0
|
1 |
// Copyright (c) 1999-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// Media driver for MultiMediaCard Flash device
|
|
15 |
//
|
|
16 |
//
|
|
17 |
|
|
18 |
#include "mmc.h"
|
|
19 |
#include "pbusmedia.h"
|
|
20 |
#include <drivers/emmcptn.h>
|
|
21 |
|
|
22 |
#if defined(__DEMAND_PAGING__)
|
|
23 |
// If in debug mode, enable paging stats and their retrieval using DLocalDrive::EControlIO
|
|
24 |
#if defined( _DEBUG)
|
|
25 |
#define __TEST_PAGING_MEDIA_DRIVER__
|
|
26 |
#endif
|
|
27 |
#include "mmcdp.h"
|
|
28 |
#endif
|
|
29 |
|
|
30 |
#ifndef BTRACE_PAGING_MEDIA
|
|
31 |
#undef BTraceContext8
|
|
32 |
#define BTraceContext8(aCategory,aSubCategory,a1,a2)
|
|
33 |
#endif // BTRACE_PAGING_MEDIA
|
|
34 |
|
|
35 |
// Enable this macro to debug cache:
|
|
36 |
// NB The greater the number of blocks, the slower this is...
|
|
37 |
//#define _DEBUG_CACHE
|
|
38 |
#ifdef _DEBUG_CACHE
|
|
39 |
#define __ASSERT_CACHE(c,p) (void)((c)||(p,0))
|
|
40 |
#else
|
|
41 |
#define __ASSERT_CACHE(c,p)
|
|
42 |
#endif
|
|
43 |
|
|
44 |
|
|
45 |
GLREF_C TInt GetMediaDefaultPartitionInfo(TMBRPartitionEntry& aPartitionEntry, TUint16& aReservedSectors, const TMMCard* aCardP);
|
|
46 |
GLREF_C TBool MBRMandatory(const TMMCard* aCardP);
|
|
47 |
GLREF_C TBool CreateMBRAfterFormat(const TMMCard* aCardP);
|
|
48 |
GLREF_C TInt BlockSize(const TMMCard* aCardP);
|
|
49 |
GLREF_C TInt EraseBlockSize(const TMMCard* aCardP);
|
|
50 |
GLREF_C TInt GetCardFormatInfo(const TMMCard* aCardP, TLDFormatInfo& aFormatInfo);
|
|
51 |
|
|
52 |
const TInt KStackNumber = 0;
|
|
53 |
|
|
54 |
const TInt KDiskSectorSize=512;
|
|
55 |
const TInt KDiskSectorShift=9;
|
|
56 |
|
|
57 |
const TInt KIdleCurrentInMilliAmps = 1;
|
|
58 |
|
|
59 |
const TInt KMBRFirstPartitionEntry=0x1BE;
|
|
60 |
|
|
61 |
template <class T>
|
|
62 |
inline T UMin(T aLeft,T aRight)
|
|
63 |
{return(aLeft<aRight ? aLeft : aRight);}
|
|
64 |
|
|
65 |
|
|
66 |
class DPhysicalDeviceMediaMmcFlash : public DPhysicalDevice
|
|
67 |
{
|
|
68 |
public:
|
|
69 |
DPhysicalDeviceMediaMmcFlash();
|
|
70 |
|
|
71 |
virtual TInt Install();
|
|
72 |
virtual void GetCaps(TDes8& aDes) const;
|
|
73 |
virtual TInt Create(DBase*& aChannel, TInt aMediaId, const TDesC8* aInfo, const TVersion& aVer);
|
|
74 |
virtual TInt Validate(TInt aDeviceType, const TDesC8* aInfo, const TVersion& aVer);
|
|
75 |
virtual TInt Info(TInt aFunction, TAny* a1);
|
|
76 |
};
|
|
77 |
|
|
78 |
|
|
79 |
// these should be static const members of DMmcMediaDriverFlash, but VC doesn't support this
|
|
80 |
const TInt64 KInvalidBlock = -1;
|
|
81 |
const TInt KNoCacheBlock = -1;
|
|
82 |
|
|
83 |
class DMmcMediaDriverFlash : public DMediaDriver
|
|
84 |
{
|
|
85 |
public:
|
|
86 |
DMmcMediaDriverFlash(TInt aMediaId);
|
|
87 |
~DMmcMediaDriverFlash();
|
|
88 |
// ...from DMediaDriver
|
|
89 |
virtual void Close();
|
|
90 |
// replacing pure virtual
|
|
91 |
virtual void Disconnect(DLocalDrive* aLocalDrive, TThreadMessage*);
|
|
92 |
virtual TInt Request(TLocDrvRequest& aRequest);
|
|
93 |
virtual TInt PartitionInfo(TPartitionInfo& anInfo);
|
|
94 |
virtual void NotifyPowerDown();
|
|
95 |
virtual void NotifyEmergencyPowerDown();
|
|
96 |
// For creation by DPhysicalDeviceMediaMmcFlash
|
|
97 |
TInt DoCreate(TInt aMediaId);
|
|
98 |
|
|
99 |
private:
|
|
100 |
enum TPanic
|
|
101 |
{
|
|
102 |
EDRInUse = 0x0000, EDRStart, EDRNotPositive, EDREnd,
|
|
103 |
ELRRequest = 0x0010, ELRStart, ELRNotPositive, ELREnd, ELRCached,
|
|
104 |
EDWInUse = 0x0020, EDWStart, EDWNotPositive, EDWEnd,
|
|
105 |
EDFInUse = 0x0030, EDFStart, EDFNotPositive, EDFEnd, ENotMmcSocket,
|
|
106 |
ELWRequest = 0x0040, ELWStart, ELWFmtStAlign, ELWNotPositive, ELWEnd, ELWFmtEndAlign,
|
|
107 |
ELWLength, ELFStart, ELFEnd, ELFNotPositive,
|
|
108 |
ERPIInUse = 0x0050,
|
|
109 |
EPCInUse = 0x0060, EPCFunc,
|
|
110 |
ESECBQueued = 0x0070,
|
|
111 |
EDSEDRequest = 0x0080, EDSEDNotErrComplete,
|
|
112 |
ECRReqIdle = 0x0090, ECRRequest,
|
|
113 |
ERRBStAlign = 0x00a0, ERRBStPos, ERRBNotPositive, ERRBEndAlign, ERRBEndPos,
|
|
114 |
ERRBOverflow, ERRBCchInv, ERRBExist,
|
|
115 |
ERWBStPos = 0x00b0, ERWBNotPositive, ERWBEndPos, ERWBOverflow, ERWBCchInv,
|
|
116 |
EMBStPos = 0x00c0, EMBStAlign, EMBNotPositive, EMBEndPos, EMBEndAlign,
|
|
117 |
EMBOverflow, EMBCchInvPre, EMBCchInvPost,
|
|
118 |
EBGAStPos = 0x00d0, EBGAStAlign, EBGANotPositive, EBGAEndPos, EBGAEndAlign,
|
|
119 |
EBGAOverflow, EBGACchInv,
|
|
120 |
EICMNegative = 0x00e0, EICMOverflow, ECMIOverflow,
|
|
121 |
EGCBAlign = 0x00f0, EGCBPos, EGCBCchInv,
|
|
122 |
|
|
123 |
ECFSessPtrNull = 0x0100, // Code Fault - session pointer NULL
|
|
124 |
|
|
125 |
EDBNotEven = 0x0110, // Not and even number of blocks in the buffer cache
|
|
126 |
EDBCBQueued = 0x0111, // The data transfer callback is already queued
|
|
127 |
EDBLength = 0x0112, // The length of data to transfer in data transfer callback is not positive
|
|
128 |
EDBLengthTooBig = 0x0113, // The length of data to transfer in data transfer callback is too big
|
|
129 |
EDBOffsetTooBig = 0x0114, // The Offset into the user data buffer is too big
|
|
130 |
EDBCacheInvalid = 0x0115, // The cache is invalid at the end of data transfer
|
|
131 |
EDBNotOptimal = 0x0116, // Due to Cache size DB functionality will never be utilised
|
|
132 |
ENoDBSupport = 0x0120, // DMA request arrived but PSL does not support double buffering
|
|
133 |
ENotDMAAligned = 0x0121,
|
|
134 |
};
|
|
135 |
static void Panic(TPanic aPnc);
|
|
136 |
|
|
137 |
enum TMediaRequest
|
|
138 |
{
|
|
139 |
EMReqRead = 0,
|
|
140 |
EMReqWrite = 1,
|
|
141 |
EMReqFormat = 2,
|
|
142 |
EMReqPtnInfo,
|
|
143 |
EMReqPswdCtrl,
|
|
144 |
EMReqForceErase,
|
|
145 |
EMReqUpdatePtnInfo,
|
|
146 |
EMReqWritePasswordData,
|
|
147 |
EMReqIdle,
|
|
148 |
EMReqEMMCPtnInfo,
|
|
149 |
};
|
|
150 |
enum TMediaReqType {EMReqTypeNormalRd,EMReqTypeNormalWr,EMReqTypeUnlockPswd,EMReqTypeChangePswd};
|
|
151 |
|
|
152 |
enum {KWtRBMFst = 0x00000001, // iWtRBM - Read First Block only
|
|
153 |
KWtRBMLst = 0x00000002, // iWtRBM - Read Last Block only
|
|
154 |
KWtMinFst = 0x00000004, // iWtRBM - Write First Block only
|
|
155 |
KWtMinLst = 0x00000008, // iWtRBM - Write Last Block only
|
|
156 |
KIPCSetup = 0x00000010, // iRdROB - IPC Setup Next Iteration
|
|
157 |
KIPCWrite = 0x00000020}; // iRdROB - IPC Write Next Iteration
|
|
158 |
|
|
159 |
private:
|
|
160 |
// MMC device specific stuff
|
|
161 |
TInt DoRead();
|
|
162 |
TInt DoWrite();
|
|
163 |
TInt DoFormat();
|
|
164 |
TInt Caps(TLocDrv& aDrive, TLocalDriveCapsV6& aInfo);
|
|
165 |
|
|
166 |
inline DMMCStack& Stack() const;
|
|
167 |
inline TInt CardNum() const;
|
|
168 |
inline TMediaRequest CurrentRequest() const;
|
|
169 |
|
|
170 |
TInt LaunchRead(TInt64 aStart, TUint32 aLength);
|
|
171 |
TInt LaunchDBRead();
|
|
172 |
TInt LaunchPhysRead(TInt64 aStart, TUint32 aLength);
|
|
173 |
|
|
174 |
TInt LaunchWrite(TInt64 aStart, TUint32 aLength, TMediaRequest aMedReq);
|
|
175 |
TInt LaunchFormat(TInt64 aStart, TUint32 aLength);
|
|
176 |
|
|
177 |
TInt LaunchRPIUnlock(TLocalDrivePasswordData& aData);
|
|
178 |
TInt LaunchRPIRead();
|
|
179 |
TInt LaunchRPIErase();
|
|
180 |
TInt DecodePartitionInfo();
|
|
181 |
TInt WritePartitionInfo();
|
|
182 |
TInt GetDefaultPartitionInfo(TMBRPartitionEntry& aPartitionEntry);
|
|
183 |
TInt CreateDefaultPartition();
|
|
184 |
|
|
185 |
|
|
186 |
#if defined __TEST_PAGING_MEDIA_DRIVER__
|
|
187 |
TInt HandleControlIORequest();
|
|
188 |
#endif
|
|
189 |
|
|
190 |
static void SetPartitionEntry(TPartitionEntry* aEntry, TUint aFirstSector, TUint aNumSectors);
|
|
191 |
|
|
192 |
TInt CheckDevice(TMediaReqType aReqType);
|
|
193 |
|
|
194 |
static void SessionEndCallBack(TAny* aMediaDriver);
|
|
195 |
static void SessionEndDfc(TAny* aMediaDriver);
|
|
196 |
void DoSessionEndDfc();
|
|
197 |
|
|
198 |
static void DataTransferCallBack(TAny* aMediaDriver);
|
|
199 |
static void DataTransferCallBackDfc(TAny* aMediaDriver);
|
|
200 |
|
|
201 |
void DoReadDataTransferCallBack();
|
|
202 |
void DoWriteDataTransferCallBack();
|
|
203 |
void DoPhysReadDataTransferCallBack();
|
|
204 |
void DoPhysWriteDataTransferCallBack();
|
|
205 |
|
|
206 |
TInt AdjustPhysicalFragment(TPhysAddr &physAddr, TInt &physLength);
|
|
207 |
TInt PrepareFirstPhysicalFragment(TPhysAddr &aPhysAddr, TInt &aPhysLength, TUint32 aLength);
|
|
208 |
void PrepareNextPhysicalFragment();
|
|
209 |
|
|
210 |
TInt EngageAndSetReadRequest(TMediaRequest aRequest);
|
|
211 |
TInt EngageAndSetWriteRequest(TMediaRequest aRequest);
|
|
212 |
TInt EngageAndSetRequest(TMediaRequest aRequest, TInt aCurrent);
|
|
213 |
void CompleteRequest(TInt aReason);
|
|
214 |
|
|
215 |
TInt ReadDataUntilCacheExhausted(TBool* aAllDone);
|
|
216 |
TInt WriteDataToUser(TUint8* aBufPtr);
|
|
217 |
TInt ReadDataFromUser(TDes8& aDes, TInt aOffset);
|
|
218 |
TUint8* ReserveReadBlocks(TInt64 aStart, TInt64 aEnd, TUint32* aLength);
|
|
219 |
TUint8* ReserveWriteBlocks(TInt64 aMedStart, TInt64 aMedEnd, TUint* aRBM);
|
|
220 |
void MarkBlocks(TInt64 aStart, TInt64 aEnd, TInt aStartIndex);
|
|
221 |
void BuildGammaArray(TInt64 aStart, TInt64 aEnd);
|
|
222 |
void InvalidateCache();
|
|
223 |
void InvalidateCache(TInt64 aStart, TInt64 aEnd);
|
|
224 |
TUint8* IdxToCchMem(TInt aIdx) const;
|
|
225 |
TInt CchMemToIdx(TUint8* aMemP) const;
|
|
226 |
|
|
227 |
TInt DoPasswordOp();
|
|
228 |
void PasswordControl(TInt aFunc, TLocalDrivePasswordData& aData);
|
|
229 |
void Reset();
|
|
230 |
TInt AllocateSession();
|
|
231 |
|
|
232 |
#ifdef _DEBUG_CACHE
|
|
233 |
TBool CacheInvariant();
|
|
234 |
TUint8* GetCachedBlock(TInt64 aAddr);
|
|
235 |
#endif
|
|
236 |
private:
|
|
237 |
DMMCStack* iStack; // controller objects
|
|
238 |
TMMCard* iCard;
|
|
239 |
DMMCSession* iSession;
|
|
240 |
DMMCSocket* iSocket;
|
|
241 |
|
|
242 |
TInt iCardNumber;
|
|
243 |
|
|
244 |
TUint iBlkLenLog2; // cached CSD data
|
|
245 |
TUint32 iBlkLen;
|
|
246 |
TInt64 iBlkMsk;
|
|
247 |
TBool iReadBlPartial;
|
|
248 |
TUint32 iPrWtGpLen; // preferred write group size in bytes,
|
|
249 |
TInt64 iPrWtGpMsk;
|
|
250 |
|
|
251 |
TInt iReadCurrentInMilliAmps; // power management
|
|
252 |
TInt iWriteCurrentInMilliAmps;
|
|
253 |
|
|
254 |
TUint8* iMinorBuf; // MBR, CMD42, partial read
|
|
255 |
TUint8* iCacheBuf; // cached buffer
|
|
256 |
TUint32 iMaxBufSize;
|
|
257 |
TInt iBlocksInBuffer;
|
|
258 |
TInt64* iCachedBlocks;
|
|
259 |
TInt* iGamma; // B lookup, ReserveReadBlocks()
|
|
260 |
TUint8* iIntBuf; // start of current buffer region
|
|
261 |
TInt iLstUsdCchEnt; // index of last used cache entry
|
|
262 |
|
|
263 |
TLocDrvRequest* iCurrentReq; // Current Request
|
|
264 |
TMediaRequest iMedReq;
|
|
265 |
|
|
266 |
TInt64 iReqStart; // user-requested start region
|
|
267 |
TInt64 iReqCur; // Currently requested start region
|
|
268 |
TInt64 iReqEnd; // user-requested end region
|
|
269 |
TInt64 iPhysStart; // physical region for one operation
|
|
270 |
TInt64 iPhysEnd; // physical end point for one operation
|
|
271 |
TInt64 iDbEnd; // Double buffer end point for one operation
|
|
272 |
|
|
273 |
TUint64 iEraseUnitMsk;
|
|
274 |
|
|
275 |
TUint iWtRBM; // Write - Read Before Modify Flags
|
|
276 |
TUint iRdROB; // Read - Read Odd Blocks Flags
|
|
277 |
|
|
278 |
TInt iFragOfset;
|
|
279 |
TUint32 iIPCLen;
|
|
280 |
TUint32 iNxtIPCLen;
|
|
281 |
TUint32 iBufOfset;
|
|
282 |
|
|
283 |
TUint iHiddenSectors; // bootup / password
|
|
284 |
|
|
285 |
TMMCCallBack iSessionEndCallBack;
|
|
286 |
TDfc iSessionEndDfc;
|
|
287 |
|
|
288 |
TPartitionInfo* iPartitionInfo;
|
|
289 |
TMMCMediaTypeEnum iMediaType;
|
|
290 |
TMMCEraseInfo iEraseInfo;
|
|
291 |
TBool iMbrMissing;
|
|
292 |
TInt iMediaId;
|
|
293 |
|
|
294 |
DMMCStack::TDemandPagingInfo iDemandPagingInfo;
|
|
295 |
|
|
296 |
#if defined(__TEST_PAGING_MEDIA_DRIVER__)
|
|
297 |
SMmcStats iMmcStats;
|
|
298 |
#endif // __TEST_PAGING_MEDIA_DRIVER__
|
|
299 |
|
|
300 |
TMMCCallBack iDataTransferCallBack; // Callback registered with the MMC stack to perform double-buffering
|
|
301 |
TDfc iDataTransferCallBackDfc; // ...and the associated DFC queue.
|
|
302 |
|
|
303 |
TBool iSecondBuffer; // Specified the currently active buffer
|
|
304 |
TBool iDoLastRMW; // ETrue if the last double-buffer transfer requires RMW modification
|
|
305 |
TBool iDoDoubleBuffer; // ETrue if double-buffering is currently active
|
|
306 |
TBool iDoPhysicalAddress; // ETrue if Physical Addressing is currently active
|
|
307 |
TBool iCreateMbr;
|
|
308 |
TBool iReadToEndOfCard; // {Read Only} ETrue if Reading to end of Card
|
|
309 |
|
|
310 |
TBool iInternalSlot;
|
|
311 |
|
|
312 |
DEMMCPartitionInfo* iMmcPartitionInfo; // Responsible for decoding partitions for embedded devices
|
|
313 |
};
|
|
314 |
|
|
315 |
// ======== DPhysicalDeviceMediaMmcFlash ========
|
|
316 |
|
|
317 |
|
|
318 |
DPhysicalDeviceMediaMmcFlash::DPhysicalDeviceMediaMmcFlash()
|
|
319 |
{
|
|
320 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("=mmd:ctr"));
|
|
321 |
|
|
322 |
iUnitsMask = 0x01;
|
|
323 |
iVersion = TVersion(KMediaDriverInterfaceMajorVersion,KMediaDriverInterfaceMinorVersion,KMediaDriverInterfaceBuildVersion);
|
|
324 |
}
|
|
325 |
|
|
326 |
|
|
327 |
TInt DPhysicalDeviceMediaMmcFlash::Install()
|
|
328 |
{
|
|
329 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("=mmd:ins"));
|
|
330 |
|
|
331 |
_LIT(KDrvNm, "Media.MmcF");
|
|
332 |
return SetName(&KDrvNm);
|
|
333 |
}
|
|
334 |
|
|
335 |
|
|
336 |
void DPhysicalDeviceMediaMmcFlash::GetCaps(TDes8& /* aDes */) const
|
|
337 |
{
|
|
338 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("=mmd:cap"));
|
|
339 |
}
|
|
340 |
|
|
341 |
|
|
342 |
TInt DPhysicalDeviceMediaMmcFlash::Info(TInt aFunction, TAny* /*a1*/)
|
|
343 |
//
|
|
344 |
// Return the priority of this media driver
|
|
345 |
//
|
|
346 |
{
|
|
347 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("=mmd:info"));
|
|
348 |
if (aFunction==EPriority)
|
|
349 |
return KMediaDriverPriorityNormal;
|
|
350 |
// Don't close media driver when peripheral bus powers down. This avoids the need for Caps() to power up the stack.
|
|
351 |
if (aFunction==EMediaDriverPersistent)
|
|
352 |
return KErrNone;
|
|
353 |
return KErrNotSupported;
|
|
354 |
}
|
|
355 |
|
|
356 |
TInt DPhysicalDeviceMediaMmcFlash::Validate(TInt aDeviceType, const TDesC8* /*aInfo*/, const TVersion& aVer)
|
|
357 |
{
|
|
358 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("=mmd:validate aDeviceType %d", aDeviceType));
|
|
359 |
if (!Kern::QueryVersionSupported(iVersion,aVer))
|
|
360 |
return KErrNotSupported;
|
|
361 |
if (aDeviceType!=MEDIA_DEVICE_MMC)
|
|
362 |
return KErrNotSupported;
|
|
363 |
return KErrNone;
|
|
364 |
}
|
|
365 |
|
|
366 |
TInt DPhysicalDeviceMediaMmcFlash::Create(DBase*& aChannel, TInt aMediaId, const TDesC8* /*aInfo*/, const TVersion& aVer)
|
|
367 |
//
|
|
368 |
// Create an MMC Card media driver.
|
|
369 |
//
|
|
370 |
{
|
|
371 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:crt"));
|
|
372 |
|
|
373 |
if (!Kern::QueryVersionSupported(iVersion,aVer))
|
|
374 |
return KErrNotSupported;
|
|
375 |
|
|
376 |
DMmcMediaDriverFlash* pD = new DMmcMediaDriverFlash(aMediaId);
|
|
377 |
aChannel=pD;
|
|
378 |
|
|
379 |
TInt r=KErrNoMemory;
|
|
380 |
if (pD)
|
|
381 |
r=pD->DoCreate(aMediaId);
|
|
382 |
if (r==KErrNone)
|
|
383 |
pD->OpenMediaDriverComplete(KErrNone);
|
|
384 |
|
|
385 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:mdf"));
|
|
386 |
return r;
|
|
387 |
}
|
|
388 |
|
|
389 |
|
|
390 |
// ======== DMmcMediaDriverFlash ========
|
|
391 |
|
|
392 |
|
|
393 |
void DMmcMediaDriverFlash::Panic(TPanic aPanic)
|
|
394 |
{
|
|
395 |
_LIT(KPncNm, "MEDMMC");
|
|
396 |
Kern::PanicCurrentThread(KPncNm, aPanic);
|
|
397 |
}
|
|
398 |
|
|
399 |
|
|
400 |
// ---- accessor functions -----
|
|
401 |
|
|
402 |
inline DMMCStack& DMmcMediaDriverFlash::Stack() const
|
|
403 |
{ return *static_cast<DMMCStack*>(iStack); }
|
|
404 |
|
|
405 |
|
|
406 |
inline TInt DMmcMediaDriverFlash::CardNum() const
|
|
407 |
{ return iCardNumber; }
|
|
408 |
|
|
409 |
|
|
410 |
inline DMmcMediaDriverFlash::TMediaRequest DMmcMediaDriverFlash::CurrentRequest() const
|
|
411 |
{ return iMedReq; }
|
|
412 |
|
|
413 |
|
|
414 |
// Helper
|
|
415 |
template <class T>
|
|
416 |
inline T* KernAlloc(const TUint32 n)
|
|
417 |
{ return static_cast<T*>(Kern::Alloc(n * sizeof(T))); }
|
|
418 |
|
|
419 |
// ---- ctor, open, close, dtor ----
|
|
420 |
|
|
421 |
#pragma warning( disable : 4355 ) // this used in initializer list
|
|
422 |
DMmcMediaDriverFlash::DMmcMediaDriverFlash(TInt aMediaId)
|
|
423 |
:DMediaDriver(aMediaId),
|
|
424 |
iMedReq(EMReqIdle),
|
|
425 |
iSessionEndCallBack(DMmcMediaDriverFlash::SessionEndCallBack, this),
|
|
426 |
iSessionEndDfc(DMmcMediaDriverFlash::SessionEndDfc, this, 1),
|
|
427 |
iMediaId(iPrimaryMedia->iNextMediaId),
|
|
428 |
iDataTransferCallBack(DMmcMediaDriverFlash::DataTransferCallBack, this),
|
|
429 |
iDataTransferCallBackDfc(DMmcMediaDriverFlash::DataTransferCallBackDfc, this, 1)
|
|
430 |
{
|
|
431 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("=mmd:mmd"));
|
|
432 |
// NB aMedia Id = the media ID of the primary media, iMediaId = the media ID of this media
|
|
433 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("DMmcMediaDriverFlash(), iMediaId %d, aMediaId %d\n", iMediaId, aMediaId));
|
|
434 |
}
|
|
435 |
|
|
436 |
#pragma warning( default : 4355 )
|
|
437 |
TInt DMmcMediaDriverFlash::DoCreate(TInt /*aMediaId*/)
|
|
438 |
{
|
|
439 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:opn"));
|
|
440 |
|
|
441 |
iSocket = ((DMMCSocket*)((DPBusPrimaryMedia*)iPrimaryMedia)->iSocket);
|
|
442 |
if(iSocket == NULL)
|
|
443 |
return(KErrNoMemory);
|
|
444 |
|
|
445 |
iCardNumber = ((DPBusPrimaryMedia*)iPrimaryMedia)->iSlotNumber;
|
|
446 |
|
|
447 |
iStack = iSocket->Stack(KStackNumber);
|
|
448 |
iCard = iStack->CardP(CardNum());
|
|
449 |
|
|
450 |
TMMCMachineInfo machineInfo;
|
|
451 |
Stack().MachineInfo(machineInfo);
|
|
452 |
TInt slotFlag = iCardNumber == 0 ? TMMCMachineInfo::ESlot1Internal : TMMCMachineInfo::ESlot2Internal;
|
|
453 |
iInternalSlot = machineInfo.iFlags & slotFlag;
|
|
454 |
|
|
455 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("DMmcMediaDriverFlash::DoCreate() slotNumber %d iInternalSlot %d", iCardNumber, iInternalSlot));
|
|
456 |
|
|
457 |
|
|
458 |
iSessionEndDfc.SetDfcQ(&iSocket->iDfcQ);
|
|
459 |
iDataTransferCallBackDfc.SetDfcQ(&iSocket->iDfcQ);
|
|
460 |
|
|
461 |
// check right type of card
|
|
462 |
if ((iMediaType=iCard->MediaType())==EMultiMediaNotSupported)
|
|
463 |
return(KErrNotReady);
|
|
464 |
|
|
465 |
// get card characteristics
|
|
466 |
const TCSD& csd = iCard->CSD();
|
|
467 |
iBlkLenLog2 = iCard->MaxReadBlLen();
|
|
468 |
iBlkLen = 1 << iBlkLenLog2;
|
|
469 |
iBlkMsk = (TInt64)(iBlkLen - 1);
|
|
470 |
|
|
471 |
SetTotalSizeInBytes(iCard->DeviceSize64());
|
|
472 |
|
|
473 |
//
|
|
474 |
// High capcity cards (block addressable, MMCV4.2, SD2.0) do not support partial reads
|
|
475 |
// ...some cards incorrectly report that they do, so ensure that we don't
|
|
476 |
//
|
|
477 |
iReadBlPartial = iCard->IsHighCapacity() ? EFalse : csd.ReadBlPartial();
|
|
478 |
|
|
479 |
// allocate and initialize session object
|
|
480 |
TInt r = AllocateSession();
|
|
481 |
if (r!= KErrNone)
|
|
482 |
return r;
|
|
483 |
|
|
484 |
// get buffer memory from EPBUS
|
|
485 |
TUint8* buf;
|
|
486 |
TInt bufLen;
|
|
487 |
TInt minorBufLen;
|
|
488 |
Stack().BufferInfo(buf, bufLen, minorBufLen);
|
|
489 |
|
|
490 |
iMinorBuf = buf;
|
|
491 |
|
|
492 |
// cache buffer can use rest of blocks in buffer. Does not have to be power of 2.
|
|
493 |
iCacheBuf = iMinorBuf + minorBufLen;
|
|
494 |
|
|
495 |
// We need to devide up the buffer space between the media drivers.
|
|
496 |
// The number of buffer sub-areas = number of physical card slots * number of media
|
|
497 |
bufLen-= minorBufLen;
|
|
498 |
DPBusPrimaryMedia* primaryMedia = (DPBusPrimaryMedia*) iPrimaryMedia;
|
|
499 |
TInt physicalCardSlots = iStack->iMaxCardsInStack;
|
|
500 |
TInt numMedia = primaryMedia->iLastMediaId - primaryMedia->iMediaId + 1;
|
|
501 |
TInt totalNumMedia = numMedia * physicalCardSlots;
|
|
502 |
|
|
503 |
TInt mediaIndex = iMediaId - primaryMedia->iMediaId;
|
|
504 |
TInt bufIndex = (iCardNumber * numMedia) + mediaIndex;
|
|
505 |
|
|
506 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("physicalCardSlots %d, iCardNumber %d\n", physicalCardSlots, iCardNumber));
|
|
507 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("iMediaId %d numMedia %d, mediaIndex %d, totalNumMedia %d, bufIndex %d\n",
|
|
508 |
iMediaId, numMedia, mediaIndex, totalNumMedia, bufIndex));
|
|
509 |
|
|
510 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("bufLen1 %08X iCacheBuf1 %08X", bufLen, iCacheBuf));
|
|
511 |
bufLen/= totalNumMedia;
|
|
512 |
iCacheBuf+= bufIndex * bufLen;
|
|
513 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("bufLen2 %08X iCacheBuf2 %08X", bufLen, iCacheBuf));
|
|
514 |
|
|
515 |
iBlocksInBuffer = bufLen >> iBlkLenLog2; // may lose partial block
|
|
516 |
if(iSocket->SupportsDoubleBuffering())
|
|
517 |
{
|
|
518 |
// Ensure that there's always an even number of buffered blocks when double-buffering
|
|
519 |
iBlocksInBuffer &= ~1;
|
|
520 |
__ASSERT_DEBUG(iBlocksInBuffer >= 2, Panic(EDBNotEven));
|
|
521 |
#if defined(_DEBUG)
|
|
522 |
/**
|
|
523 |
* If Double-Buffering is enabled then the cache should not be greater than the maximum addressable range of the DMA controller,
|
|
524 |
* otherwise Double buffering will never be utilised because all transfers will fit into the cache.
|
|
525 |
*/
|
|
526 |
const TUint32 maxDbBlocks = iSocket->MaxDataTransferLength() >> iBlkLenLog2;
|
|
527 |
__ASSERT_DEBUG(iBlocksInBuffer <= (TInt)maxDbBlocks, Panic(EDBNotOptimal));
|
|
528 |
#endif
|
|
529 |
}
|
|
530 |
|
|
531 |
iMaxBufSize = iBlocksInBuffer << iBlkLenLog2;
|
|
532 |
|
|
533 |
iPrWtGpLen = iCard->PreferredWriteGroupLength();
|
|
534 |
|
|
535 |
// check the preferred write group length is a power of two
|
|
536 |
if(iPrWtGpLen == 0 || (iPrWtGpLen & (~iPrWtGpLen + 1)) != iPrWtGpLen)
|
|
537 |
return(KErrNotReady);
|
|
538 |
|
|
539 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("iMaxBufSize %d iPrWtGpLen %d\n", iMaxBufSize, iPrWtGpLen));
|
|
540 |
// ensure the preferred write group length is as large as possible
|
|
541 |
// so we can write to more than one write group at once
|
|
542 |
while (iPrWtGpLen < (TUint32) iMaxBufSize)
|
|
543 |
iPrWtGpLen <<= 1;
|
|
544 |
|
|
545 |
// ensure preferred write group length is no greater than internal cache buffer
|
|
546 |
while (iPrWtGpLen > (TUint32) iMaxBufSize)
|
|
547 |
iPrWtGpLen >>= 1;
|
|
548 |
iPrWtGpMsk = TInt64(iPrWtGpLen - 1);
|
|
549 |
|
|
550 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("iPrWtGpLen #2 %d\n", iPrWtGpLen));
|
|
551 |
|
|
552 |
// allocate index for cached blocks
|
|
553 |
iCachedBlocks = KernAlloc<TInt64>(iBlocksInBuffer);
|
|
554 |
if (iCachedBlocks == 0)
|
|
555 |
return(KErrNoMemory);
|
|
556 |
|
|
557 |
InvalidateCache();
|
|
558 |
iLstUsdCchEnt = iBlocksInBuffer - 1; // use entry 0 first
|
|
559 |
|
|
560 |
// allocate read lookup index
|
|
561 |
iGamma = KernAlloc<TInt>(iBlocksInBuffer);
|
|
562 |
if (iGamma == 0)
|
|
563 |
return(KErrNoMemory);
|
|
564 |
|
|
565 |
// get current requirements
|
|
566 |
iReadCurrentInMilliAmps = csd.MaxReadCurrentInMilliamps();
|
|
567 |
iWriteCurrentInMilliAmps = csd.MaxWriteCurrentInMilliamps();
|
|
568 |
|
|
569 |
// get preferred erase information for format operations
|
|
570 |
const TInt err = iCard->GetEraseInfo(iEraseInfo);
|
|
571 |
if(err != KErrNone)
|
|
572 |
return(err);
|
|
573 |
|
|
574 |
iEraseUnitMsk = TInt64(iEraseInfo.iPreferredEraseUnitSize) - 1;
|
|
575 |
|
|
576 |
// Retrieve the demand paging info from the PSL of the stack
|
|
577 |
Stack().DemandPagingInfo(iDemandPagingInfo);
|
|
578 |
|
|
579 |
// if a password has been supplied then it is sent when the partition info is read
|
|
580 |
|
|
581 |
//
|
|
582 |
// If this is an internal slot, then use the eMMC partition function
|
|
583 |
//
|
|
584 |
if(iInternalSlot)
|
|
585 |
{
|
|
586 |
iMmcPartitionInfo = CreateEmmcPartitionInfo();
|
|
587 |
if(iMmcPartitionInfo == NULL)
|
|
588 |
return KErrNoMemory;
|
|
589 |
|
|
590 |
TInt err = iMmcPartitionInfo->Initialise(this);
|
|
591 |
if(err != KErrNone)
|
|
592 |
return err;
|
|
593 |
}
|
|
594 |
|
|
595 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:opn"));
|
|
596 |
|
|
597 |
return(KErrNone);
|
|
598 |
}
|
|
599 |
|
|
600 |
void DMmcMediaDriverFlash::Close()
|
|
601 |
//
|
|
602 |
// Close the media driver - also called on media change
|
|
603 |
//
|
|
604 |
{
|
|
605 |
__KTRACE_OPT(KPBUSDRV,Kern::Printf("=mmd:cls"));
|
|
606 |
|
|
607 |
EndInCritical();
|
|
608 |
iSessionEndDfc.Cancel();
|
|
609 |
iDataTransferCallBackDfc.Cancel();
|
|
610 |
CompleteRequest(KErrNotReady);
|
|
611 |
DMediaDriver::Close();
|
|
612 |
}
|
|
613 |
|
|
614 |
|
|
615 |
DMmcMediaDriverFlash::~DMmcMediaDriverFlash()
|
|
616 |
{
|
|
617 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:dtr"));
|
|
618 |
|
|
619 |
iSessionEndDfc.Cancel();
|
|
620 |
iDataTransferCallBackDfc.Cancel();
|
|
621 |
|
|
622 |
delete iSession;
|
|
623 |
Kern::Free(iCachedBlocks);
|
|
624 |
Kern::Free(iGamma);
|
|
625 |
|
|
626 |
delete iMmcPartitionInfo;
|
|
627 |
|
|
628 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:dtr"));
|
|
629 |
}
|
|
630 |
|
|
631 |
|
|
632 |
TInt DMmcMediaDriverFlash::AllocateSession()
|
|
633 |
{
|
|
634 |
// already allocated ?
|
|
635 |
if (iSession != NULL)
|
|
636 |
return KErrNone;
|
|
637 |
|
|
638 |
iSession = iStack->AllocSession(iSessionEndCallBack);
|
|
639 |
if (iSession == NULL)
|
|
640 |
return KErrNoMemory;
|
|
641 |
|
|
642 |
iSession->SetStack(iStack);
|
|
643 |
iSession->SetCard(iCard);
|
|
644 |
iSession->SetDataTransferCallback(iDataTransferCallBack);
|
|
645 |
|
|
646 |
return KErrNone;
|
|
647 |
}
|
|
648 |
|
|
649 |
// ---- media access ----
|
|
650 |
|
|
651 |
TInt DMmcMediaDriverFlash::DoRead()
|
|
652 |
//
|
|
653 |
// set up iReqStart, iReqEnd and iReqCur and launch first read. Subsequent reads
|
|
654 |
// will be launched from the callback DFC.
|
|
655 |
//
|
|
656 |
{
|
|
657 |
TInt r = CheckDevice(EMReqTypeNormalRd);
|
|
658 |
if (r != KErrNone) return r;
|
|
659 |
|
|
660 |
const TInt64 pos(iCurrentReq->Pos());
|
|
661 |
TUint32 length(I64LOW(iCurrentReq->Length()));
|
|
662 |
|
|
663 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:dr:0x%lx,0x%x", pos, length));
|
|
664 |
__ASSERT_DEBUG(CurrentRequest() == EMReqIdle, Panic(EDRInUse));
|
|
665 |
__ASSERT_DEBUG(pos < TotalSizeInBytes(), Panic(EDRStart));
|
|
666 |
__ASSERT_DEBUG(iCurrentReq->Length() >= 0, Panic(EDRNotPositive));
|
|
667 |
__ASSERT_DEBUG(TotalSizeInBytes() >= pos + length, Panic(EDREnd));
|
|
668 |
|
|
669 |
if(length > 0)
|
|
670 |
{
|
|
671 |
iReqCur = iReqStart = pos;
|
|
672 |
iReqEnd = iReqStart + length;
|
|
673 |
|
|
674 |
TBool allDone(EFalse);
|
|
675 |
if ( ((r = ReadDataUntilCacheExhausted(&allDone)) == KErrNone) && !allDone)
|
|
676 |
{
|
|
677 |
iMedReq = EMReqRead;
|
|
678 |
iPhysStart = iReqCur & ~iBlkMsk;
|
|
679 |
__ASSERT_DEBUG(I64HIGH(iPhysStart >> KMMCardHighCapBlockSizeLog2) == 0, Panic(ELRStart));
|
|
680 |
|
|
681 |
iReadToEndOfCard = ( iReqEnd >= TotalSizeInBytes() );
|
|
682 |
// Re-calculate length as some data may have been recovered from cache
|
|
683 |
length = I64LOW(iReqEnd - iReqCur);
|
|
684 |
|
|
685 |
if (iCurrentReq->IsPhysicalAddress() && !iReadToEndOfCard && (length >= iBlkLen) )
|
|
686 |
r = LaunchPhysRead(iReqCur, length);
|
|
687 |
else if ( (iReqEnd - iPhysStart) > iMaxBufSize && iSocket->SupportsDoubleBuffering() && !iReadToEndOfCard)
|
|
688 |
r = LaunchDBRead();
|
|
689 |
else
|
|
690 |
r = LaunchRead(iReqCur, length);
|
|
691 |
|
|
692 |
if (r == KErrNone) return r;
|
|
693 |
}
|
|
694 |
}
|
|
695 |
else
|
|
696 |
{
|
|
697 |
#if defined(__DEMAND_PAGING__) && !defined(__WINS__)
|
|
698 |
if (DMediaPagingDevice::PageInRequest(*iCurrentReq))
|
|
699 |
{
|
|
700 |
r = iCurrentReq->WriteToPageHandler(NULL, 0, 0);
|
|
701 |
}
|
|
702 |
else
|
|
703 |
#endif // __DEMAND_PAGING__
|
|
704 |
{
|
|
705 |
TPtrC8 zeroDes(NULL, 0);
|
|
706 |
r = iCurrentReq->WriteRemote(&zeroDes,0);
|
|
707 |
}
|
|
708 |
}
|
|
709 |
|
|
710 |
// error occurred or read all from cache so complete immediately
|
|
711 |
if(r == KErrNone)
|
|
712 |
r = KErrCompletion;
|
|
713 |
|
|
714 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:dr:%d", r));
|
|
715 |
|
|
716 |
return r;
|
|
717 |
}
|
|
718 |
|
|
719 |
|
|
720 |
TInt DMmcMediaDriverFlash::LaunchRead(TInt64 aStart, TUint32 aLength)
|
|
721 |
//
|
|
722 |
// starts reads from DoRead() and the session end DFC. This function does not maintain the
|
|
723 |
// iReq* instance variables. It sets iPhysStart and iPhysEnd to the region that was actually
|
|
724 |
// read into iIntBuf. iIntBuf can be set to a cached entry or to the minor buffer. It is
|
|
725 |
// assumed that before this function is called that ReadDataUntilCacheExhausted() has been used.
|
|
726 |
//
|
|
727 |
{
|
|
728 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:lr:0x%lx,0x%x", aStart, aLength));
|
|
729 |
__ASSERT_DEBUG(TotalSizeInBytes() > aStart, Panic(ELRStart));
|
|
730 |
__ASSERT_DEBUG(aLength > 0, Panic(ELRNotPositive));
|
|
731 |
__ASSERT_DEBUG(TotalSizeInBytes() >= aStart + aLength, Panic(ELREnd));
|
|
732 |
__ASSERT_CACHE(GetCachedBlock(aStart & ~iBlkMsk) == 0, Panic(ELRCached));
|
|
733 |
__ASSERT_DEBUG(iSession != NULL, Panic(ECFSessPtrNull));
|
|
734 |
|
|
735 |
iDoPhysicalAddress = EFalse;
|
|
736 |
iDoDoubleBuffer = EFalse;
|
|
737 |
iSecondBuffer = EFalse;
|
|
738 |
|
|
739 |
//
|
|
740 |
// if this read goes up to the end of the card then use only
|
|
741 |
// single sector reads to avoid CMD12 timing problems
|
|
742 |
//
|
|
743 |
const TUint32 bufSize(iReadToEndOfCard ? iBlkLen : iMaxBufSize);
|
|
744 |
|
|
745 |
iPhysEnd = (UMin(iReqEnd, iPhysStart + bufSize) + iBlkMsk) & ~iBlkMsk;
|
|
746 |
|
|
747 |
TUint32 physLen(I64LOW(iPhysEnd - iPhysStart));
|
|
748 |
|
|
749 |
__ASSERT_DEBUG(I64HIGH(iPhysEnd - iPhysStart) == 0, Panic(ELREnd));
|
|
750 |
|
|
751 |
// partial reads must be within a single physical block
|
|
752 |
if (iReadBlPartial && physLen == iBlkLen && aLength <= (iBlkLen >> 1))
|
|
753 |
{
|
|
754 |
//
|
|
755 |
// Note : Partial reads are not supported for large block devices
|
|
756 |
// (MMCV4.2 and SD2.0 high capacity cards)
|
|
757 |
//
|
|
758 |
__ASSERT_DEBUG(I64HIGH(aStart) == 0, Panic(ELRStart));
|
|
759 |
__ASSERT_DEBUG(I64HIGH(aStart + aLength) == 0, Panic(ELREnd));
|
|
760 |
|
|
761 |
iIntBuf = iMinorBuf;
|
|
762 |
Stack().AdjustPartialRead(iCard, I64LOW(aStart), I64LOW(aStart + aLength), (TUint32*)&iPhysStart, (TUint32*)&iPhysEnd);
|
|
763 |
iSession->SetupCIMReadBlock(I64LOW(iPhysStart >> KMMCardHighCapBlockSizeLog2), iIntBuf, physLen >> KMMCardHighCapBlockSizeLog2);
|
|
764 |
}
|
|
765 |
else
|
|
766 |
{
|
|
767 |
iIntBuf = ReserveReadBlocks(iPhysStart, iPhysEnd, &physLen);
|
|
768 |
|
|
769 |
// EPBUSM automatically uses CMD17 instead of CMD18 for single block reads
|
|
770 |
iSession->SetupCIMReadBlock(I64LOW(iPhysStart >> KMMCardHighCapBlockSizeLog2), iIntBuf, physLen >> KMMCardHighCapBlockSizeLog2);
|
|
771 |
|
|
772 |
// Update Physical end point as less may have been required due to additional blocks found in cache during ReserveReadBlocks
|
|
773 |
iPhysEnd = iPhysStart + physLen;
|
|
774 |
}
|
|
775 |
|
|
776 |
TInt r = EngageAndSetReadRequest(EMReqRead);
|
|
777 |
|
|
778 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:lr:%d", r));
|
|
779 |
return r;
|
|
780 |
}
|
|
781 |
|
|
782 |
TInt DMmcMediaDriverFlash::LaunchDBRead()
|
|
783 |
//
|
|
784 |
// starts reads from DoRead() and the session end DFC. This function does not maintain the
|
|
785 |
// iReq* instance variables. It sets iPhysStart and iPhysEnd to the region that was actually
|
|
786 |
// read into iIntBuf. iIntBuf can be set to a cached entry or to the minor buffer. It is
|
|
787 |
// assumed that before this function is called that ReadDataUntilCacheExhausted() has been used.
|
|
788 |
//
|
|
789 |
{
|
|
790 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:ldbr:0x%lx,0x%x", iReqCur, I64LOW(iReqEnd - iReqCur)));
|
|
791 |
__ASSERT_DEBUG(TotalSizeInBytes() > iReqCur, Panic(ELRStart));
|
|
792 |
__ASSERT_DEBUG(I64LOW(iReqEnd - iReqCur) > 0, Panic(ELRNotPositive));
|
|
793 |
__ASSERT_DEBUG(TotalSizeInBytes() >= iReqEnd, Panic(ELREnd));
|
|
794 |
__ASSERT_CACHE(GetCachedBlock(iReqCur & ~iBlkMsk) == 0, Panic(ELRCached));
|
|
795 |
__ASSERT_DEBUG(iSession != NULL, Panic(ECFSessPtrNull));
|
|
796 |
|
|
797 |
iDoDoubleBuffer = ETrue;
|
|
798 |
iDoPhysicalAddress = EFalse;
|
|
799 |
|
|
800 |
iDbEnd = iReqEnd;
|
|
801 |
const TUint32 maxDbLength = iSocket->MaxDataTransferLength();
|
|
802 |
|
|
803 |
if(maxDbLength)
|
|
804 |
{
|
|
805 |
//
|
|
806 |
// If the PSL specifies a limit on the maximum size of a data transfer, then truncate the request...
|
|
807 |
//
|
|
808 |
iDbEnd = UMin(iDbEnd, iPhysStart + maxDbLength);
|
|
809 |
}
|
|
810 |
|
|
811 |
iDbEnd = (iDbEnd + iBlkMsk) & ~iBlkMsk;
|
|
812 |
|
|
813 |
const TUint32 doubleBufferSize = iMaxBufSize >> 1;
|
|
814 |
iPhysEnd = (iReqCur + doubleBufferSize) & ~iBlkMsk; // The end of the first double-buffered transfer
|
|
815 |
|
|
816 |
//
|
|
817 |
// If we're double-buffering, then the entire cache will be re-used
|
|
818 |
// continuously. Rather than continually reserve blocks during each
|
|
819 |
// transfer we calculate the blocks that will be present after all
|
|
820 |
// transfers have completed.
|
|
821 |
// @see DoSessionEndDfc()
|
|
822 |
//
|
|
823 |
InvalidateCache();
|
|
824 |
iIntBuf = iCacheBuf;
|
|
825 |
|
|
826 |
iSession->SetupCIMReadBlock(I64LOW(iPhysStart >> KMMCardHighCapBlockSizeLog2), iIntBuf, I64LOW(iDbEnd - iPhysStart) >> KMMCardHighCapBlockSizeLog2);
|
|
827 |
|
|
828 |
iSession->EnableDoubleBuffering(doubleBufferSize >> KDiskSectorShift);
|
|
829 |
|
|
830 |
// ...and switch to the 'second' buffer, which will be populated in the
|
|
831 |
// data transfer callback in parallel with hardware transfer of the first.
|
|
832 |
iSecondBuffer = ETrue;
|
|
833 |
|
|
834 |
TInt r = EngageAndSetReadRequest(EMReqRead);
|
|
835 |
|
|
836 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:ldbr:%d", r));
|
|
837 |
|
|
838 |
return r;
|
|
839 |
}
|
|
840 |
|
|
841 |
|
|
842 |
TInt DMmcMediaDriverFlash::LaunchPhysRead(TInt64 aStart, TUint32 aLength)
|
|
843 |
//
|
|
844 |
// This function does not maintain the iReq* instance variables.
|
|
845 |
// It is assumed that before this function is called that
|
|
846 |
// ReadDataUntilCacheExhausted() has been used.
|
|
847 |
//
|
|
848 |
{
|
|
849 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:physr:0x%lx,0x%x", aStart, aLength));
|
|
850 |
__ASSERT_DEBUG(TotalSizeInBytes() > aStart, Panic(ELRStart));
|
|
851 |
__ASSERT_DEBUG(aLength > 0, Panic(ELRNotPositive));
|
|
852 |
__ASSERT_DEBUG(TotalSizeInBytes() >= aStart + aLength, Panic(ELREnd));
|
|
853 |
__ASSERT_CACHE(GetCachedBlock(aStart & ~iBlkMsk) == 0, Panic(ELRCached));
|
|
854 |
__ASSERT_DEBUG(iSession != NULL, Panic(ECFSessPtrNull));
|
|
855 |
|
|
856 |
TInt r(KErrNone);
|
|
857 |
|
|
858 |
iDoPhysicalAddress = ETrue;
|
|
859 |
iDoDoubleBuffer = EFalse;
|
|
860 |
|
|
861 |
// Local Media Subsystem ensures DMA Addressable range not exceeded.
|
|
862 |
// @see LocDrv::RegisterDmaDevice()
|
|
863 |
iPhysEnd = (iReqEnd + iBlkMsk) & ~iBlkMsk;
|
|
864 |
|
|
865 |
iRdROB = 0;
|
|
866 |
iFragOfset = iIPCLen = iNxtIPCLen = iBufOfset = 0;
|
|
867 |
|
|
868 |
// Determine if start/end are block aligned
|
|
869 |
// physical memory can only read the exact amount, not more!
|
|
870 |
const TBool firstPartial( (aStart & iBlkMsk) != 0);
|
|
871 |
|
|
872 |
TPhysAddr physAddr(0);
|
|
873 |
TInt physLength(0);
|
|
874 |
TUint32 physLen(I64LOW(iPhysEnd - iPhysStart));
|
|
875 |
|
|
876 |
if (firstPartial)
|
|
877 |
{
|
|
878 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:physr:FirstPartial"));
|
|
879 |
// first index does not start on block boundary
|
|
880 |
// iIntBuf linear address is used for IPC within DoReadDataTransferCallBack()
|
|
881 |
iRdROB |= KIPCWrite;
|
|
882 |
|
|
883 |
iIntBuf = ReserveReadBlocks(iPhysStart, iPhysStart+iBlkLen,(TUint32*)&physLength);
|
|
884 |
#if !defined(__WINS__)
|
|
885 |
physAddr = Epoc::LinearToPhysical((TLinAddr)iIntBuf);
|
|
886 |
#else
|
|
887 |
physAddr = (TPhysAddr)iIntBuf;
|
|
888 |
#endif
|
|
889 |
// Set SecondBuffer flag to indicate IPC cannot be done on next callback
|
|
890 |
iSecondBuffer = ETrue;
|
|
891 |
iBufOfset = I64LOW(iReqStart - iPhysStart);
|
|
892 |
//iReqCur already set in DoRead;
|
|
893 |
iFragOfset = iNxtIPCLen = physLength - iBufOfset;
|
|
894 |
}
|
|
895 |
else
|
|
896 |
{
|
|
897 |
// Determine offset from start due to data possibly recovered from local cache
|
|
898 |
iFragOfset = I64LOW(aStart - iReqStart);
|
|
899 |
r = PrepareFirstPhysicalFragment(physAddr, physLength, aLength);
|
|
900 |
|
|
901 |
// No use for secondBuffer yet...
|
|
902 |
iSecondBuffer = EFalse;
|
|
903 |
}
|
|
904 |
|
|
905 |
if(r == KErrNone)
|
|
906 |
{
|
|
907 |
iDbEnd = iPhysEnd;
|
|
908 |
iPhysEnd = iPhysStart + physLength;
|
|
909 |
|
|
910 |
if ((TUint32)physLength > physLen) physLength = physLen; // more memory in chunk than required
|
|
911 |
|
|
912 |
iSession->SetupCIMReadBlock(I64LOW(iPhysStart >> KMMCardHighCapBlockSizeLog2), (TUint8*)physAddr, physLen >> KMMCardHighCapBlockSizeLog2);
|
|
913 |
|
|
914 |
iSession->Command().iFlags|= KMMCCmdFlagPhysAddr;
|
|
915 |
iSession->EnableDoubleBuffering(physLength >> KDiskSectorShift);
|
|
916 |
|
|
917 |
r = EngageAndSetReadRequest(EMReqRead);
|
|
918 |
}
|
|
919 |
|
|
920 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:lphysr:%d", r));
|
|
921 |
|
|
922 |
return r;
|
|
923 |
}
|
|
924 |
|
|
925 |
|
|
926 |
TInt DMmcMediaDriverFlash::DoWrite()
|
|
927 |
//
|
|
928 |
// set up iReqStart, iReqEnd, and iReqCur, and launch first write. Any subsequent
|
|
929 |
// writes are launched from the session end DFC. LaunchWrite() handles pre-reading
|
|
930 |
// any sectors that are only partially modified.
|
|
931 |
//
|
|
932 |
{
|
|
933 |
const TInt64 pos = iCurrentReq->Pos();
|
|
934 |
const TUint32 length = I64LOW(iCurrentReq->Length());
|
|
935 |
|
|
936 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:dw:0x%lx,0x%x", pos, length));
|
|
937 |
__ASSERT_DEBUG(CurrentRequest() == EMReqIdle, Panic(EDWInUse));
|
|
938 |
__ASSERT_DEBUG(pos < TotalSizeInBytes(), Panic(EDWStart));
|
|
939 |
__ASSERT_DEBUG(length > 0, Panic(EDWNotPositive));
|
|
940 |
__ASSERT_DEBUG(TotalSizeInBytes() >= pos + length, Panic(EDWEnd));
|
|
941 |
|
|
942 |
iReqCur = iReqStart = pos;
|
|
943 |
iReqEnd = iReqStart + length;
|
|
944 |
|
|
945 |
// iWtRBM is zero on construction because CBase-derived, and cleared at end
|
|
946 |
// of successful writes. If a write does not complete successfully, it may
|
|
947 |
// be left in non-zero state.
|
|
948 |
iWtRBM = 0;
|
|
949 |
|
|
950 |
iSecondBuffer = EFalse;
|
|
951 |
iDoLastRMW = EFalse;
|
|
952 |
iDoDoubleBuffer= EFalse;
|
|
953 |
iDoPhysicalAddress = EFalse;
|
|
954 |
|
|
955 |
const TInt r = LaunchWrite(iReqStart, length, EMReqWrite);
|
|
956 |
|
|
957 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:dw:%d", r));
|
|
958 |
|
|
959 |
return r;
|
|
960 |
}
|
|
961 |
|
|
962 |
|
|
963 |
TInt DMmcMediaDriverFlash::DoFormat()
|
|
964 |
{
|
|
965 |
const TInt64 pos = iCurrentReq->Pos();
|
|
966 |
const TUint32 length = I64LOW(iCurrentReq->Length());
|
|
967 |
|
|
968 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:df:0x%lx,0x%x", pos, length));
|
|
969 |
__ASSERT_DEBUG(CurrentRequest() == EMReqIdle, Panic(EDFInUse));
|
|
970 |
__ASSERT_DEBUG(pos < TotalSizeInBytes(), Panic(EDFStart));
|
|
971 |
__ASSERT_DEBUG(length > 0, Panic(EDFNotPositive));
|
|
972 |
__ASSERT_DEBUG(TotalSizeInBytes() >= pos + length, Panic(EDFEnd));
|
|
973 |
|
|
974 |
iReqCur = iReqStart = pos & ~iBlkMsk;
|
|
975 |
iReqEnd = (iReqStart + length + iBlkMsk) & ~iBlkMsk;
|
|
976 |
|
|
977 |
// the cache isn't maintained during a format operation to avoid redundantly
|
|
978 |
// writing 0xff to memory (the blocks won't be re-used.)
|
|
979 |
InvalidateCache();
|
|
980 |
|
|
981 |
// create an MBR after the first format step (or second if misaligned)
|
|
982 |
|
|
983 |
if (iInternalSlot)
|
|
984 |
{
|
|
985 |
iCreateMbr = EFalse;
|
|
986 |
}
|
|
987 |
else
|
|
988 |
{
|
|
989 |
if (iReqStart == (TInt64(iHiddenSectors) << KDiskSectorShift) && CreateMBRAfterFormat(iCard))
|
|
990 |
iCreateMbr = ETrue;
|
|
991 |
}
|
|
992 |
|
|
993 |
const TInt r = LaunchFormat(iReqStart, I64LOW(iReqEnd - iReqStart));
|
|
994 |
|
|
995 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:df:%d", r));
|
|
996 |
|
|
997 |
return r;
|
|
998 |
}
|
|
999 |
|
|
1000 |
|
|
1001 |
TInt DMmcMediaDriverFlash::LaunchFormat(TInt64 aStart, TUint32 aLength)
|
|
1002 |
//
|
|
1003 |
// starts writes from DoWrite(), DoFormat() and the session end DFC. This function does not
|
|
1004 |
// maintain the iReq* instance variables. It sets iIntBuf, iPhysStart and iPhysEnd.
|
|
1005 |
//
|
|
1006 |
{
|
|
1007 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:lf:0x%lx,0x%x", aStart, aLength));
|
|
1008 |
__ASSERT_DEBUG(TotalSizeInBytes() > aStart, Panic(ELFStart));
|
|
1009 |
__ASSERT_DEBUG((aStart & iBlkMsk) == 0, Panic(ELWFmtStAlign));
|
|
1010 |
__ASSERT_DEBUG(aLength > 0, Panic(ELFNotPositive));
|
|
1011 |
__ASSERT_DEBUG(TotalSizeInBytes() >= aStart + aLength, Panic(ELFEnd));
|
|
1012 |
__ASSERT_DEBUG((aLength & iBlkMsk) == 0, Panic(ELWFmtEndAlign));
|
|
1013 |
__ASSERT_DEBUG(iSession != NULL, Panic(ECFSessPtrNull));
|
|
1014 |
|
|
1015 |
TInt r;
|
|
1016 |
|
|
1017 |
if ((r = CheckDevice(EMReqTypeNormalWr)) == KErrNone)
|
|
1018 |
{
|
|
1019 |
iPhysStart = aStart & ~iBlkMsk;
|
|
1020 |
|
|
1021 |
// formats are always block-aligned, and the buffer is initialized to 0xff
|
|
1022 |
// Check whether erase commands are supported by this card
|
|
1023 |
if (iCard->CSD().CCC() & KMMCCmdClassErase)
|
|
1024 |
{
|
|
1025 |
// Determine the erase end point for the next command. We don't erase past the preferred erase unit
|
|
1026 |
// size. Therefore, check which is lower, the preferred erase unit size or the end of the requested range.
|
|
1027 |
TInt64 prefEraseUnitEnd = (iPhysStart + iEraseInfo.iPreferredEraseUnitSize) & ~iEraseUnitMsk;
|
|
1028 |
iPhysEnd = UMin(prefEraseUnitEnd, aStart + aLength);
|
|
1029 |
|
|
1030 |
const TUint32 minEraseSectorSize=iEraseInfo.iMinEraseSectorSize;
|
|
1031 |
const TInt64 minEraseSecMsk = TInt64(minEraseSectorSize-1);
|
|
1032 |
|
|
1033 |
// If erase start point doesn't lie on a min. erase unit boundary, then truncate the erase endpoint to
|
|
1034 |
// the next min. erase unit boundary (assuming requested range allows this)
|
|
1035 |
if ((iPhysStart & minEraseSecMsk)!=0)
|
|
1036 |
{
|
|
1037 |
prefEraseUnitEnd=(iPhysStart+minEraseSectorSize) & ~minEraseSecMsk;
|
|
1038 |
iPhysEnd=UMin(prefEraseUnitEnd,iPhysEnd);
|
|
1039 |
}
|
|
1040 |
|
|
1041 |
// Otherwise, if calculated erase end point doesn't lie on a min. erase unit boundary, but is at least one
|
|
1042 |
// min. erase unit beyond the erase start point then move erase endpoint back to last min. erase unit boundary
|
|
1043 |
else if ((iPhysEnd & minEraseSecMsk)!=0 && (iPhysEnd & ~minEraseSecMsk)>iPhysStart)
|
|
1044 |
{
|
|
1045 |
iPhysEnd&=(~minEraseSecMsk);
|
|
1046 |
}
|
|
1047 |
|
|
1048 |
// Now, if the erase start/end points are aligned to a min. erase unit boundary, we can use an erase cmd.
|
|
1049 |
if ((iPhysStart & minEraseSecMsk) == 0 && (iPhysEnd & minEraseSecMsk) == 0)
|
|
1050 |
{
|
|
1051 |
// Aligned erase
|
|
1052 |
// Check that erase commands are supported prior to issuing an erase command
|
|
1053 |
if(iEraseInfo.EraseGroupCmdsSupported())
|
|
1054 |
{
|
|
1055 |
iSession->SetupCIMEraseMGroup(I64LOW(iPhysStart >> KMMCardHighCapBlockSizeLog2),
|
|
1056 |
I64LOW((iPhysEnd-iPhysStart) >> KMMCardHighCapBlockSizeLog2)); // Use ACMD35/36/38 (Erase Group)
|
|
1057 |
}
|
|
1058 |
else
|
|
1059 |
{
|
|
1060 |
iSession->SetupCIMEraseMSector(I64LOW(iPhysStart >> KMMCardHighCapBlockSizeLog2),
|
|
1061 |
I64LOW((iPhysEnd - iPhysStart) >> KMMCardHighCapBlockSizeLog2)); // Use ACMD32/33/38 (Erase Sector)
|
|
1062 |
}
|
|
1063 |
}
|
|
1064 |
else
|
|
1065 |
{
|
|
1066 |
// Misaligned erase - use multi-block write. However, first - check write length doesn't exceed buffer size.
|
|
1067 |
if ((iPhysEnd-iPhysStart)>(TUint32)iMaxBufSize)
|
|
1068 |
{
|
|
1069 |
iPhysEnd=(iPhysStart+iMaxBufSize);
|
|
1070 |
}
|
|
1071 |
|
|
1072 |
__ASSERT_DEBUG((iPhysEnd - iPhysStart) > 0, Panic(ELWLength));
|
|
1073 |
const TUint32 writeLen = I64LOW(iPhysEnd - iPhysStart);
|
|
1074 |
memset (iCacheBuf, 0x00, writeLen);
|
|
1075 |
iSession->SetupCIMWriteBlock(I64LOW(iPhysStart >> KMMCardHighCapBlockSizeLog2), iCacheBuf, writeLen >> KMMCardHighCapBlockSizeLog2);
|
|
1076 |
}
|
|
1077 |
}
|
|
1078 |
else
|
|
1079 |
{
|
|
1080 |
// Write to end of current write group, or end of request range, whichever is lower
|
|
1081 |
const TInt64 prefEraseUnitEnd = (iPhysStart + iPrWtGpLen) & ~iPrWtGpMsk;
|
|
1082 |
iPhysEnd = Min(prefEraseUnitEnd, aStart + aLength);
|
|
1083 |
|
|
1084 |
__ASSERT_DEBUG((iPhysEnd - iPhysStart) > 0, Panic(ELWLength));
|
|
1085 |
const TUint32 writeLen = I64LOW(iPhysEnd - iPhysStart);
|
|
1086 |
memset (iCacheBuf, 0x00, writeLen);
|
|
1087 |
iSession->SetupCIMWriteBlock(I64LOW(iPhysStart >> KMMCardHighCapBlockSizeLog2), iCacheBuf, writeLen >> KMMCardHighCapBlockSizeLog2);
|
|
1088 |
}
|
|
1089 |
|
|
1090 |
r = EngageAndSetWriteRequest(EMReqFormat);
|
|
1091 |
}
|
|
1092 |
return r;
|
|
1093 |
}
|
|
1094 |
|
|
1095 |
|
|
1096 |
|
|
1097 |
TInt DMmcMediaDriverFlash::LaunchWrite(TInt64 aStart, TUint32 aLength, TMediaRequest aMedReq)
|
|
1098 |
//
|
|
1099 |
// starts writes from DoWrite(), DoFormat() and the session end DFC. This function does not
|
|
1100 |
// maintain the iReq* instance variables. It sets iIntBuf, iPhysStart and iPhysEnd.
|
|
1101 |
//
|
|
1102 |
{
|
|
1103 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("\n>mmd:lw:0x%lx,%d,%d", aStart, aLength, aMedReq));
|
|
1104 |
__ASSERT_DEBUG(aMedReq == EMReqWrite || aMedReq == EMReqFormat, Panic(ELWRequest));
|
|
1105 |
__ASSERT_DEBUG(TotalSizeInBytes() > aStart, Panic(ELWStart));
|
|
1106 |
__ASSERT_DEBUG(!(aMedReq == EMReqFormat) || (aStart & iBlkMsk) == 0, Panic(ELWFmtStAlign));
|
|
1107 |
__ASSERT_DEBUG(aLength > 0, Panic(ELWNotPositive));
|
|
1108 |
__ASSERT_DEBUG(TotalSizeInBytes() >= aStart + aLength, Panic(ELWEnd));
|
|
1109 |
__ASSERT_DEBUG(!(aMedReq == EMReqFormat) || (aLength & iBlkMsk) == 0, Panic(ELWFmtEndAlign));
|
|
1110 |
__ASSERT_DEBUG(iSession != NULL, Panic(ECFSessPtrNull));
|
|
1111 |
|
|
1112 |
TInt r;
|
|
1113 |
|
|
1114 |
if ((r = CheckDevice(EMReqTypeNormalWr)) == KErrNone)
|
|
1115 |
{
|
|
1116 |
iPhysStart = aStart & ~iBlkMsk;
|
|
1117 |
|
|
1118 |
// PSL MUST support double-buffering for DMA requests
|
|
1119 |
// first write, or have just completed previous write
|
|
1120 |
if (iWtRBM == 0)
|
|
1121 |
{
|
|
1122 |
if(iDoDoubleBuffer == EFalse)
|
|
1123 |
{
|
|
1124 |
//
|
|
1125 |
// Can we use double-buffering for this request?
|
|
1126 |
//
|
|
1127 |
// - Only if PSL supports double buffering and the request length
|
|
1128 |
// is greater than the maximum PSL buffer size.
|
|
1129 |
//
|
|
1130 |
iDoPhysicalAddress = iCurrentReq->IsPhysicalAddress();
|
|
1131 |
|
|
1132 |
const TInt64 medEnd = aStart + aLength;
|
|
1133 |
|
|
1134 |
TInt64 maxPslEnd = medEnd;
|
|
1135 |
const TUint32 maxDbLength = iSocket->MaxDataTransferLength();
|
|
1136 |
|
|
1137 |
if(maxDbLength)
|
|
1138 |
{
|
|
1139 |
//
|
|
1140 |
// If the PSL specifies a limit on the maximum size of a data transfer, then truncate the request...
|
|
1141 |
//
|
|
1142 |
maxPslEnd = UMin(medEnd, iPhysStart + maxDbLength);
|
|
1143 |
}
|
|
1144 |
|
|
1145 |
iPhysEnd = (maxPslEnd + iBlkMsk) & ~iBlkMsk;
|
|
1146 |
|
|
1147 |
if (iDoPhysicalAddress)
|
|
1148 |
{
|
|
1149 |
iDoDoubleBuffer = EFalse;
|
|
1150 |
iIntBuf = ReserveWriteBlocks(aStart, medEnd, &iWtRBM);
|
|
1151 |
iPhysEnd = (medEnd + iBlkMsk) & ~iBlkMsk;
|
|
1152 |
}
|
|
1153 |
|
|
1154 |
if (!iDoPhysicalAddress)
|
|
1155 |
{
|
|
1156 |
iDoDoubleBuffer = iSocket->SupportsDoubleBuffering() && ((iPhysEnd - iPhysStart) > iMaxBufSize);
|
|
1157 |
if(iDoDoubleBuffer)
|
|
1158 |
{
|
|
1159 |
//
|
|
1160 |
// Conditions for double-buffering are met. Set up the size of the first
|
|
1161 |
// transfer to half the size of the block cache.
|
|
1162 |
//
|
|
1163 |
// Note that we don't bother to align to write groups here, as the entire
|
|
1164 |
// request will be processed under one multi-block command so there's no
|
|
1165 |
// danger of forcing the card into RMW cycles as would be the case when
|
|
1166 |
// issuing multiple misaligned commands.
|
|
1167 |
//
|
|
1168 |
iDbEnd = maxPslEnd; // The end of the complete double-buffered transfer
|
|
1169 |
iPhysEnd = (iPhysStart + (iMaxBufSize >> 1) + iBlkMsk) &~ iBlkMsk; // The end of the first double-buffered transfer
|
|
1170 |
__ASSERT_DEBUG(iPhysEnd - iPhysStart <= (iMaxBufSize >> 1), Panic(ELWLength));
|
|
1171 |
|
|
1172 |
//
|
|
1173 |
// Now reserve write blocks from the buffer cache. When double-buffering,
|
|
1174 |
// write blocks are only really reserved during the last transfer to avoid
|
|
1175 |
// continuously updating the cache indexes. Since the block cache is
|
|
1176 |
// continuously recycled, the following call shall invalidate the cache
|
|
1177 |
// and inform us as to whether we need to perform an RMW operation for
|
|
1178 |
// the first and last blocks prior to initiating data transfer.
|
|
1179 |
//
|
|
1180 |
iIntBuf = ReserveWriteBlocks(aStart, iDbEnd, &iWtRBM);
|
|
1181 |
}
|
|
1182 |
else
|
|
1183 |
{
|
|
1184 |
//
|
|
1185 |
// reserve buffers to end of first write group, or end of request range,
|
|
1186 |
// whichever is lower. Note that if the range already exists in the buffer,
|
|
1187 |
// e.g. because of a previous RBM, the same range will be returned. This
|
|
1188 |
// means that iWtRBM can be set to zero in the callback DFC, and this code
|
|
1189 |
// will retrieve the reserved range.
|
|
1190 |
//
|
|
1191 |
const TInt64 wtGpEnd = (iPhysStart + iPrWtGpLen) & ~iPrWtGpMsk;
|
|
1192 |
const TInt64 medEnd = UMin(wtGpEnd, aStart + aLength);
|
|
1193 |
iPhysEnd = (medEnd + iBlkMsk) & ~iBlkMsk;
|
|
1194 |
iIntBuf = ReserveWriteBlocks(aStart, medEnd, &iWtRBM);
|
|
1195 |
}
|
|
1196 |
} //if (!iDoPhysicalAddress)
|
|
1197 |
} //if(iDoDoubleBuffer == EFalse)
|
|
1198 |
} //if (iWtRBM == 0)
|
|
1199 |
|
|
1200 |
if (iWtRBM & KWtRBMFst)
|
|
1201 |
{
|
|
1202 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("mmd:lw: read-before-modify required on first block"));
|
|
1203 |
if (iDoPhysicalAddress)
|
|
1204 |
iSession->SetupCIMReadBlock(I64LOW(iPhysStart >> KMMCardHighCapBlockSizeLog2), iMinorBuf, iBlkLen >> KMMCardHighCapBlockSizeLog2);
|
|
1205 |
else
|
|
1206 |
iSession->SetupCIMReadBlock(I64LOW(iPhysStart >> KMMCardHighCapBlockSizeLog2), iIntBuf, iBlkLen >> KMMCardHighCapBlockSizeLog2);
|
|
1207 |
return EngageAndSetReadRequest(aMedReq);
|
|
1208 |
}
|
|
1209 |
|
|
1210 |
else if (iWtRBM & KWtRBMLst)
|
|
1211 |
{
|
|
1212 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("mmd:lw: read-before-modify required on last block"));
|
|
1213 |
if(iDoDoubleBuffer || iDoPhysicalAddress)
|
|
1214 |
{
|
|
1215 |
//
|
|
1216 |
// When double-buffering, the result of the RMW-read operation shall be stored
|
|
1217 |
// in the minor buffer, otherwise the data would be overwritten before the last
|
|
1218 |
// data transfer takes place.
|
|
1219 |
//
|
|
1220 |
const TInt64 lastBlock = (aStart + aLength) & ~iBlkMsk; // start posn in media to read from (we know aStart + aLength isn't block aligned due to KWtRBMLst flag)
|
|
1221 |
if (iDoDoubleBuffer)
|
|
1222 |
iSession->SetupCIMReadBlock(I64LOW(lastBlock >> KMMCardHighCapBlockSizeLog2), iMinorBuf, iBlkLen >> KMMCardHighCapBlockSizeLog2);
|
|
1223 |
else
|
|
1224 |
iSession->SetupCIMReadBlock(I64LOW(lastBlock >> KMMCardHighCapBlockSizeLog2), iCacheBuf, iBlkLen >> KMMCardHighCapBlockSizeLog2);
|
|
1225 |
}
|
|
1226 |
else
|
|
1227 |
{
|
|
1228 |
//
|
|
1229 |
// If not double-buffering, we can read the RMW data of the last block directly
|
|
1230 |
// into the block cache as we know that the data transfer will fit entirely
|
|
1231 |
// within the cache..
|
|
1232 |
//
|
|
1233 |
const TInt64 lastBlock = iPhysEnd - iBlkLen; // start posn in media to read from
|
|
1234 |
iSession->SetupCIMReadBlock(I64LOW(lastBlock >> KMMCardHighCapBlockSizeLog2), iIntBuf + (lastBlock - iPhysStart), iBlkLen >> KMMCardHighCapBlockSizeLog2);
|
|
1235 |
}
|
|
1236 |
|
|
1237 |
// Kick off the RMW-read operation for the last block...
|
|
1238 |
return EngageAndSetReadRequest(aMedReq);
|
|
1239 |
}
|
|
1240 |
|
|
1241 |
if (iWtRBM & KWtMinFst)
|
|
1242 |
{
|
|
1243 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("mmd:lw:Phys write-first-block-only"));
|
|
1244 |
//Overwrite first block with the new data
|
|
1245 |
TInt32 tlen = I64LOW(aStart & iBlkMsk);
|
|
1246 |
TInt32 wlen = UMin(I64LOW((iBlkMsk+1) - tlen), aLength);
|
|
1247 |
|
|
1248 |
const TInt64 usrOfst = (aStart - iReqStart);
|
|
1249 |
TPtr8 tgt(&iMinorBuf[tlen], I64LOW(wlen));
|
|
1250 |
|
|
1251 |
if ( (r = iCurrentReq->ReadRemote(&tgt,I64LOW(usrOfst))) != KErrNone)
|
|
1252 |
return r;
|
|
1253 |
}
|
|
1254 |
|
|
1255 |
if (iWtRBM & KWtMinLst)
|
|
1256 |
{
|
|
1257 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("mmd:lw:Phys write-last-block-only"));
|
|
1258 |
iWtRBM &= ~KWtMinLst;
|
|
1259 |
//Overwrite last block with the new data
|
|
1260 |
const TInt64 medEnds = aStart + aLength;
|
|
1261 |
TInt64 tlen = medEnds & iBlkMsk;
|
|
1262 |
|
|
1263 |
const TInt64 usrOfst = (aStart - iReqStart);
|
|
1264 |
TPtr8 tgt(iCacheBuf, I64LOW(tlen));
|
|
1265 |
|
|
1266 |
if ( (r = iCurrentReq->ReadRemote(&tgt,I64LOW(usrOfst+aLength-tlen))) !=KErrNone)
|
|
1267 |
return r;
|
|
1268 |
}
|
|
1269 |
|
|
1270 |
// no reads required - read data from user buffer and launch write
|
|
1271 |
const TInt64 usrOfst = (aStart - iReqStart);
|
|
1272 |
const TInt64 bufOfst = aStart - iPhysStart; // offset into first sector, not whole buffer
|
|
1273 |
const TInt64 len = UMin(aStart + aLength, iPhysEnd) - iReqCur;
|
|
1274 |
__ASSERT_DEBUG(len > 0, Panic(ELWLength));
|
|
1275 |
__ASSERT_DEBUG(I64HIGH(usrOfst) == 0, Panic(ELWLength));
|
|
1276 |
|
|
1277 |
if (iDoPhysicalAddress)
|
|
1278 |
{
|
|
1279 |
TPhysAddr physAddr = 0;
|
|
1280 |
TInt physLength = 0;
|
|
1281 |
TUint32 physLen = I64LOW(iPhysEnd - iPhysStart);
|
|
1282 |
|
|
1283 |
if (iWtRBM & KWtMinFst)
|
|
1284 |
{
|
|
1285 |
#if !defined(__WINS__)
|
|
1286 |
physAddr = Epoc::LinearToPhysical((TLinAddr)iMinorBuf);
|
|
1287 |
#else
|
|
1288 |
physAddr = (TPhysAddr)iMinorBuf;
|
|
1289 |
#endif
|
|
1290 |
physLength = iBlkLen;
|
|
1291 |
iBufOfset = I64LOW(iReqStart - iPhysStart);
|
|
1292 |
//iReqCur already set in DoWrite
|
|
1293 |
iFragOfset = iIPCLen = iBlkLen - iBufOfset;
|
|
1294 |
iWtRBM &= ~KWtMinFst;
|
|
1295 |
}
|
|
1296 |
else
|
|
1297 |
{
|
|
1298 |
iFragOfset = I64LOW(usrOfst);
|
|
1299 |
|
|
1300 |
r = PrepareFirstPhysicalFragment(physAddr, physLength, aLength);
|
|
1301 |
}
|
|
1302 |
|
|
1303 |
if (r == KErrNone)
|
|
1304 |
{
|
|
1305 |
iDbEnd = iPhysEnd;
|
|
1306 |
iPhysEnd = iPhysStart+physLength;
|
|
1307 |
|
|
1308 |
if ((TUint32)physLength > physLen) physLength = physLen; // more memory in fragment than required!
|
|
1309 |
|
|
1310 |
iSession->SetupCIMWriteBlock(I64LOW(iPhysStart >> KMMCardHighCapBlockSizeLog2), (TUint8*) physAddr, physLen >> KMMCardHighCapBlockSizeLog2);
|
|
1311 |
iSession->Command().iFlags|= KMMCCmdFlagPhysAddr;
|
|
1312 |
iSession->EnableDoubleBuffering(physLength >> KDiskSectorShift);
|
|
1313 |
}
|
|
1314 |
else
|
|
1315 |
{
|
|
1316 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:lw:Phys:%d", r));
|
|
1317 |
return r;
|
|
1318 |
}
|
|
1319 |
} // if (iDoPhysicalAddress)
|
|
1320 |
else
|
|
1321 |
{
|
|
1322 |
TPtr8 tgt(&iIntBuf[bufOfst], I64LOW(len));
|
|
1323 |
|
|
1324 |
r = ReadDataFromUser(tgt, I64LOW(usrOfst));
|
|
1325 |
if (r == KErrNone)
|
|
1326 |
{
|
|
1327 |
if(!iDoDoubleBuffer)
|
|
1328 |
{
|
|
1329 |
// EPBUSM automatically uses CMD24 instead of CMD25 for single block writes
|
|
1330 |
iSession->SetupCIMWriteBlock(I64LOW(iPhysStart >> KMMCardHighCapBlockSizeLog2), iIntBuf, I64LOW((iPhysEnd - iPhysStart) >> KMMCardHighCapBlockSizeLog2));
|
|
1331 |
}
|
|
1332 |
else
|
|
1333 |
{
|
|
1334 |
//
|
|
1335 |
// When double-buffering, set up the data transfer command to the entire
|
|
1336 |
// request range. and flag the session to enable double-buffering (as well
|
|
1337 |
// as specifying the length of each double-buffered transfer as calculated
|
|
1338 |
// in 'len' above). This is performed only once - the double-buffering
|
|
1339 |
// is subsequently handled within the DoDataTransferCallback function.
|
|
1340 |
//
|
|
1341 |
iSession->SetupCIMWriteBlock(I64LOW(iPhysStart >> KMMCardHighCapBlockSizeLog2), iIntBuf, I64LOW((((iDbEnd + iBlkMsk) & ~iBlkMsk) - iPhysStart) >> KMMCardHighCapBlockSizeLog2));
|
|
1342 |
iSession->EnableDoubleBuffering(I64LOW((len + iBlkMsk) & ~iBlkMsk) >> KDiskSectorShift);
|
|
1343 |
|
|
1344 |
// ...and switch to the 'second' buffer, which will be populated in the
|
|
1345 |
// data transfer callback in parallel with hardware transfer of the first.
|
|
1346 |
iSecondBuffer = ETrue;
|
|
1347 |
}
|
|
1348 |
}
|
|
1349 |
}
|
|
1350 |
|
|
1351 |
//Reliable Write only supported by v4.3+ MMC media
|
|
1352 |
if (iCard->ExtendedCSD().ExtendedCSDRev() >= 3)
|
|
1353 |
{
|
|
1354 |
// One request, i.e. not end of previous DB request
|
|
1355 |
// 512 Bytes long when sector aligned
|
|
1356 |
if ( ( I64LOW(iPhysEnd - iPhysStart) == iBlkLen) && ((iReqStart & ~iBlkMsk) == iPhysStart) )
|
|
1357 |
{
|
|
1358 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("mmd:lw:AtomicWrite"));
|
|
1359 |
iSession->Command().iFlags|= KMMCCmdFlagReliableWrite;
|
|
1360 |
}
|
|
1361 |
}
|
|
1362 |
|
|
1363 |
// Engage the data transfer session...
|
|
1364 |
r = EngageAndSetWriteRequest(aMedReq);
|
|
1365 |
} // if ((r = CheckDevice(EMReqTypeNormalWr)) == KErrNone)
|
|
1366 |
|
|
1367 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:lw:%d", r));
|
|
1368 |
|
|
1369 |
return r;
|
|
1370 |
}
|
|
1371 |
|
|
1372 |
TInt DMmcMediaDriverFlash::PartitionInfo(TPartitionInfo& anInfo)
|
|
1373 |
//
|
|
1374 |
// Read the partition information for the media. If the user supplied a password,
|
|
1375 |
// then unlock the card before trying to read the first sector.
|
|
1376 |
//
|
|
1377 |
{
|
|
1378 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:rpi"));
|
|
1379 |
__ASSERT_DEBUG(CurrentRequest() == EMReqIdle, Panic(ERPIInUse));
|
|
1380 |
|
|
1381 |
iPartitionInfo = &anInfo;
|
|
1382 |
|
|
1383 |
if(iMmcPartitionInfo)
|
|
1384 |
{
|
|
1385 |
// If this is an embedded device, use the custom formatting function:
|
|
1386 |
TInt r = iMmcPartitionInfo->PartitionInfo(*iPartitionInfo, iSessionEndCallBack);
|
|
1387 |
|
|
1388 |
iHiddenSectors = 0; // Not used for internal media
|
|
1389 |
|
|
1390 |
if (KErrNone == r)
|
|
1391 |
iMedReq = EMReqEMMCPtnInfo;
|
|
1392 |
|
|
1393 |
return(r);
|
|
1394 |
}
|
|
1395 |
|
|
1396 |
// Assume MBR will be present or is not required
|
|
1397 |
iMbrMissing = EFalse;
|
|
1398 |
|
|
1399 |
// If media driver is persistent (see EMediaDriverPersistent),
|
|
1400 |
// the card may have changed since last power down, so reset CID
|
|
1401 |
iSession->SetCard(iCard);
|
|
1402 |
|
|
1403 |
TInt r = LaunchRPIRead();
|
|
1404 |
|
|
1405 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:rpi:%d", r));
|
|
1406 |
|
|
1407 |
if(r == KErrLocked)
|
|
1408 |
{
|
|
1409 |
// If the media is locked, we present a default partition entry to the local
|
|
1410 |
// media subsystem, which will be updated when the media is finally unlocked.
|
|
1411 |
r = CreateDefaultPartition();
|
|
1412 |
if (r != KErrNone)
|
|
1413 |
return r;
|
|
1414 |
return KErrLocked;
|
|
1415 |
}
|
|
1416 |
|
|
1417 |
// KErrNone indicates asynchronous completion
|
|
1418 |
return r;
|
|
1419 |
}
|
|
1420 |
|
|
1421 |
TInt DMmcMediaDriverFlash::LaunchRPIUnlock(TLocalDrivePasswordData& aPasswordData)
|
|
1422 |
{
|
|
1423 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:lru:%d,%d", iCard->IsReady(), iCard->IsLocked()));
|
|
1424 |
__ASSERT_DEBUG(iSession != NULL, Panic(ECFSessPtrNull));
|
|
1425 |
|
|
1426 |
TInt r = KErrNone;
|
|
1427 |
|
|
1428 |
// CMD42 is an adtc, so check state in same way as for write
|
|
1429 |
if ((r = CheckDevice(EMReqTypeUnlockPswd)) == KErrNone)
|
|
1430 |
{
|
|
1431 |
r = Stack().MMCSocket()->PrepareStore(CardNum(), DLocalDrive::EPasswordUnlock, aPasswordData);
|
|
1432 |
|
|
1433 |
if (r == KErrNone)
|
|
1434 |
{
|
|
1435 |
TMediaPassword curPwd;
|
|
1436 |
|
|
1437 |
curPwd = *aPasswordData.iOldPasswd;
|
|
1438 |
|
|
1439 |
TInt curPwdLen = curPwd.Length();
|
|
1440 |
TInt blockLen = 2 + curPwdLen;
|
|
1441 |
|
|
1442 |
TPtr8 pbuf(&iMinorBuf[0], 2, blockLen);
|
|
1443 |
pbuf[0] = 0; // LOCK_UNLOCK = 0; SET_PWD = 0
|
|
1444 |
pbuf[1] = static_cast<TUint8>(curPwdLen);
|
|
1445 |
pbuf.Append(curPwd);
|
|
1446 |
iSession->SetupCIMLockUnlock(blockLen, iMinorBuf);
|
|
1447 |
|
|
1448 |
r = EngageAndSetWriteRequest(EMReqUpdatePtnInfo);
|
|
1449 |
}
|
|
1450 |
}
|
|
1451 |
|
|
1452 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:lru:%d", r));
|
|
1453 |
return r;
|
|
1454 |
}
|
|
1455 |
|
|
1456 |
|
|
1457 |
TInt DMmcMediaDriverFlash::LaunchRPIRead()
|
|
1458 |
//
|
|
1459 |
// launch read request on first KDiskSectorSize (512) bytes
|
|
1460 |
//
|
|
1461 |
{
|
|
1462 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf((">mmd:lrr")));
|
|
1463 |
__ASSERT_DEBUG(iSession != NULL, Panic(ECFSessPtrNull));
|
|
1464 |
|
|
1465 |
// the partition information is read before any other area is read from /
|
|
1466 |
// written to, and so does not need to maintain cache coherence. Therefore
|
|
1467 |
// it can safely use the minor buffer.
|
|
1468 |
|
|
1469 |
TInt r;
|
|
1470 |
if ((r = CheckDevice(EMReqTypeNormalRd)) == KErrNone)
|
|
1471 |
{
|
|
1472 |
iIntBuf = iMinorBuf;
|
|
1473 |
iSession->SetupCIMReadBlock(0, iIntBuf); // aBlocks = 1
|
|
1474 |
r = EngageAndSetReadRequest(EMReqPtnInfo);
|
|
1475 |
}
|
|
1476 |
|
|
1477 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:lrr:%d", r));
|
|
1478 |
return r;
|
|
1479 |
}
|
|
1480 |
|
|
1481 |
|
|
1482 |
TInt DMmcMediaDriverFlash::LaunchRPIErase()
|
|
1483 |
{
|
|
1484 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:lre:%d,%d", iCard->IsReady(), iCard->IsLocked()));
|
|
1485 |
__ASSERT_DEBUG(iSession != NULL, Panic(ECFSessPtrNull));
|
|
1486 |
|
|
1487 |
TInt r = KErrNone;
|
|
1488 |
|
|
1489 |
// CMD42 is an adtc, so check state in same way as for write
|
|
1490 |
if ((r = CheckDevice(EMReqTypeUnlockPswd)) == KErrNone)
|
|
1491 |
{
|
|
1492 |
if(iCard->IsWriteProtected())
|
|
1493 |
{
|
|
1494 |
r = KErrAccessDenied;
|
|
1495 |
}
|
|
1496 |
else
|
|
1497 |
{
|
|
1498 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("mmd:df:EMReqForceErase"));
|
|
1499 |
iMinorBuf[0] = KMMCLockUnlockErase;
|
|
1500 |
iSession->SetupCIMLockUnlock(1, iMinorBuf);
|
|
1501 |
r = EngageAndSetWriteRequest(EMReqForceErase);
|
|
1502 |
}
|
|
1503 |
}
|
|
1504 |
|
|
1505 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:lru:%d", r));
|
|
1506 |
return r;
|
|
1507 |
}
|
|
1508 |
|
|
1509 |
|
|
1510 |
TInt DMmcMediaDriverFlash::DecodePartitionInfo()
|
|
1511 |
//
|
|
1512 |
// decode partition info that was read into internal buffer
|
|
1513 |
//
|
|
1514 |
{
|
|
1515 |
TInt partitionCount=iPartitionInfo->iPartitionCount=0;
|
|
1516 |
TInt defaultPartitionNumber=-1;
|
|
1517 |
TMBRPartitionEntry* pe;
|
|
1518 |
const TUint KMBRFirstPartitionOffsetAligned = KMBRFirstPartitionOffset & ~3;
|
|
1519 |
TInt i;
|
|
1520 |
|
|
1521 |
// Read of the first sector successful so check for a Master Boot Record
|
|
1522 |
if (*(TUint16*)(&iIntBuf[KMBRSignatureOffset])!=0xAA55)
|
|
1523 |
goto mbr_done;
|
|
1524 |
|
|
1525 |
__ASSERT_COMPILE(KMBRFirstPartitionOffsetAligned + KMBRMaxPrimaryPartitions * sizeof(TMBRPartitionEntry) <= KMBRSignatureOffset);
|
|
1526 |
|
|
1527 |
memmove(&iIntBuf[0], &iIntBuf[2],
|
|
1528 |
KMBRFirstPartitionOffsetAligned + KMBRMaxPrimaryPartitions * sizeof(TMBRPartitionEntry));
|
|
1529 |
|
|
1530 |
|
|
1531 |
for (i=0, pe = (TMBRPartitionEntry*)(&iIntBuf[KMBRFirstPartitionOffsetAligned]);
|
|
1532 |
pe->iPartitionType != 0 && i < KMBRMaxPrimaryPartitions;i++,pe++)
|
|
1533 |
{
|
|
1534 |
if (pe->IsDefaultBootPartition())
|
|
1535 |
{
|
|
1536 |
SetPartitionEntry(&iPartitionInfo->iEntry[0],pe->iFirstSector,pe->iNumSectors);
|
|
1537 |
defaultPartitionNumber=i;
|
|
1538 |
partitionCount++;
|
|
1539 |
break;
|
|
1540 |
}
|
|
1541 |
}
|
|
1542 |
|
|
1543 |
// Now add any other partitions
|
|
1544 |
for (i=0, pe = (TMBRPartitionEntry*)(&iIntBuf[KMBRFirstPartitionOffsetAligned]);
|
|
1545 |
pe->iPartitionType != 0 && i < KMBRMaxPrimaryPartitions;i++,pe++)
|
|
1546 |
{
|
|
1547 |
TBool validPartition = ETrue; // assume partition valid
|
|
1548 |
|
|
1549 |
if (defaultPartitionNumber==i)
|
|
1550 |
{
|
|
1551 |
// Already sorted
|
|
1552 |
}
|
|
1553 |
|
|
1554 |
// FAT partition ?
|
|
1555 |
else if (pe->IsValidDosPartition() || pe->IsValidFAT32Partition())
|
|
1556 |
{
|
|
1557 |
SetPartitionEntry(&iPartitionInfo->iEntry[partitionCount],pe->iFirstSector,pe->iNumSectors);
|
|
1558 |
__KTRACE_OPT(KLOCDPAGING, Kern::Printf("Mmc: FAT partition found at sector #%u", pe->iFirstSector));
|
|
1559 |
partitionCount++;
|
|
1560 |
}
|
|
1561 |
else
|
|
1562 |
{
|
|
1563 |
validPartition = EFalse;
|
|
1564 |
}
|
|
1565 |
|
|
1566 |
if (validPartition && partitionCount == 1)
|
|
1567 |
iHiddenSectors = pe->iFirstSector;
|
|
1568 |
|
|
1569 |
}
|
|
1570 |
|
|
1571 |
// Check the validity of the partition address boundaries
|
|
1572 |
// If there is any
|
|
1573 |
if(partitionCount > 0)
|
|
1574 |
{
|
|
1575 |
const TInt64 deviceSize = iCard->DeviceSize64();
|
|
1576 |
TPartitionEntry& part = iPartitionInfo->iEntry[partitionCount - 1];
|
|
1577 |
// Check that the card address space boundary is not exceeded by the last partition
|
|
1578 |
// In case of only 1 partition in the media check also it
|
|
1579 |
if(part.iPartitionBaseAddr + part.iPartitionLen > deviceSize)
|
|
1580 |
{
|
|
1581 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("Mmc: MBR partition exceeds card memory space"));
|
|
1582 |
// Adjust the partition length to card address boundary
|
|
1583 |
part.iPartitionLen = (deviceSize - part.iPartitionBaseAddr);
|
|
1584 |
|
|
1585 |
// Check that the base address contained valid information
|
|
1586 |
if(part.iPartitionLen <= 0)
|
|
1587 |
{
|
|
1588 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("Mmc: Invalid base address"));
|
|
1589 |
// Invalid MBR - assume the boot sector is in the first sector
|
|
1590 |
defaultPartitionNumber =-1;
|
|
1591 |
partitionCount=0;
|
|
1592 |
}
|
|
1593 |
}
|
|
1594 |
// More than one partition. Go through all of them
|
|
1595 |
if (partitionCount > 0)
|
|
1596 |
{
|
|
1597 |
for(i=partitionCount-1; i>0; i--)
|
|
1598 |
{
|
|
1599 |
const TPartitionEntry& curr = iPartitionInfo->iEntry[i];
|
|
1600 |
TPartitionEntry& prev = iPartitionInfo->iEntry[i-1];
|
|
1601 |
// Check if partitions overlap
|
|
1602 |
if(curr.iPartitionBaseAddr < (prev.iPartitionBaseAddr + prev.iPartitionLen))
|
|
1603 |
{
|
|
1604 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("Mmc: Overlapping partitions"));
|
|
1605 |
// Adjust the partition length to not overlap the next partition
|
|
1606 |
prev.iPartitionLen = (curr.iPartitionBaseAddr - prev.iPartitionBaseAddr);
|
|
1607 |
|
|
1608 |
// Check that the base address contained valid information
|
|
1609 |
if(prev.iPartitionLen <= 0)
|
|
1610 |
{
|
|
1611 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("Mmc: Invalid base address"));
|
|
1612 |
// Invalid MBR - assume the boot sector is in the first sector
|
|
1613 |
defaultPartitionNumber=(-1);
|
|
1614 |
partitionCount=0;
|
|
1615 |
}
|
|
1616 |
}
|
|
1617 |
}
|
|
1618 |
}
|
|
1619 |
}
|
|
1620 |
|
|
1621 |
mbr_done:
|
|
1622 |
if (defaultPartitionNumber==(-1) && partitionCount==0)
|
|
1623 |
{
|
|
1624 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("Mmc:PartitionInfo no MBR"));
|
|
1625 |
if (MBRMandatory(iCard))
|
|
1626 |
{
|
|
1627 |
// If the MBR is missing AND is required, we present a default partition entry to the local
|
|
1628 |
// media subsystem, which will be updated when the media is finally formatted
|
|
1629 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("MBR mandatory, defining space for MBR + default partition"));
|
|
1630 |
iMbrMissing = ETrue;
|
|
1631 |
TInt r = CreateDefaultPartition();
|
|
1632 |
if (r != KErrNone)
|
|
1633 |
return r;
|
|
1634 |
}
|
|
1635 |
else
|
|
1636 |
{
|
|
1637 |
// Assume it has no MBR, and the Boot Sector is in the 1st sector
|
|
1638 |
SetPartitionEntry(&iPartitionInfo->iEntry[0],0,I64LOW(iCard->DeviceSize64()>>KDiskSectorShift));
|
|
1639 |
iHiddenSectors=0;
|
|
1640 |
}
|
|
1641 |
partitionCount=1;
|
|
1642 |
}
|
|
1643 |
|
|
1644 |
iPartitionInfo->iPartitionCount=partitionCount;
|
|
1645 |
iPartitionInfo->iMediaSizeInBytes=TotalSizeInBytes();
|
|
1646 |
|
|
1647 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<Mmc:PartitionInfo (C:%d)",iPartitionInfo->iPartitionCount));
|
|
1648 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" Partition1 (B:%xH L:%xH)",I64LOW(iPartitionInfo->iEntry[0].iPartitionBaseAddr),I64LOW(iPartitionInfo->iEntry[0].iPartitionLen)));
|
|
1649 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" Partition2 (B:%xH L:%xH)",I64LOW(iPartitionInfo->iEntry[1].iPartitionBaseAddr),I64LOW(iPartitionInfo->iEntry[1].iPartitionLen)));
|
|
1650 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" Partition3 (B:%xH L:%xH)",I64LOW(iPartitionInfo->iEntry[2].iPartitionBaseAddr),I64LOW(iPartitionInfo->iEntry[2].iPartitionLen)));
|
|
1651 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" Partition4 (B:%xH L:%xH)",I64LOW(iPartitionInfo->iEntry[3].iPartitionBaseAddr),I64LOW(iPartitionInfo->iEntry[3].iPartitionLen)));
|
|
1652 |
|
|
1653 |
#ifdef _DEBUG
|
|
1654 |
TMBRPartitionEntry cPe;
|
|
1655 |
if(GetDefaultPartitionInfo(cPe) == KErrNone)
|
|
1656 |
{
|
|
1657 |
pe = (TMBRPartitionEntry*)(&iIntBuf[0]);
|
|
1658 |
|
|
1659 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-------------------------------------------"));
|
|
1660 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-- Partition Entry Validation/Comparison --"));
|
|
1661 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-------------------------------------------"));
|
|
1662 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-- iX86BootIndicator [%02x:%02x] %c -", pe->iX86BootIndicator, cPe.iX86BootIndicator, pe->iX86BootIndicator == cPe.iX86BootIndicator ? ' ' : 'X'));
|
|
1663 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-- iStartHead [%02x:%02x] %c -", pe->iStartHead, cPe.iStartHead, pe->iStartHead == cPe.iStartHead ? ' ' : 'X'));
|
|
1664 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-- iStartSector [%02x:%02x] %c -", pe->iStartSector, cPe.iStartSector, pe->iStartSector == cPe.iStartSector ? ' ' : 'X'));
|
|
1665 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-- iStartCylinder [%02x:%02x] %c -", pe->iStartCylinder, cPe.iStartCylinder, pe->iStartCylinder == cPe.iStartCylinder ? ' ' : 'X'));
|
|
1666 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-- iPartitionType [%02x:%02x] %c -", pe->iPartitionType, cPe.iPartitionType, pe->iPartitionType == cPe.iPartitionType ? ' ' : 'X'));
|
|
1667 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-- iEndHead [%02x:%02x] %c -", pe->iEndHead, cPe.iEndHead, pe->iEndHead == cPe.iEndHead ? ' ' : 'X'));
|
|
1668 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-- iEndSector [%02x:%02x] %c -", pe->iEndSector, cPe.iEndSector, pe->iEndSector == cPe.iEndSector ? ' ' : 'X'));
|
|
1669 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-- iEndCylinder [%02x:%02x] %c -", pe->iEndCylinder, cPe.iEndCylinder, pe->iEndCylinder == cPe.iEndCylinder ? ' ' : 'X'));
|
|
1670 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-- iFirstSector [%08x:%08x] %c -", pe->iFirstSector, cPe.iFirstSector, pe->iFirstSector == cPe.iFirstSector ? ' ' : 'X'));
|
|
1671 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-- iNumSectors [%08x:%08x] %c -", pe->iNumSectors, cPe.iNumSectors, pe->iNumSectors == cPe.iNumSectors ? ' ' : 'X'));
|
|
1672 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("-------------------------------------------"));
|
|
1673 |
}
|
|
1674 |
#endif
|
|
1675 |
|
|
1676 |
return(KErrNone);
|
|
1677 |
}
|
|
1678 |
|
|
1679 |
|
|
1680 |
TInt DMmcMediaDriverFlash::WritePartitionInfo()
|
|
1681 |
/**
|
|
1682 |
Write the default partition table to freshly formatted media
|
|
1683 |
@return Standard Symbian OS Error Code
|
|
1684 |
*/
|
|
1685 |
{
|
|
1686 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:wpi"));
|
|
1687 |
__ASSERT_DEBUG(iSession != NULL, Panic(ECFSessPtrNull));
|
|
1688 |
|
|
1689 |
TMBRPartitionEntry partitionEntry;
|
|
1690 |
TInt err = GetDefaultPartitionInfo(partitionEntry);
|
|
1691 |
if(err == KErrNone)
|
|
1692 |
{
|
|
1693 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("mmd:MBR/Partition Table"));
|
|
1694 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" Boot ID : %02xh", partitionEntry.iX86BootIndicator));
|
|
1695 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" Start Head : %02xh", partitionEntry.iStartHead));
|
|
1696 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" Start Sector : %02xh", partitionEntry.iStartSector));
|
|
1697 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" Start Cyclinder : %02xh", partitionEntry.iStartCylinder));
|
|
1698 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" System ID : %02xh", partitionEntry.iPartitionType));
|
|
1699 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" End Head : %02xh", partitionEntry.iEndHead));
|
|
1700 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" End Sector : %02xh", partitionEntry.iEndSector));
|
|
1701 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" End Cyclinder : %02xh", partitionEntry.iEndCylinder));
|
|
1702 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" Relative Sector : %08xh", partitionEntry.iFirstSector));
|
|
1703 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(" Number of Sectors: %08xh", partitionEntry.iNumSectors));
|
|
1704 |
|
|
1705 |
//
|
|
1706 |
// Clear all other partition entries and align the partition info into the minor buffer for writing...
|
|
1707 |
//
|
|
1708 |
memclr(iMinorBuf, KDiskSectorSize);
|
|
1709 |
memcpy(&iMinorBuf[KMBRFirstPartitionEntry], &partitionEntry, sizeof(TMBRPartitionEntry));
|
|
1710 |
|
|
1711 |
*(TUint16*)(&iMinorBuf[KMBRSignatureOffset]) = 0xAA55;
|
|
1712 |
|
|
1713 |
iSession->SetupCIMWriteBlock(0, iMinorBuf);
|
|
1714 |
|
|
1715 |
//
|
|
1716 |
// Write the partition table and engage the read to validate and complete the mount process
|
|
1717 |
//
|
|
1718 |
iMbrMissing = EFalse;
|
|
1719 |
iCreateMbr = EFalse;
|
|
1720 |
err = EngageAndSetWriteRequest(EMReqUpdatePtnInfo);
|
|
1721 |
}
|
|
1722 |
|
|
1723 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:wpi:%d", err));
|
|
1724 |
|
|
1725 |
return(err);
|
|
1726 |
}
|
|
1727 |
|
|
1728 |
|
|
1729 |
TInt DMmcMediaDriverFlash::CreateDefaultPartition()
|
|
1730 |
{
|
|
1731 |
TMBRPartitionEntry defPartition;
|
|
1732 |
TInt r = GetDefaultPartitionInfo(defPartition);
|
|
1733 |
if (r == KErrNone)
|
|
1734 |
{
|
|
1735 |
SetPartitionEntry(&iPartitionInfo->iEntry[0], defPartition.iFirstSector, defPartition.iNumSectors);
|
|
1736 |
iHiddenSectors = defPartition.iFirstSector;
|
|
1737 |
iPartitionInfo->iPartitionCount = 1;
|
|
1738 |
iPartitionInfo->iMediaSizeInBytes = TotalSizeInBytes();
|
|
1739 |
}
|
|
1740 |
return r;
|
|
1741 |
}
|
|
1742 |
|
|
1743 |
TInt DMmcMediaDriverFlash::GetDefaultPartitionInfo(TMBRPartitionEntry& aPartitionEntry)
|
|
1744 |
/**
|
|
1745 |
Calculates the default patition information for an specific card.
|
|
1746 |
@param aPartitionEntry The TMBRPartitionEntry to be filled in with the format parameters
|
|
1747 |
@return Standard Symbian OS Error Code
|
|
1748 |
*/
|
|
1749 |
{
|
|
1750 |
memclr(&aPartitionEntry, sizeof(TMBRPartitionEntry));
|
|
1751 |
TUint16 reservedSectors; // Not used
|
|
1752 |
return GetMediaDefaultPartitionInfo(aPartitionEntry, reservedSectors, iCard);
|
|
1753 |
}
|
|
1754 |
|
|
1755 |
|
|
1756 |
void DMmcMediaDriverFlash::SetPartitionEntry(TPartitionEntry* aEntry, TUint aFirstSector, TUint aNumSectors)
|
|
1757 |
//
|
|
1758 |
// auxiliary static function to record partition information in TPartitionEntry object
|
|
1759 |
//
|
|
1760 |
{
|
|
1761 |
aEntry->iPartitionBaseAddr=aFirstSector;
|
|
1762 |
aEntry->iPartitionBaseAddr<<=KDiskSectorShift;
|
|
1763 |
aEntry->iPartitionLen=aNumSectors;
|
|
1764 |
aEntry->iPartitionLen<<=KDiskSectorShift;
|
|
1765 |
aEntry->iPartitionType=KPartitionTypeFAT12;
|
|
1766 |
}
|
|
1767 |
|
|
1768 |
TInt DMmcMediaDriverFlash::DoPasswordOp()
|
|
1769 |
{
|
|
1770 |
// Reconstruct password data structure in our address space
|
|
1771 |
TLocalDrivePasswordData clientData;
|
|
1772 |
TInt r = iCurrentReq->ReadRemoteRaw(&clientData, sizeof(TLocalDrivePasswordData));
|
|
1773 |
|
|
1774 |
TMediaPassword oldPassword;
|
|
1775 |
if (r == KErrNone)
|
|
1776 |
r = iCurrentReq->ReadRemote(clientData.iOldPasswd, &oldPassword);
|
|
1777 |
|
|
1778 |
TMediaPassword newPassword;
|
|
1779 |
if (r == KErrNone)
|
|
1780 |
r = iCurrentReq->ReadRemote(clientData.iNewPasswd, &newPassword);
|
|
1781 |
|
|
1782 |
TLocalDrivePasswordData passData(oldPassword, newPassword, clientData.iStorePasswd);
|
|
1783 |
|
|
1784 |
if (r == KErrNone)
|
|
1785 |
{
|
|
1786 |
TInt id=iCurrentReq->Id();
|
|
1787 |
switch (id)
|
|
1788 |
{
|
|
1789 |
case DLocalDrive::EPasswordUnlock:
|
|
1790 |
r = LaunchRPIUnlock(passData);
|
|
1791 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:rpi:%d", r));
|
|
1792 |
break;
|
|
1793 |
case DLocalDrive::EPasswordLock:
|
|
1794 |
case DLocalDrive::EPasswordClear:
|
|
1795 |
PasswordControl(id, passData);
|
|
1796 |
break;
|
|
1797 |
}
|
|
1798 |
}
|
|
1799 |
|
|
1800 |
// This will complete the request in the event of an error
|
|
1801 |
if(r != KErrNone)
|
|
1802 |
PartitionInfoComplete(r);
|
|
1803 |
|
|
1804 |
return KErrNone; // ensures to indicate asynchronoous completion
|
|
1805 |
}
|
|
1806 |
|
|
1807 |
void DMmcMediaDriverFlash::PasswordControl(TInt aFunc, TLocalDrivePasswordData& aData)
|
|
1808 |
//
|
|
1809 |
// Change a card's password, or clear the pasword from a locked card. The card
|
|
1810 |
// must be unlocked for this function. A locked card is unlocked when it is mounted,
|
|
1811 |
// to read the partition information. This is done from ReadPartitionInfo() and
|
|
1812 |
// LaunchRPIUnlock().
|
|
1813 |
//
|
|
1814 |
{
|
|
1815 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:pc:%d", (TInt) aFunc));
|
|
1816 |
__ASSERT_DEBUG(CurrentRequest() == EMReqIdle, Panic(EPCInUse));
|
|
1817 |
__ASSERT_DEBUG(aFunc == DLocalDrive::EPasswordLock || aFunc == DLocalDrive::EPasswordClear, Panic(EPCFunc));
|
|
1818 |
__ASSERT_DEBUG(iSession != NULL, Panic(ECFSessPtrNull));
|
|
1819 |
|
|
1820 |
TInt r;
|
|
1821 |
|
|
1822 |
if ((r = CheckDevice(EMReqTypeChangePswd)) == KErrNone)
|
|
1823 |
{
|
|
1824 |
// check if the current password is correct here. (This makes the
|
|
1825 |
// clear operation redundant only if the password is stored and it
|
|
1826 |
// is wrong.) Complete with same value as DoSessionEndDfc() would.
|
|
1827 |
|
|
1828 |
TMediaPassword curPwd;
|
|
1829 |
|
|
1830 |
curPwd = *aData.iOldPasswd;
|
|
1831 |
TInt curPwdLen = curPwd.Length();
|
|
1832 |
TInt blockLen;
|
|
1833 |
|
|
1834 |
if (!(iCard->iFlags & KMMCardIsLockable))
|
|
1835 |
r = KErrNotSupported;
|
|
1836 |
else if (Stack().PasswordStore()->IsMappingIncorrect(iCard->CID(), curPwd))
|
|
1837 |
r = KErrAccessDenied;
|
|
1838 |
else
|
|
1839 |
{
|
|
1840 |
if ((r = Stack().MMCSocket()->PrepareStore(CardNum(), aFunc, aData/*, aThread*/)) == KErrNone)
|
|
1841 |
{
|
|
1842 |
switch (aFunc)
|
|
1843 |
{
|
|
1844 |
case DLocalDrive::EPasswordLock:
|
|
1845 |
{
|
|
1846 |
TMediaPassword newPwd;
|
|
1847 |
newPwd = *aData.iNewPasswd;
|
|
1848 |
TInt newPwdLen = newPwd.Length();
|
|
1849 |
blockLen = 1 + 1 + curPwdLen + newPwdLen;
|
|
1850 |
|
|
1851 |
#ifndef __EPOC32__
|
|
1852 |
TUint16 env_Var[]=L"_EPOC_PWD_LEN";
|
|
1853 |
TUint16 env_Val[2];
|
|
1854 |
env_Val[0]=(TUint16)(curPwdLen+1);
|
|
1855 |
env_Val[1]=0;//make a null terminated string
|
|
1856 |
r=SetEnvironmentVariable(env_Var,&env_Val[0]);
|
|
1857 |
__ASSERT_DEBUG(r!=0, Panic(EPCFunc));
|
|
1858 |
|
|
1859 |
#endif
|
|
1860 |
|
|
1861 |
TPtr8 pbuf(&iMinorBuf[0], 2, blockLen);
|
|
1862 |
pbuf[0] = KMMCLockUnlockSetPwd; // LOCK_UNLOCK = 0, SET_PWD = 1
|
|
1863 |
pbuf[1] = static_cast<TUint8>(curPwdLen + newPwdLen);
|
|
1864 |
pbuf.Append(curPwd);
|
|
1865 |
pbuf.Append(newPwd);
|
|
1866 |
}
|
|
1867 |
break;
|
|
1868 |
|
|
1869 |
case DLocalDrive::EPasswordClear:
|
|
1870 |
{
|
|
1871 |
blockLen = 1 + 1 + curPwdLen;
|
|
1872 |
|
|
1873 |
TPtr8 pbuf(&iMinorBuf[0], 2, blockLen);
|
|
1874 |
pbuf[0] = KMMCLockUnlockClrPwd; // LOCK_UNLOCK = dc, CLR_PWD = 1
|
|
1875 |
pbuf[1] = static_cast<TUint8>(curPwdLen);
|
|
1876 |
pbuf.Append(curPwd);
|
|
1877 |
}
|
|
1878 |
break;
|
|
1879 |
|
|
1880 |
default:
|
|
1881 |
// DLocalDrive::EPasswordUnlock is not handled. This avoids warnings for unused
|
|
1882 |
// case, and uninitialized variable.
|
|
1883 |
blockLen = 0;
|
|
1884 |
break;
|
|
1885 |
} // switch (aFunc)
|
|
1886 |
|
|
1887 |
iSession->SetupCIMLockUnlock(blockLen, iMinorBuf);
|
|
1888 |
r = EngageAndSetWriteRequest(EMReqPswdCtrl);
|
|
1889 |
} // if ((r = Stack().PrepareStore(CardNum(), aFunc, aData, aThread)) == KErrNone)
|
|
1890 |
} // else (Stack().IsMappingIncorrect(iCard->CID(), curPwd))
|
|
1891 |
} // (r = CheckDevice(EMReqTypeChangePswd)) == KErrNone
|
|
1892 |
|
|
1893 |
// complete immediately if error occured
|
|
1894 |
if (r != KErrNone)
|
|
1895 |
CompleteRequest(r);
|
|
1896 |
|
|
1897 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:pc:%d", r));
|
|
1898 |
}
|
|
1899 |
|
|
1900 |
|
|
1901 |
// ---- device status, callback DFC ----
|
|
1902 |
|
|
1903 |
TInt DMmcMediaDriverFlash::CheckDevice(TMediaReqType aReqType)
|
|
1904 |
//
|
|
1905 |
// Check the device before initiating a command
|
|
1906 |
//
|
|
1907 |
{
|
|
1908 |
|
|
1909 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:cd:%d",aReqType));
|
|
1910 |
|
|
1911 |
TInt r=KErrNone;
|
|
1912 |
|
|
1913 |
if (!iCard->IsReady())
|
|
1914 |
r=KErrNotReady;
|
|
1915 |
|
|
1916 |
// The card must be locked if attempting to unlock during RPI, and
|
|
1917 |
// unlocked at all other times.
|
|
1918 |
else if (aReqType!=EMReqTypeUnlockPswd && iCard->IsLocked())
|
|
1919 |
r=KErrLocked;
|
|
1920 |
// Don't perform Password setting for WriteProtected cards,
|
|
1921 |
// unable to recover (ForcedErase) if password lost.
|
|
1922 |
else if (aReqType==EMReqTypeChangePswd)
|
|
1923 |
{
|
|
1924 |
if (iCard->MediaType()==EMultiMediaROM)
|
|
1925 |
{
|
|
1926 |
r=KErrAccessDenied;
|
|
1927 |
}
|
|
1928 |
}
|
|
1929 |
else if (iMbrMissing && aReqType==EMReqTypeNormalRd)
|
|
1930 |
r=KErrCorrupt;
|
|
1931 |
|
|
1932 |
#if !defined(__WINS__)
|
|
1933 |
// Don't perform write/password operations when the battery is low
|
|
1934 |
// else if (aReqType!=EMReqTypeNormalRd && Hal::MainBatteryStatus()<ELow && !Hal::ExternalPowerPresent())
|
|
1935 |
// r=KErrBadPower;
|
|
1936 |
#endif
|
|
1937 |
// Don't perform write operations when the mechanical write protect switch is set
|
|
1938 |
else if (aReqType==EMReqTypeNormalWr && iCard->IsWriteProtected())
|
|
1939 |
r=KErrAccessDenied;
|
|
1940 |
// Don't perform write/format operations on MMC ROM cards
|
|
1941 |
else if (iMediaType==EMultiMediaROM && aReqType == EMReqTypeNormalWr)
|
|
1942 |
r=KErrAccessDenied;
|
|
1943 |
|
|
1944 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:cd:%d", r));
|
|
1945 |
return(r);
|
|
1946 |
}
|
|
1947 |
|
|
1948 |
void DMmcMediaDriverFlash::SessionEndCallBack(TAny* aMediaDriver)
|
|
1949 |
//
|
|
1950 |
// called by EPBUS when a single session has finished. Queues DFC to launch
|
|
1951 |
// next session or to complete client request.
|
|
1952 |
//
|
|
1953 |
{
|
|
1954 |
DMmcMediaDriverFlash& md = *static_cast<DMmcMediaDriverFlash*>(aMediaDriver);
|
|
1955 |
__ASSERT_DEBUG(! md.iSessionEndDfc.Queued(), Panic(ESECBQueued));
|
|
1956 |
md.iSessionEndDfc.Enque();
|
|
1957 |
}
|
|
1958 |
|
|
1959 |
|
|
1960 |
void DMmcMediaDriverFlash::SessionEndDfc(TAny* aMediaDriver)
|
|
1961 |
{
|
|
1962 |
static_cast<DMmcMediaDriverFlash*>(aMediaDriver)->DoSessionEndDfc();
|
|
1963 |
}
|
|
1964 |
|
|
1965 |
|
|
1966 |
void DMmcMediaDriverFlash::DoSessionEndDfc()
|
|
1967 |
//
|
|
1968 |
// launch next session or complete client request
|
|
1969 |
//
|
|
1970 |
{
|
|
1971 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:dsed:%d", CurrentRequest()));
|
|
1972 |
|
|
1973 |
TInt r=KErrNone;
|
|
1974 |
|
|
1975 |
EndInCritical();
|
|
1976 |
|
|
1977 |
// Abort if writing or formatting and power has gone down
|
|
1978 |
if (!Kern::PowerGood() && CurrentRequest()!=EMReqRead)
|
|
1979 |
r=KErrAbort;
|
|
1980 |
// Return KErrNotReady if we have has a deferred media change
|
|
1981 |
if (!iCard->IsReady())
|
|
1982 |
r=KErrNotReady;
|
|
1983 |
// if stack has powered down session pointer will be NULL
|
|
1984 |
if (iSession == NULL)
|
|
1985 |
r = KErrNotReady;
|
|
1986 |
|
|
1987 |
TBool complete = ETrue;
|
|
1988 |
|
|
1989 |
if (r==KErrNone)
|
|
1990 |
{
|
|
1991 |
r = iSession->EpocErrorCode();
|
|
1992 |
|
|
1993 |
switch (CurrentRequest())
|
|
1994 |
{
|
|
1995 |
case EMReqRead:
|
|
1996 |
{
|
|
1997 |
if (r != KErrNone) // abort if MMC error
|
|
1998 |
break;
|
|
1999 |
|
|
2000 |
if(iDoDoubleBuffer)
|
|
2001 |
{
|
|
2002 |
//
|
|
2003 |
// This is the end of a double-buffered transfer.
|
|
2004 |
// - Now we have two buffers to copy back to the user...
|
|
2005 |
//
|
|
2006 |
TUint8* bufPtr = iIntBuf + (iSecondBuffer ? (iMaxBufSize >> 1) : 0);
|
|
2007 |
if((r = WriteDataToUser(bufPtr)) == KErrNone)
|
|
2008 |
{
|
|
2009 |
MarkBlocks(iReqCur, iPhysEnd, CchMemToIdx(bufPtr));
|
|
2010 |
|
|
2011 |
iReqCur = iPhysEnd;
|
|
2012 |
iPhysEnd = iDbEnd;
|
|
2013 |
|
|
2014 |
bufPtr = iIntBuf + (iSecondBuffer ? 0 : (iMaxBufSize >> 1));
|
|
2015 |
if((r = WriteDataToUser(bufPtr)) == KErrNone)
|
|
2016 |
{
|
|
2017 |
MarkBlocks(iReqCur, (iPhysEnd + iBlkMsk) & ~iBlkMsk, CchMemToIdx(bufPtr));
|
|
2018 |
}
|
|
2019 |
}
|
|
2020 |
iDoDoubleBuffer = EFalse;
|
|
2021 |
}
|
|
2022 |
else if (iDoPhysicalAddress)
|
|
2023 |
{
|
|
2024 |
if (iRdROB & KIPCWrite)
|
|
2025 |
{
|
|
2026 |
// partial end point
|
|
2027 |
TInt len = I64LOW(iReqEnd & iBlkMsk);
|
|
2028 |
const TInt ofset = I64LOW(iPhysEnd - iBlkLen - iReqStart);
|
|
2029 |
|
|
2030 |
TPtrC8 extrView(iIntBuf, len);
|
|
2031 |
r = iCurrentReq->WriteRemote(&extrView,ofset);
|
|
2032 |
}
|
|
2033 |
// Reset attributes
|
|
2034 |
iRdROB = 0;
|
|
2035 |
iFragOfset = iIPCLen = iBufOfset = 0;
|
|
2036 |
iReqCur = iPhysEnd = iReqEnd;
|
|
2037 |
iDoPhysicalAddress = EFalse;
|
|
2038 |
}
|
|
2039 |
else
|
|
2040 |
{
|
|
2041 |
r = WriteDataToUser(&iIntBuf[I64LOW(iReqCur - iPhysStart)]);
|
|
2042 |
}
|
|
2043 |
|
|
2044 |
if (r != KErrNone)
|
|
2045 |
break;
|
|
2046 |
|
|
2047 |
// if there is more information to read for the user then engage another session
|
|
2048 |
if ((iReqCur = iPhysEnd) < iReqEnd)
|
|
2049 |
{
|
|
2050 |
TBool allDone = EFalse;
|
|
2051 |
if ( ((r = ReadDataUntilCacheExhausted(&allDone)) == KErrNone) && !allDone)
|
|
2052 |
{
|
|
2053 |
iPhysStart = iReqCur & ~iBlkMsk;
|
|
2054 |
TUint32 length = I64LOW(iReqEnd - iReqCur);
|
|
2055 |
|
|
2056 |
if ( (iReqEnd - iPhysStart) > iMaxBufSize && iSocket->SupportsDoubleBuffering() && !iReadToEndOfCard)
|
|
2057 |
r = LaunchDBRead();
|
|
2058 |
else
|
|
2059 |
r = LaunchRead(iReqCur, length);
|
|
2060 |
|
|
2061 |
if ( r == KErrNone)
|
|
2062 |
complete = EFalse;
|
|
2063 |
}
|
|
2064 |
}
|
|
2065 |
}
|
|
2066 |
break;
|
|
2067 |
|
|
2068 |
case EMReqWrite:
|
|
2069 |
{
|
|
2070 |
if (r != KErrNone) // abort if MMC error
|
|
2071 |
{
|
|
2072 |
break;
|
|
2073 |
}
|
|
2074 |
|
|
2075 |
if (iWtRBM == 0)
|
|
2076 |
{
|
|
2077 |
iReqCur = iPhysEnd;
|
|
2078 |
iDoDoubleBuffer = EFalse;
|
|
2079 |
iDoPhysicalAddress = EFalse;
|
|
2080 |
iRdROB = 0;
|
|
2081 |
iFragOfset = iIPCLen = iBufOfset = 0;
|
|
2082 |
}
|
|
2083 |
// clear current RBM flag
|
|
2084 |
else
|
|
2085 |
{
|
|
2086 |
if (iWtRBM & KWtRBMFst)
|
|
2087 |
{
|
|
2088 |
iWtRBM &= ~KWtRBMFst;
|
|
2089 |
}
|
|
2090 |
else if (iWtRBM & KWtRBMLst)
|
|
2091 |
{
|
|
2092 |
iWtRBM &= ~KWtRBMLst;
|
|
2093 |
}
|
|
2094 |
}
|
|
2095 |
|
|
2096 |
// advance media position if just finished write, as opposed to read-before-modify
|
|
2097 |
if (iReqCur < iReqEnd)
|
|
2098 |
{
|
|
2099 |
if ((r = LaunchWrite(iReqCur, I64LOW(iReqEnd - iReqCur), EMReqWrite)) == KErrNone)
|
|
2100 |
{
|
|
2101 |
complete = EFalse;
|
|
2102 |
}
|
|
2103 |
|
|
2104 |
complete = (r != KErrNone) ? (TBool)ETrue : (TBool)EFalse;
|
|
2105 |
}
|
|
2106 |
}
|
|
2107 |
break;
|
|
2108 |
|
|
2109 |
case EMReqFormat:
|
|
2110 |
{
|
|
2111 |
if (r != KErrNone) // abort if MMC error
|
|
2112 |
break;
|
|
2113 |
|
|
2114 |
if ((iEraseUnitMsk == KMaxTUint64) || // no erase unit defined (Erase Class Commands not supported) ?
|
|
2115 |
(iPhysEnd == iReqEnd) || // finshed already ?
|
|
2116 |
((iPhysStart & iEraseUnitMsk) == 0 && (iPhysEnd & iEraseUnitMsk) == 0))
|
|
2117 |
{
|
|
2118 |
iReqCur = iPhysEnd;
|
|
2119 |
}
|
|
2120 |
else
|
|
2121 |
{
|
|
2122 |
// Formating to a mis-aligned boundary, so we can't make best use of
|
|
2123 |
// multiple erase blocks. We shall simply erase up to the next block
|
|
2124 |
// boundary, and return the adjustment info to the file system
|
|
2125 |
r = I64LOW(iPhysEnd - iPhysStart);
|
|
2126 |
iReqCur = iReqEnd;
|
|
2127 |
}
|
|
2128 |
|
|
2129 |
if(r == KErrNone)
|
|
2130 |
{
|
|
2131 |
// advance media position if just finished write, as opposed to read-before-modify
|
|
2132 |
if (iReqCur < iReqEnd)
|
|
2133 |
{
|
|
2134 |
if ((r = LaunchFormat(iReqCur, I64LOW(iReqEnd - iReqCur))) == KErrNone)
|
|
2135 |
{
|
|
2136 |
complete = EFalse;
|
|
2137 |
}
|
|
2138 |
}
|
|
2139 |
// if format finished, write an MBR if required
|
|
2140 |
// Always write an MBR if it's an SD card
|
|
2141 |
else if (iCreateMbr)
|
|
2142 |
{
|
|
2143 |
// Finished Format, so write the MBR/default partition table if required
|
|
2144 |
r = WritePartitionInfo();
|
|
2145 |
complete = (r != KErrNone) ? (TBool)ETrue : (TBool)EFalse;
|
|
2146 |
}
|
|
2147 |
}
|
|
2148 |
}
|
|
2149 |
break;
|
|
2150 |
|
|
2151 |
case EMReqPtnInfo:
|
|
2152 |
if (r == KErrNone)
|
|
2153 |
r = DecodePartitionInfo(); // set up iPartitionInfo
|
|
2154 |
|
|
2155 |
PartitionInfoComplete(r == KErrNone?KErrNone:KErrNotReady);
|
|
2156 |
break;
|
|
2157 |
|
|
2158 |
case EMReqEMMCPtnInfo:
|
|
2159 |
iMedReq = EMReqIdle;
|
|
2160 |
// For now do nothing..
|
|
2161 |
break;
|
|
2162 |
|
|
2163 |
case EMReqUpdatePtnInfo:
|
|
2164 |
break;
|
|
2165 |
|
|
2166 |
case EMReqPswdCtrl:
|
|
2167 |
if (r == KErrLocked)
|
|
2168 |
r = KErrAccessDenied;
|
|
2169 |
break;
|
|
2170 |
|
|
2171 |
case EMReqForceErase:
|
|
2172 |
|
|
2173 |
if (r == KErrNone)
|
|
2174 |
{
|
|
2175 |
// Finished Forced Erase , so write the default partition table...
|
|
2176 |
r = WritePartitionInfo();
|
|
2177 |
}
|
|
2178 |
|
|
2179 |
complete = (r != KErrNone) ? (TBool)ETrue : (TBool)EFalse;
|
|
2180 |
break;
|
|
2181 |
|
|
2182 |
case EMReqWritePasswordData:
|
|
2183 |
//
|
|
2184 |
// WritePasswordData also kicks off an auto-unlock session to ensure that
|
|
2185 |
// any locked cards that have passwords in the password store are immediately
|
|
2186 |
// available. We can safely ignore any errors returned at this stage, as the
|
|
2187 |
// password store will have been successfully updated (in locmedia.cpp), even
|
|
2188 |
// if the card is unable to accept the password.
|
|
2189 |
//
|
|
2190 |
r = KErrNone;
|
|
2191 |
break;
|
|
2192 |
|
|
2193 |
case EMReqIdle:
|
|
2194 |
// request has been completed already (e.g. due to a power down)
|
|
2195 |
break;
|
|
2196 |
|
|
2197 |
|
|
2198 |
default:
|
|
2199 |
__ASSERT_DEBUG(EFalse, Panic(EDSEDRequest));
|
|
2200 |
break;
|
|
2201 |
}
|
|
2202 |
}
|
|
2203 |
|
|
2204 |
// r != KErrNone => complete
|
|
2205 |
__ASSERT_DEBUG(!(r != KErrNone) || complete, Panic(EDSEDNotErrComplete));
|
|
2206 |
|
|
2207 |
if (complete)
|
|
2208 |
{
|
|
2209 |
if (r != KErrNone)
|
|
2210 |
InvalidateCache();
|
|
2211 |
|
|
2212 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mdf:dsed:cmp:%d", r));
|
|
2213 |
CompleteRequest(r);
|
|
2214 |
}
|
|
2215 |
else
|
|
2216 |
{
|
|
2217 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mdf:dsed:ncmp"));
|
|
2218 |
}
|
|
2219 |
}
|
|
2220 |
|
|
2221 |
void DMmcMediaDriverFlash::DataTransferCallBack(TAny* aMediaDriver)
|
|
2222 |
{
|
|
2223 |
DMmcMediaDriverFlash& md = *static_cast<DMmcMediaDriverFlash*>(aMediaDriver);
|
|
2224 |
__ASSERT_DEBUG(! md.iDataTransferCallBackDfc.Queued(), Panic(EDBCBQueued));
|
|
2225 |
md.iDataTransferCallBackDfc.Enque();
|
|
2226 |
}
|
|
2227 |
|
|
2228 |
void DMmcMediaDriverFlash::DataTransferCallBackDfc(TAny* aMediaDriver)
|
|
2229 |
{
|
|
2230 |
DMmcMediaDriverFlash& md = *static_cast<DMmcMediaDriverFlash*>(aMediaDriver);
|
|
2231 |
|
|
2232 |
if (md.iDoPhysicalAddress)
|
|
2233 |
{
|
|
2234 |
if(md.CurrentRequest() == EMReqWrite)
|
|
2235 |
{
|
|
2236 |
md.DoPhysWriteDataTransferCallBack();
|
|
2237 |
}
|
|
2238 |
else
|
|
2239 |
{
|
|
2240 |
md.DoPhysReadDataTransferCallBack();
|
|
2241 |
}
|
|
2242 |
}
|
|
2243 |
else
|
|
2244 |
{
|
|
2245 |
if(md.CurrentRequest() == EMReqWrite)
|
|
2246 |
{
|
|
2247 |
md.DoWriteDataTransferCallBack();
|
|
2248 |
}
|
|
2249 |
else
|
|
2250 |
{
|
|
2251 |
md.DoReadDataTransferCallBack();
|
|
2252 |
}
|
|
2253 |
}
|
|
2254 |
}
|
|
2255 |
|
|
2256 |
void DMmcMediaDriverFlash::DoPhysWriteDataTransferCallBack()
|
|
2257 |
{
|
|
2258 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("++DMmcMediaDriverFlash::DoPhysWriteDataTransferCallBack()"));
|
|
2259 |
|
|
2260 |
TInt err = KErrNone;
|
|
2261 |
|
|
2262 |
if ( (iRdROB & KIPCSetup) || ((iReqEnd - iPhysEnd) < iBlkLen) )
|
|
2263 |
{
|
|
2264 |
//IPC to be setup, or partial end block read
|
|
2265 |
iRdROB &= ~KIPCSetup;
|
|
2266 |
|
|
2267 |
if ((iReqEnd - iPhysEnd) < iBlkLen)
|
|
2268 |
{
|
|
2269 |
iIntBuf = iCacheBuf;
|
|
2270 |
}
|
|
2271 |
else
|
|
2272 |
{
|
|
2273 |
TPtr8 tgt(iMinorBuf, iBlkLen);
|
|
2274 |
err = ReadDataFromUser(tgt, I64LOW(iPhysEnd-iReqStart));
|
|
2275 |
iIntBuf = iMinorBuf;
|
|
2276 |
}
|
|
2277 |
|
|
2278 |
iReqCur = iPhysEnd;
|
|
2279 |
iPhysEnd += iBlkLen;
|
|
2280 |
iBufOfset = 0;
|
|
2281 |
iIPCLen = iBlkLen;
|
|
2282 |
|
|
2283 |
#if !defined(__WINS__)
|
|
2284 |
iSession->MoreDataAvailable( (TInt)(iBlkLen >> KDiskSectorShift), (TUint8*)Epoc::LinearToPhysical((TLinAddr) iIntBuf), err);
|
|
2285 |
#else
|
|
2286 |
iSession->MoreDataAvailable( (TInt)(iBlkLen >> KDiskSectorShift), iIntBuf, err);
|
|
2287 |
#endif
|
|
2288 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("--iDoPhysicalAddress(KIPCSetup)"));
|
|
2289 |
return;
|
|
2290 |
}
|
|
2291 |
|
|
2292 |
PrepareNextPhysicalFragment();
|
|
2293 |
|
|
2294 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("--DMmcMediaDriverFlash::DoPhysWriteDataTransferCallBack()"));
|
|
2295 |
}
|
|
2296 |
|
|
2297 |
|
|
2298 |
void DMmcMediaDriverFlash::DoPhysReadDataTransferCallBack()
|
|
2299 |
{
|
|
2300 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("++DMmcMediaDriverFlash::DoPhysReadTransferCallBack()"));
|
|
2301 |
|
|
2302 |
TInt err = KErrNone;
|
|
2303 |
|
|
2304 |
if ((iRdROB & KIPCWrite) && !iSecondBuffer)
|
|
2305 |
{
|
|
2306 |
// an IPC transfer completed
|
|
2307 |
iRdROB &= ~KIPCWrite;
|
|
2308 |
if(iNxtIPCLen)
|
|
2309 |
{
|
|
2310 |
// First transfer is an IPC,
|
|
2311 |
// Corner-case - transfer is most likely IPC-DMA-IPC,
|
|
2312 |
// because write cannot occur until after the first 2 iterations it is possible to arrive here with both IPCSetup & IPCWrite Set.
|
|
2313 |
// need to use iIPCNxtLen instead
|
|
2314 |
TPtrC8 extrView(&iIntBuf[iBufOfset], iNxtIPCLen);
|
|
2315 |
err = iCurrentReq->WriteRemote(&extrView,I64LOW(iReqCur - iReqStart));
|
|
2316 |
iNxtIPCLen = iBufOfset = 0;
|
|
2317 |
}
|
|
2318 |
else
|
|
2319 |
{
|
|
2320 |
TPtrC8 extrView(&iIntBuf[iBufOfset], iIPCLen);
|
|
2321 |
err = iCurrentReq->WriteRemote(&extrView,I64LOW(iReqCur - iReqStart));
|
|
2322 |
iIPCLen = iBufOfset = 0;
|
|
2323 |
}
|
|
2324 |
}
|
|
2325 |
|
|
2326 |
if ( (iRdROB & KIPCSetup) || ((iReqEnd - iPhysEnd) < iBlkLen) )
|
|
2327 |
{
|
|
2328 |
// IPC to be setup, or partial end block read.
|
|
2329 |
iRdROB &= ~KIPCSetup;
|
|
2330 |
iRdROB |= KIPCWrite;
|
|
2331 |
|
|
2332 |
iIntBuf = ReserveReadBlocks(iPhysEnd,(iPhysEnd+iBlkLen), &iIPCLen);
|
|
2333 |
|
|
2334 |
iReqCur = iPhysEnd;
|
|
2335 |
iPhysEnd += iIPCLen;
|
|
2336 |
iBufOfset = 0;
|
|
2337 |
#if !defined(__WINS__)
|
|
2338 |
iSession->MoreDataAvailable( (TInt)(iIPCLen >> KDiskSectorShift), (TUint8*)Epoc::LinearToPhysical((TLinAddr) iIntBuf), err);
|
|
2339 |
#else
|
|
2340 |
iSession->MoreDataAvailable( (TInt)(iIPCLen >> KDiskSectorShift), iIntBuf, err);
|
|
2341 |
#endif
|
|
2342 |
iSecondBuffer = ETrue;
|
|
2343 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("--iDoPhysicalAddress(KIPCWrite)"));
|
|
2344 |
return;
|
|
2345 |
}
|
|
2346 |
|
|
2347 |
PrepareNextPhysicalFragment();
|
|
2348 |
|
|
2349 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("--DMmcMediaDriverFlash::DoPhysReadTransferCallBack()"));
|
|
2350 |
}
|
|
2351 |
|
|
2352 |
void DMmcMediaDriverFlash::DoWriteDataTransferCallBack()
|
|
2353 |
{
|
|
2354 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("++DMmcMediaDriverFlash::DoWriteDataTransferCallBack()"));
|
|
2355 |
|
|
2356 |
TInt err = KErrNone;
|
|
2357 |
|
|
2358 |
// Advance current request progress...
|
|
2359 |
iReqCur = iPhysEnd;
|
|
2360 |
|
|
2361 |
const TUint32 doubleBufferSize = iMaxBufSize >> 1;
|
|
2362 |
|
|
2363 |
TInt64 length = iDbEnd - iReqCur;
|
|
2364 |
TInt64 medEnd = UMin(iReqCur + doubleBufferSize, iReqCur + length);
|
|
2365 |
|
|
2366 |
iPhysEnd = (medEnd + iBlkMsk) & ~iBlkMsk;
|
|
2367 |
TInt64 len = UMin(iDbEnd, iPhysEnd) - iReqCur;
|
|
2368 |
|
|
2369 |
if(len > doubleBufferSize)
|
|
2370 |
{
|
|
2371 |
// Adjust for maximum size of double-buffering
|
|
2372 |
len = doubleBufferSize;
|
|
2373 |
}
|
|
2374 |
|
|
2375 |
__ASSERT_DEBUG(len > 0, Panic(EDBLength));
|
|
2376 |
__ASSERT_DEBUG(I64HIGH((len + (KDiskSectorSize-1)) >> KDiskSectorShift) == 0, Panic(EDBLengthTooBig));
|
|
2377 |
|
|
2378 |
TUint32 numBlocks = I64LOW((len + (KDiskSectorSize-1)) >> KDiskSectorShift);
|
|
2379 |
|
|
2380 |
const TInt64 usrOfst = (iReqCur - iReqStart);
|
|
2381 |
|
|
2382 |
__ASSERT_DEBUG(I64HIGH(usrOfst) == 0, Panic(EDBOffsetTooBig));
|
|
2383 |
|
|
2384 |
// Setup the next buffer pointer and switch buffers...
|
|
2385 |
TUint8* bufPtr = iIntBuf + (iSecondBuffer ? doubleBufferSize : 0);
|
|
2386 |
TPtr8 tgt(bufPtr, I64LOW(len));
|
|
2387 |
iSecondBuffer = iSecondBuffer ? (TBool)EFalse : (TBool)ETrue;
|
|
2388 |
|
|
2389 |
if(iDoLastRMW && length < doubleBufferSize)
|
|
2390 |
{
|
|
2391 |
//
|
|
2392 |
// This is the last transfer, and RMW is required. The result of the read exists
|
|
2393 |
// in iMinorBuf, so copy the non-modified section of the block to the active buffer.
|
|
2394 |
//
|
|
2395 |
memcpy(&bufPtr[(numBlocks-1) << KDiskSectorShift], iMinorBuf, KDiskSectorSize);
|
|
2396 |
}
|
|
2397 |
|
|
2398 |
if(I64LOW(iDbEnd - iReqCur) <= iMaxBufSize)
|
|
2399 |
{
|
|
2400 |
//
|
|
2401 |
// This is the last transfer (with or without RMW)
|
|
2402 |
// - Mark the last blocks as active in the buffer cache.
|
|
2403 |
//
|
|
2404 |
MarkBlocks(iReqCur, iPhysEnd, CchMemToIdx(bufPtr));
|
|
2405 |
}
|
|
2406 |
|
|
2407 |
//
|
|
2408 |
// Read the requested data from the remote thread...
|
|
2409 |
//
|
|
2410 |
err = ReadDataFromUser(tgt, I64LOW(usrOfst));
|
|
2411 |
|
|
2412 |
//
|
|
2413 |
// ...and signal that data is available to the PSL.
|
|
2414 |
//
|
|
2415 |
iSession->MoreDataAvailable(numBlocks, bufPtr, err);
|
|
2416 |
|
|
2417 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("--DMmcMediaDriverFlash::DoWriteDataTransferCallBack()"));
|
|
2418 |
}
|
|
2419 |
|
|
2420 |
|
|
2421 |
void DMmcMediaDriverFlash::DoReadDataTransferCallBack()
|
|
2422 |
{
|
|
2423 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("++DMmcMediaDriverFlash::DoReadTransferCallBack()"));
|
|
2424 |
|
|
2425 |
TInt err = KErrNone;
|
|
2426 |
|
|
2427 |
const TUint32 doubleBufferSize = iMaxBufSize >> 1;
|
|
2428 |
|
|
2429 |
TUint32 bufOfst = 0;
|
|
2430 |
|
|
2431 |
if((iReqCur & ~iBlkMsk) == iPhysStart)
|
|
2432 |
{
|
|
2433 |
if(iSecondBuffer)
|
|
2434 |
{
|
|
2435 |
//
|
|
2436 |
// If this is the first callback, don't copy data as it's not available yet
|
|
2437 |
// - just drop through to set up the next buffer.
|
|
2438 |
//
|
|
2439 |
TUint32 numBlocks = I64LOW((doubleBufferSize + (KDiskSectorSize-1)) >> KDiskSectorShift);
|
|
2440 |
TUint8* bufPtr = iIntBuf + doubleBufferSize;
|
|
2441 |
|
|
2442 |
iSecondBuffer = EFalse;
|
|
2443 |
|
|
2444 |
iSession->MoreDataAvailable(numBlocks, bufPtr, KErrNone);
|
|
2445 |
return;
|
|
2446 |
}
|
|
2447 |
else
|
|
2448 |
{
|
|
2449 |
//
|
|
2450 |
// If this is the second callback we're ready to copy
|
|
2451 |
// back to the client - data may be mis-aligned in the first
|
|
2452 |
// instance, but all subsequent data will be aligned...
|
|
2453 |
//
|
|
2454 |
bufOfst = I64LOW(iReqCur - iPhysStart);
|
|
2455 |
}
|
|
2456 |
}
|
|
2457 |
|
|
2458 |
// ...otherwise, write the previous buffer contents to the user
|
|
2459 |
TUint8* bufPtr = iIntBuf + (iSecondBuffer ? doubleBufferSize : 0);
|
|
2460 |
|
|
2461 |
err = WriteDataToUser(bufPtr + bufOfst);
|
|
2462 |
|
|
2463 |
// Advance current request progress...
|
|
2464 |
iReqCur = iPhysEnd;
|
|
2465 |
|
|
2466 |
TInt64 medEnd = UMin(iReqCur + doubleBufferSize, iDbEnd);
|
|
2467 |
|
|
2468 |
iPhysEnd = (medEnd + iBlkMsk) & ~iBlkMsk;
|
|
2469 |
|
|
2470 |
// Current buffer is one step ahead of the current request progress...
|
|
2471 |
TInt64 len = UMin((iDbEnd - iPhysEnd + iBlkMsk) & ~iBlkMsk, TInt64(doubleBufferSize));
|
|
2472 |
|
|
2473 |
__ASSERT_DEBUG(len == 0 || (I64HIGH((len + (KDiskSectorSize-1)) >> KDiskSectorShift) == 0), Panic(EDBLengthTooBig));
|
|
2474 |
|
|
2475 |
TUint32 numBlocks = I64LOW((len + (KDiskSectorSize-1)) >> KDiskSectorShift);
|
|
2476 |
|
|
2477 |
//
|
|
2478 |
// ...switch buffers and signal that data is available to the PSL.
|
|
2479 |
//
|
|
2480 |
iSecondBuffer = iSecondBuffer ? (TBool)EFalse : (TBool)ETrue;
|
|
2481 |
|
|
2482 |
iSession->MoreDataAvailable(numBlocks, bufPtr, err);
|
|
2483 |
|
|
2484 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("--DMmcMediaDriverFlash::DoDataTransferCallBack()"));
|
|
2485 |
}
|
|
2486 |
|
|
2487 |
|
|
2488 |
// ---- request management ----
|
|
2489 |
|
|
2490 |
|
|
2491 |
TInt DMmcMediaDriverFlash::EngageAndSetReadRequest(DMmcMediaDriverFlash::TMediaRequest aRequest)
|
|
2492 |
{
|
|
2493 |
return EngageAndSetRequest(aRequest, iReadCurrentInMilliAmps);
|
|
2494 |
}
|
|
2495 |
|
|
2496 |
|
|
2497 |
TInt DMmcMediaDriverFlash::EngageAndSetWriteRequest(DMmcMediaDriverFlash::TMediaRequest aRequest)
|
|
2498 |
{
|
|
2499 |
return EngageAndSetRequest(aRequest, iWriteCurrentInMilliAmps);
|
|
2500 |
}
|
|
2501 |
|
|
2502 |
|
|
2503 |
TInt DMmcMediaDriverFlash::EngageAndSetRequest(DMmcMediaDriverFlash::TMediaRequest aRequest, TInt aCurrent)
|
|
2504 |
//
|
|
2505 |
// In WINS, all of the processing, including the callbacks, is done when Engage() is called,
|
|
2506 |
// so the request value must be set up in advanced. Both the request and the current are
|
|
2507 |
// cleared in the corresponding call to CompleteRequest().
|
|
2508 |
//
|
|
2509 |
{
|
|
2510 |
__ASSERT_DEBUG(iSession != NULL, Panic(ECFSessPtrNull));
|
|
2511 |
|
|
2512 |
iMedReq = aRequest;
|
|
2513 |
SetCurrentConsumption(aCurrent);
|
|
2514 |
|
|
2515 |
TInt r = InCritical();
|
|
2516 |
if (r == KErrNone)
|
|
2517 |
{
|
|
2518 |
r = iSession->Engage();
|
|
2519 |
}
|
|
2520 |
|
|
2521 |
if(r != KErrNone)
|
|
2522 |
{
|
|
2523 |
if (!Kern::PowerGood())
|
|
2524 |
r=KErrAbort; // If emergency power down - return abort rather than anything else.
|
|
2525 |
if (!iCard->IsReady())
|
|
2526 |
r=KErrNotReady; // If media change - return not ready rather than anything else.
|
|
2527 |
EndInCritical();
|
|
2528 |
}
|
|
2529 |
|
|
2530 |
return r;
|
|
2531 |
}
|
|
2532 |
|
|
2533 |
|
|
2534 |
void DMmcMediaDriverFlash::CompleteRequest(TInt aReason)
|
|
2535 |
//
|
|
2536 |
// completes the specified request
|
|
2537 |
//
|
|
2538 |
{
|
|
2539 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("=mmd:cr0x%08x,%d", iCurrentReq, aReason));
|
|
2540 |
|
|
2541 |
iMedReq = EMReqIdle;
|
|
2542 |
SetCurrentConsumption(KIdleCurrentInMilliAmps);
|
|
2543 |
|
|
2544 |
TLocDrvRequest* pR=iCurrentReq;
|
|
2545 |
if (pR)
|
|
2546 |
{
|
|
2547 |
#ifdef __DEMAND_PAGING__
|
|
2548 |
#if defined(__TEST_PAGING_MEDIA_DRIVER__)
|
|
2549 |
__KTRACE_OPT(KLOCDPAGING,Kern::Printf("DMediaDriverFlash::Complete req Id(%d) with(%d)", pR->Id(), aReason));
|
|
2550 |
#endif // __TEST_PAGING_MEDIA_DRIVER__
|
|
2551 |
#endif // __DEMAND_PAGING__
|
|
2552 |
iCurrentReq=NULL;
|
|
2553 |
DMediaDriver::Complete(*pR,aReason);
|
|
2554 |
}
|
|
2555 |
}
|
|
2556 |
|
|
2557 |
TInt DMmcMediaDriverFlash::Caps(TLocDrv& aDrive, TLocalDriveCapsV6& aInfo)
|
|
2558 |
{
|
|
2559 |
// Fill buffer with current media caps.
|
|
2560 |
aInfo.iType = EMediaHardDisk;
|
|
2561 |
aInfo.iBattery = EBatNotSupported;
|
|
2562 |
aInfo.iDriveAtt = KDriveAttLocal;
|
|
2563 |
aInfo.iMediaAtt = KMediaAttFormattable;
|
|
2564 |
|
|
2565 |
if(iCard->iFlags & KMMCardIsLockable)
|
|
2566 |
aInfo.iMediaAtt |= KMediaAttLockable;
|
|
2567 |
|
|
2568 |
if (iCard->HasPassword())
|
|
2569 |
aInfo.iMediaAtt |= KMediaAttHasPassword;
|
|
2570 |
if (iCard->IsWriteProtected())
|
|
2571 |
aInfo.iMediaAtt |= KMediaAttWriteProtected;
|
|
2572 |
if (iCard->IsLocked())
|
|
2573 |
aInfo.iMediaAtt |= KMediaAttLocked;
|
|
2574 |
|
|
2575 |
aInfo.iFileSystemId = KDriveFileSysFAT;
|
|
2576 |
|
|
2577 |
// Format is performed in multiples of the erase sector (or multiple block) size
|
|
2578 |
aInfo.iMaxBytesPerFormat = iEraseInfo.iPreferredEraseUnitSize;
|
|
2579 |
|
|
2580 |
if ((!iInternalSlot) && (GetCardFormatInfo(iCard,aInfo.iFormatInfo) == KErrNone))
|
|
2581 |
{
|
|
2582 |
TUint16 reservedSectors;
|
|
2583 |
TMBRPartitionEntry dummy; // Not used here
|
|
2584 |
const TInt r = GetMediaDefaultPartitionInfo(dummy, reservedSectors, iCard);
|
|
2585 |
if(r != KErrNone)
|
|
2586 |
return r;
|
|
2587 |
|
|
2588 |
aInfo.iFormatInfo.iReservedSectors = reservedSectors;
|
|
2589 |
aInfo.iExtraInfo = ETrue;
|
|
2590 |
}
|
|
2591 |
|
|
2592 |
// Set serial number to CID
|
|
2593 |
__ASSERT_DEBUG(KMMCCIDLength<=KMaxSerialNumLength, Kern::PanicCurrentThread(_L("Mmc"), KErrOverflow));
|
|
2594 |
aInfo.iSerialNumLength = KMMCCIDLength;
|
|
2595 |
for (TUint i=0; i<KMMCCIDLength; i++)
|
|
2596 |
aInfo.iSerialNum[i] = iCard->CID().At(i);
|
|
2597 |
|
|
2598 |
// Get block size & erase block size to allow the file system to align first usable cluster correctly
|
|
2599 |
aInfo.iBlockSize = BlockSize(iCard);
|
|
2600 |
aInfo.iEraseBlockSize = EraseBlockSize(iCard);
|
|
2601 |
|
|
2602 |
#if defined(__DEMAND_PAGING__)
|
|
2603 |
// If the stack has flagged this as a demand-paging device, then it is assumed that it is internal
|
|
2604 |
// and (optionally) write protected.
|
|
2605 |
if(aDrive.iPrimaryMedia->iPagingMedia)
|
|
2606 |
{
|
|
2607 |
aInfo.iMediaAtt|= KMediaAttPageable;
|
|
2608 |
if (iDemandPagingInfo.iWriteProtected)
|
|
2609 |
{
|
|
2610 |
aInfo.iMediaAtt|= KMediaAttWriteProtected;
|
|
2611 |
aInfo.iMediaAtt&= ~KMediaAttFormattable;
|
|
2612 |
}
|
|
2613 |
}
|
|
2614 |
|
|
2615 |
// code paging enabled on this drive ?
|
|
2616 |
if(aDrive.iPagingDrv)
|
|
2617 |
{
|
|
2618 |
aInfo.iDriveAtt|= KDriveAttPageable;
|
|
2619 |
}
|
|
2620 |
|
|
2621 |
#endif
|
|
2622 |
|
|
2623 |
if (iInternalSlot)
|
|
2624 |
{
|
|
2625 |
aInfo.iDriveAtt|= KDriveAttInternal;
|
|
2626 |
}
|
|
2627 |
else
|
|
2628 |
{
|
|
2629 |
aInfo.iDriveAtt|= KDriveAttRemovable;
|
|
2630 |
}
|
|
2631 |
|
|
2632 |
|
|
2633 |
if (iMmcPartitionInfo)
|
|
2634 |
{
|
|
2635 |
TLocalDriveCapsV6Buf CapsInfo = aInfo;
|
|
2636 |
iMmcPartitionInfo->PartitionCaps(aDrive,CapsInfo);
|
|
2637 |
aInfo = CapsInfo();
|
|
2638 |
}
|
|
2639 |
|
|
2640 |
|
|
2641 |
if (iMediaType==EMultiMediaROM)
|
|
2642 |
{
|
|
2643 |
aInfo.iMediaAtt|= KMediaAttWriteProtected;
|
|
2644 |
aInfo.iMediaAtt&= ~KMediaAttFormattable;
|
|
2645 |
}
|
|
2646 |
|
|
2647 |
// Must return KErrCompletion to indicate that this
|
|
2648 |
// is a synchronous version of the function
|
|
2649 |
return KErrCompletion;
|
|
2650 |
}
|
|
2651 |
|
|
2652 |
|
|
2653 |
// ---- cache ----
|
|
2654 |
|
|
2655 |
TInt DMmcMediaDriverFlash::ReadDataUntilCacheExhausted(TBool* aAllDone)
|
|
2656 |
//
|
|
2657 |
// scans the cache for blocks corresponding to the range iReqCur to iReqEnd and
|
|
2658 |
// writes them to user memory. Starts at iReqCur & ~iBlkMsk and looks for blocks
|
|
2659 |
// at sequential media positions. Completes when a block is not available, even
|
|
2660 |
// if a following block is available in the cache. *aAllDone is undefined if the
|
|
2661 |
// return value is not KErrNone.
|
|
2662 |
//
|
|
2663 |
// This function is linear in the number of blocks in the cache.
|
|
2664 |
//
|
|
2665 |
{
|
|
2666 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:rdc:%x,%x", iReqCur, iReqEnd));
|
|
2667 |
|
|
2668 |
#if defined(__DEMAND_PAGING__) && !defined(__WINS__)
|
|
2669 |
if (DMediaPagingDevice::PageInRequest(*iCurrentReq))
|
|
2670 |
{
|
|
2671 |
*aAllDone = EFalse;
|
|
2672 |
return KErrNone;
|
|
2673 |
}
|
|
2674 |
#endif //DEMAND_PAGING
|
|
2675 |
|
|
2676 |
TInt64 physStart = iReqCur & ~iBlkMsk;
|
|
2677 |
TInt64 physEnd = Min(physStart + iMaxBufSize, (iReqEnd + iBlkMsk) & ~iBlkMsk);
|
|
2678 |
BuildGammaArray(physStart, physEnd);
|
|
2679 |
|
|
2680 |
TInt r = KErrNone;
|
|
2681 |
TInt curBlk = 0;
|
|
2682 |
TInt cchBlk;
|
|
2683 |
while (
|
|
2684 |
r == KErrNone
|
|
2685 |
&& physStart + (curBlk << iBlkLenLog2) < physEnd
|
|
2686 |
&& (cchBlk = iGamma[curBlk]) != KNoCacheBlock )
|
|
2687 |
{
|
|
2688 |
// set up instance variables for WriteDataToUser()
|
|
2689 |
iPhysStart = physStart + (curBlk << iBlkLenLog2);
|
|
2690 |
iPhysEnd = iPhysStart + iBlkLen;
|
|
2691 |
iIntBuf = IdxToCchMem(cchBlk);
|
|
2692 |
|
|
2693 |
if ((r = WriteDataToUser(&iIntBuf[I64LOW(iReqCur - iPhysStart)])) == KErrNone)
|
|
2694 |
{
|
|
2695 |
iReqCur = iPhysEnd;
|
|
2696 |
iLstUsdCchEnt = iGamma[curBlk];
|
|
2697 |
++curBlk;
|
|
2698 |
}
|
|
2699 |
}
|
|
2700 |
|
|
2701 |
*aAllDone = (iReqCur >= iReqEnd);
|
|
2702 |
|
|
2703 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:rdc:%d,%d", *aAllDone, r));
|
|
2704 |
return r;
|
|
2705 |
}
|
|
2706 |
|
|
2707 |
|
|
2708 |
TInt DMmcMediaDriverFlash::WriteDataToUser(TUint8* aBufPtr)
|
|
2709 |
//
|
|
2710 |
// write the data from the most recent read operation to the user descriptor
|
|
2711 |
//
|
|
2712 |
{
|
|
2713 |
TInt r = KErrNotSupported;
|
|
2714 |
|
|
2715 |
// get range of data to read out of internal buffer
|
|
2716 |
|
|
2717 |
TInt len = I64LOW(UMin(iPhysEnd, iReqEnd) - iReqCur);
|
|
2718 |
TPtrC8 extrView(aBufPtr, len);
|
|
2719 |
|
|
2720 |
// write data from internal buffer
|
|
2721 |
TUint usrOfst = I64LOW(iReqCur - iReqStart);
|
|
2722 |
|
|
2723 |
#if defined(__DEMAND_PAGING__) && !defined(__WINS__)
|
|
2724 |
if (DMediaPagingDevice::PageInRequest(*iCurrentReq))
|
|
2725 |
r=iCurrentReq->WriteToPageHandler((TUint8 *)(&extrView[0]), len, usrOfst);
|
|
2726 |
else
|
|
2727 |
#endif // __DEMAND_PAGING__
|
|
2728 |
r = iCurrentReq->WriteRemote(&extrView,usrOfst);
|
|
2729 |
|
|
2730 |
return r;
|
|
2731 |
}
|
|
2732 |
|
|
2733 |
TInt DMmcMediaDriverFlash::ReadDataFromUser(TDes8& aDes, TInt aOffset)
|
|
2734 |
{
|
|
2735 |
#ifndef __WINS__
|
|
2736 |
if (DMediaPagingDevice::PageOutRequest(*iCurrentReq))
|
|
2737 |
return iCurrentReq->ReadFromPageHandler((TAny*) aDes.Ptr(), aDes.MaxLength(), aOffset);
|
|
2738 |
else
|
|
2739 |
#endif // #ifndef __WINS__
|
|
2740 |
return iCurrentReq->ReadRemote(&aDes, aOffset);
|
|
2741 |
}
|
|
2742 |
|
|
2743 |
TInt DMmcMediaDriverFlash::AdjustPhysicalFragment(TPhysAddr &aPhysAddr, TInt &aPhysLength)
|
|
2744 |
//
|
|
2745 |
// Retrieve next Physical memory fragment and adjust the start pointer and length with
|
|
2746 |
// respect to the set offset {iFragOfset}.
|
|
2747 |
// Note the offset may encompass multiple memory fragments.
|
|
2748 |
//
|
|
2749 |
{
|
|
2750 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:APF"));
|
|
2751 |
|
|
2752 |
TInt err = KErrNone;
|
|
2753 |
TInt offset = iFragOfset;
|
|
2754 |
|
|
2755 |
do
|
|
2756 |
{
|
|
2757 |
err = iCurrentReq->GetNextPhysicalAddress(aPhysAddr, aPhysLength);
|
|
2758 |
|
|
2759 |
if (err != KErrNone)
|
|
2760 |
return err;
|
|
2761 |
|
|
2762 |
if (offset >= aPhysLength) // more offset than in this physical chunk
|
|
2763 |
{
|
|
2764 |
offset -= aPhysLength;
|
|
2765 |
}
|
|
2766 |
else
|
|
2767 |
{
|
|
2768 |
// offset < physLength
|
|
2769 |
// offset lies within the memory chunk
|
|
2770 |
// Adjust length and address for first transfer
|
|
2771 |
aPhysLength -= offset;
|
|
2772 |
aPhysAddr += offset;
|
|
2773 |
offset = -1;
|
|
2774 |
}
|
|
2775 |
|
|
2776 |
} while (offset >= 0);
|
|
2777 |
|
|
2778 |
iFragOfset = 0; // reset offset now complete
|
|
2779 |
|
|
2780 |
if (aPhysAddr == 0)
|
|
2781 |
{
|
|
2782 |
return KErrNoMemory;
|
|
2783 |
}
|
|
2784 |
|
|
2785 |
#ifdef _DEBUG
|
|
2786 |
// DMAHelper ensures memory is dma aligned
|
|
2787 |
if ( (aPhysAddr & (iSocket->DmaAlignment()-1) ) )
|
|
2788 |
{
|
|
2789 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("mmd:lr:Memory Fragment Not Word Aligned!"));
|
|
2790 |
Panic(ENotDMAAligned);
|
|
2791 |
}
|
|
2792 |
#endif //_DEBUG
|
|
2793 |
|
|
2794 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:APF physAddr(0x%x), physLength(%d)",aPhysAddr, aPhysLength));
|
|
2795 |
return err;
|
|
2796 |
}
|
|
2797 |
|
|
2798 |
TInt DMmcMediaDriverFlash::PrepareFirstPhysicalFragment(TPhysAddr &aPhysAddr, TInt &aPhysLength, TUint32 aLength)
|
|
2799 |
//
|
|
2800 |
// Retrieves the first Physical memory fragment and determines the type of the next transfer
|
|
2801 |
// Next transfer may either be the last block (end not block aligned) or a block may straddle
|
|
2802 |
// memory fragments.
|
|
2803 |
//
|
|
2804 |
{
|
|
2805 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:PFPF"));
|
|
2806 |
TInt r = KErrNone;
|
|
2807 |
|
|
2808 |
r = AdjustPhysicalFragment(aPhysAddr, aPhysLength);
|
|
2809 |
|
|
2810 |
if (r == KErrNone)
|
|
2811 |
{
|
|
2812 |
TUint len = I64LOW(iReqEnd & iBlkMsk);
|
|
2813 |
if ( ((TUint32)aPhysLength >= aLength) && len )
|
|
2814 |
{
|
|
2815 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:PFPF-end block"));
|
|
2816 |
//next iteration will be an IPC for the end block
|
|
2817 |
//There is enough space in physical memory to fit
|
|
2818 |
//the extended read, but exceeds boundary for this request.
|
|
2819 |
iIPCLen = len;
|
|
2820 |
iRdROB |= KIPCSetup; // IPC setup for next iteration
|
|
2821 |
aPhysLength -= len;
|
|
2822 |
}
|
|
2823 |
|
|
2824 |
if (aPhysLength & iBlkMsk)
|
|
2825 |
{
|
|
2826 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:PFPF-straddles boundary"));
|
|
2827 |
// block must be straddling a fragment boundary
|
|
2828 |
// Next iteration must be an IPC
|
|
2829 |
iRdROB |= KIPCSetup;
|
|
2830 |
|
|
2831 |
// Calculate the offset into the next memory block
|
|
2832 |
iFragOfset = I64LOW(iBlkLen - (aPhysLength & iBlkMsk));
|
|
2833 |
aPhysLength &= ~iBlkMsk;
|
|
2834 |
}
|
|
2835 |
}
|
|
2836 |
|
|
2837 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:PFPF err(%d), physAddr(0x%x), physLength(%d)",r, aPhysAddr, aPhysLength));
|
|
2838 |
return r;
|
|
2839 |
}
|
|
2840 |
|
|
2841 |
|
|
2842 |
void DMmcMediaDriverFlash::PrepareNextPhysicalFragment()
|
|
2843 |
//
|
|
2844 |
// Retrieves next Physical memory fragment and determines the type of the next transfer
|
|
2845 |
// Next transfer may either be the last block (end not block aligned) or a block may straddle
|
|
2846 |
// memory fragments.
|
|
2847 |
//
|
|
2848 |
{
|
|
2849 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:PNPF"));
|
|
2850 |
TInt err = KErrNone;
|
|
2851 |
TPhysAddr physAddr = 0;
|
|
2852 |
TInt physLength = 0;
|
|
2853 |
|
|
2854 |
err = AdjustPhysicalFragment(physAddr, physLength);
|
|
2855 |
|
|
2856 |
if (err == KErrNone)
|
|
2857 |
{
|
|
2858 |
if (iPhysEnd+physLength >= iReqEnd)
|
|
2859 |
{
|
|
2860 |
//Last physical transfer ...
|
|
2861 |
TUint len = I64LOW(iReqEnd & iBlkMsk);
|
|
2862 |
if (len)
|
|
2863 |
{
|
|
2864 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:PNPF-end block"));
|
|
2865 |
// end point not block aligned!
|
|
2866 |
// next iteration must be an IPC call
|
|
2867 |
iRdROB |= KIPCSetup;
|
|
2868 |
iIPCLen = len;
|
|
2869 |
physLength -= len;
|
|
2870 |
}
|
|
2871 |
else{
|
|
2872 |
physLength = I64LOW(iDbEnd - iPhysEnd);
|
|
2873 |
}
|
|
2874 |
}
|
|
2875 |
|
|
2876 |
if (physLength & iBlkMsk)
|
|
2877 |
{
|
|
2878 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:PNPF-straddles boundary"));
|
|
2879 |
// block must be straddling a fragment boundary
|
|
2880 |
// Next iteration must be an IPC
|
|
2881 |
iRdROB |= KIPCSetup;
|
|
2882 |
|
|
2883 |
// Calculate the offset into the next memory block
|
|
2884 |
iFragOfset = I64LOW(iBlkLen - (physLength & iBlkMsk));
|
|
2885 |
physLength &= ~iBlkMsk;
|
|
2886 |
}
|
|
2887 |
|
|
2888 |
iPhysEnd += physLength;
|
|
2889 |
}
|
|
2890 |
|
|
2891 |
iSession->MoreDataAvailable( (physLength >> KDiskSectorShift), (TUint8*) physAddr, err);
|
|
2892 |
iSecondBuffer = EFalse;
|
|
2893 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:PNPF"));
|
|
2894 |
}
|
|
2895 |
|
|
2896 |
TUint8* DMmcMediaDriverFlash::ReserveReadBlocks(TInt64 aStart, TInt64 aEnd, TUint32* aLength)
|
|
2897 |
//
|
|
2898 |
// Assume the cache has been drained before this function is called and so
|
|
2899 |
// the first block is not in the cache. The length of the allocated range is
|
|
2900 |
// either aEnd - aStart, or enough blocks such that the next block to read
|
|
2901 |
// is already available in the cache, and so will be read when
|
|
2902 |
// ReadDataUntilCacheExhausted() is called from the callback DFC.
|
|
2903 |
//
|
|
2904 |
{
|
|
2905 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:rrb:%lx,%lx", aStart, aEnd));
|
|
2906 |
|
|
2907 |
__ASSERT_DEBUG((aStart & iBlkMsk) == 0, Panic(ERRBStAlign));
|
|
2908 |
__ASSERT_DEBUG(TotalSizeInBytes() > aStart, Panic(ERRBStPos));
|
|
2909 |
__ASSERT_DEBUG(aEnd > aStart, Panic(ERRBNotPositive));
|
|
2910 |
__ASSERT_DEBUG((aEnd & iBlkMsk) == 0, Panic(ERRBEndAlign));
|
|
2911 |
__ASSERT_DEBUG(TotalSizeInBytes() >= aEnd, Panic(ERRBEndPos));
|
|
2912 |
__ASSERT_DEBUG(!iDoDoubleBuffer, Panic(ENoDBSupport));
|
|
2913 |
__ASSERT_CACHE(CacheInvariant(), Panic(ERRBCchInv));
|
|
2914 |
__ASSERT_CACHE(GetCachedBlock(aStart & ~iBlkMsk) == 0, Panic(ERRBExist));
|
|
2915 |
|
|
2916 |
TUint8* raby;
|
|
2917 |
|
|
2918 |
BuildGammaArray(aStart, aEnd);
|
|
2919 |
|
|
2920 |
// reposition start index at 0 if the full range would run off the end of the
|
|
2921 |
// buffer. This is heuristic - enabling a longer multi-block may cost some
|
|
2922 |
// cached reads. However, assume long reads do not generally re-read the same
|
|
2923 |
// data, and are used for streaming large amounts of data into memory.
|
|
2924 |
|
|
2925 |
const TInt blocksInRange = I64LOW((aEnd - aStart) >> iBlkLenLog2);
|
|
2926 |
TInt startIndex = (iLstUsdCchEnt + 1) % iBlocksInBuffer;
|
|
2927 |
if (startIndex + blocksInRange > iBlocksInBuffer)
|
|
2928 |
startIndex = 0;
|
|
2929 |
|
|
2930 |
// starting at startIndex, increase the range until it covers aEnd - aStart,
|
|
2931 |
// or until the next block to read is available in the cache.
|
|
2932 |
|
|
2933 |
TInt blkCnt = 0;
|
|
2934 |
TBool finished;
|
|
2935 |
do
|
|
2936 |
{
|
|
2937 |
finished = (
|
|
2938 |
// range allocated for entire read
|
|
2939 |
blkCnt == blocksInRange
|
|
2940 |
// next block already exists in buffer and has not been overwritten
|
|
2941 |
// by existing multi-block read
|
|
2942 |
|| ( iGamma[blkCnt] != KNoCacheBlock
|
|
2943 |
&& ( iGamma[blkCnt] < startIndex
|
|
2944 |
|| iGamma[blkCnt] >= startIndex + blkCnt ) ) );
|
|
2945 |
|
|
2946 |
if (! finished)
|
|
2947 |
++blkCnt;
|
|
2948 |
} while (! finished);
|
|
2949 |
|
|
2950 |
iLstUsdCchEnt = startIndex + blkCnt - 1;
|
|
2951 |
|
|
2952 |
if (blkCnt < 1) blkCnt = 1; //RBW required < 1 block to be read
|
|
2953 |
|
|
2954 |
TUint32 lengthInBytes = blkCnt << iBlkLenLog2;
|
|
2955 |
*aLength = lengthInBytes;
|
|
2956 |
MarkBlocks(aStart, aStart + lengthInBytes, startIndex);
|
|
2957 |
|
|
2958 |
raby = IdxToCchMem(startIndex);
|
|
2959 |
|
|
2960 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:rrb:%x", (TUint32) raby));
|
|
2961 |
|
|
2962 |
return raby;
|
|
2963 |
}
|
|
2964 |
|
|
2965 |
|
|
2966 |
TUint8* DMmcMediaDriverFlash::ReserveWriteBlocks(TInt64 aStart, TInt64 aEnd, TUint* aRBM)
|
|
2967 |
//
|
|
2968 |
// reserve a range of blocks in the buffer. If the block containing aStart or aEnd
|
|
2969 |
// are already in the buffer, attempts to position on them. This can save one or two
|
|
2970 |
// RBMs for writes.
|
|
2971 |
//
|
|
2972 |
// This function is linear in the number of blocks - it runs through the array
|
|
2973 |
// exactly twice.
|
|
2974 |
//
|
|
2975 |
// aStart and aEnd are not necessarily block aligned - the function uses alignment
|
|
2976 |
// information to minimize RBMs.
|
|
2977 |
//
|
|
2978 |
{
|
|
2979 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:rwb:%lx,%lx", aStart, aEnd));
|
|
2980 |
|
|
2981 |
TInt64 physStart = aStart & ~iBlkMsk;
|
|
2982 |
TInt64 physEnd = (aEnd + iBlkMsk) & ~iBlkMsk;
|
|
2983 |
|
|
2984 |
__ASSERT_DEBUG(TotalSizeInBytes() > physStart, Panic(ERWBStPos));
|
|
2985 |
__ASSERT_DEBUG(aEnd > aStart, Panic(ERWBNotPositive));
|
|
2986 |
__ASSERT_DEBUG(TotalSizeInBytes() >= physEnd, Panic(ERWBEndPos));
|
|
2987 |
__ASSERT_DEBUG(iDoPhysicalAddress || iDoDoubleBuffer || (!iDoDoubleBuffer && !iDoPhysicalAddress && physEnd - physStart <= (TInt64)iMaxBufSize), Panic(ERWBOverflow));
|
|
2988 |
__ASSERT_CACHE(CacheInvariant(), Panic(ERWBCchInv));
|
|
2989 |
|
|
2990 |
const TBool firstPartial = (aStart & iBlkMsk) != 0;
|
|
2991 |
const TBool lastPartial = (aEnd & iBlkMsk) != 0;
|
|
2992 |
|
|
2993 |
const TInt blkCnt = I64LOW((physEnd - physStart) >> iBlkLenLog2);
|
|
2994 |
|
|
2995 |
TBool startUsed = EFalse;
|
|
2996 |
TBool endUsed = EFalse;
|
|
2997 |
|
|
2998 |
TUint8* raby = NULL;
|
|
2999 |
|
|
3000 |
if(iDoDoubleBuffer)
|
|
3001 |
{
|
|
3002 |
//
|
|
3003 |
// If we're double-buffering, then the entire cache will be re-used
|
|
3004 |
// continuously. Rather than continually reserve blocks during each
|
|
3005 |
// transfer we calculate the blocks that will be present after all
|
|
3006 |
// transfers have completed.
|
|
3007 |
//
|
|
3008 |
InvalidateCache();
|
|
3009 |
raby = iCacheBuf;
|
|
3010 |
}
|
|
3011 |
else
|
|
3012 |
{
|
|
3013 |
TInt idx;
|
|
3014 |
|
|
3015 |
// check if the first or last blocks are already in the buffer.
|
|
3016 |
TInt fst = -1, lst = -1;
|
|
3017 |
const TInt64 lstBlk = physEnd - iBlkLen;
|
|
3018 |
TInt i;
|
|
3019 |
for (i = 0; i < iBlocksInBuffer; ++i)
|
|
3020 |
{
|
|
3021 |
if (iCachedBlocks[i] == physStart)
|
|
3022 |
fst = i;
|
|
3023 |
|
|
3024 |
if (iCachedBlocks[i] == lstBlk)
|
|
3025 |
lst = i;
|
|
3026 |
}
|
|
3027 |
|
|
3028 |
const TBool firstUsable = (fst != -1) && (iBlocksInBuffer - fst) >= blkCnt;
|
|
3029 |
const TBool lastUsable = (lst != -1) && lst >= (blkCnt - 1);
|
|
3030 |
|
|
3031 |
if (iDoPhysicalAddress)
|
|
3032 |
{
|
|
3033 |
if ( (firstPartial || lastPartial) && blkCnt <= 2)
|
|
3034 |
{
|
|
3035 |
//Physical addressing not to be used.
|
|
3036 |
//more efficent to use local Cache copying
|
|
3037 |
iDoPhysicalAddress = EFalse;
|
|
3038 |
return raby;
|
|
3039 |
}
|
|
3040 |
else
|
|
3041 |
{
|
|
3042 |
raby = iMinorBuf;
|
|
3043 |
|
|
3044 |
const TBool firstPres = (fst != -1);
|
|
3045 |
const TBool lastPres = (lst != -1);
|
|
3046 |
|
|
3047 |
if (firstPartial && firstPres)
|
|
3048 |
{
|
|
3049 |
// move to minor buffer
|
|
3050 |
memcpy(iMinorBuf, IdxToCchMem(fst), iBlkLen);
|
|
3051 |
}
|
|
3052 |
if (lastPartial && lastPres)
|
|
3053 |
{
|
|
3054 |
// move to beginning of cache
|
|
3055 |
memcpy(iCacheBuf, IdxToCchMem(lst), iBlkLen);
|
|
3056 |
}
|
|
3057 |
|
|
3058 |
InvalidateCache(physStart,physEnd);
|
|
3059 |
|
|
3060 |
if (lastPartial)
|
|
3061 |
{
|
|
3062 |
//re-mark beginning of cache
|
|
3063 |
MarkBlocks((physEnd-iBlkLen), physEnd, 0);
|
|
3064 |
}
|
|
3065 |
|
|
3066 |
if (aRBM)
|
|
3067 |
{
|
|
3068 |
*aRBM = 0;
|
|
3069 |
|
|
3070 |
if (firstPartial)
|
|
3071 |
*aRBM |= KWtMinFst;
|
|
3072 |
|
|
3073 |
if (firstPartial && !firstPres)
|
|
3074 |
*aRBM |= KWtRBMFst;
|
|
3075 |
|
|
3076 |
if (lastPartial)
|
|
3077 |
*aRBM |= KWtMinLst;
|
|
3078 |
|
|
3079 |
if (lastPartial && !lastPres)
|
|
3080 |
*aRBM |= KWtRBMLst;
|
|
3081 |
}
|
|
3082 |
|
|
3083 |
return raby;
|
|
3084 |
}
|
|
3085 |
} // if (iDoPhysicalAddress)
|
|
3086 |
|
|
3087 |
if (!firstUsable && !lastUsable)
|
|
3088 |
{
|
|
3089 |
if(iDoDoubleBuffer)
|
|
3090 |
{
|
|
3091 |
idx = iSecondBuffer ? iBlocksInBuffer >> 1 : 0;
|
|
3092 |
}
|
|
3093 |
else
|
|
3094 |
{
|
|
3095 |
idx = (iLstUsdCchEnt + 1) % iBlocksInBuffer;
|
|
3096 |
if (idx + blkCnt > iBlocksInBuffer)
|
|
3097 |
idx = 0;
|
|
3098 |
}
|
|
3099 |
}
|
|
3100 |
else if (firstUsable && ! lastUsable)
|
|
3101 |
{
|
|
3102 |
idx = fst;
|
|
3103 |
}
|
|
3104 |
else if (! firstUsable && lastUsable)
|
|
3105 |
{
|
|
3106 |
idx = lst - (blkCnt - 1);
|
|
3107 |
}
|
|
3108 |
else // (lastUsable && firstUsable)
|
|
3109 |
{
|
|
3110 |
if (firstPartial || ! lastPartial)
|
|
3111 |
idx = fst;
|
|
3112 |
else
|
|
3113 |
idx = lst - (blkCnt - 1);
|
|
3114 |
}
|
|
3115 |
|
|
3116 |
MarkBlocks(physStart, physEnd, idx);
|
|
3117 |
|
|
3118 |
// if the range started or ended on a partial block, but could not
|
|
3119 |
// be allocated on that existing block, and the existing block is
|
|
3120 |
// somewhere in the cache, then memcpy() that block to the end of the
|
|
3121 |
// range. used is not the same as usable - both the start and end
|
|
3122 |
// blocks may be usable, through not in the same range, or any range.
|
|
3123 |
|
|
3124 |
const TInt startExtent = I64LOW(aStart & iBlkMsk);
|
|
3125 |
TBool firstInTemp = EFalse;
|
|
3126 |
startUsed = (idx == fst);
|
|
3127 |
if (! startUsed && firstPartial && fst != -1)
|
|
3128 |
{
|
|
3129 |
// if the range has started at index occupied by the last block then
|
|
3130 |
// temporarily copy to minor buffer. This is unnecessary when the
|
|
3131 |
// last block is not partial because the last block does not need to
|
|
3132 |
// be preserved.
|
|
3133 |
|
|
3134 |
if (idx == lst && lastPartial)
|
|
3135 |
{
|
|
3136 |
firstInTemp = ETrue;
|
|
3137 |
memcpy(iMinorBuf, IdxToCchMem(fst), startExtent);
|
|
3138 |
}
|
|
3139 |
else
|
|
3140 |
{
|
|
3141 |
memcpy(IdxToCchMem(idx), IdxToCchMem(fst), startExtent);
|
|
3142 |
}
|
|
3143 |
|
|
3144 |
startUsed = ETrue;
|
|
3145 |
}
|
|
3146 |
|
|
3147 |
endUsed = (idx + blkCnt - 1 == lst);
|
|
3148 |
if (! endUsed && lastPartial && lst != -1)
|
|
3149 |
{
|
|
3150 |
const TInt endOffset = I64LOW(aEnd & iBlkMsk);
|
|
3151 |
const TInt endExtent = iBlkLen - endOffset;
|
|
3152 |
memcpy(IdxToCchMem(idx + blkCnt - 1) + endOffset, IdxToCchMem(lst) + endOffset, endExtent);
|
|
3153 |
endUsed = ETrue;
|
|
3154 |
}
|
|
3155 |
|
|
3156 |
if (firstInTemp)
|
|
3157 |
memcpy(IdxToCchMem(idx), iMinorBuf, startExtent);
|
|
3158 |
|
|
3159 |
// start reclaiming at block following this range
|
|
3160 |
iLstUsdCchEnt = idx + blkCnt - 1;
|
|
3161 |
raby = IdxToCchMem(idx);
|
|
3162 |
}
|
|
3163 |
|
|
3164 |
// work out if read-before-write required
|
|
3165 |
if (aRBM)
|
|
3166 |
{
|
|
3167 |
*aRBM = 0;
|
|
3168 |
// first index was not already in range, and does not start on block boundary
|
|
3169 |
if (firstPartial && ! startUsed)
|
|
3170 |
*aRBM |= KWtRBMFst;
|
|
3171 |
|
|
3172 |
// last index was not already in range, and does not end on block boundary
|
|
3173 |
if (lastPartial && ! endUsed)
|
|
3174 |
*aRBM |= KWtRBMLst;
|
|
3175 |
|
|
3176 |
// only use one pre-read if contained in single block
|
|
3177 |
if (blkCnt == 1 && *aRBM == (KWtRBMFst | KWtRBMLst))
|
|
3178 |
*aRBM = KWtRBMFst;
|
|
3179 |
|
|
3180 |
//
|
|
3181 |
// When double-buffering, RMW for the last block is stored in the
|
|
3182 |
// minor buffer and writen during the last transfer, so flag this
|
|
3183 |
// seperately (as aRBM is used for the initial RMW Read then subsequently cleared).
|
|
3184 |
//
|
|
3185 |
if(iDoDoubleBuffer && (*aRBM & KWtRBMLst))
|
|
3186 |
iDoLastRMW = ETrue;
|
|
3187 |
}
|
|
3188 |
|
|
3189 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:rwb:%x", (TUint32) raby));
|
|
3190 |
|
|
3191 |
return raby;
|
|
3192 |
}
|
|
3193 |
|
|
3194 |
void DMmcMediaDriverFlash::MarkBlocks(TInt64 aStart, TInt64 aEnd, TInt aStartIndex)
|
|
3195 |
//
|
|
3196 |
// mark range of blocks for media range. If existing cache entries for any part of
|
|
3197 |
// the cache are already in the buffer they are invalidated.
|
|
3198 |
//
|
|
3199 |
{
|
|
3200 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("=mmd:mb:%lx,%lx,%d", aStart, aEnd, aStartIndex));
|
|
3201 |
|
|
3202 |
__ASSERT_DEBUG(TotalSizeInBytes() > aStart, Panic(EMBStPos));
|
|
3203 |
__ASSERT_DEBUG((aStart & iBlkMsk) == 0, Panic(EMBStAlign));
|
|
3204 |
__ASSERT_DEBUG(aEnd > aStart, Panic(EMBNotPositive));
|
|
3205 |
__ASSERT_DEBUG(TotalSizeInBytes() >= aEnd, Panic(EMBEndPos));
|
|
3206 |
__ASSERT_DEBUG((aEnd & iBlkMsk) == 0, Panic(EMBEndAlign));
|
|
3207 |
__ASSERT_DEBUG(aStartIndex + (TInt)((aEnd - aStart) >> iBlkLenLog2) <= iBlocksInBuffer, Panic(EMBOverflow));
|
|
3208 |
__ASSERT_CACHE(CacheInvariant(), Panic(EMBCchInvPre));
|
|
3209 |
|
|
3210 |
TInt i;
|
|
3211 |
|
|
3212 |
for (i = 0; i < aStartIndex; ++i)
|
|
3213 |
{
|
|
3214 |
if (iCachedBlocks[i] >= aStart && iCachedBlocks[i] < aEnd)
|
|
3215 |
iCachedBlocks[i] = KInvalidBlock;
|
|
3216 |
}
|
|
3217 |
|
|
3218 |
TInt blkCnt = I64LOW((aEnd - aStart) >> iBlkLenLog2);
|
|
3219 |
for (i = aStartIndex; i < aStartIndex + blkCnt; ++i)
|
|
3220 |
iCachedBlocks[i] = aStart + (static_cast<TUint32>(i - aStartIndex) << iBlkLenLog2);
|
|
3221 |
|
|
3222 |
for (i = aStartIndex + blkCnt; i < iBlocksInBuffer; ++i)
|
|
3223 |
{
|
|
3224 |
if (iCachedBlocks[i] >= aStart && iCachedBlocks[i] < aEnd)
|
|
3225 |
iCachedBlocks[i] = KInvalidBlock;
|
|
3226 |
}
|
|
3227 |
|
|
3228 |
__ASSERT_CACHE(CacheInvariant(), Panic(EMBCchInvPost));
|
|
3229 |
}
|
|
3230 |
|
|
3231 |
|
|
3232 |
void DMmcMediaDriverFlash::BuildGammaArray(TInt64 aStart, TInt64 aEnd)
|
|
3233 |
//
|
|
3234 |
// iGamma is an array of indexes that correspond to cached blocks starting
|
|
3235 |
// from aStart. iGamma[0] is the index of aStart, iGamma[1] is the index of
|
|
3236 |
// aStart + iBlkLen, and so on. Building an array here means that all of
|
|
3237 |
// the available cached entries can be found in linear time instead of
|
|
3238 |
// quadratically searching through the array for each block.
|
|
3239 |
//
|
|
3240 |
{
|
|
3241 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("=mmd:bga:%lx,%lx", aStart, aEnd));
|
|
3242 |
|
|
3243 |
__ASSERT_DEBUG(TotalSizeInBytes() > aStart, Panic(EBGAStPos));
|
|
3244 |
__ASSERT_DEBUG((aStart & iBlkMsk) == 0, Panic(EBGAStAlign));
|
|
3245 |
__ASSERT_DEBUG(aEnd > aStart, Panic(EBGANotPositive));
|
|
3246 |
__ASSERT_DEBUG(TotalSizeInBytes() >= aEnd, Panic(EBGAEndPos));
|
|
3247 |
__ASSERT_DEBUG((aEnd & iBlkMsk) == 0, Panic(EBGAEndAlign));
|
|
3248 |
__ASSERT_DEBUG(aEnd - aStart <= (TInt64) iMaxBufSize, Panic(EBGAOverflow));
|
|
3249 |
__ASSERT_CACHE(CacheInvariant(), Panic(EBGACchInv));
|
|
3250 |
|
|
3251 |
// KNoCacheBlock = (0xff) x 4
|
|
3252 |
TUint blocksInRange = I64LOW((aEnd - aStart) >> iBlkLenLog2);
|
|
3253 |
memset(iGamma, 0xff, sizeof(*iGamma) * blocksInRange);
|
|
3254 |
|
|
3255 |
TInt64 blkAddr = 0;
|
|
3256 |
for (TInt i = 0; ( (blocksInRange > 0 ) && (i < iBlocksInBuffer) ); ++i)
|
|
3257 |
{
|
|
3258 |
blkAddr = iCachedBlocks[i];
|
|
3259 |
if (blkAddr >= aStart && blkAddr < aEnd)
|
|
3260 |
{
|
|
3261 |
iGamma[I64LOW((blkAddr - aStart) >> iBlkLenLog2)] = i;
|
|
3262 |
blocksInRange--;
|
|
3263 |
}
|
|
3264 |
}
|
|
3265 |
}
|
|
3266 |
|
|
3267 |
void DMmcMediaDriverFlash::InvalidateCache()
|
|
3268 |
{
|
|
3269 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("=mmd:ich"));
|
|
3270 |
|
|
3271 |
// KInvalidBlock = (0xff) x 4
|
|
3272 |
memset(iCachedBlocks, 0xff, sizeof(*iCachedBlocks) * iBlocksInBuffer);
|
|
3273 |
}
|
|
3274 |
|
|
3275 |
// Invalidate any cache entries from aStart to aEnd
|
|
3276 |
// This is for DMA writes and is to prevent the cache becoming inconsistent with the media.
|
|
3277 |
void DMmcMediaDriverFlash::InvalidateCache(TInt64 aStart, TInt64 aEnd)
|
|
3278 |
{
|
|
3279 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("=mmd:ich:%lx,%lx", aStart, aEnd));
|
|
3280 |
|
|
3281 |
__ASSERT_DEBUG(TotalSizeInBytes() > aStart, Panic(EBGAStPos));
|
|
3282 |
__ASSERT_DEBUG(aEnd > aStart, Panic(EBGANotPositive));
|
|
3283 |
__ASSERT_DEBUG(TotalSizeInBytes() >= aEnd, Panic(EBGAEndPos));
|
|
3284 |
|
|
3285 |
const TInt blkCnt = I64LOW((aStart - aEnd) >> iBlkLenLog2);
|
|
3286 |
|
|
3287 |
__ASSERT_CACHE(CacheInvariant(), Panic(EBGACchInv));
|
|
3288 |
|
|
3289 |
TInt64 endBlk = (blkCnt == 0) ? (aStart+iBlkLen) : aEnd;
|
|
3290 |
|
|
3291 |
for (TInt i = 0; i < iBlocksInBuffer; ++i)
|
|
3292 |
{
|
|
3293 |
const TInt64 blkAddr = iCachedBlocks[i];
|
|
3294 |
if (blkAddr >= aStart && blkAddr < endBlk)
|
|
3295 |
iCachedBlocks[i] = KInvalidBlock;
|
|
3296 |
}
|
|
3297 |
}
|
|
3298 |
|
|
3299 |
TUint8* DMmcMediaDriverFlash::IdxToCchMem(TInt aIdx) const
|
|
3300 |
{
|
|
3301 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("=mmd:icm:%d", aIdx));
|
|
3302 |
|
|
3303 |
__ASSERT_DEBUG(aIdx >= 0, Panic(EICMNegative));
|
|
3304 |
__ASSERT_DEBUG(aIdx < iBlocksInBuffer, Panic(EICMOverflow));
|
|
3305 |
|
|
3306 |
return &iCacheBuf[aIdx << iBlkLenLog2];
|
|
3307 |
}
|
|
3308 |
|
|
3309 |
TInt DMmcMediaDriverFlash::CchMemToIdx(TUint8* aMemP) const
|
|
3310 |
{
|
|
3311 |
__ASSERT_DEBUG((aMemP >= iCacheBuf) && (aMemP < iCacheBuf + (iBlocksInBuffer << iBlkLenLog2)), Panic(ECMIOverflow));
|
|
3312 |
|
|
3313 |
return((aMemP - iCacheBuf) >> iBlkLenLog2);
|
|
3314 |
}
|
|
3315 |
|
|
3316 |
#ifdef _DEBUG_CACHE
|
|
3317 |
TBool DMmcMediaDriverFlash::CacheInvariant()
|
|
3318 |
//
|
|
3319 |
// check each cache entry refers to a valid block and that no two
|
|
3320 |
// entries cover the same block. This algorithm is quadratic in
|
|
3321 |
// the cache length.
|
|
3322 |
//
|
|
3323 |
{
|
|
3324 |
for (TInt i = 0; i < iBlocksInBuffer; ++i)
|
|
3325 |
{
|
|
3326 |
if (iCachedBlocks[i] == KInvalidBlock)
|
|
3327 |
continue;
|
|
3328 |
|
|
3329 |
if ((iCachedBlocks[i] & iBlkMsk) != 0)
|
|
3330 |
return EFalse;
|
|
3331 |
|
|
3332 |
if (iCachedBlocks[i] >= TotalSizeInBytes())
|
|
3333 |
return EFalse;
|
|
3334 |
|
|
3335 |
for (TInt j = i + 1; j < iBlocksInBuffer; ++j)
|
|
3336 |
{
|
|
3337 |
if (iCachedBlocks[i] == iCachedBlocks[j])
|
|
3338 |
return EFalse;
|
|
3339 |
}
|
|
3340 |
}
|
|
3341 |
|
|
3342 |
return ETrue;
|
|
3343 |
}
|
|
3344 |
#endif
|
|
3345 |
|
|
3346 |
void DMmcMediaDriverFlash::NotifyPowerDown()
|
|
3347 |
{
|
|
3348 |
__KTRACE_OPT(KPBUSDRV,Kern::Printf(">Mmc:NotifyPowerDown"));
|
|
3349 |
|
|
3350 |
iSessionEndDfc.Cancel();
|
|
3351 |
iDataTransferCallBackDfc.Cancel();
|
|
3352 |
|
|
3353 |
EndInCritical();
|
|
3354 |
|
|
3355 |
// need to cancel the session as the stack doesn't take too kindly to having the same session engaged more than once.
|
|
3356 |
if (iSession)
|
|
3357 |
iStack->CancelSession(iSession);
|
|
3358 |
|
|
3359 |
CompleteRequest(KErrNotReady);
|
|
3360 |
iMedReq = EMReqIdle;
|
|
3361 |
}
|
|
3362 |
|
|
3363 |
void DMmcMediaDriverFlash::NotifyEmergencyPowerDown()
|
|
3364 |
{
|
|
3365 |
__KTRACE_OPT(KPBUSDRV,Kern::Printf(">Ata:NotifyEmergencyPowerDown"));
|
|
3366 |
|
|
3367 |
iSessionEndDfc.Cancel();
|
|
3368 |
iDataTransferCallBackDfc.Cancel();
|
|
3369 |
|
|
3370 |
TInt r=KErrNotReady;
|
|
3371 |
if (iCritical)
|
|
3372 |
r=KErrAbort;
|
|
3373 |
EndInCritical();
|
|
3374 |
|
|
3375 |
// need to cancel the session as the stack doesn't take too kindly to having the same session engaged more than once.
|
|
3376 |
if (iSession)
|
|
3377 |
iStack->CancelSession(iSession);
|
|
3378 |
|
|
3379 |
CompleteRequest(r);
|
|
3380 |
iMedReq = EMReqIdle;
|
|
3381 |
}
|
|
3382 |
|
|
3383 |
TInt DMmcMediaDriverFlash::Request(TLocDrvRequest& aRequest)
|
|
3384 |
{
|
|
3385 |
__KTRACE_OPT(KLOCDRV,Kern::Printf("MmcMd:Req %08x id %d",&aRequest,aRequest.Id()));
|
|
3386 |
TInt r=KErrNotSupported;
|
|
3387 |
TInt id=aRequest.Id();
|
|
3388 |
|
|
3389 |
#if defined (__TEST_PAGING_MEDIA_DRIVER__)
|
|
3390 |
DThread* client=aRequest.Client();
|
|
3391 |
__KTRACE_OPT(KLOCDPAGING,Kern::Printf("Client:0x%08x",client));
|
|
3392 |
#endif // __TEST_PAGING_MEDIA_DRIVER__
|
|
3393 |
|
|
3394 |
// First handle requests that can be handled without deferring
|
|
3395 |
if(id==DLocalDrive::ECaps)
|
|
3396 |
{
|
|
3397 |
TLocalDriveCapsV6& c = *(TLocalDriveCapsV6*)aRequest.RemoteDes();
|
|
3398 |
TLocDrv& drive = *aRequest.Drive();
|
|
3399 |
r = Caps(drive, c);
|
|
3400 |
c.iSize = drive.iPartitionLen;
|
|
3401 |
c.iPartitionType = drive.iPartitionType;
|
|
3402 |
c.iHiddenSectors = (TUint) (drive.iPartitionBaseAddr >> KDiskSectorShift);
|
|
3403 |
return r;
|
|
3404 |
}
|
|
3405 |
|
|
3406 |
// All other requests must be deferred if a request is currently in progress
|
|
3407 |
if (iCurrentReq)
|
|
3408 |
{
|
|
3409 |
|
|
3410 |
#if defined(__TEST_PAGING_MEDIA_DRIVER__)
|
|
3411 |
if (DMediaPagingDevice::PageInRequest(*iCurrentReq))
|
|
3412 |
iMmcStats.iReqPage++;
|
|
3413 |
else
|
|
3414 |
iMmcStats.iReqNormal++;
|
|
3415 |
#endif // __TEST_PAGING_MEDIA_DRIVER__
|
|
3416 |
|
|
3417 |
// a request is already in progress, so hold on to this one
|
|
3418 |
__KTRACE_OPT(KLOCDRV,Kern::Printf("MmcMd:Req %08x ret 1",&aRequest));
|
|
3419 |
return KMediaDriverDeferRequest;
|
|
3420 |
}
|
|
3421 |
else
|
|
3422 |
{
|
|
3423 |
iCurrentReq=&aRequest;
|
|
3424 |
TUint partitionType = iCurrentReq->Drive()->iPartitionType;
|
|
3425 |
TBool readOnly = (partitionType == KPartitionTypeRofs || partitionType == KPartitionTypeROM);
|
|
3426 |
|
|
3427 |
switch (id)
|
|
3428 |
{
|
|
3429 |
|
|
3430 |
|
|
3431 |
#if defined(__DEMAND_PAGING__)
|
|
3432 |
case DMediaPagingDevice::ERomPageInRequest:
|
|
3433 |
__KTRACE_OPT(KLOCDPAGING,Kern::Printf("DMediaDriverFlash::Request(ERomPageInRequest)"));
|
|
3434 |
BTraceContext8(BTrace::EPagingMedia,BTrace::EPagingMediaPagingMedDrvBegin,MEDIA_DEVICE_MMC,iCurrentReq);
|
|
3435 |
r=DoRead();
|
|
3436 |
break;
|
|
3437 |
case DMediaPagingDevice::ECodePageInRequest:
|
|
3438 |
__KTRACE_OPT(KLOCDPAGING,Kern::Printf("DMediaDriverFlash::Request(ECodePageInRequest)"));
|
|
3439 |
BTraceContext8(BTrace::EPagingMedia,BTrace::EPagingMediaPagingMedDrvBegin,MEDIA_DEVICE_MMC,iCurrentReq);
|
|
3440 |
r=DoRead();
|
|
3441 |
break;
|
|
3442 |
#endif // __DEMAND_PAGING__
|
|
3443 |
|
|
3444 |
case DLocalDrive::EQueryDevice:
|
|
3445 |
r = KErrNotSupported;
|
|
3446 |
break;
|
|
3447 |
|
|
3448 |
case DLocalDrive::ERead:
|
|
3449 |
r=DoRead();
|
|
3450 |
break;
|
|
3451 |
case DLocalDrive::EWrite:
|
|
3452 |
if (readOnly)
|
|
3453 |
return KErrNotSupported;
|
|
3454 |
r=DoWrite();
|
|
3455 |
break;
|
|
3456 |
case DLocalDrive::EFormat:
|
|
3457 |
if (readOnly)
|
|
3458 |
return KErrNotSupported;
|
|
3459 |
r=DoFormat();
|
|
3460 |
break;
|
|
3461 |
|
|
3462 |
#if defined __TEST_PAGING_MEDIA_DRIVER__
|
|
3463 |
case DLocalDrive::EControlIO:
|
|
3464 |
{
|
|
3465 |
r = HandleControlIORequest();
|
|
3466 |
break;
|
|
3467 |
}
|
|
3468 |
#endif
|
|
3469 |
|
|
3470 |
case DLocalDrive::EPasswordUnlock:
|
|
3471 |
case DLocalDrive::EPasswordLock:
|
|
3472 |
case DLocalDrive::EPasswordClear:
|
|
3473 |
// Don't allow passords on internal MMC; one reason is that this may be used for paging and
|
|
3474 |
// we can't really stop paging just because the password hasn't been supplied
|
|
3475 |
if (iInternalSlot)
|
|
3476 |
r = KErrNotSupported;
|
|
3477 |
else
|
|
3478 |
r = DoPasswordOp();
|
|
3479 |
break;
|
|
3480 |
case DLocalDrive::EPasswordErase:
|
|
3481 |
{
|
|
3482 |
r = LaunchRPIErase();
|
|
3483 |
// This will complete the request in the event of an error
|
|
3484 |
if(r != KErrNone)
|
|
3485 |
PartitionInfoComplete(r);
|
|
3486 |
|
|
3487 |
r = KErrNone; // ensures to indicate asynchronoous completion
|
|
3488 |
break;
|
|
3489 |
}
|
|
3490 |
case DLocalDrive::EWritePasswordStore:
|
|
3491 |
{
|
|
3492 |
//
|
|
3493 |
// If the card is ready and locked, request the stack to perform the
|
|
3494 |
// auto-unlock sequence. This is required, as the stack only performs
|
|
3495 |
// automatic unlocking during power-up, and the stack may already be powered.
|
|
3496 |
//
|
|
3497 |
r = KErrNone; // asynchronous completion
|
|
3498 |
|
|
3499 |
if(iCard->IsReady() && iCard->IsLocked())
|
|
3500 |
{
|
|
3501 |
iSession->SetupCIMAutoUnlock();
|
|
3502 |
if(EngageAndSetRequest(EMReqWritePasswordData, 0) != KErrNone)
|
|
3503 |
{
|
|
3504 |
// If error, complete with KErrNone anyway
|
|
3505 |
// - The password store has been set, any errors
|
|
3506 |
// will be reported on the next access.
|
|
3507 |
CompleteRequest(KErrNone);
|
|
3508 |
}
|
|
3509 |
}
|
|
3510 |
else
|
|
3511 |
{
|
|
3512 |
CompleteRequest(KErrNone);
|
|
3513 |
}
|
|
3514 |
break;
|
|
3515 |
}
|
|
3516 |
case DLocalDrive::EEnlarge:
|
|
3517 |
case DLocalDrive::EReduce:
|
|
3518 |
default:
|
|
3519 |
r=KErrNotSupported;
|
|
3520 |
break;
|
|
3521 |
}
|
|
3522 |
}
|
|
3523 |
|
|
3524 |
__KTRACE_OPT(KLOCDRV,Kern::Printf("MmcMd:Req %08x cmp %d",&aRequest,r));
|
|
3525 |
|
|
3526 |
if (r != KErrNone)
|
|
3527 |
{
|
|
3528 |
iMedReq = EMReqIdle;
|
|
3529 |
iCurrentReq=NULL;
|
|
3530 |
SetCurrentConsumption(KIdleCurrentInMilliAmps);
|
|
3531 |
}
|
|
3532 |
|
|
3533 |
return r;
|
|
3534 |
}
|
|
3535 |
|
|
3536 |
void DMmcMediaDriverFlash::Disconnect(DLocalDrive* aLocalDrive, TThreadMessage* aMsg)
|
|
3537 |
{
|
|
3538 |
// Complete using the default implementation
|
|
3539 |
DMediaDriver::Disconnect(aLocalDrive, aMsg);
|
|
3540 |
}
|
|
3541 |
|
|
3542 |
#ifdef _DEBUG_CACHE
|
|
3543 |
TUint8* DMmcMediaDriverFlash::GetCachedBlock(TInt64 aMdAddr)
|
|
3544 |
//
|
|
3545 |
// return cache block for media at aMdAddr, 0 if not found.
|
|
3546 |
// This is a debug function to determine whether or not a block is in
|
|
3547 |
// the cache. It should not be used for general block retrieval.
|
|
3548 |
// If there are m blocks in the cache, and n in the requested range,
|
|
3549 |
// this function is o(mn), whereas BuildGammaArray() is theta(m).
|
|
3550 |
//
|
|
3551 |
{
|
|
3552 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf(">mmd:gcb:%lx", aMdAddr));
|
|
3553 |
|
|
3554 |
__ASSERT_DEBUG((aMdAddr & iBlkMsk) == 0, Panic(EGCBAlign));
|
|
3555 |
__ASSERT_DEBUG(TotalSizeInBytes() > aMdAddr, Panic(EGCBPos));
|
|
3556 |
__ASSERT_CACHE(CacheInvariant(), Panic(EGCBCchInv));
|
|
3557 |
|
|
3558 |
for (TInt i = 0; i < iBlocksInBuffer; ++i)
|
|
3559 |
{
|
|
3560 |
if (iCachedBlocks[i] == aMdAddr)
|
|
3561 |
{
|
|
3562 |
TUint8* raby = IdxToCchMem(i);
|
|
3563 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:gcb:%x", (TUint32) raby));
|
|
3564 |
return raby;
|
|
3565 |
}
|
|
3566 |
}
|
|
3567 |
|
|
3568 |
__KTRACE_OPT(KPBUSDRV, Kern::Printf("<mmd:gcb:0"));
|
|
3569 |
return 0;
|
|
3570 |
}
|
|
3571 |
#endif // _DEBUG_CACHE
|
|
3572 |
|
|
3573 |
|
|
3574 |
#if defined(__TEST_PAGING_MEDIA_DRIVER__)
|
|
3575 |
/**
|
|
3576 |
Handles a ControlIO request to the MMC media driver.
|
|
3577 |
made by one of the MMC paging tests
|
|
3578 |
|
|
3579 |
@internalTechnology
|
|
3580 |
|
|
3581 |
@return Corresponding Symbian OS error code
|
|
3582 |
*/
|
|
3583 |
TInt DMmcMediaDriverFlash::HandleControlIORequest()
|
|
3584 |
{
|
|
3585 |
const TInt command = iCurrentReq->Int0();
|
|
3586 |
TAny* aParam1 = iCurrentReq->Ptr1();
|
|
3587 |
// TAny* aParam2 = iCurrentReq->Ptr2();
|
|
3588 |
|
|
3589 |
TInt r = KErrCompletion;
|
|
3590 |
|
|
3591 |
__KTRACE_OPT(KLOCDPAGING,Kern::Printf("[MD : ] HandleControlIORequest aCommand: 0x%x", command));
|
|
3592 |
|
|
3593 |
|
|
3594 |
switch (command)
|
|
3595 |
{
|
|
3596 |
case KMmcGetStats:
|
|
3597 |
{
|
|
3598 |
DThread* pC = iCurrentReq->Client();
|
|
3599 |
DThread* pT = iCurrentReq->RemoteThread();
|
|
3600 |
if (!pT)
|
|
3601 |
pT = pC;
|
|
3602 |
Kern::ThreadRawWrite(pT, aParam1, &iMmcStats, sizeof(iMmcStats), pC);
|
|
3603 |
|
|
3604 |
iMmcStats.iReqNormal=0;
|
|
3605 |
iMmcStats.iNormalFragmenting=0;
|
|
3606 |
iMmcStats.iClashFragmenting=0;
|
|
3607 |
|
|
3608 |
break;
|
|
3609 |
}
|
|
3610 |
default:
|
|
3611 |
r=KErrNotSupported;
|
|
3612 |
break;
|
|
3613 |
}
|
|
3614 |
|
|
3615 |
return r;
|
|
3616 |
}
|
|
3617 |
#endif // __TEST_PAGING_MEDIA_DRIVER__
|
|
3618 |
|
|
3619 |
|
|
3620 |
|
|
3621 |
|
|
3622 |
DECLARE_EXTENSION_PDD()
|
|
3623 |
{
|
|
3624 |
// NB if the media driver has been defined as a kernel extension in the .OBY/.IBY file
|
|
3625 |
// i.e the "extension" keyword has been used rather than "device", then an instance of
|
|
3626 |
// DPhysicalDeviceMediaMmcFlash will already have been created by InitExtension(). In this
|
|
3627 |
// case the kernel will see that an object of the same name already exists and delete the
|
|
3628 |
// new one.
|
|
3629 |
return new DPhysicalDeviceMediaMmcFlash;
|
|
3630 |
}
|
|
3631 |
DECLARE_STANDARD_EXTENSION()
|
|
3632 |
{
|
|
3633 |
__KTRACE_OPT(KBOOT,Kern::Printf("Creating MMCDrv PDD"));
|
|
3634 |
|
|
3635 |
DPhysicalDeviceMediaMmcFlash* device = new DPhysicalDeviceMediaMmcFlash;
|
|
3636 |
|
|
3637 |
TInt r;
|
|
3638 |
if (device==NULL)
|
|
3639 |
r=KErrNoMemory;
|
|
3640 |
else
|
|
3641 |
r=Kern::InstallPhysicalDevice(device);
|
|
3642 |
__KTRACE_OPT(KBOOT,Kern::Printf("Installing MMCDrv PDD in kernel returned %d",r));
|
|
3643 |
|
|
3644 |
__KTRACE_OPT(KBOOT,Kern::Printf("Mmc extension entry point drive returns %d",r));
|
|
3645 |
return r;
|
|
3646 |
}
|
|
3647 |
|
|
3648 |
|