
TUint min=rem32/KMinutesToMicroSeconds;
|
|
648 |
result.SetMinute((TInt)min);
|
|
649 |
rem32-=min*KMinutesToMicroSeconds;
|
|
650 |
TUint sec=rem32/KSecondsToMicroSeconds;
|
|
651 |
result.SetSecond((TInt)sec);
|
|
652 |
rem32-=sec*KSecondsToMicroSeconds;
|
|
653 |
result.SetMicroSecond(TInt(rem32));
|
|
654 |
return(result);
|
|
655 |
}
|
|
656 |
|
|
657 |
EXPORT_C TTimeIntervalMicroSeconds TTime::MicroSecondsFrom(TTime aTime) const
|
|
658 |
//
|
|
659 |
// this - aTime
|
|
660 |
//
|
|
661 |
/**
|
|
662 |
Calculates the number of microseconds difference between the specified TTime
|
|
663 |
and this TTime.
|
|
664 |
|
|
665 |
@param aTime The time to be compared with this TTime.
|
|
666 |
|
|
667 |
@return Difference in microseconds between the two times. If the time specified
|
|
668 |
in the argument is later than this TTime, this value is negative.
|
|
669 |
*/
|
|
670 |
{
|
|
671 |
|
|
672 |
TInt64 difference=iTime-aTime.Int64();
|
|
673 |
return(difference);
|
|
674 |
}
|
|
675 |
|
|
676 |
EXPORT_C TInt TTime::SecondsFrom(TTime aTime,TTimeIntervalSeconds &aInterval) const
|
|
677 |
//
|
|
678 |
// this - aTime as whole seconds
|
|
679 |
// this function may fail if difference > no of seconds that can be represented in a TInt
|
|
680 |
//
|
|
681 |
/**
|
|
682 |
Calculates the number of seconds difference between the specified TTime and
|
|
683 |
this TTime.
|
|
684 |
|
|
685 |
The difference may be positive or negative.
|
|
686 |
|
|
687 |
@param aTime The time to be compared with this TTime.
|
|
688 |
@param aInterval On return contains the difference in seconds between the two
|
|
689 |
times. If the time specified in the first argument is later than
|
|
690 |
this TTime, then this returned value is negative.
|
|
691 |
|
|
692 |
@return Error code. KErrNone if successful.
|
|
693 |
KErrOverflow, if the calculated interval is too large for
|
|
694 |
a 32-bit integer.
|
|
695 |
*/
|
|
696 |
{
|
|
697 |
TInt64 diff;
|
|
698 |
if (iTime>aTime.Int64())
|
|
699 |
{
|
|
700 |
diff= TInt64(TUint64(iTime-aTime.Int64())/KSecondsToMicroSeconds);
|
|
701 |
}
|
|
702 |
else
|
|
703 |
{
|
|
704 |
diff= -TInt64(TUint64(aTime.Int64()-iTime)/KSecondsToMicroSeconds);
|
|
705 |
}
|
|
706 |
if (diff>KMaxTInt || diff<KMinTInt)
|
|
707 |
return KErrOverflow;
|
|
708 |
aInterval = static_cast<TInt>(diff);
|
|
709 |
return KErrNone;
|
|
710 |
}
|
|
711 |
|
|
712 |
EXPORT_C TInt TTime::MinutesFrom(TTime aTime,TTimeIntervalMinutes &aInterval) const
|
|
713 |
//
|
|
714 |
// iTime - aTime as whole minutes
|
|
715 |
// function may fail if difference can't be represented as a TInt
|
|
716 |
//
|
|
717 |
/**
|
|
718 |
Calculates the number of minutes difference between the specified TTime and
|
|
719 |
this TTime.
|
|
720 |
|
|
721 |
The difference may be positive or negative.
|
|
722 |
|
|
723 |
@param aTime The time to be compared with this TTime.
|
|
724 |
@param aInterval On return contains the difference in minutes between the two
|
|
725 |
times. If the time specified in the first argument is later
|
|
726 |
than this TTime, then this returned value is negative.
|
|
727 |
|
|
728 |
@return Error code. KErrNone if successful.
|
|
729 |
KErrOverflow, if the calculated interval is too large for
|
|
730 |
a 32-bit integer.
|
|
731 |
*/
|
|
732 |
{
|
|
733 |
TInt64 diff;
|
|
734 |
if (iTime>aTime.Int64())
|
|
735 |
{
|
|
736 |
diff= TInt64(TUint64(iTime-aTime.Int64())/KMinutesToMicroSeconds);
|
|
737 |
}
|
|
738 |
else
|
|
739 |
{
|
|
740 |
diff= -TInt64(TUint64(aTime.Int64()-iTime)/KMinutesToMicroSeconds);
|
|
741 |
}
|
|
742 |
if (diff>KMaxTInt || diff<KMinTInt)
|
|
743 |
return KErrOverflow;
|
|
744 |
aInterval = static_cast<TInt>(diff);
|
|
745 |
return KErrNone;
|
|
746 |
}
|
|
747 |
|
|
748 |
EXPORT_C TInt TTime::HoursFrom(TTime aTime,TTimeIntervalHours &aInterval) const
|
|
749 |
//
|
|
750 |
// iTime - aTime as whole hours
|
|
751 |
// function may fail if difference can't be represented as a TInt
|
|
752 |
//
|
|
753 |
/**
|
|
754 |
Calculates the number of hours difference between the specified TTime and
|
|
755 |
this TTime.
|
|
756 |
|
|
757 |
The difference may be positive or negative.
|
|
758 |
|
|
759 |
@param aTime The time to be compared with this TTime.
|
|
760 |
@param aInterval On return contains the difference in hours between the two
|
|
761 |
times. If the time specified in the first argument is later
|
|
762 |
than this TTime, then this returned value is negative.
|
|
763 |
|
|
764 |
@return Error code. KErrNone if successful.
|
|
765 |
KErrOverflow, if the calculated interval is too large for
|
|
766 |
a 32-bit integer.
|
|
767 |
*/
|
|
768 |
{
|
|
769 |
TInt64 diff;
|
|
770 |
if (iTime>aTime.Int64())
|
|
771 |
{
|
|
772 |
diff= TInt64(TUint64(iTime-aTime.Int64())/KHoursToMicroSeconds);
|
|
773 |
}
|
|
774 |
else
|
|
775 |
{
|
|
776 |
diff= -TInt64(TUint64(aTime.Int64()-iTime)/KHoursToMicroSeconds);
|
|
777 |
}
|
|
778 |
if (diff>KMaxTInt || diff<KMinTInt)
|
|
779 |
return KErrOverflow;
|
|
780 |
aInterval = static_cast<TInt>(diff);
|
|
781 |
return KErrNone;
|
|
782 |
}
|
|
783 |
|
|
784 |
|
|
785 |
EXPORT_C TTimeIntervalDays TTime::DaysFrom(TTime aTime) const
|
|
786 |
//
|
|
787 |
// iTime - aTime as whole days
|
|
788 |
//
|
|
789 |
/**
|
|
790 |
Calculates the number of days difference between the specified TTime and
|
|
791 |
this TTime.
|
|
792 |
|
|
793 |
The difference may be positive or negative.
|
|
794 |
|
|
795 |
@param aTime The time to be compared with this TTime.
|
|
796 |
|
|
797 |
@return Difference in days between the two times. If the time specified in
|
|
798 |
aTime is later than this TTime, the returned value will be negative.
|
|
799 |
*/
|
|
800 |
{
|
|
801 |
if (iTime>aTime.Int64())
|
|
802 |
{
|
|
803 |
return TInt(TUint64(iTime-aTime.Int64())/KDaysToMicroSeconds);
|
|
804 |
}
|
|
805 |
else
|
|
806 |
{
|
|
807 |
return -TInt(TUint64(aTime.Int64()-iTime)/KDaysToMicroSeconds);
|
|
808 |
}
|
|
809 |
}
|
|
810 |
|
|
811 |
EXPORT_C TTimeIntervalMonths TTime::MonthsFrom(TTime aTime) const
|
|
812 |
//
|
|
813 |
// iTime - aTime as whole months - ie aTime must be on a later day in the month and later in that day
|
|
814 |
// except for last days etc eg 31st October - 30 November is one month to be consistent with other
|
|
815 |
// functions
|
|
816 |
//
|
|
817 |
/**
|
|
818 |
Calculates the number of months between the specified TTime and this TTime.
|
|
819 |
|
|
820 |
The result may be positive or negative.
|
|
821 |
|
|
822 |
The interval in months between two TTimes is calculated by incrementing it
|
|
823 |
by one each time the same day number and time in the previous or following
|
|
824 |
month has been reached. Exceptions to this rule occur when this TTime is on
|
|
825 |
the last day of the month. In this case, the following rules apply:
|
|
826 |
|
|
827 |
When comparing this TTime with a later time:
|
|
828 |
|
|
829 |
1. if the following month is shorter, one month is deemed to separate the times
|
|
830 |
when the same time on the last day of the following month is reached. In this
|
|
831 |
case, the two day numbers are not the same.
|
|
832 |
|
|
833 |
When comparing this TTime with an earlier time:
|
|
834 |
|
|
835 |
1. if the previous month is shorter, one month is deemed to separate the times
|
|
836 |
when the last microsecond of the previous month is reached (23:59:59.999999
|
|
837 |
on the last day of the month).
|
|
838 |
|
|
839 |
2. if the previous month is longer, one month is deemed to separate the times
|
|
840 |
when the same time on the last day of previous month is reached. In this case,
|
|
841 |
the two day numbers are not the same.
|
|
842 |
|
|
843 |
@param aTime The time to be compared with this TTime.
|
|
844 |
|
|
845 |
@return Difference in months between the two times. If the time specified in
|
|
846 |
the argument is later than this TTime, the interval is negative.
|
|
847 |
*/
|
|
848 |
{
|
|
849 |
|
|
850 |
TDateTime dateTimei=DateTime();
|
|
851 |
TDateTime dateTimea=aTime.DateTime();
|
|
852 |
|
|
853 |
TInt monthsDifference=(dateTimei.Year()-dateTimea.Year())*12+(dateTimei.Month()-dateTimea.Month());
|
|
854 |
|
|
855 |
if (monthsDifference>0)
|
|
856 |
{
|
|
857 |
if (dateTimei.Day()<=dateTimea.Day())
|
|
858 |
{
|
|
859 |
if (iTime%KDaysToMicroSeconds<aTime.Int64()%KDaysToMicroSeconds || (dateTimei.Day()!=dateTimea.Day() && dateTimei.Day()!=DaysInMonth()-1))
|
|
860 |
monthsDifference--;
|
|
861 |
}
|
|
862 |
}
|
|
863 |
else
|
|
864 |
if (monthsDifference!=0)//monthsDifference<0
|
|
865 |
{
|
|
866 |
if (dateTimei.Day()>=dateTimea.Day())
|
|
867 |
{
|
|
868 |
if (iTime%KDaysToMicroSeconds>aTime.Int64()%KDaysToMicroSeconds || (dateTimei.Day()!=dateTimea.Day() && dateTimea.Day()!=aTime.DaysInMonth()-1))
|
|
869 |
monthsDifference++;
|
|
870 |
}
|
|
871 |
}
|
|
872 |
|
|
873 |
return(monthsDifference);
|
|
874 |
}
|
|
875 |
|
|
876 |
EXPORT_C TTimeIntervalYears TTime::YearsFrom(TTime aTime) const
|
|
877 |
//
|
|
878 |
// as above,but for twelve months
|
|
879 |
//
|
|
880 |
/**
|
|
881 |
Calculates the number of years between the specified TTime and this TTime.
|
|
882 |
|
|
883 |
The result may be positive or negative.
|
|
884 |
|
|
885 |
Note that the interval in years between two TTimes is calculated by
|
|
886 |
incrementing it by one each time the same day number and time in the previous
|
|
887 |
or following year has been reached. The exception to this rule occurs when this
|
|
888 |
TTime is the last day in February in a leap year. In this case, one year is
|
|
889 |
deemed to have passed when the same time of day on the last day in the preceding
|
|
890 |
or following February has been reached.
|
|
891 |
|
|
892 |
@param aTime The time to be compared with this TTime.
|
|
893 |
|
|
894 |
@return Difference in years between the two times. If the time specified in
|
|
895 |
the argument is later than this TTime, the interval is negative.
|
|
896 |
*/
|
|
897 |
{
|
|
898 |
|
|
899 |
TTimeIntervalMonths mos= TTime::MonthsFrom(aTime);
|
|
900 |
TTimeIntervalYears ret=mos.Int()/12;
|
|
901 |
return(ret);
|
|
902 |
}
|
|
903 |
|
|
904 |
EXPORT_C TTime TTime::operator+(TTimeIntervalYears aYear) const
|
|
905 |
/**
|
|
906 |
Adds a time interval to this TTime, returning the result
|
|
907 |
as a TTime.
|
|
908 |
|
|
909 |
Note that in a leap year, when adding one year to the 29th February, the result
|
|
910 |
is the 28th February in the following year.
|
|
911 |
|
|
912 |
Note also that this TTime object is not changed.
|
|
913 |
|
|
914 |
@param aYear A time interval in years. The argument is stored as a 32 bit
|
|
915 |
signed integer. The maximum value which it can represent is
|
|
916 |
2147483647. Any attempt to add more than this amount will
|
|
917 |
produce incorrect results.
|
|
918 |
|
|
919 |
@return The new time.
|
|
920 |
*/
|
|
921 |
{
|
|
922 |
|
|
923 |
return((*this)+TTimeIntervalMonths(aYear.Int()*12));
|
|
924 |
}
|
|
925 |
|
|
926 |
EXPORT_C TTime TTime::operator+(TTimeIntervalMonths aMonth) const
|
|
927 |
/**
|
|
928 |
Adds a time interval to this TTime, returning the result
|
|
929 |
as a TTime.
|
|
930 |
|
|
931 |
Note that when adding one month to the last day in the month, if the following
|
|
932 |
month is shorter, the result is the last day in the following month.
|
|
933 |
For example, when adding one month to 31st August, the result is
|
|
934 |
the 30th September.
|
|
935 |
|
|
936 |
Note also that this TTime object is not changed.
|
|
937 |
|
|
938 |
@param aMonth A time interval in months. The argument is stored as a 32 bit
|
|
939 |
signed integer. The maximum value which it can represent is
|
|
940 |
2147483647. Any attempt to add more than this amount will
|
|
941 |
produce incorrect results.
|
|
942 |
|
|
943 |
@return The new time.
|
|
944 |
*/
|
|
945 |
{
|
|
946 |
|
|
947 |
TDateTime dateTime=DateTime();
|
|
948 |
TInt month=dateTime.Month()+(dateTime.Year()*12)+aMonth.Int();
|
|
949 |
TInt day=dateTime.Day();
|
|
950 |
TInt year=month/12;
|
|
951 |
month%=12;
|
|
952 |
if (month<0)
|
|
953 |
{
|
|
954 |
year--;
|
|
955 |
month+=12;
|
|
956 |
}
|
|
957 |
TInt daysInMonth=(mTab[Time::IsLeapYear(year)][month]-1);
|
|
958 |
if (day>=daysInMonth)
|
|
959 |
day=daysInMonth;
|
|
960 |
__ASSERT_ALWAYS(dateTime.Set(year,TMonth(month),day,dateTime.Hour(),dateTime.Minute(),dateTime.Second(),dateTime.MicroSecond())==KErrNone,Panic(ETDateTimeBadDateTime));
|
|
961 |
return(dateTime);
|
|
962 |
}
|
|
963 |
|
|
964 |
EXPORT_C TTime TTime::operator+(TTimeIntervalDays aDay) const
|
|
965 |
/**
|
|
966 |
Adds a time interval to this TTime, returning the result
|
|
967 |
as a TTime.
|
|
968 |
|
|
969 |
Note that this TTime object is not changed.
|
|
970 |
|
|
971 |
@param aDay A time interval in days. The argument is stored as a 32 bit
|
|
972 |
signed integer. The maximum value which it can represent is
|
|
973 |
2147483647. Any attempt to add more than this amount will
|
|
974 |
produce incorrect results.
|
|
975 |
|
|
976 |
@return The new time.
|
|
977 |
*/
|
|
978 |
{
|
|
979 |
|
|
980 |
return(iTime+TInt64(aDay.Int())*KDaysToMicroSeconds);
|
|
981 |
}
|
|
982 |
|
|
983 |
EXPORT_C TTime TTime::operator+(TTimeIntervalHours aHour) const
|
|
984 |
/**
|
|
985 |
Adds a time interval to this TTime, returning the result
|
|
986 |
as a TTime.
|
|
987 |
|
|
988 |
Note that this TTime object is not changed.
|
|
989 |
|
|
990 |
@param aHour A time interval in hours. The argument is stored as a 32 bit
|
|
991 |
signed integer. The maximum value which it can represent is
|
|
992 |
2147483647. Any attempt to add more than this amount will
|
|
993 |
produce incorrect results.
|
|
994 |
|
|
995 |
@return The new time.
|
|
996 |
*/
|
|
997 |
{
|
|
998 |
|
|
999 |
return(iTime+TInt64(aHour.Int())*KHoursToMicroSeconds);
|
|
1000 |
}
|
|
1001 |
|
|
1002 |
EXPORT_C TTime TTime::operator+(TTimeIntervalMinutes aMinute) const
|
|
1003 |
/**
|
|
1004 |
Adds a time interval to this TTime, returning the result
|
|
1005 |
as a TTime.
|
|
1006 |
|
|
1007 |
Note that this TTime object is not changed.
|
|
1008 |
|
|
1009 |
@param aMinute A time interval in minutes. The argument is stored as a 32 bit
|
|
1010 |
signed integer. The maximum value which it can represent is
|
|
1011 |
2147483647. Any attempt to add more than this amount will
|
|
1012 |
produce incorrect results.
|
|
1013 |
|
|
1014 |
@return The new time.
|
|
1015 |
*/
|
|
1016 |
{
|
|
1017 |
|
|
1018 |
return(iTime+TInt64(aMinute.Int())*KMinutesToMicroSeconds);
|
|
1019 |
}
|
|
1020 |
|
|
1021 |
EXPORT_C TTime TTime::operator+(TTimeIntervalSeconds aSecond) const
|
|
1022 |
/**
|
|
1023 |
Adds a time interval to this TTime, returning the result
|
|
1024 |
as a TTime.
|
|
1025 |
|
|
1026 |
Note that this TTime object is not changed.
|
|
1027 |
|
|
1028 |
@param aSecond A time interval in seconds. The argument is stored as a 32 bit
|
|
1029 |
signed integer. The maximum value which it can represent is
|
|
1030 |
2147483647. Any attempt to add more than this amount will
|
|
1031 |
produce incorrect results.
|
|
1032 |
|
|
1033 |
@return The new time.
|
|
1034 |
*/
|
|
1035 |
{
|
|
1036 |
|
|
1037 |
return(iTime+TInt64(aSecond.Int())*KSecondsToMicroSeconds);
|
|
1038 |
}
|
|
1039 |
|
|
1040 |
|
|
1041 |
EXPORT_C TTime TTime::operator+(TTimeIntervalMicroSeconds aMicroSecond) const
|
|
1042 |
/**
|
|
1043 |
Adds a time interval to this TTime, returning the result
|
|
1044 |
as a TTime.
|
|
1045 |
|
|
1046 |
Note that this TTime object is not changed.
|
|
1047 |
|
|
1048 |
@param aMicroSecond A time interval in microseconds.
|
|
1049 |
|
|
1050 |
@return The new time.
|
|
1051 |
*/
|
|
1052 |
{
|
|
1053 |
|
|
1054 |
return(iTime+(aMicroSecond.Int64()));
|
|
1055 |
}
|
|
1056 |
|
|
1057 |
EXPORT_C TTime TTime::operator+(TTimeIntervalMicroSeconds32 aMicroSecond) const
|
|
1058 |
/**
|
|
1059 |
Adds a time interval to this TTime, returning the result
|
|
1060 |
as a TTime.
|
|
1061 |
|
|
1062 |
Note that this TTime object is not changed.
|
|
1063 |
|
|
1064 |
@param aMicroSecond A time interval in microseconds. The argument is stored as
|
|
1065 |
a 32 bit signed integer. The maximum value which it can
|
|
1066 |
represent is 2147483647. Any attempt to add more than this
|
|
1067 |
amount will produce incorrect results.
|
|
1068 |
|
|
1069 |
@return The new time.
|
|
1070 |
*/
|
|
1071 |
{
|
|
1072 |
|
|
1073 |
return(iTime+aMicroSecond.Int());
|
|
1074 |
}
|
|
1075 |
|
|
1076 |
EXPORT_C TTime TTime::operator-(TTimeIntervalYears aYear) const
|
|
1077 |
/**
|
|
1078 |
Substracts a time interval from this TTime, returning the result
|
|
1079 |
as a TTime.
|
|
1080 |
|
|
1081 |
Note that in a leap year, when subtracting one year from the 29th February,
|
|
1082 |
the result is 28th February in the preceding year.
|
|
1083 |
|
|
1084 |
Note also that this TTime object is not changed.
|
|
1085 |
|
|
1086 |
@param aYear A time interval in years. The argument is stored as
|
|
1087 |
a 32 bit signed integer. The maximum value which it can
|
|
1088 |
represent is 2147483647. Any attempt to subtract more than this
|
|
1089 |
amount will produce incorrect results.
|
|
1090 |
|
|
1091 |
@return The new time.
|
|
1092 |
*/
|
|
1093 |
{
|
|
1094 |
|
|
1095 |
return((*this)-TTimeIntervalMonths(aYear.Int()*12));
|
|
1096 |
}
|
|
1097 |
|
|
1098 |
EXPORT_C TTime TTime::operator-(TTimeIntervalMonths aMonth) const
|
|
1099 |
/**
|
|
1100 |
Substracts a time interval from this TTime, returning the result
|
|
1101 |
as a TTime.
|
|
1102 |
|
|
1103 |
Note that when subtracting one month from the last day in the month, if the
|
|
1104 |
preceding month is shorter, the result is the last day in the preceding month.
|
|
1105 |
For example, when subtracting 1 month from 31st October, the result is
|
|
1106 |
the 30th September.
|
|
1107 |
|
|
1108 |
Note also that this TTime object is not changed.
|
|
1109 |
|
|
1110 |
@param aMonth A time interval in months. The argument is stored as
|
|
1111 |
a 32 bit signed integer. The maximum value which it can
|
|
1112 |
represent is 2147483647. Any attempt to subtract more than this
|
|
1113 |
amount will produce incorrect results.
|
|
1114 |
|
|
1115 |
@return The new time.
|
|
1116 |
*/
|
|
1117 |
{
|
|
1118 |
|
|
1119 |
return((*this)+TTimeIntervalMonths(aMonth.Int()*-1));
|
|
1120 |
}
|
|
1121 |
|
|
1122 |
EXPORT_C TTime TTime::operator-(TTimeIntervalDays aDay) const
|
|
1123 |
/**
|
|
1124 |
Substracts a time interval from this TTime, returning the result
|
|
1125 |
as a TTime.
|
|
1126 |
|
|
1127 |
Note that this TTime object is not changed.
|
|
1128 |
|
|
1129 |
@param aDay A time interval in days. The argument is stored as
|
|
1130 |
a 32 bit signed integer. The maximum value which it can
|
|
1131 |
represent is 2147483647. Any attempt to subtract more than this
|
|
1132 |
amount will produce incorrect results.
|
|
1133 |
|
|
1134 |
@return The new time.
|
|
1135 |
*/
|
|
1136 |
{
|
|
1137 |
|
|
1138 |
return(iTime-TInt64(aDay.Int())*KDaysToMicroSeconds);
|
|
1139 |
}
|
|
1140 |
|
|
1141 |
EXPORT_C TTime TTime::operator-(TTimeIntervalHours aHour) const
|
|
1142 |
/**
|
|
1143 |
Substracts a time interval from this TTime, returning the result
|
|
1144 |
as a TTime.
|
|
1145 |
|
|
1146 |
Note that this TTime object is not changed.
|
|
1147 |
|
|
1148 |
@param aHour A time interval in hours. The argument is stored as
|
|
1149 |
a 32 bit signed integer. The maximum value which it can
|
|
1150 |
represent is 2147483647. Any attempt to subtract more than this
|
|
1151 |
amount will produce incorrect results.
|
|
1152 |
|
|
1153 |
@return The new time.
|
|
1154 |
*/
|
|
1155 |
{
|
|
1156 |
|
|
1157 |
return(iTime-TInt64(aHour.Int())*KHoursToMicroSeconds);
|
|
1158 |
}
|
|
1159 |
|
|
1160 |
EXPORT_C TTime TTime::operator-(TTimeIntervalMinutes aMinute) const
|
|
1161 |
/**
|
|
1162 |
Substracts a time interval from this TTime, returning the result
|
|
1163 |
as a TTime.
|
|
1164 |
|
|
1165 |
Note that this TTime object is not changed.
|
|
1166 |
|
|
1167 |
@param aMinute A time interval in minutes. The argument is stored as
|
|
1168 |
a 32 bit signed integer. The maximum value which it can
|
|
1169 |
represent is 2147483647. Any attempt to subtract more than this
|
|
1170 |
amount will produce incorrect results.
|
|
1171 |
|
|
1172 |
@return The new time.
|
|
1173 |
*/
|
|
1174 |
{
|
|
1175 |
|
|
1176 |
return(iTime-TInt64(aMinute.Int())*KMinutesToMicroSeconds);
|
|
1177 |
}
|
|
1178 |
|
|
1179 |
EXPORT_C TTime TTime::operator-(TTimeIntervalSeconds aSecond) const
|
|
1180 |
/**
|
|
1181 |
Substracts a time interval from this TTime, returning the result
|
|
1182 |
as a TTime.
|
|
1183 |
|
|
1184 |
Note that this TTime object is not changed.
|
|
1185 |
|
|
1186 |
@param aSecond A time interval in seconds. The argument is stored as
|
|
1187 |
a 32 bit signed integer. The maximum value which it can
|
|
1188 |
represent is 2147483647. Any attempt to subtract more than this
|
|
1189 |
amount will produce incorrect results.
|
|
1190 |
|
|
1191 |
@return The new time.
|
|
1192 |
*/
|
|
1193 |
{
|
|
1194 |
|
|
1195 |
return(iTime-TInt64(aSecond.Int())*KSecondsToMicroSeconds);
|
|
1196 |
}
|
|
1197 |
|
|
1198 |
EXPORT_C TTime TTime::operator-(TTimeIntervalMicroSeconds aMicroSecond) const
|
|
1199 |
/**
|
|
1200 |
Substracts a time interval from this TTime, returning the result
|
|
1201 |
as a TTime.
|
|
1202 |
|
|
1203 |
Note that this TTime object is not changed.
|
|
1204 |
|
|
1205 |
@param aMicroSecond A time interval in microseconds.
|
|
1206 |
|
|
1207 |
@return The new time.
|
|
1208 |
*/
|
|
1209 |
{
|
|
1210 |
|
|
1211 |
return(iTime-(aMicroSecond.Int64()));
|
|
1212 |
}
|
|
1213 |
|
|
1214 |
EXPORT_C TTime TTime::operator-(TTimeIntervalMicroSeconds32 aMicroSecond) const
|
|
1215 |
/**
|
|
1216 |
Substracts a time interval from this TTime, returning the result
|
|
1217 |
as a TTime.
|
|
1218 |
|
|
1219 |
Note that this TTime object is not changed.
|
|
1220 |
|
|
1221 |
@param aMicroSecond A time interval in microseconds. The argument is stored as
|
|
1222 |
a 32 bit signed integer. The maximum value which it can
|
|
1223 |
represent is 2147483647. Any attempt to subtract more than
|
|
1224 |
this amount will produce incorrect results.
|
|
1225 |
|
|
1226 |
@return The new time.
|
|
1227 |
*/
|
|
1228 |
{
|
|
1229 |
|
|
1230 |
return(iTime-aMicroSecond.Int());
|
|
1231 |
}
|
|
1232 |
|
|
1233 |
EXPORT_C TTime &TTime::operator+=(TTimeIntervalYears aYear)
|
|
1234 |
/**
|
|
1235 |
Adds a time interval to this TTime, returning a reference to this TTime.
|
|
1236 |
|
|
1237 |
@param aYear A time interval in years.
|
|
1238 |
|
|
1239 |
@return A reference to this TTime.
|
|
1240 |
*/
|
|
1241 |
{
|
|
1242 |
|
|
1243 |
TTime tim=(*this)+aYear;
|
|
1244 |
iTime=tim.Int64();
|
|
1245 |
return(*this);
|
|
1246 |
}
|
|
1247 |
|
|
1248 |
EXPORT_C TTime &TTime::operator+=(TTimeIntervalMonths aMonth)
|
|
1249 |
/**
|
|
1250 |
Adds a time interval to this TTime, returning a reference to this TTime.
|
|
1251 |
|
|
1252 |
@param aMonth A time interval in months.
|
|
1253 |
|
|
1254 |
@return A reference to this TTime.
|
|
1255 |
*/
|
|
1256 |
{
|
|
1257 |
|
|
1258 |
TTime tim=(*this)+aMonth;
|
|
1259 |
iTime=tim.Int64();
|
|
1260 |
return(*this);
|
|
1261 |
}
|
|
1262 |
|
|
1263 |
EXPORT_C TTime &TTime::operator+=(TTimeIntervalDays aDay)
|
|
1264 |
/**
|
|
1265 |
Adds a time interval to this TTime, returning a reference to this TTime.
|
|
1266 |
|
|
1267 |
@param aDay A time interval in days.
|
|
1268 |
|
|
1269 |
@return A reference to this TTime.
|
|
1270 |
*/
|
|
1271 |
{
|
|
1272 |
|
|
1273 |
iTime+=TInt64(aDay.Int())*KDaysToMicroSeconds;
|
|
1274 |
return(*this);
|
|
1275 |
}
|
|
1276 |
|
|
1277 |
EXPORT_C TTime &TTime::operator+=(TTimeIntervalHours aHour)
|
|
1278 |
/**
|
|
1279 |
Adds a time interval to this TTime, returning a reference to this TTime.
|
|
1280 |
|
|
1281 |
@param aHour A time interval in hours.
|
|
1282 |
|
|
1283 |
@return A reference to this TTime.
|
|
1284 |
*/
|
|
1285 |
{
|
|
1286 |
|
|
1287 |
iTime+=TInt64(aHour.Int())*KHoursToMicroSeconds;
|
|
1288 |
return(*this);
|
|
1289 |
}
|
|
1290 |
|
|
1291 |
EXPORT_C TTime &TTime::operator+=(TTimeIntervalMinutes aMinute)
|
|
1292 |
/**
|
|
1293 |
Adds a time interval to this TTime, returning a reference to this TTime.
|
|
1294 |
|
|
1295 |
@param aMinute A time interval in minutes.
|
|
1296 |
|
|
1297 |
@return A reference to this TTime.
|
|
1298 |
*/
|
|
1299 |
{
|
|
1300 |
|
|
1301 |
iTime+=TInt64(aMinute.Int())*KMinutesToMicroSeconds;
|
|
1302 |
return(*this);
|
|
1303 |
}
|
|
1304 |
|
|
1305 |
EXPORT_C TTime &TTime::operator+=(TTimeIntervalSeconds aSecond)
|
|
1306 |
/**
|
|
1307 |
Adds a time interval to this TTime, returning a reference to this TTime.
|
|
1308 |
|
|
1309 |
@param aSecond A time interval in seconds.
|
|
1310 |
|
|
1311 |
@return A reference to this TTime.
|
|
1312 |
*/
|
|
1313 |
{
|
|
1314 |
|
|
1315 |
iTime+=TInt64(aSecond.Int())*KSecondsToMicroSeconds;
|
|
1316 |
return(*this);
|
|
1317 |
}
|
|
1318 |
|
|
1319 |
EXPORT_C TTime &TTime::operator+=(TTimeIntervalMicroSeconds aMicroSecond)
|
|
1320 |
/**
|
|
1321 |
Adds a time interval to this TTime, returning a reference to this TTime.
|
|
1322 |
|
|
1323 |
@param aMicroSecond A time interval in microseconds.
|
|
1324 |
|
|
1325 |
@return A reference to this TTime.
|
|
1326 |
*/
|
|
1327 |
{
|
|
1328 |
|
|
1329 |
iTime+=aMicroSecond.Int64();
|
|
1330 |
return(*this);
|
|
1331 |
}
|
|
1332 |
|
|
1333 |
EXPORT_C TTime &TTime::operator+=(TTimeIntervalMicroSeconds32 aMicroSecond)
|
|
1334 |
/**
|
|
1335 |
Adds a time interval to this TTime, returning a reference to this TTime.
|
|
1336 |
|
|
1337 |
@param aMicroSecond A time interval in microseconds, as a 32-bit integer.
|
|
1338 |
|
|
1339 |
@return A reference to this TTime.
|
|
1340 |
*/
|
|
1341 |
{
|
|
1342 |
|
|
1343 |
iTime+=aMicroSecond.Int();
|
|
1344 |
return(*this);
|
|
1345 |
}
|
|
1346 |
|
|
1347 |
EXPORT_C TTime &TTime::operator-=(TTimeIntervalYears aYear)
|
|
1348 |
/**
|
|
1349 |
Subtracts a time interval from this TTime, returning a reference to this TTime.
|
|
1350 |
|
|
1351 |
@param aYear A time interval in years.
|
|
1352 |
|
|
1353 |
@return A reference to this TTime.
|
|
1354 |
*/
|
|
1355 |
{
|
|
1356 |
|
|
1357 |
TTime tim=(*this)-aYear;
|
|
1358 |
iTime=tim.Int64();
|
|
1359 |
return(*this);
|
|
1360 |
}
|
|
1361 |
|
|
1362 |
EXPORT_C TTime &TTime::operator-=(TTimeIntervalMonths aMonth)
|
|
1363 |
/**
|
|
1364 |
Subtracts a time interval from this TTime, returning a reference to this TTime.
|
|
1365 |
|
|
1366 |
@param aMonth A time interval in months.
|
|
1367 |
|
|
1368 |
@return A reference to this TTime.
|
|
1369 |
*/
|
|
1370 |
{
|
|
1371 |
|
|
1372 |
TTime tim=(*this)-aMonth;
|
|
1373 |
iTime=tim.Int64();
|
|
1374 |
return(*this);
|
|
1375 |
}
|
|
1376 |
|
|
1377 |
EXPORT_C TTime &TTime::operator-=(TTimeIntervalDays aDay)
|
|
1378 |
/**
|
|
1379 |
Subtracts a time interval from this TTime, returning a reference to this TTime.
|
|
1380 |
|
|
1381 |
@param aDay A time interval in days.
|
|
1382 |
|
|
1383 |
@return A reference to this TTime.
|
|
1384 |
*/
|
|
1385 |
{
|
|
1386 |
|
|
1387 |
iTime-=TInt64(aDay.Int())*KDaysToMicroSeconds;
|
|
1388 |
return(*this);
|
|
1389 |
}
|
|
1390 |
|
|
1391 |
EXPORT_C TTime &TTime::operator-=(TTimeIntervalHours aHour)
|
|
1392 |
/**
|
|
1393 |
Subtracts a time interval from this TTime, returning a reference to this TTime.
|
|
1394 |
|
|
1395 |
@param aHour A time interval in hours.
|
|
1396 |
|
|
1397 |
@return A reference to this TTime.
|
|
1398 |
*/
|
|
1399 |
{
|
|
1400 |
|
|
1401 |
iTime-=TInt64(aHour.Int())*KHoursToMicroSeconds;
|
|
1402 |
return(*this);
|
|
1403 |
}
|
|
1404 |
|
|
1405 |
EXPORT_C TTime &TTime::operator-=(TTimeIntervalMinutes aMinute)
|
|
1406 |
/**
|
|
1407 |
Subtracts a time interval from this TTime, returning a reference to this TTime.
|
|
1408 |
|
|
1409 |
@param aMinute A time interval in minutes.
|
|
1410 |
|
|
1411 |
@return A reference to this TTime.
|
|
1412 |
*/
|
|
1413 |
{
|
|
1414 |
|
|
1415 |
iTime-=TInt64(aMinute.Int())*KMinutesToMicroSeconds;
|
|
1416 |
return(*this);
|
|
1417 |
}
|
|
1418 |
|
|
1419 |
EXPORT_C TTime &TTime::operator-=(TTimeIntervalSeconds aSecond)
|
|
1420 |
/**
|
|
1421 |
Subtracts a time interval from this TTime, returning a reference to this TTime.
|
|
1422 |
|
|
1423 |
@param aSecond A time interval in seconds.
|
|
1424 |
|
|
1425 |
@return A reference to this TTime.
|
|
1426 |
*/
|
|
1427 |
{
|
|
1428 |
|
|
1429 |
iTime-=TInt64(aSecond.Int())*KSecondsToMicroSeconds;
|
|
1430 |
return(*this);
|
|
1431 |
}
|
|
1432 |
|
|
1433 |
EXPORT_C TTime &TTime::operator-=(TTimeIntervalMicroSeconds aMicroSecond)
|
|
1434 |
/**
|
|
1435 |
Subtracts a time interval from this TTime, returning a reference to this TTime.
|
|
1436 |
|
|
1437 |
@param aMicroSecond A time interval in microseconds.
|
|
1438 |
|
|
1439 |
@return A reference to this TTime.
|
|
1440 |
*/
|
|
1441 |
{
|
|
1442 |
|
|
1443 |
iTime-=aMicroSecond.Int64();
|
|
1444 |
return(*this);
|
|
1445 |
}
|
|
1446 |
|
|
1447 |
EXPORT_C TTime &TTime::operator-=(TTimeIntervalMicroSeconds32 aMicroSecond)
|
|
1448 |
/**
|
|
1449 |
Subtracts a time interval from this TTime, returning a reference to this TTime.
|
|
1450 |
|
|
1451 |
@param aMicroSecond A time interval in microseconds, as a 32-bit integer.
|
|
1452 |
|
|
1453 |
@return A reference to this TTime.
|
|
1454 |
*/
|
|
1455 |
{
|
|
1456 |
|
|
1457 |
iTime-=aMicroSecond.Int();
|
|
1458 |
return(*this);
|
|
1459 |
}
|
|
1460 |
|
|
1461 |
EXPORT_C TInt TTime::DaysInMonth() const
|
|
1462 |
/**
|
|
1463 |
Gets the number of days in the current month.
|
|
1464 |
|
|
1465 |
@return The number of days in the month.
|
|
1466 |
*/
|
|
1467 |
{
|
|
1468 |
|
|
1469 |
TDateTime dateTime=DateTime();
|
|
1470 |
return(Time::DaysInMonth(dateTime.Year(),dateTime.Month()));
|
|
1471 |
}
|
|
1472 |
|
|
1473 |
EXPORT_C TDay TTime::DayNoInWeek() const
|
|
1474 |
//
|
|
1475 |
// 1st January 0AD was a Monday
|
|
1476 |
//
|
|
1477 |
/**
|
|
1478 |
Gets the day number within the current week.
|
|
1479 |
|
|
1480 |
This is a value in the range zero to six inclusive, and honours the
|
|
1481 |
setting specified in TLocale::SetStartOfWeek().
|
|
1482 |
|
|
1483 |
By default the first day in the week is Monday.
|
|
1484 |
|
|
1485 |
@return The number of the day within the week. The range is EMonday to ESunday.
|
|
1486 |
|
|
1487 |
@see TLocale::SetStartOfWeek
|
|
1488 |
*/
|
|
1489 |
{
|
|
1490 |
|
|
1491 |
|
|
1492 |
TInt64 fullDays=iTime/KDaysToMicroSeconds;
|
|
1493 |
TInt day = static_cast<TInt>(fullDays) % 7;
|
|
1494 |
if (iTime<0)
|
|
1495 |
{
|
|
1496 |
if (fullDays*KDaysToMicroSeconds!=iTime)
|
|
1497 |
day+=6;
|
|
1498 |
else
|
|
1499 |
if (day!=0)
|
|
1500 |
day+=7;
|
|
1501 |
}
|
|
1502 |
return((TDay)day);
|
|
1503 |
}
|
|
1504 |
|
|
1505 |
EXPORT_C TInt TTime::DayNoInMonth() const
|
|
1506 |
/**
|
|
1507 |
Gets the day number in the month.
|
|
1508 |
|
|
1509 |
@return The day number in the month. The first day in the month is numbered
|
|
1510 |
zero.
|
|
1511 |
*/
|
|
1512 |
{
|
|
1513 |
|
|
1514 |
return(DateTime().Day());
|
|
1515 |
}
|
|
1516 |
|
|
1517 |
EXPORT_C TInt TTime::DayNoInYear() const
|
|
1518 |
//
|
|
1519 |
// day number in comparison to 1st January
|
|
1520 |
//
|
|
1521 |
/**
|
|
1522 |
Gets the day number in the year.
|
|
1523 |
|
|
1524 |
@return The day number in the year. The first day in the year is day one.
|
|
1525 |
*/
|
|
1526 |
{
|
|
1527 |
|
|
1528 |
TDateTime dateTime=DateTime();
|
|
1529 |
TTime jan1st=TDateTime(dateTime.Year(),EJanuary,0,0,0,0,0);
|
|
1530 |
return(DayNoInYear(jan1st));
|
|
1531 |
}
|
|
1532 |
|
|
1533 |
EXPORT_C TInt TTime::DayNoInYear(TTime aStartDate) const
|
|
1534 |
//
|
|
1535 |
// day number in comparison to given date, check is made to ensure first day is within a year before aDay
|
|
1536 |
//
|
|
1537 |
/**
|
|
1538 |
Gets the day number in the year when the start of the year is aStartDate.
|
|
1539 |
|
|
1540 |
If no start date is specified, the default is January 1st.
|
|
1541 |
|
|
1542 |
@param aStartDate Indicates the date which is to be considered the start of
|
|
1543 |
the year. Default is 1st January.
|
|
1544 |
|
|
1545 |
@return The day number in the year. The first day in the year is day one.
|
|
1546 |
*/
|
|
1547 |
{
|
|
1548 |
|
|
1549 |
TInt y=DateTime().Year();
|
|
1550 |
TMonth m=aStartDate.DateTime().Month();
|
|
1551 |
TInt d=aStartDate.DateTime().Day();
|
|
1552 |
if (d>=Time::DaysInMonth(y,m))
|
|
1553 |
d=27;
|
|
1554 |
TDateTime yearStart(y,m,d,0,0,0,0); // LEAP YEAR PROBLEMS ???
|
|
1555 |
aStartDate=yearStart;
|
|
1556 |
if (aStartDate>*this)
|
|
1557 |
{
|
|
1558 |
yearStart.SetYearLeapCheck(y-1);
|
|
1559 |
aStartDate=yearStart;
|
|
1560 |
}
|
|
1561 |
return((DaysFrom(aStartDate).Int())+1) ;
|
|
1562 |
}
|
|
1563 |
|
|
1564 |
EXPORT_C TInt TTime::WeekNoInYear() const
|
|
1565 |
/**
|
|
1566 |
Gets the number of the current week in the year.
|
|
1567 |
|
|
1568 |
@return Week number in the year.
|
|
1569 |
*/
|
|
1570 |
{
|
|
1571 |
|
|
1572 |
return(WeekNoInYear(EFirstFourDayWeek));
|
|
1573 |
}
|
|
1574 |
|
|
1575 |
EXPORT_C TInt TTime::WeekNoInYear(TTime aStartDate) const
|
|
1576 |
/**
|
|
1577 |
Gets the number of the current week in the year when the year starts
|
|
1578 |
on aStartDate.
|
|
1579 |
|
|
1580 |
@param aStartDate If specified, indicates the date which is to be considered
|
|
1581 |
the start of the year. Default is 1st January.
|
|
1582 |
|
|
1583 |
@return Week number in the year.
|
|
1584 |
*/
|
|
1585 |
{
|
|
1586 |
|
|
1587 |
return(WeekNoInYear(aStartDate,EFirstFourDayWeek));
|
|
1588 |
}
|
|
1589 |
|
|
1590 |
EXPORT_C TInt TTime::WeekNoInYear(TFirstWeekRule aRule) const
|
|
1591 |
/**
|
|
1592 |
Finds the number of the current week in the year using the first week rule
|
|
1593 |
specified in aRule.
|
|
1594 |
|
|
1595 |
@param aRule Determines how the first week in the year is to be calculated.
|
|
1596 |
By default EFirstFourDayWeek.
|
|
1597 |
|
|
1598 |
@return Week number in the year.
|
|
1599 |
*/
|
|
1600 |
{
|
|
1601 |
|
|
1602 |
TInt year=DateTime().Year();
|
|
1603 |
TTime startDate=TDateTime(year,EJanuary,0,0,0,0,0);
|
|
1604 |
return(WeekNoInYear(startDate,aRule));
|
|
1605 |
}
|
|
1606 |
|
|
1607 |
EXPORT_C TInt TTime::WeekNoInYear(TTime aStartDate,TFirstWeekRule aRule) const
|
|
1608 |
//
|
|
1609 |
// number of weeks between aTime and aStartDate according to given rule
|
|
1610 |
// the first week starts either on the week containing the first day (EFirstWeek),
|
|
1611 |
// the first week having at least four days within the new year (EFirstFourDayWeek,
|
|
1612 |
// default) or the first full week in the year (EFirstFullWeek)
|
|
1613 |
//
|
|
1614 |
/**
|
|
1615 |
Finds the number of the current week in the year when the year starts from
|
|
1616 |
aStartDate and when using the start week rule aRule.
|
|
1617 |
|
|
1618 |
@param aStartDate If specified, indicates the date which is to be considered
|
|
1619 |
the start of the year. Default is 1st January.
|
|
1620 |
@param aRule Determines how the first week in the year is to be
|
|
1621 |
calculated. By default EFirstFourDayWeek.
|
|
1622 |
|
|
1623 |
@return Week number in the year.
|
|
1624 |
*/
|
|
1625 |
{
|
|
1626 |
TInt dayNoInWeek=DayNoInWeek();
|
|
1627 |
TInt dayNoInYear=(DayNoInYear(aStartDate))-1; // puts start into correct year
|
|
1628 |
TDateTime startDateTime(aStartDate.DateTime());
|
|
1629 |
TDateTime nextYearStartDate(startDateTime);
|
|
1630 |
nextYearStartDate.SetYearLeapCheck(DateTime().Year()); // find start of next year
|
|
1631 |
TTime nextYearStartTime(nextYearStartDate); // makes sure start date for year
|
|
1632 |
if (*this>nextYearStartTime) // is in the very next year
|
|
1633 |
{
|
|
1634 |
nextYearStartDate.SetYearLeapCheck(nextYearStartDate.Year()+1);
|
|
1635 |
nextYearStartTime=nextYearStartDate;
|
|
1636 |
}
|
|
1637 |
nextYearStartTime+=TTimeIntervalMicroSeconds(KDaysToMicroSeconds-1); // avoid problems if the time is not midnight
|
|
1638 |
TLocale local;
|
|
1639 |
TDay startOfFirstWeek=local.StartOfWeek();
|
|
1640 |
// calculate the day-in-week number (0 to 6) based on the locale start-of-week
|
|
1641 |
dayNoInWeek -= startOfFirstWeek;
|
|
1642 |
if (dayNoInWeek < 0)
|
|
1643 |
dayNoInWeek += 7;
|
|
1644 |
// calculate the days from the start-of-week to the start-of-next-year
|
|
1645 |
TInt daysFrom=nextYearStartTime.DaysFrom(*this).Int()+dayNoInWeek;
|
|
1646 |
// calculate the days from start-of-year to start-of-week (note this may be negative, but never < -6)
|
|
1647 |
TInt days=dayNoInYear-dayNoInWeek;
|
|
1648 |
|
|
1649 |
// the rule allows a certain number of week-1 days to lie in the previous year
|
|
1650 |
TInt prevyeardays;
|
|
1651 |
switch (aRule)
|
|
1652 |
{
|
|
1653 |
default:
|
|
1654 |
return -1;
|
|
1655 |
case EFirstWeek:
|
|
1656 |
prevyeardays = 6;
|
|
1657 |
break;
|
|
1658 |
case EFirstFourDayWeek:
|
|
1659 |
prevyeardays = 3;
|
|
1660 |
break;
|
|
1661 |
case EFirstFullWeek:
|
|
1662 |
prevyeardays = 0;
|
|
1663 |
break;
|
|
1664 |
}
|
|
1665 |
|
|
1666 |
// check for a week which belongs to last year
|
|
1667 |
if (days + prevyeardays < 0)
|
|
1668 |
{
|
|
1669 |
// in week 52 or 53 of last year, find the week # of the first day in the week
|
|
1670 |
startDateTime.SetYearLeapCheck(startDateTime.Year()-1);
|
|
1671 |
return (*this-TTimeIntervalDays(dayNoInWeek)).WeekNoInYear(TTime(startDateTime),aRule);
|
|
1672 |
}
|
|
1673 |
|
|
1674 |
// check for a week which belongs to next year
|
|
1675 |
if (daysFrom <= prevyeardays)
|
|
1676 |
return 1;
|
|
1677 |
|
|
1678 |
// calculate the week number, accounting for the requested week-1 rule
|
|
1679 |
return (days + 7 + prevyeardays)/7;
|
|
1680 |
}
|
|
1681 |
|
|
1682 |
EXPORT_C void TTime::FormatL(TDes &aDes,const TDesC &aFormat) const
|
|
1683 |
//
|
|
1684 |
// Fill aString with current Date and Time according to given aFormat string
|
|
1685 |
//
|
|
1686 |
/**
|
|
1687 |
Puts this TTime into a descriptor and formats it according to the format string
|
|
1688 |
specified in the second argument.
|
|
1689 |
|
|
1690 |
Many of the formatting commands use the
|
|
1691 |
system's locale settings for the date and time, for example the characters
|
|
1692 |
used to separate components of the date and time and the ordering of day,
|
|
1693 |
month and year. The list of formatting commands below is divided into two
|
|
1694 |
sections, the first of which lists the commands which operate without reference
|
|
1695 |
to the locale's date and time settings (see class TLocale) and the second
|
|
1696 |
table lists the commands which do use these settings.
|
|
1697 |
|
|
1698 |
The following formatting commands do not honour the locale-specific system
|
|
1699 |
settings:
|
|
1700 |
|
|
1701 |
\%\% : Include a single '%' character in the string
|
|
1702 |
|
|
1703 |
\%* : Abbreviate following item (the following item should not be preceded
|
|
1704 |
by a '%' character).
|
|
1705 |
|
|
1706 |
\%C : Interpret the argument as the six digit microsecond component of the
|
|
1707 |
time. In its abbreviated form, ('%*C') this should be followed by an integer
|
|
1708 |
between zero and six, where the integer indicates the number of digits to display.
|
|
1709 |
|
|
1710 |
\%D : Interpret the argument as the two digit day number in the month. Abbreviation
|
|
1711 |
suppresses leading zero.
|
|
1712 |
|
|
1713 |
\%E : Interpret the argument as the day name. Abbreviation is language-specific
|
|
1714 |
(e.g. English uses the first three letters).
|
|
1715 |
|
|
1716 |
\%F : Use this command for locale-independent ordering of date components.
|
|
1717 |
This orders the following day/month/year component(s) (\%D, \%M, \%Y for example)
|
|
1718 |
according to the order in which they are specified in the string. This removes
|
|
1719 |
the need to use \%1 to \%5 (described below).
|
|
1720 |
|
|
1721 |
\%H : Interpret the argument as the one or two digit hour component of the
|
|
1722 |
time in 24 hour time format. Abbreviation suppresses leading zero. For locale-dependent
|
|
1723 |
hour formatting, use \%J.
|
|
1724 |
|
|
1725 |
\%I : Interpret the argument as the one or two digit hour component of the
|
|
1726 |
time in 12 hour time format. The leading zero is automatically suppressed
|
|
1727 |
so that abbreviation has no effect. For locale-dependent hour formatting,
|
|
1728 |
use \%J.
|
|
1729 |
|
|
1730 |
\%M : Interpret the argument as the one or two digit month number. Abbreviation
|
|
1731 |
suppresses leading zero.
|
|
1732 |
|
|
1733 |
\%N : Interpret the argument as the month name. Abbreviation is language specific, e.g.
|
|
1734 |
English uses the first three letters only. When using locale-dependent formatting,
|
|
1735 |
(that is, \%F has not previously been specified), specifying \%N causes any
|
|
1736 |
subsequent occurrence of a month specifier in the string to insert the month
|
|
1737 |
as text rather than in numeric form. When using locale-independent formatting,
|
|
1738 |
specifying \%N causes the month to be inserted as text at that position, but
|
|
1739 |
any subsequent occurrence of \%M will cause the month to be inserted in numeric
|
|
1740 |
form.
|
|
1741 |
|
|
1742 |
\%S : Interpret the argument as the one or two digit seconds component of the
|
|
1743 |
time. Abbreviation suppresses leading zero.
|
|
1744 |
|
|
1745 |
\%T : Interpret the argument as the one or two digit minutes component of the
|
|
1746 |
time. Abbreviation suppresses leading zero.
|
|
1747 |
|
|
1748 |
\%W : Interpret the argument as the one or two digit week number in year. Abbreviation
|
|
1749 |
suppresses leading zero.
|
|
1750 |
|
|
1751 |
\%X : Interpret the argument as the date suffix. Cannot be abbreviated. When
|
|
1752 |
using locale-dependent formatting (that is, \%F has not previously been specified),
|
|
1753 |
\%X causes all further occurrences of the day number to be displayed with the
|
|
1754 |
date suffix. When using locale-independent formatting, a date suffix will
|
|
1755 |
be inserted only after the occurrence of the day number which \%X follows in
|
|
1756 |
the format string. Any further occurrence of \%D without a following \%X will
|
|
1757 |
insert the day number without a suffix.
|
|
1758 |
|
|
1759 |
\%Y : Interpret the argument as the four digit year number. Abbreviation suppresses
|
|
1760 |
the first two digits.
|
|
1761 |
|
|
1762 |
\%Z : Interpret the argument as the one, two or three digit day number in the
|
|
1763 |
year. Abbreviation suppresses leading zeros.
|
|
1764 |
|
|
1765 |
The following formatting commands do honour the locale-specific system settings:
|
|
1766 |
|
|
1767 |
\%. : Interpret the argument as the decimal separator character (as set by
|
|
1768 |
TLocale::SetDecimalSeparator()). The decimal separator is used to separate
|
|
1769 |
seconds and microseconds, if present.
|
|
1770 |
|
|
1771 |
\%: : Interpret the argument as one of the four time separator characters (as
|
|
1772 |
set by TLocale::SetTimeSeparator()). Must be followed by an integer between
|
|
1773 |
zero and three inclusive to indicate which time separator character is being
|
|
1774 |
referred to.
|
|
1775 |
|
|
1776 |
\%/ : Interpret the argument as one of the four date separator characters (as
|
|
1777 |
set by TLocale::SetDateSeparator()). Must be followed by an integer between
|
|
1778 |
zero and three inclusive to indicate which date separator character is being
|
|
1779 |
referred to.
|
|
1780 |
|
|
1781 |
\%1 : Interpret the argument as the first component of a three component date
|
|
1782 |
(i.e. day, month or year) where the order has been set by TLocale::SetDateFormat().
|
|
1783 |
When the date format is EDateEuropean, this is the day, when EDateAmerican,
|
|
1784 |
the month, and when EDateJapanese, the year. For more information on this
|
|
1785 |
and the following four formatting commands, see the Notes section immediately
|
|
1786 |
below.
|
|
1787 |
|
|
1788 |
\%2 : Interpret the argument as the second component of a three component date
|
|
1789 |
where the order has been set by TLocale::SetDateFormat(). When the date format
|
|
1790 |
is EDateEuropean, this is the month, when EDateAmerican, the day and when
|
|
1791 |
EDateJapanese, the month.
|
|
1792 |
|
|
1793 |
\%3 : Interpret the argument as the third component of a three component date
|
|
1794 |
where the order has been set by TLocale::SetDateFormat(). When the date format
|
|
1795 |
is EDateEuropean, or EDateAmerican this is the year and when EDateJapanese,
|
|
1796 |
the day.
|
|
1797 |
|
|
1798 |
\%4 : Interpret the argument as the first component of a two component date
|
|
1799 |
(day and month) where the order has been set by TLocale::SetDateFormat().
|
|
1800 |
When the date format is EDateEuropean this is the day, and when EDateAmerican
|
|
1801 |
or EDateJapanese, the month.
|
|
1802 |
|
|
1803 |
\%5 : Interpret the argument as the second component of a two component date
|
|
1804 |
(day and month) where the order has been set by TLocale::SetDateFormat().
|
|
1805 |
When the date format is EDateEuropean this is the month, and when EDateAmerican
|
|
1806 |
or EDateJapanese, the day.
|
|
1807 |
|
|
1808 |
\%A : Interpret the argument as "am" or "pm" text according to the current
|
|
1809 |
language and time of day. Unlike the \%B formatting command (described below),
|
|
1810 |
\%A disregards the locale's 12 or 24 hour clock setting, so that when used
|
|
1811 |
without an inserted + or - sign, am/pm text will always be displayed. Whether
|
|
1812 |
a space is inserted between the am/pm text and the time depends on the locale-specific
|
|
1813 |
settings. However, if abbreviated (\%*A), no space is inserted, regardless
|
|
1814 |
of the locale's settings. The am/pm text appears before or after the time,
|
|
1815 |
according to the position of the \%A, regardless of the locale-specific settings.
|
|
1816 |
For example, the following ordering of formatting commands causes am/pm text
|
|
1817 |
to be printed after the time: \%H \%T \%S \%A. Optionally, a minus or plus sign
|
|
1818 |
may be inserted between the "%" and the "A". This operates as follows:
|
|
1819 |
|
|
1820 |
\%-A causes am/pm text to be inserted into the descriptor only if the am/pm
|
|
1821 |
symbol position has been set in the locale to ELocaleBefore. Cannot be abbreviated
|
|
1822 |
using asterisk.
|
|
1823 |
|
|
1824 |
\%+A causes am/pm text to be inserted into the descriptor only if the am/pm
|
|
1825 |
symbol position has been set in the locale to ELocaleAfter. Cannot be abbreviated
|
|
1826 |
using asterisk. For example, the following formatting commands will cause
|
|
1827 |
am/pm text to be displayed after the time if the am/pm position has been set
|
|
1828 |
in the locale to ELocaleAfter or before the time if ELocaleBefore: \%-A \%H
|
|
1829 |
\%T \%S \%+A.
|
|
1830 |
|
|
1831 |
\%B Interpret the argument as am or pm text according to the current language
|
|
1832 |
and time of day. Unlike the \%A command, when using \%B, am/pm text is displayed
|
|
1833 |
only if the clock setting in the locale is 12-hour. Whether a space is inserted
|
|
1834 |
between the am/pm text and the time depends on the locale-specific settings.
|
|
1835 |
However, if abbreviated (\%*B), no space is inserted, regardless of the locale's
|
|
1836 |
settings. The am/pm text appears before or after the time, according to the
|
|
1837 |
location of the "%B", regardless of the locale-specific settings. For example,
|
|
1838 |
the following formatting commands cause am/pm text to be printed after the
|
|
1839 |
time: \%H \%T \%S \%B. Optionally, a minus or plus sign may be inserted between
|
|
1840 |
the "%" and the "B". This operates as follows:
|
|
1841 |
|
|
1842 |
\%-B causes am/pm text to be inserted into the descriptor only if using a 12
|
|
1843 |
hour clock and the am/pm symbol position has been set in the locale to ELocaleBefore.
|
|
1844 |
Cannot be abbreviated using asterisk.
|
|
1845 |
|
|
1846 |
\%+B causes am/pm text to be inserted into the descriptor only if using a 12
|
|
1847 |
hour clock and the am/pm symbol position has been set in the locale to ELocaleAfter.
|
|
1848 |
Cannot be abbreviated using asterisk. For example, the following formatting
|
|
1849 |
commands cause am/pm text to be printed after the time if the am/pm position
|
|
1850 |
has been set in the locale to ELocaleAfter or before the time if ELocaleBefore:
|
|
1851 |
\%-B \%H \%T \%S \%+B.
|
|
1852 |
|
|
1853 |
\%J Interpret the argument as the hour component of the time in either 12 or
|
|
1854 |
24 hour clock format depending on the locale's clock format setting. When
|
|
1855 |
the clock format has been set to 12 hour, leading zeros are automatically
|
|
1856 |
suppressed so that abbreviation has no effect. Abbreviation suppresses leading
|
|
1857 |
zero only when using a 24 hour clock.
|
|
1858 |
|
|
1859 |
Notes:
|
|
1860 |
|
|
1861 |
The \%1, \%2, \%3, \%4 and \%5 formatting commands are used in conjunction with
|
|
1862 |
\%D, \%M and \%Y to format the date locale-dependently. When formatting the date
|
|
1863 |
locale-dependently, the order of the day, month and year components within
|
|
1864 |
the string is determined by the order of the \%1 to \%5 formatting commands,
|
|
1865 |
not that of \%D, \%M, \%Y.
|
|
1866 |
|
|
1867 |
When formatting the date locale-independently (that is, \%F has been specified
|
|
1868 |
in the format string), the \%1 to \%5 formatting commands are not required,
|
|
1869 |
and should be omitted. In this case, the order of the date components is determined
|
|
1870 |
by the order of the \%D, \%M, \%Y format commands within aFormat.
|
|
1871 |
|
|
1872 |
Up to four date separators and up to four time separators can be used to separate
|
|
1873 |
the components of a date or time. When formatting a numerical date consisting
|
|
1874 |
of the day, month and year or a time containing hours, minutes and seconds,
|
|
1875 |
all four separators should always be specified in the format command string.
|
|
1876 |
Usually, the leading and trailing separators should not be displayed. In this
|
|
1877 |
case, the first and fourth separators should still be specified, but should
|
|
1878 |
be represented by a null character.
|
|
1879 |
|
|
1880 |
The date format follows the pattern:
|
|
1881 |
|
|
1882 |
DateSeparator[0] DateComponent1 DateSeparator[1] DateComponent2 DateSeparator[2]
|
|
1883 |
DateComponent3 DateSeparator[3]
|
|
1884 |
|
|
1885 |
where the ordering of date components is determined by the locale's date format
|
|
1886 |
setting.
|
|
1887 |
|
|
1888 |
The time format follows the pattern:
|
|
1889 |
|
|
1890 |
TimeSeparator[0] Hours TimeSeparator[1] Minutes TimeSeparator[2] Seconds TimeSeparator[3]
|
|
1891 |
|
|
1892 |
If the time includes a microseconds component, the third separator should
|
|
1893 |
occur after the microseconds, and the seconds and microseconds should be separated
|
|
1894 |
by the decimal separator. When formatting a two component time, the following
|
|
1895 |
rules apply:
|
|
1896 |
|
|
1897 |
if the time consists of hours and minutes, the third time delimiter should
|
|
1898 |
be omitted
|
|
1899 |
|
|
1900 |
if the time consists of minutes and seconds, the second time delimiter should
|
|
1901 |
be omitted
|
|
1902 |
|
|
1903 |
@param aDes Descriptor, which, on return contains the formatted date/time string.
|
|
1904 |
@param aFormat Format string which determines the format of the date and time.
|
|
1905 |
|
|
1906 |
@leave KErrOverflow The date/time string is too long for the descriptor aDes.
|
|
1907 |
@leave KErrGeneral A formatting error has occurred.
|
|
1908 |
*/
|
|
1909 |
{
|
|
1910 |
TLocale local;
|
|
1911 |
FormatL(aDes,aFormat,local);
|
|
1912 |
}
|
|
1913 |
|
|
1914 |
EXPORT_C void TTime::FormatL(TDes &aDes,const TDesC &aFormat,const TLocale &aLocale) const
|
|
1915 |
//
|
|
1916 |
// Fill aString with current Date and Time according to given aFormat string
|
|
1917 |
//
|
|
1918 |
/**
|
|
1919 |
Puts this TTime into a descriptor and formats it according to the format string
|
|
1920 |
specified in the second argument.
|
|
1921 |
|
|
1922 |
Many of the formatting commands use the
|
|
1923 |
system's locale settings for the date and time, for example the characters
|
|
1924 |
used to separate components of the date and time and the ordering of day,
|
|
1925 |
month and year. The list of formatting commands below is divided into two
|
|
1926 |
sections, the first of which lists the commands which operate without reference
|
|
1927 |
to the locale's date and time settings (see class TLocale) and the second
|
|
1928 |
table lists the commands which do use these settings.
|
|
1929 |
|
|
1930 |
The following formatting commands do not honour the locale-specific system
|
|
1931 |
settings:
|
|
1932 |
|
|
1933 |
\%\% : Include a single '%' character in the string
|
|
1934 |
|
|
1935 |
\%* : Abbreviate following item (the following item should not be preceded
|
|
1936 |
by a '%' character).
|
|
1937 |
|
|
1938 |
\%C : Interpret the argument as the six digit microsecond component of the
|
|
1939 |
time. In its abbreviated form, ('%*C') this should be followed by an integer
|
|
1940 |
between zero and six, where the integer indicates the number of digits to display.
|
|
1941 |
|
|
1942 |
\%D : Interpret the argument as the two digit day number in the month. Abbreviation
|
|
1943 |
suppresses leading zero.
|
|
1944 |
|
|
1945 |
\%E : Interpret the argument as the day name. Abbreviation is language-specific
|
|
1946 |
(e.g. English uses the first three letters).
|
|
1947 |
|
|
1948 |
\%F : Use this command for locale-independent ordering of date components.
|
|
1949 |
This orders the following day/month/year component(s) (\%D, \%M, \%Y for example)
|
|
1950 |
according to the order in which they are specified in the string. This removes
|
|
1951 |
the need to use \%1 to \%5 (described below).
|
|
1952 |
|
|
1953 |
\%H : Interpret the argument as the one or two digit hour component of the
|
|
1954 |
time in 24 hour time format. Abbreviation suppresses leading zero. For locale-dependent
|
|
1955 |
hour formatting, use \%J.
|
|
1956 |
|
|
1957 |
\%I : Interpret the argument as the one or two digit hour component of the
|
|
1958 |
time in 12 hour time format. The leading zero is automatically suppressed
|
|
1959 |
so that abbreviation has no effect. For locale-dependent hour formatting,
|
|
1960 |
use \%J.
|
|
1961 |
|
|
1962 |
\%M : Interpret the argument as the one or two digit month number. Abbreviation
|
|
1963 |
suppresses leading zero.
|
|
1964 |
|
|
1965 |
\%N : Interpret the argument as the month name. Abbreviation is language specific, e.g.
|
|
1966 |
English uses the first three letters only. When using locale-dependent formatting,
|
|
1967 |
(that is, \%F has not previously been specified), specifying \%N causes any
|
|
1968 |
subsequent occurrence of a month specifier in the string to insert the month
|
|
1969 |
as text rather than in numeric form. When using locale-independent formatting,
|
|
1970 |
specifying \%N causes the month to be inserted as text at that position, but
|
|
1971 |
any subsequent occurrence of \%M will cause the month to be inserted in numeric
|
|
1972 |
form.
|
|
1973 |
|
|
1974 |
\%S : Interpret the argument as the one or two digit seconds component of the
|
|
1975 |
time. Abbreviation suppresses leading zero.
|
|
1976 |
|
|
1977 |
\%T : Interpret the argument as the one or two digit minutes component of the
|
|
1978 |
time. Abbreviation suppresses leading zero.
|
|
1979 |
|
|
1980 |
\%W : Interpret the argument as the one or two digit week number in year. Abbreviation
|
|
1981 |
suppresses leading zero.
|
|
1982 |
|
|
1983 |
\%X : Interpret the argument as the date suffix. Cannot be abbreviated. When
|
|
1984 |
using locale-dependent formatting (that is, \%F has not previously been specified),
|
|
1985 |
\%X causes all further occurrences of the day number to be displayed with the
|
|
1986 |
date suffix. When using locale-independent formatting, a date suffix will
|
|
1987 |
be inserted only after the occurrence of the day number which \%X follows in
|
|
1988 |
the format string. Any further occurrence of \%D without a following \%X will
|
|
1989 |
insert the day number without a suffix.
|
|
1990 |
|
|
1991 |
\%Y : Interpret the argument as the four digit year number. Abbreviation suppresses
|
|
1992 |
the first two digits.
|
|
1993 |
|
|
1994 |
\%Z : Interpret the argument as the one, two or three digit day number in the
|
|
1995 |
year. Abbreviation suppresses leading zeros.
|
|
1996 |
|
|
1997 |
The following formatting commands do honour the locale-specific system settings:
|
|
1998 |
|
|
1999 |
\%. : Interpret the argument as the decimal separator character (as set by
|
|
2000 |
TLocale::SetDecimalSeparator()). The decimal separator is used to separate
|
|
2001 |
seconds and microseconds, if present.
|
|
2002 |
|
|
2003 |
\%: : Interpret the argument as one of the four time separator characters (as
|
|
2004 |
set by TLocale::SetTimeSeparator()). Must be followed by an integer between
|
|
2005 |
zero and three inclusive to indicate which time separator character is being
|
|
2006 |
referred to.
|
|
2007 |
|
|
2008 |
\%/ : Interpret the argument as one of the four date separator characters (as
|
|
2009 |
set by TLocale::SetDateSeparator()). Must be followed by an integer between
|
|
2010 |
zero and three inclusive to indicate which date separator character is being
|
|
2011 |
referred to.
|
|
2012 |
|
|
2013 |
\%1 : Interpret the argument as the first component of a three component date
|
|
2014 |
(i.e. day, month or year) where the order has been set by TLocale::SetDateFormat().
|
|
2015 |
When the date format is EDateEuropean, this is the day, when EDateAmerican,
|
|
2016 |
the month, and when EDateJapanese, the year. For more information on this
|
|
2017 |
and the following four formatting commands, see the Notes section immediately
|
|
2018 |
below.
|
|
2019 |
|
|
2020 |
\%2 : Interpret the argument as the second component of a three component date
|
|
2021 |
where the order has been set by TLocale::SetDateFormat(). When the date format
|
|
2022 |
is EDateEuropean, this is the month, when EDateAmerican, the day and when
|
|
2023 |
EDateJapanese, the month.
|
|
2024 |
|
|
2025 |
\%3 : Interpret the argument as the third component of a three component date
|
|
2026 |
where the order has been set by TLocale::SetDateFormat(). When the date format
|
|
2027 |
is EDateEuropean, or EDateAmerican this is the year and when EDateJapanese,
|
|
2028 |
the day.
|
|
2029 |
|
|
2030 |
\%4 : Interpret the argument as the first component of a two component date
|
|
2031 |
(day and month) where the order has been set by TLocale::SetDateFormat().
|
|
2032 |
When the date format is EDateEuropean this is the day, and when EDateAmerican
|
|
2033 |
or EDateJapanese, the month.
|
|
2034 |
|
|
2035 |
\%5 : Interpret the argument as the second component of a two component date
|
|
2036 |
(day and month) where the order has been set by TLocale::SetDateFormat().
|
|
2037 |
When the date format is EDateEuropean this is the month, and when EDateAmerican
|
|
2038 |
or EDateJapanese, the day.
|
|
2039 |
|
|
2040 |
\%A : Interpret the argument as "am" or "pm" text according to the current
|
|
2041 |
language and time of day. Unlike the \%B formatting command (described below),
|
|
2042 |
\%A disregards the locale's 12 or 24 hour clock setting, so that when used
|
|
2043 |
without an inserted + or - sign, am/pm text will always be displayed. Whether
|
|
2044 |
a space is inserted between the am/pm text and the time depends on the locale-specific
|
|
2045 |
settings. However, if abbreviated (\%*A), no space is inserted, regardless
|
|
2046 |
of the locale's settings. The am/pm text appears before or after the time,
|
|
2047 |
according to the position of the \%A, regardless of the locale-specific settings.
|
|
2048 |
For example, the following ordering of formatting commands causes am/pm text
|
|
2049 |
to be printed after the time: \%H \%T \%S \%A. Optionally, a minus or plus sign
|
|
2050 |
may be inserted between the "%" and the "A". This operates as follows:
|
|
2051 |
|
|
2052 |
\%-A causes am/pm text to be inserted into the descriptor only if the am/pm
|
|
2053 |
symbol position has been set in the locale to ELocaleBefore. Cannot be abbreviated
|
|
2054 |
using asterisk.
|
|
2055 |
|
|
2056 |
\%+A causes am/pm text to be inserted into the descriptor only if the am/pm
|
|
2057 |
symbol position has been set in the locale to ELocaleAfter. Cannot be abbreviated
|
|
2058 |
using asterisk. For example, the following formatting commands will cause
|
|
2059 |
am/pm text to be displayed after the time if the am/pm position has been set
|
|
2060 |
in the locale to ELocaleAfter or before the time if ELocaleBefore: \%-A \%H
|
|
2061 |
\%T \%S \%+A.
|
|
2062 |
|
|
2063 |
\%B Interpret the argument as am or pm text according to the current language
|
|
2064 |
and time of day. Unlike the \%A command, when using \%B, am/pm text is displayed
|
|
2065 |
only if the clock setting in the locale is 12-hour. Whether a space is inserted
|
|
2066 |
between the am/pm text and the time depends on the locale-specific settings.
|
|
2067 |
However, if abbreviated (\%*B), no space is inserted, regardless of the locale's
|
|
2068 |
settings. The am/pm text appears before or after the time, according to the
|
|
2069 |
location of the "%B", regardless of the locale-specific settings. For example,
|
|
2070 |
the following formatting commands cause am/pm text to be printed after the
|
|
2071 |
time: \%H \%T \%S \%B. Optionally, a minus or plus sign may be inserted between
|
|
2072 |
the "%" and the "B". This operates as follows:
|
|
2073 |
|
|
2074 |
\%-B causes am/pm text to be inserted into the descriptor only if using a 12
|
|
2075 |
hour clock and the am/pm symbol position has been set in the locale to ELocaleBefore.
|
|
2076 |
Cannot be abbreviated using asterisk.
|
|
2077 |
|
|
2078 |
\%+B causes am/pm text to be inserted into the descriptor only if using a 12
|
|
2079 |
hour clock and the am/pm symbol position has been set in the locale to ELocaleAfter.
|
|
2080 |
Cannot be abbreviated using asterisk. For example, the following formatting
|
|
2081 |
commands cause am/pm text to be printed after the time if the am/pm position
|
|
2082 |
has been set in the locale to ELocaleAfter or before the time if ELocaleBefore:
|
|
2083 |
\%-B \%H \%T \%S \%+B.
|
|
2084 |
|
|
2085 |
\%J Interpret the argument as the hour component of the time in either 12 or
|
|
2086 |
24 hour clock format depending on the locale's clock format setting. When
|
|
2087 |
the clock format has been set to 12 hour, leading zeros are automatically
|
|
2088 |
suppressed so that abbreviation has no effect. Abbreviation suppresses leading
|
|
2089 |
zero only when using a 24 hour clock.
|
|
2090 |
|
|
2091 |
Notes:
|
|
2092 |
|
|
2093 |
The \%1, \%2, \%3, \%4 and \%5 formatting commands are used in conjunction with
|
|
2094 |
\%D, \%M and \%Y to format the date locale-dependently. When formatting the date
|
|
2095 |
locale-dependently, the order of the day, month and year components within
|
|
2096 |
the string is determined by the order of the \%1 to \%5 formatting commands,
|
|
2097 |
not that of \%D, \%M, \%Y.
|
|
2098 |
|
|
2099 |
When formatting the date locale-independently (that is, \%F has been specified
|
|
2100 |
in the format string), the \%1 to \%5 formatting commands are not required,
|
|
2101 |
and should be omitted. In this case, the order of the date components is determined
|
|
2102 |
by the order of the \%D, \%M, \%Y format commands within aFormat.
|
|
2103 |
|
|
2104 |
Up to four date separators and up to four time separators can be used to separate
|
|
2105 |
the components of a date or time. When formatting a numerical date consisting
|
|
2106 |
of the day, month and year or a time containing hours, minutes and seconds,
|
|
2107 |
all four separators should always be specified in the format command string.
|
|
2108 |
Usually, the leading and trailing separators should not be displayed. In this
|
|
2109 |
case, the first and fourth separators should still be specified, but should
|
|
2110 |
be represented by a null character.
|
|
2111 |
|
|
2112 |
The date format follows the pattern:
|
|
2113 |
|
|
2114 |
DateSeparator[0] DateComponent1 DateSeparator[1] DateComponent2 DateSeparator[2]
|
|
2115 |
DateComponent3 DateSeparator[3]
|
|
2116 |
|
|
2117 |
where the ordering of date components is determined by the locale's date format
|
|
2118 |
setting.
|
|
2119 |
|
|
2120 |
The time format follows the pattern:
|
|
2121 |
|
|
2122 |
TimeSeparator[0] Hours TimeSeparator[1] Minutes TimeSeparator[2] Seconds TimeSeparator[3]
|
|
2123 |
|
|
2124 |
If the time includes a microseconds component, the third separator should
|
|
2125 |
occur after the microseconds, and the seconds and microseconds should be separated
|
|
2126 |
by the decimal separator. When formatting a two component time, the following
|
|
2127 |
rules apply:
|
|
2128 |
|
|
2129 |
if the time consists of hours and minutes, the third time delimiter should
|
|
2130 |
be omitted
|
|
2131 |
|
|
2132 |
if the time consists of minutes and seconds, the second time delimiter should
|
|
2133 |
be omitted
|
|
2134 |
|
|
2135 |
@param aDes Descriptor, which, on return contains the formatted date/time string.
|
|
2136 |
@param aFormat Format string which determines the format of the date and time.
|
|
2137 |
@param aLocale Specific locale which formatting will be based on.
|
|
2138 |
|
|
2139 |
@leave KErrOverflow The date/time string is too long for the descriptor aDes.
|
|
2140 |
@leave KErrGeneral A formatting error has occurred.
|
|
2141 |
*/
|
|
2142 |
{
|
|
2143 |
|
|
2144 |
TDateTime dateTime=DateTime();
|
|
2145 |
aDes.Zero(); // ensure string is empty at start
|
|
2146 |
|
|
2147 |
TLex aFmt(aFormat);
|
|
2148 |
TBool fix=EFalse; // fixed date format
|
|
2149 |
TBool da=EFalse; // day unabreviated
|
|
2150 |
TBool ma=EFalse; // month unabreviated
|
|
2151 |
TBool ya=EFalse; // year unabreviated
|
|
2152 |
TBool suff=EFalse; // default no suffix
|
|
2153 |
TBool mnam=EFalse; // default month as a number
|
|
2154 |
TTimeOverflowLeave overflowLeave;
|
|
2155 |
|
|
2156 |
while (!aFmt.Eos())
|
|
2157 |
{
|
|
2158 |
TChar ch=aFmt.Get();
|
|
2159 |
TBool abb=EFalse;
|
|
2160 |
const TInt NoPosSpecified=-1;
|
|
2161 |
TInt pos=NoPosSpecified;
|
|
2162 |
if (ch=='%')
|
|
2163 |
ch=aFmt.Get();
|
|
2164 |
else // not formatting,just want to add some characters to string
|
|
2165 |
goto doAppend;
|
|
2166 |
if (ch=='*') // => abbreviate next field
|
|
2167 |
{
|
|
2168 |
abb=ETrue;
|
|
2169 |
ch=aFmt.Get();
|
|
2170 |
}
|
|
2171 |
else if (ch=='+' || ch=='-') // => leading or following Am/Pm
|
|
2172 |
{
|
|
2173 |
pos= ((ch=='+') ? ELocaleAfter : ELocaleBefore);
|
|
2174 |
ch=aFmt.Get();
|
|
2175 |
if (ch!='A' && ch!='B')
|
|
2176 |
User::Leave(KErrGeneral);
|
|
2177 |
}
|
|
2178 |
switch (ch)
|
|
2179 |
{
|
|
2180 |
case ':': // local time separator
|
|
2181 |
{
|
|
2182 |
if (aDes.Length()==aDes.MaxLength())
|
|
2183 |
User::Leave(KErrOverflow);
|
|
2184 |
ch=aFmt.Get();//Which separator?
|
|
2185 |
if (ch<'0' || ch>='0'+KMaxTimeSeparators)
|
|
2186 |
User::Leave(KErrGeneral);
|
|
2187 |
ch-='0';
|
|
2188 |
TChar separator=aLocale.TimeSeparator(ch);
|
|
2189 |
if (separator!=0)
|
|
2190 |
aDes.Append(separator);
|
|
2191 |
}
|
|
2192 |
break;
|
|
2193 |
case '/': // local date separator
|
|
2194 |
{
|
|
2195 |
if (aDes.Length()==aDes.MaxLength())
|
|
2196 |
User::Leave(KErrOverflow);
|
|
2197 |
ch=aFmt.Get();//Which separator?
|
|
2198 |
if (ch<'0' || ch>='0'+KMaxDateSeparators)
|
|
2199 |
User::Leave(KErrGeneral);
|
|
2200 |
ch-='0';
|
|
2201 |
TChar separator=aLocale.DateSeparator(ch);
|
|
2202 |
if (separator!=0)
|
|
2203 |
aDes.Append(separator);
|
|
2204 |
}
|
|
2205 |
break;
|
|
2206 |
case '.': // local decimal separator
|
|
2207 |
{
|
|
2208 |
if (aDes.Length()==aDes.MaxLength())
|
|
2209 |
User::Leave(KErrOverflow);
|
|
2210 |
aDes.Append(aLocale.DecimalSeparator());
|
|
2211 |
}
|
|
2212 |
break;
|
|
2213 |
case '1': // 1st element of date,local order
|
|
2214 |
switch (aLocale.DateFormat())
|
|
2215 |
{
|
|
2216 |
case EDateAmerican:
|
|
2217 |
goto doMonth;
|
|
2218 |
case EDateJapanese:
|
|
2219 |
goto doYear;
|
|
2220 |
default: // European
|
|
2221 |
goto doDay;
|
|
2222 |
}
|
|
2223 |
case '2': // 2nd element of date,local order
|
|
2224 |
switch (aLocale.DateFormat())
|
|
2225 |
{
|
|
2226 |
case EDateAmerican:
|
|
2227 |
goto doDay;
|
|
2228 |
default: // European and Japanese have month second
|
|
2229 |
goto doMonth;
|
|
2230 |
}
|
|
2231 |
case '3': // 3rd element of date,local order
|
|
2232 |
switch (aLocale.DateFormat())
|
|
2233 |
{
|
|
2234 |
case EDateJapanese:
|
|
2235 |
goto doDay;
|
|
2236 |
default: // European and American have year last
|
|
2237 |
goto doYear;
|
|
2238 |
}
|
|
2239 |
case '4': // 1st element of date (no year),local order
|
|
2240 |
switch (aLocale.DateFormat())
|
|
2241 |
{
|
|
2242 |
case EDateEuropean:
|
|
2243 |
goto doDay;
|
|
2244 |
default:
|
|
2245 |
goto doMonth;
|
|
2246 |
}
|
|
2247 |
case '5': // 2nd element of date (no year),local order
|
|
2248 |
switch (aLocale.DateFormat())
|
|
2249 |
{
|
|
2250 |
case EDateEuropean:
|
|
2251 |
goto doMonth;
|
|
2252 |
default:
|
|
2253 |
goto doDay;
|
|
2254 |
}
|
|
2255 |
case 'A': // am/pm text
|
|
2256 |
doAmPm:
|
|
2257 |
{
|
|
2258 |
if (pos==NoPosSpecified || pos==aLocale.AmPmSymbolPosition())
|
|
2259 |
{
|
|
2260 |
TBuf<KMaxAmPmName+1> format(_S("%S"));
|
|
2261 |
if (!abb && aLocale.AmPmSpaceBetween())
|
|
2262 |
{
|
|
2263 |
if (aLocale.AmPmSymbolPosition()==ELocaleBefore)
|
|
2264 |
format.Append(' ');
|
|
2265 |
else
|
|
2266 |
{
|
|
2267 |
if (aDes.Length()==aDes.MaxLength())
|
|
2268 |
User::Leave(KErrOverflow);
|
|
2269 |
aDes.Append(' ');
|
|
2270 |
}
|
|
2271 |
}
|
|
2272 |
TAmPmName amPm((dateTime.Hour()<12) ? EAm : EPm);
|
|
2273 |
aDes.AppendFormat(format,&overflowLeave,&amPm);
|
|
2274 |
}
|
|
2275 |
break;
|
|
2276 |
}
|
|
2277 |
case 'B': // am/pm text if local time format is 12 hour clock
|
|
2278 |
if (aLocale.TimeFormat()==ETime24)
|
|
2279 |
break;
|
|
2280 |
else
|
|
2281 |
goto doAmPm;
|
|
2282 |
case 'C':
|
|
2283 |
{
|
|
2284 |
TBuf<6> digits;
|
|
2285 |
digits.AppendFormat(_L("%06d"),dateTime.MicroSecond());
|
|
2286 |
TUint numChars=6; // Default length
|
|
2287 |
if (abb)
|
|
2288 |
{
|
|
2289 |
ch=aFmt.Get();
|
|
2290 |
if (ch>='0' && ch<='6')
|
|
2291 |
{
|
|
2292 |
numChars=ch;
|
|
2293 |
numChars-='0';
|
|
2294 |
}
|
|
2295 |
}
|
|
2296 |
if (aDes.Length()>(TInt)(aDes.MaxLength()-numChars))
|
|
2297 |
User::Leave(KErrOverflow);
|
|
2298 |
aDes.Append(digits.Left(numChars));
|
|
2299 |
}
|
|
2300 |
break;
|
|
2301 |
case 'D': // day in date
|
|
2302 |
if (abb)
|
|
2303 |
da=ETrue;
|
|
2304 |
if (!fix)
|
|
2305 |
break;
|
|
2306 |
else
|
|
2307 |
{
|
|
2308 |
doDay:
|
|
2309 |
aDes.AppendFormat((da||abb) ? _L("%d"):_L("%02d"),&overflowLeave,dateTime.Day()+1);
|
|
2310 |
if (suff)
|
|
2311 |
doSuffix:
|
|
2312 |
{
|
|
2313 |
TDateSuffix day(dateTime.Day());
|
|
2314 |
aDes.AppendFormat(_L("%S"),&overflowLeave,&day);
|
|
2315 |
}
|
|
2316 |
break;
|
|
2317 |
}
|
|
2318 |
case 'E': // Day name
|
|
2319 |
{
|
|
2320 |
TDay day=DayNoInWeek();
|
|
2321 |
if (abb)
|
|
2322 |
{
|
|
2323 |
TDayNameAbb nameAbb(day);
|
|
2324 |
aDes.AppendFormat(_L("%S"),&overflowLeave,&nameAbb);
|
|
2325 |
}
|
|
2326 |
else
|
|
2327 |
{
|
|
2328 |
TDayName name(day);
|
|
2329 |
aDes.AppendFormat(_L("%S"),&overflowLeave,&name);
|
|
2330 |
}
|
|
2331 |
break;
|
|
2332 |
}
|
|
2333 |
case 'F': // => user wants day,month,year order fixed
|
|
2334 |
fix=ETrue;
|
|
2335 |
break;
|
|
2336 |
case 'H': // hour in 24 hour time format
|
|
2337 |
do24:
|
|
2338 |
aDes.AppendFormat((abb) ? _L("%d"):_L("%02d"),&overflowLeave,dateTime.Hour());
|
|
2339 |
break;
|
|
2340 |
case 'I': // hour in 12 hour time format
|
|
2341 |
do12:
|
|
2342 |
{
|
|
2343 |
TInt hour=dateTime.Hour();
|
|
2344 |
if (hour==0)
|
|
2345 |
hour=12;
|
|
2346 |
else if (hour>12)
|
|
2347 |
hour-=12;
|
|
2348 |
aDes.AppendFormat(_L("%d"),&overflowLeave,hour);
|
|
2349 |
break;
|
|
2350 |
}
|
|
2351 |
case 'J': //default time format for hour
|
|
2352 |
if (aLocale.TimeFormat()==ETime12)
|
|
2353 |
goto do12;
|
|
2354 |
else
|
|
2355 |
goto do24;
|
|
2356 |
case 'M': // month as a number (default value)
|
|
2357 |
if (abb)
|
|
2358 |
ma=ETrue;
|
|
2359 |
if (fix)
|
|
2360 |
goto doMonth;
|
|
2361 |
break;
|
|
2362 |
case 'N': // month as a name
|
|
2363 |
mnam=ETrue;
|
|
2364 |
if (abb)
|
|
2365 |
ma=ETrue;
|
|
2366 |
if (!fix)
|
|
2367 |
break;
|
|
2368 |
else
|
|
2369 |
{
|
|
2370 |
doMonth:
|
|
2371 |
if (mnam)
|
|
2372 |
{
|
|
2373 |
TMonth month=dateTime.Month();
|
|
2374 |
if (ma || abb)
|
|
2375 |
{
|
|
2376 |
TMonthNameAbb nameAbb(month);
|
|
2377 |
aDes.AppendFormat(_L("%S"),&overflowLeave,&nameAbb);
|
|
2378 |
}
|
|
2379 |
else
|
|
2380 |
{
|
|
2381 |
TMonthName name(month);
|
|
2382 |
aDes.AppendFormat(_L("%S"),&overflowLeave,&name);
|
|
2383 |
}
|
|
2384 |
}
|
|
2385 |
else
|
|
2386 |
aDes.AppendFormat((ma||abb) ? _L("%d"):_L("%02d"),&overflowLeave,dateTime.Month()+1);
|
|
2387 |
break;
|
|
2388 |
}
|
|
2389 |
case 'S': // seconds
|
|
2390 |
aDes.AppendFormat((abb) ? _L("%d"):_L("%02d"),&overflowLeave,dateTime.Second());
|
|
2391 |
break;
|
|
2392 |
case 'T': // minutes
|
|
2393 |
aDes.AppendFormat((abb) ? _L("%d"):_L("%02d"),&overflowLeave,dateTime.Minute());
|
|
2394 |
break;
|
|
2395 |
case 'W': // week no in year
|
|
2396 |
aDes.AppendFormat((abb) ? _L("%d"):_L("%02d"),&overflowLeave,WeekNoInYear());
|
|
2397 |
break;
|
|
2398 |
case 'X': // => wants day suffix
|
|
2399 |
if (fix)
|
|
2400 |
goto doSuffix;
|
|
2401 |
else
|
|
2402 |
{
|
|
2403 |
suff=ETrue;
|
|
2404 |
break;
|
|
2405 |
}
|
|
2406 |
case 'Y': // year
|
|
2407 |
if (abb)
|
|
2408 |
ya=ETrue;
|
|
2409 |
if (!fix)
|
|
2410 |
break;
|
|
2411 |
else
|
|
2412 |
{
|
|
2413 |
doYear:
|
|
2414 |
if (ya || abb)
|
|
2415 |
aDes.AppendFormat(_L("%02d"),&overflowLeave,((dateTime.Year())%100));
|
|
2416 |
else
|
|
2417 |
aDes.AppendFormat(_L("%04d"),&overflowLeave,dateTime.Year());
|
|
2418 |
break;
|
|
2419 |
}
|
|
2420 |
case 'Z': // day no in year
|
|
2421 |
aDes.AppendFormat((abb) ? _L("%d"):_L("%03d"),&overflowLeave,DayNoInYear());
|
|
2422 |
break;
|
|
2423 |
default:
|
|
2424 |
doAppend:
|
|
2425 |
if (aDes.Length()==aDes.MaxLength())
|
|
2426 |
User::Leave(KErrOverflow);
|
|
2427 |
aDes.Append(ch);
|
|
2428 |
break;
|
|
2429 |
}
|
|
2430 |
}
|
|
2431 |
}
|
|
2432 |
|
|
2433 |
|
|
2434 |
|
|
2435 |
|
|
2436 |
EXPORT_C TTime Time::NullTTime()
|
|
2437 |
/**
|
|
2438 |
Gets a TTime with a null value.
|
|
2439 |
|
|
2440 |
@return TTime object with a null value.
|
|
2441 |
*/
|
|
2442 |
{
|
|
2443 |
return UI64LIT(0x8000000000000000);
|
|
2444 |
}
|
|
2445 |
|
|
2446 |
EXPORT_C TTime Time::MaxTTime()
|
|
2447 |
/**
|
|
2448 |
Gets the maximum time value which can be held in a TTime object.
|
|
2449 |
|
|
2450 |
@return The maximum TTime value.
|
|
2451 |
*/
|
|
2452 |
{
|
|
2453 |
return I64LIT(0x7fffffffffffffff);
|
|
2454 |
}
|
|
2455 |
|
|
2456 |
EXPORT_C TTime Time::MinTTime()
|
|
2457 |
/**
|
|
2458 |
Gets the minimum time value which can be held in a TTime object.
|
|
2459 |
|
|
2460 |
@return The minimum TTime value.
|
|
2461 |
*/
|
|
2462 |
{
|
|
2463 |
return UI64LIT(0x8000000000000001);
|
|
2464 |
}
|
|
2465 |
|
|
2466 |
EXPORT_C TInt Time::DaysInMonth(TInt aYear,TMonth aMonth)
|
|
2467 |
/**
|
|
2468 |
Gets the number of days in a month.
|
|
2469 |
|
|
2470 |
@param aYear The year. Must be specified because of leap years.
|
|
2471 |
@param aMonth Month, from EJanuary to EDecember.
|
|
2472 |
|
|
2473 |
@return The number of days in the month.
|
|
2474 |
*/
|
|
2475 |
{
|
|
2476 |
|
|
2477 |
__ASSERT_DEBUG(aMonth<=EDecember && aMonth>=EJanuary,::Panic(ETTimeValueOutOfRange));
|
|
2478 |
return(mTab[IsLeapYear(aYear)][aMonth]);
|
|
2479 |
}
|
|
2480 |
|
|
2481 |
EXPORT_C TBool Time::IsLeapYear(TInt aYear)
|
|
2482 |
//
|
|
2483 |
// up to and including 1600 leap years were every 4 years,since then leap years are every 4 years unless
|
|
2484 |
// the year falls on a century which is not divisible by 4 (ie 1900 wasnt,2000 will be)
|
|
2485 |
// for simplicity define year 0 as a leap year
|
|
2486 |
//
|
|
2487 |
/**
|
|
2488 |
Tests whether a year is a leap year.
|
|
2489 |
|
|
2490 |
@param aYear The year of interest.
|
|
2491 |
|
|
2492 |
@return True if leap year, False if not.
|
|
2493 |
*/
|
|
2494 |
{
|
|
2495 |
|
|
2496 |
if (aYear>1600)
|
|
2497 |
return(!(aYear%4) && (aYear%100 || !(aYear%400)));
|
|
2498 |
return(!(aYear%4));
|
|
2499 |
}
|
|
2500 |
|
|
2501 |
EXPORT_C TInt Time::LeapYearsUpTo(TInt aYear)
|
|
2502 |
//
|
|
2503 |
// from 0AD to present year according to the rule above
|
|
2504 |
//
|
|
2505 |
/**
|
|
2506 |
Gets the number of leap years between 0 AD nominal Gregorian and the specified
|
|
2507 |
year - inclusive.
|
|
2508 |
|
|
2509 |
@param aYear The final year in the range to search. If negative, the function
|
|
2510 |
will return a negative number of leap years.
|
|
2511 |
|
|
2512 |
@return The number of leap years between 0 AD nominal Gregorian and aYear.
|
|
2513 |
*/
|
|
2514 |
{
|
|
2515 |
|
|
2516 |
if (aYear<=0)
|
|
2517 |
return(aYear/4);
|
|
2518 |
if (aYear<=1600)
|
|
2519 |
return(1+((aYear-1)/4));
|
|
2520 |
TInt num=401; // 1600/4+1
|
|
2521 |
aYear-=1601;
|
|
2522 |
TInt century=aYear/100;
|
|
2523 |
num+=(aYear/4-century+century/4);
|
|
2524 |
return(num);
|
|
2525 |
}
|
|
2526 |
|