0
|
1 |
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32\euser\maths\um_pow.cpp
|
|
15 |
// Raise to the power.
|
|
16 |
//
|
|
17 |
//
|
|
18 |
|
|
19 |
#include "um_std.h"
|
|
20 |
|
|
21 |
#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
|
|
22 |
#error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh
|
|
23 |
#endif
|
|
24 |
|
|
25 |
|
|
26 |
#ifndef __USE_VFP_MATH
|
|
27 |
|
|
28 |
LOCAL_D const TUint32 ArtanhCoeffs[] =
|
|
29 |
{
|
|
30 |
0x5C17F0BC,0xB8AA3B29,0x80010000, // polynomial approximation to (4/ln2)artanh(x)
|
|
31 |
0xD01FDDD8,0xF6384EE1,0x7FFF0000, // for |x| <= (sqr2-1)/(sqr2+1)
|
|
32 |
0x7D0DDC69,0x93BB6287,0x7FFF0000,
|
|
33 |
0x6564D4F5,0xD30BB153,0x7FFE0000,
|
|
34 |
0x1546C858,0xA4258A33,0x7FFE0000,
|
|
35 |
0xCCE50DA9,0x864D28DF,0x7FFE0000,
|
|
36 |
0x8E1A5DBB,0xE35271A0,0x7FFD0000,
|
|
37 |
0xF5A67D92,0xC3A36B08,0x7FFD0000,
|
|
38 |
0x62D53E02,0xC4A1FFAC,0x7FFD0000
|
|
39 |
};
|
|
40 |
|
|
41 |
LOCAL_D const TUint32 TwoToxCoeffs[] =
|
|
42 |
{
|
|
43 |
0x00000000,0x80000000,0x7FFF0000, // polynomial approximation to 2^(x/8) for
|
|
44 |
0xD1CF79AC,0xB17217F7,0x7FFB0000, // 0<=x<=1
|
|
45 |
0x162CF72B,0xF5FDEFFC,0x7FF60000,
|
|
46 |
0x23EC0D04,0xE35846B8,0x7FF10000,
|
|
47 |
0xBDB408D7,0x9D955B7E,0x7FEC0000,
|
|
48 |
0xFDD8A678,0xAEC3FE73,0x7FE60000,
|
|
49 |
0xBD6E3950,0xA184E90A,0x7FE00000,
|
|
50 |
0xC1054DA3,0xFFB259D8,0x7FD90000,
|
|
51 |
0x70893DE4,0xB8BEDE2F,0x7FD30000
|
|
52 |
};
|
|
53 |
|
|
54 |
LOCAL_D const TUint32 TwoToNover8[] =
|
|
55 |
{
|
|
56 |
0xEA8BD6E7,0x8B95C1E3,0x7FFF0000, // 2^0.125
|
|
57 |
0x8DB8A96F,0x9837F051,0x7FFF0000, // 2^0.250
|
|
58 |
0xB15138EA,0xA5FED6A9,0x7FFF0000, // 2^0.375
|
|
59 |
0xF9DE6484,0xB504F333,0x7FFF0000, // 2^0.500
|
|
60 |
0x5506DADD,0xC5672A11,0x7FFF0000, // 2^0.625
|
|
61 |
0xD69D6AF4,0xD744FCCA,0x7FFF0000, // 2^0.750
|
|
62 |
0xDD24392F,0xEAC0C6E7,0x7FFF0000 // 2^0.875
|
|
63 |
};
|
|
64 |
|
|
65 |
LOCAL_D const TUint32 Sqr2data[] = {0xF9DE6484,0xB504F333,0x7FFF0000}; // sqr2
|
|
66 |
LOCAL_D const TUint32 Sqr2Invdata[] = {0xF9DE6484,0xB504F333,0x7FFE0000}; // 1/sqr2
|
|
67 |
LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000}; // 1.0
|
|
68 |
|
|
69 |
LOCAL_C void Log2(TRealX& y, TRealX& x)
|
|
70 |
{
|
|
71 |
// Calculate log2(x) and write to y
|
|
72 |
// Result to 64-bit precision to allow accurate powers
|
|
73 |
// Algorithm:
|
|
74 |
// log2(aSrc)=log2(2^e.m) e=exponent of aSrc, m=mantissa 1<=m<2
|
|
75 |
// log2(aSrc)=e+log2(m)
|
|
76 |
// If e=-1 (0.5<=aSrc<1), let x=aSrc else let x=mantissa(aSrc)
|
|
77 |
// If x>Sqr2, replace x with x/Sqr2
|
|
78 |
// If x<Sqr2/2, replace x with x*Sqr2
|
|
79 |
// Replace x with (x-1)/(x+1)
|
|
80 |
// Use polynomial to calculate artanh(x) for |x| <= (sqr2-1)/(sqr2+1)
|
|
81 |
// ( use identity ln(x) = 2artanh((x-1)/(x+1)) )
|
|
82 |
|
|
83 |
const TRealX& Sqr2=*(const TRealX*)Sqr2data;
|
|
84 |
const TRealX& Sqr2Inv=*(const TRealX*)Sqr2Invdata;
|
|
85 |
const TRealX& One=*(const TRealX*)Onedata;
|
|
86 |
|
|
87 |
TInt n=(x.iExp-0x7FFF)<<1;
|
|
88 |
x.iExp=0x7FFF;
|
|
89 |
if (n!=-2)
|
|
90 |
{
|
|
91 |
if (x>Sqr2)
|
|
92 |
{
|
|
93 |
x*=Sqr2Inv;
|
|
94 |
n++;
|
|
95 |
}
|
|
96 |
}
|
|
97 |
else
|
|
98 |
{
|
|
99 |
n=0;
|
|
100 |
x.iExp=0x7FFE;
|
|
101 |
if (x<Sqr2Inv)
|
|
102 |
{
|
|
103 |
x*=Sqr2;
|
|
104 |
n--;
|
|
105 |
}
|
|
106 |
}
|
|
107 |
x=(x-One)/(x+One); // ln(x)=2artanh((x-1)/(x+1))
|
|
108 |
Math::PolyX(y,x*x,8,(const TRealX*)ArtanhCoeffs);
|
|
109 |
y*=x;
|
|
110 |
y+=TRealX(n);
|
|
111 |
if (y.iExp>1)
|
|
112 |
y.iExp--;
|
|
113 |
else
|
|
114 |
y.iExp=0;
|
|
115 |
}
|
|
116 |
|
|
117 |
LOCAL_C TInt TwoTox(TRealX& y, TRealX& x)
|
|
118 |
{
|
|
119 |
// Calculate 2^x and write result to y. Result to 64 bit precision.
|
|
120 |
// Algorithm:
|
|
121 |
// 2^x = 2^int(x).2^frac(x)
|
|
122 |
// 2^int(x) just adds int(x) to the final result exponent
|
|
123 |
// Reduce frac(x) to the range [0,0.125] (modulo 0.125)
|
|
124 |
// Use polynomial to calculate 2^x for 0<=x<=0.125
|
|
125 |
// Multiply by 2^(n/8) for n=0,1,2,3,4,5,6,7 to give 2^frac(x)
|
|
126 |
|
|
127 |
if (x.iExp)
|
|
128 |
x.iExp+=3;
|
|
129 |
TInt n=(TInt)x;
|
|
130 |
if (n<16384 && n>-16384)
|
|
131 |
{
|
|
132 |
if (x.iSign&1)
|
|
133 |
n--;
|
|
134 |
x-=TRealX(n);
|
|
135 |
Math::PolyX(y,x,8,(const TRealX*)TwoToxCoeffs);
|
|
136 |
y.iExp=TUint16(TInt(y.iExp)+(n>>3));
|
|
137 |
n&=7;
|
|
138 |
if (n)
|
|
139 |
y*= (*(const TRealX*)(TwoToNover8+3*n-3));
|
|
140 |
return KErrNone;
|
|
141 |
}
|
|
142 |
else
|
|
143 |
{
|
|
144 |
if (n<0)
|
|
145 |
{
|
|
146 |
y.SetZero();
|
|
147 |
return KErrUnderflow;
|
|
148 |
}
|
|
149 |
else
|
|
150 |
{
|
|
151 |
y.SetInfinite(0);
|
|
152 |
return KErrOverflow;
|
|
153 |
}
|
|
154 |
}
|
|
155 |
}
|
|
156 |
|
|
157 |
|
|
158 |
|
|
159 |
|
|
160 |
EXPORT_C TInt Math::Pow(TReal &aTrg,const TReal &aSrc,const TReal &aPower)
|
|
161 |
/**
|
|
162 |
Calculates the value of x raised to the power of y.
|
|
163 |
|
|
164 |
The behaviour conforms to that specified for pow() in the
|
|
165 |
ISO C Standard ISO/IEC 9899 (Annex F), although floating-point exceptions
|
|
166 |
are not supported.
|
|
167 |
|
|
168 |
@param aTrg A reference containing the result.
|
|
169 |
@param aSrc The x argument of the function.
|
|
170 |
@param aPower The y argument of the function.
|
|
171 |
|
|
172 |
@return KErrNone if successful;
|
|
173 |
KErrOverflow if the result is +/- infinity;
|
|
174 |
KErrUnderflow if the result is too small to be represented;
|
|
175 |
KErrArgument if the result is not a number (NaN).
|
|
176 |
*/
|
|
177 |
//
|
|
178 |
// Evaluates aSrc raised to the power aPower and places the result in aTrg.
|
|
179 |
// For non-special values algorithm is aTrg=2^(aPower*log2(aSrc))
|
|
180 |
//
|
|
181 |
{
|
|
182 |
TRealX x,p;
|
|
183 |
|
|
184 |
TInt ret2=p.Set(aPower);
|
|
185 |
// pow(x, +/-0) -> 1 for any x, even a NaN
|
|
186 |
if (p.IsZero())
|
|
187 |
{
|
|
188 |
aTrg=1.0;
|
|
189 |
return KErrNone;
|
|
190 |
}
|
|
191 |
|
|
192 |
TInt ret1=x.Set(aSrc);
|
|
193 |
if (ret1==KErrArgument || ret2==KErrArgument)
|
|
194 |
{
|
|
195 |
// pow(+1, y) -> 1 for any y, even a NaN
|
|
196 |
// XXX First test should not be necessary, but on WINS
|
|
197 |
// aSrc == 1.0 is true when aSrc is NaN.
|
|
198 |
if (ret1 != KErrArgument && aSrc == 1.0)
|
|
199 |
{
|
|
200 |
aTrg=aSrc;
|
|
201 |
return KErrNone;
|
|
202 |
}
|
|
203 |
SetNaN(aTrg);
|
|
204 |
return KErrArgument;
|
|
205 |
}
|
|
206 |
|
|
207 |
// Infinite power
|
|
208 |
if (ret2==KErrOverflow)
|
|
209 |
{
|
|
210 |
// figure out which of these cases we have:
|
|
211 |
//
|
|
212 |
// pow(x, -INF) -> +INF for |x| < 1 } flag = 0
|
|
213 |
// pow(x, +INF) -> +INF for |x| > 1 }
|
|
214 |
// pow(x, -INF) -> +0 for |x| > 1 } flag = 1
|
|
215 |
// pow(x, +INF) -> +0 for |x| < 1 }
|
|
216 |
//
|
|
217 |
// flag = 2 => |x| == 1.0
|
|
218 |
//
|
|
219 |
TInt flag=2;
|
|
220 |
if (Abs(aSrc)>1.0)
|
|
221 |
flag=p.iSign&1;
|
|
222 |
if (Abs(aSrc)<1.0)
|
|
223 |
flag=1-(p.iSign&1);
|
|
224 |
if (flag==0)
|
|
225 |
{
|
|
226 |
SetInfinite(aTrg,0);
|
|
227 |
return KErrOverflow;
|
|
228 |
}
|
|
229 |
if (flag==1)
|
|
230 |
{
|
|
231 |
SetZero(aTrg,0);
|
|
232 |
return KErrNone;
|
|
233 |
}
|
|
234 |
if (Abs(aSrc)==1.0)
|
|
235 |
{
|
|
236 |
// pow(-1, +/-INF) -> 1
|
|
237 |
aTrg=1.0;
|
|
238 |
return KErrNone;
|
|
239 |
}
|
|
240 |
// This should never happen (i.e. aSrc is NaN, which
|
|
241 |
// should be taken care of above)
|
|
242 |
SetNaN(aTrg);
|
|
243 |
return KErrArgument;
|
|
244 |
}
|
|
245 |
|
|
246 |
// Negative Base raised to a power
|
|
247 |
TInt odd=1;
|
|
248 |
if (x.iSign & 1)
|
|
249 |
{
|
|
250 |
TReal pint;
|
|
251 |
Math::Int(pint,aPower);
|
|
252 |
if (aPower-pint) // Checks that if aSrc is less than zero, then aPower is integral
|
|
253 |
{
|
|
254 |
// pow(-INF, y) -> +0 for y < 0 and not an odd integer
|
|
255 |
// pow(-INF, y) -> +INF for y > 0 and not an odd integer
|
|
256 |
// Since we're here, aPower is not integral, so can't be odd, either
|
|
257 |
if (ret1 == KErrOverflow)
|
|
258 |
{
|
|
259 |
if (aPower < 0)
|
|
260 |
{
|
|
261 |
SetZero(aTrg);
|
|
262 |
return KErrNone;
|
|
263 |
}
|
|
264 |
else
|
|
265 |
{
|
|
266 |
SetInfinite(aTrg,0);
|
|
267 |
return KErrOverflow;
|
|
268 |
}
|
|
269 |
}
|
|
270 |
SetNaN(aTrg);
|
|
271 |
return KErrArgument;
|
|
272 |
}
|
|
273 |
TReal powerby2=aPower*0.5;
|
|
274 |
Math::Int(pint,powerby2);
|
|
275 |
if (powerby2-pint)
|
|
276 |
odd=(-1);
|
|
277 |
x.iSign=0;
|
|
278 |
}
|
|
279 |
|
|
280 |
// Zero or infinity raised to a power
|
|
281 |
if (x.IsZero() || ret1==KErrOverflow)
|
|
282 |
{
|
|
283 |
if (x.IsZero() && p.IsZero())
|
|
284 |
{
|
|
285 |
aTrg=1.0;
|
|
286 |
return KErrNone;
|
|
287 |
}
|
|
288 |
TInt sign=(odd==-1 ? 1 : 0);
|
|
289 |
if ((x.IsZero() && (p.iSign&1)==0) || (ret1==KErrOverflow && (p.iSign&1)))
|
|
290 |
{
|
|
291 |
SetZero(aTrg,sign);
|
|
292 |
return KErrNone;
|
|
293 |
}
|
|
294 |
else
|
|
295 |
{
|
|
296 |
SetInfinite(aTrg,sign);
|
|
297 |
return KErrOverflow;
|
|
298 |
}
|
|
299 |
}
|
|
300 |
|
|
301 |
TRealX y;
|
|
302 |
Log2(y,x);
|
|
303 |
x=y*p; // this cannot overflow or underflow
|
|
304 |
TInt r=TwoTox(y,x);
|
|
305 |
if (odd<0)
|
|
306 |
y.iSign=1;
|
|
307 |
TInt r2=y.GetTReal(aTrg);
|
|
308 |
return (r==KErrNone)?r2:r;
|
|
309 |
}
|
|
310 |
|
|
311 |
#else // __USE_VFP_MATH
|
|
312 |
|
|
313 |
// definitions come from RVCT math library
|
|
314 |
extern "C" TReal pow(TReal,TReal);
|
|
315 |
|
|
316 |
EXPORT_C TInt Math::Pow(TReal &aTrg,const TReal &aSrc,const TReal &aPower)
|
|
317 |
{
|
|
318 |
aTrg = pow(aSrc,aPower);
|
|
319 |
if (Math::IsZero(aTrg) && !Math::IsZero(aSrc) && !Math::IsInfinite(aSrc) && !Math::IsInfinite(aPower))
|
|
320 |
return KErrUnderflow;
|
|
321 |
if (Math::IsFinite(aTrg))
|
|
322 |
return KErrNone;
|
|
323 |
if (Math::IsZero(aPower)) // pow(x, +/-0) -> 1 for any x, even a NaN
|
|
324 |
{
|
|
325 |
aTrg = 1.0;
|
|
326 |
return KErrNone;
|
|
327 |
}
|
|
328 |
if (Math::IsInfinite(aTrg))
|
|
329 |
return KErrOverflow;
|
|
330 |
if (aSrc==1.0) // pow(+1, y) -> 1 for any y, even a NaN
|
|
331 |
{
|
|
332 |
aTrg=aSrc;
|
|
333 |
return KErrNone;
|
|
334 |
}
|
|
335 |
if (Math::IsInfinite(aPower))
|
|
336 |
{
|
|
337 |
if (aSrc == -1.0) // pow(-1, +/-INF) -> 1
|
|
338 |
{
|
|
339 |
aTrg = 1.0;
|
|
340 |
return KErrNone;
|
|
341 |
}
|
|
342 |
if (((Abs(aSrc) < 1) && (aPower < 0)) || // pow(x, -INF) -> +INF for |x| < 1
|
|
343 |
((Abs(aSrc) > 1) && (aPower > 0))) // pow(x, +INF) -> +INF for |x| > 1
|
|
344 |
{
|
|
345 |
SetInfinite(aTrg,0);
|
|
346 |
return KErrOverflow;
|
|
347 |
}
|
|
348 |
}
|
|
349 |
// pow(-INF, y) -> +INF for y > 0 and not an odd integer
|
|
350 |
if (Math::IsInfinite(aSrc) && (aSrc < 0) && (aPower > 0))
|
|
351 |
{
|
|
352 |
TBool odd = EFalse;
|
|
353 |
TReal pint;
|
|
354 |
Math::Int(pint, aPower);
|
|
355 |
if (aPower == pint)
|
|
356 |
{
|
|
357 |
TReal halfPower = aPower * 0.5;
|
|
358 |
Math::Int(pint, halfPower);
|
|
359 |
if (halfPower != pint)
|
|
360 |
odd = ETrue;
|
|
361 |
}
|
|
362 |
if (odd == EFalse)
|
|
363 |
{
|
|
364 |
SetInfinite(aTrg,0);
|
|
365 |
return KErrOverflow;
|
|
366 |
}
|
|
367 |
}
|
|
368 |
|
|
369 |
// Otherwise...
|
|
370 |
SetNaN(aTrg);
|
|
371 |
return KErrArgument;
|
|
372 |
}
|
|
373 |
|
|
374 |
#endif
|