0
|
1 |
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32\euser\maths\um_atan.cpp
|
|
15 |
// Floating point arc tangent
|
|
16 |
//
|
|
17 |
//
|
|
18 |
|
|
19 |
#include "um_std.h"
|
|
20 |
|
|
21 |
#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
|
|
22 |
#error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh
|
|
23 |
#endif
|
|
24 |
|
|
25 |
#ifndef __USE_VFP_MATH
|
|
26 |
|
|
27 |
LOCAL_D const TUint32 ArctanCoeffs[] =
|
|
28 |
{
|
|
29 |
0x00000000,0x80000000,0x7FFF0000, // polynomial approximation to arctan(x)
|
|
30 |
0xAA84D6EE,0xAAAAAAAA,0x7FFD0001, // for -(sqr2-1) <= x <= (sqr2-1)
|
|
31 |
0x89C77453,0xCCCCCCCC,0x7FFC0000,
|
|
32 |
0xEBC0261C,0x9249247B,0x7FFC0001,
|
|
33 |
0x940BC4DB,0xE38E3121,0x7FFB0000,
|
|
34 |
0x141C32F1,0xBA2DBF36,0x7FFB0001,
|
|
35 |
0xA90615E7,0x9D7C807E,0x7FFB0000,
|
|
36 |
0x1C632E93,0x87F6A873,0x7FFB0001,
|
|
37 |
0x310FCFFD,0xE8BE5D0A,0x7FFA0000,
|
|
38 |
0x92289F15,0xB17B930B,0x7FFA0001,
|
|
39 |
0x546FE7CE,0xABDE562D,0x7FF90000
|
|
40 |
};
|
|
41 |
|
|
42 |
LOCAL_D const TUint32 Sqr2m1data[] = {0xE7799211,0xD413CCCF,0x7FFD0000}; // sqr2-1
|
|
43 |
LOCAL_D const TUint32 Sqr2p1data[] = {0xFCEF3242,0x9A827999,0x80000000}; // sqr2+1
|
|
44 |
LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000}; // 1.0
|
|
45 |
LOCAL_D const TUint32 PiBy8data[] = {0x2168C235,0xC90FDAA2,0x7FFD0000}; // pi/8
|
|
46 |
LOCAL_D const TUint32 PiBy2data[] = {0x2168C235,0xC90FDAA2,0x7FFF0000}; // pi/2
|
|
47 |
LOCAL_D const TUint32 ThreePiBy8data[] = {0x990E91A8,0x96CBE3F9,0x7FFF0000}; // 3*pi/8
|
|
48 |
|
|
49 |
LOCAL_C void Arctan(TRealX& y, TRealX& x)
|
|
50 |
{
|
|
51 |
// Calculate arctan(x), write result to y
|
|
52 |
// Algorithm:
|
|
53 |
// If x>1, replace x with 1/x and subtract result from pi/2
|
|
54 |
// ( use identity tan(pi/2-x)=1/tan(x) )
|
|
55 |
// If x>sqr(2)-1, replace x with (x-(sqr(2)-1))/(1-(sqr2-1)x)
|
|
56 |
// ( use identity tan(x-a)=(tanx-tana)/(1-tana.tanx)
|
|
57 |
// where a=pi/8, tan a = sqr2-1
|
|
58 |
// and add pi/8 to result
|
|
59 |
// Use polynomial approximation to calculate arctan(x) for
|
|
60 |
// x in the interval [0,sqr2-1]
|
|
61 |
|
|
62 |
const TRealX& Sqr2m1 = *(const TRealX*)Sqr2m1data;
|
|
63 |
const TRealX& Sqr2p1 = *(const TRealX*)Sqr2p1data;
|
|
64 |
const TRealX& One = *(const TRealX*)Onedata;
|
|
65 |
const TRealX& PiBy8 = *(const TRealX*)PiBy8data;
|
|
66 |
const TRealX& PiBy2 = *(const TRealX*)PiBy2data;
|
|
67 |
const TRealX& ThreePiBy8 = *(const TRealX*)ThreePiBy8data;
|
|
68 |
|
|
69 |
TInt section=0;
|
|
70 |
TInt8 sign=x.iSign;
|
|
71 |
x.iSign=0;
|
|
72 |
if (x>Sqr2p1)
|
|
73 |
{
|
|
74 |
x=One/x;
|
|
75 |
section=3;
|
|
76 |
}
|
|
77 |
else if (x>One)
|
|
78 |
{
|
|
79 |
x=(One-Sqr2m1*x)/(x+Sqr2m1);
|
|
80 |
section=2;
|
|
81 |
}
|
|
82 |
else if (x>Sqr2m1)
|
|
83 |
{
|
|
84 |
x=(x-Sqr2m1)/(One+Sqr2m1*x);
|
|
85 |
section=1;
|
|
86 |
}
|
|
87 |
Math::PolyX(y,x*x,10,(const TRealX*)ArctanCoeffs);
|
|
88 |
y*=x;
|
|
89 |
if (section==1)
|
|
90 |
y+=PiBy8;
|
|
91 |
else if (section==2)
|
|
92 |
y=ThreePiBy8-y;
|
|
93 |
else if (section==3)
|
|
94 |
y=PiBy2-y;
|
|
95 |
y.iSign=sign;
|
|
96 |
}
|
|
97 |
|
|
98 |
|
|
99 |
|
|
100 |
|
|
101 |
EXPORT_C TInt Math::ATan(TReal& aTrg, const TReal& aSrc)
|
|
102 |
/**
|
|
103 |
Calculates the principal value of the inverse tangent of a number.
|
|
104 |
|
|
105 |
@param aTrg A reference containing the result in radians,
|
|
106 |
a value between -pi/2 and +pi/2.
|
|
107 |
@param aSrc The argument of the arctan function,
|
|
108 |
a value between +infinity and +infinity.
|
|
109 |
|
|
110 |
@return KErrNone if successful, otherwise another of
|
|
111 |
the system-wide error codes.
|
|
112 |
*/
|
|
113 |
{
|
|
114 |
TRealX x;
|
|
115 |
TInt r=x.Set(aSrc);
|
|
116 |
if (r==KErrNone)
|
|
117 |
{
|
|
118 |
TRealX y;
|
|
119 |
Arctan(y,x);
|
|
120 |
return y.GetTReal(aTrg);
|
|
121 |
}
|
|
122 |
if (r==KErrArgument)
|
|
123 |
{
|
|
124 |
SetNaN(aTrg);
|
|
125 |
return KErrArgument;
|
|
126 |
}
|
|
127 |
aTrg=KPiBy2; // arctan(+/- infinity) = +/- pi/2
|
|
128 |
if (x.iSign&1)
|
|
129 |
aTrg=-aTrg;
|
|
130 |
return KErrNone;
|
|
131 |
}
|
|
132 |
|
|
133 |
LOCAL_D const TUint32 Pidata[] = {0x2168C235,0xC90FDAA2,0x80000000};
|
|
134 |
LOCAL_D const TUint32 PiBy4data[] = {0x2168C235,0xC90FDAA2,0x7FFE0000};
|
|
135 |
LOCAL_D const TUint32 MinusPiBy4data[] = {0x2168C235,0xC90FDAA2,0x7FFE0001};
|
|
136 |
LOCAL_D const TUint32 ThreePiBy4data[] = {0x990E91A8,0x96CBE3F9,0x80000000};
|
|
137 |
LOCAL_D const TUint32 MinusThreePiBy4data[] = {0x990E91A8,0x96CBE3F9,0x80000001};
|
|
138 |
LOCAL_D const TUint32 Zerodata[] = {0x00000000,0x00000000,0x00000000};
|
|
139 |
|
|
140 |
|
|
141 |
|
|
142 |
|
|
143 |
EXPORT_C TInt Math::ATan(TReal &aTrg,const TReal &aY,const TReal &aX)
|
|
144 |
/**
|
|
145 |
Calculates the angle between the x-axis and a line drawn from the origin
|
|
146 |
to a point represented by its (x,y) co-ordinates.
|
|
147 |
|
|
148 |
The co-ordinates are passed as arguments to the function.
|
|
149 |
This function returns the same result as arctan(y/x), but:
|
|
150 |
|
|
151 |
1. it adds +/-pi to the result, if x is negative
|
|
152 |
|
|
153 |
2. it sets the result to +/-pi/2, if x is zero but y is non-zero.
|
|
154 |
|
|
155 |
@param aTrg A reference containing the result in radians,
|
|
156 |
a value between -pi exclusive and +pi inclusive.
|
|
157 |
@param aY The y argument of the arctan(y/x) function.
|
|
158 |
@param aX The x argument of the arctan(y/x) function.
|
|
159 |
|
|
160 |
@return KErrNone if successful, otherwise another of
|
|
161 |
the system-wide error codes.
|
|
162 |
*/
|
|
163 |
{
|
|
164 |
const TRealX& Zero=*(const TRealX*)Zerodata;
|
|
165 |
const TRealX& Pi=*(const TRealX*)Pidata;
|
|
166 |
const TRealX& PiBy4=*(const TRealX*)PiBy4data;
|
|
167 |
const TRealX& MinusPiBy4=*(const TRealX*)MinusPiBy4data;
|
|
168 |
const TRealX& ThreePiBy4=*(const TRealX*)ThreePiBy4data;
|
|
169 |
const TRealX& MinusThreePiBy4=*(const TRealX*)MinusThreePiBy4data;
|
|
170 |
|
|
171 |
TRealX x, y;
|
|
172 |
TInt rx=x.Set(aX);
|
|
173 |
TInt ry=y.Set(aY);
|
|
174 |
if (rx!=KErrArgument && ry!=KErrArgument)
|
|
175 |
{
|
|
176 |
if (x.iExp==0)
|
|
177 |
x.iSign=0;
|
|
178 |
TRealX q;
|
|
179 |
TInt rq=y.Div(q,x);
|
|
180 |
if (rq!=KErrArgument)
|
|
181 |
{
|
|
182 |
TRealX arg;
|
|
183 |
Arctan(arg,q);
|
|
184 |
if (x<Zero)
|
|
185 |
{
|
|
186 |
if (y>=Zero)
|
|
187 |
arg+=Pi;
|
|
188 |
else
|
|
189 |
arg-=Pi;
|
|
190 |
}
|
|
191 |
aTrg=arg;
|
|
192 |
return KErrNone;
|
|
193 |
}
|
|
194 |
if (!x.IsZero())
|
|
195 |
{
|
|
196 |
// Both x and y must be infinite
|
|
197 |
TInt quadrant=((y.iSign & 1)<<1) + (x.iSign&1);
|
|
198 |
TRealX arg;
|
|
199 |
if (quadrant==0)
|
|
200 |
arg=PiBy4;
|
|
201 |
else if (quadrant==1)
|
|
202 |
arg=ThreePiBy4;
|
|
203 |
else if (quadrant==3)
|
|
204 |
arg=MinusThreePiBy4;
|
|
205 |
else
|
|
206 |
arg=MinusPiBy4;
|
|
207 |
aTrg=(TReal)arg;
|
|
208 |
return KErrNone;
|
|
209 |
}
|
|
210 |
}
|
|
211 |
SetNaN(aTrg);
|
|
212 |
return KErrArgument;
|
|
213 |
}
|
|
214 |
|
|
215 |
#else // __USE_VFP_MATH
|
|
216 |
|
|
217 |
LOCAL_D const TUint32 PiBy4data[] = {0x54442D18,0x3FE921FB};
|
|
218 |
LOCAL_D const TUint32 MinusPiBy4data[] = {0x54442D18,0xBFE921FB};
|
|
219 |
LOCAL_D const TUint32 ThreePiBy4data[] = {0x7F3321D2,0x4002D97C};
|
|
220 |
LOCAL_D const TUint32 MinusThreePiBy4data[] = {0x7F3321D2,0xC002D97C};
|
|
221 |
|
|
222 |
// definitions come from RVCT math library
|
|
223 |
extern "C" TReal atan(TReal);
|
|
224 |
extern "C" TReal atan2(TReal,TReal);
|
|
225 |
|
|
226 |
EXPORT_C TInt Math::ATan(TReal& aTrg, const TReal& aSrc)
|
|
227 |
{
|
|
228 |
aTrg = atan(aSrc);
|
|
229 |
if (Math::IsFinite(aTrg))
|
|
230 |
return KErrNone;
|
|
231 |
SetNaN(aTrg);
|
|
232 |
return KErrArgument;
|
|
233 |
}
|
|
234 |
|
|
235 |
EXPORT_C TInt Math::ATan(TReal &aTrg,const TReal &aY,const TReal &aX)
|
|
236 |
{
|
|
237 |
aTrg = atan2(aY,aX);
|
|
238 |
if (Math::IsFinite(aTrg))
|
|
239 |
return KErrNone;
|
|
240 |
|
|
241 |
// Return is a NaN, but ARM implementation returns NaN for atan(inf/inf)
|
|
242 |
// whereas implementation above returns multiples of pi/4 - fix up here
|
|
243 |
SReal64 *pY=(SReal64 *)&aY;
|
|
244 |
SReal64 *pX=(SReal64 *)&aX;
|
|
245 |
|
|
246 |
if ( pY->msm==0 && pY->lsm==0 && pY->exp==KTReal64SpecialExponent
|
|
247 |
&& pX->msm==0 && pX->lsm==0 && pX->exp==KTReal64SpecialExponent)
|
|
248 |
{
|
|
249 |
TInt quadrant=((pY->sign)<<1) + (pX->sign);
|
|
250 |
if (quadrant==0)
|
|
251 |
aTrg=*(const TReal*)PiBy4data;
|
|
252 |
else if (quadrant==1)
|
|
253 |
aTrg=*(const TReal*)ThreePiBy4data;
|
|
254 |
else if (quadrant==3)
|
|
255 |
aTrg=*(const TReal*)MinusThreePiBy4data;
|
|
256 |
else
|
|
257 |
aTrg=*(const TReal*)MinusPiBy4data;
|
|
258 |
return KErrNone;
|
|
259 |
}
|
|
260 |
|
|
261 |
// If we get here then the args weren't inf/inf so one of them must've
|
|
262 |
// been a NaN to start with
|
|
263 |
SetNaN(aTrg);
|
|
264 |
return KErrArgument;
|
|
265 |
}
|
|
266 |
|
|
267 |
#endif
|