0
|
1 |
// Copyright (c) 2006-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32\nkernsmp\x86\ncthrd.cpp
|
|
15 |
//
|
|
16 |
//
|
|
17 |
|
|
18 |
// NThreadBase member data
|
|
19 |
#define __INCLUDE_NTHREADBASE_DEFINES__
|
|
20 |
|
|
21 |
#include <x86.h>
|
|
22 |
#include <apic.h>
|
|
23 |
#include <nk_irq.h>
|
|
24 |
|
|
25 |
// Called by a thread when it first runs
|
|
26 |
void __StartThread();
|
|
27 |
|
|
28 |
void NThreadBase::OnKill()
|
|
29 |
{
|
|
30 |
}
|
|
31 |
|
|
32 |
void NThreadBase::OnExit()
|
|
33 |
{
|
|
34 |
}
|
|
35 |
|
|
36 |
extern void __ltr(TInt /*aSelector*/);
|
|
37 |
|
|
38 |
extern "C" TUint __tr();
|
|
39 |
extern void InitAPTimestamp(SNThreadCreateInfo& aInfo);
|
|
40 |
|
|
41 |
TInt NThread::Create(SNThreadCreateInfo& aInfo, TBool aInitial)
|
|
42 |
{
|
|
43 |
if (!aInfo.iStackBase || aInfo.iStackSize<0x100)
|
|
44 |
return KErrArgument;
|
|
45 |
new (this) NThread;
|
|
46 |
TInt cpu = -1;
|
|
47 |
if (aInitial)
|
|
48 |
{
|
|
49 |
cpu = __e32_atomic_add_ord32(&TheScheduler.iNumCpus, 1);
|
|
50 |
if (cpu==0)
|
|
51 |
memset(SubSchedulerLookupTable, 0x9a, sizeof(SubSchedulerLookupTable));
|
|
52 |
aInfo.iCpuAffinity = cpu;
|
|
53 |
// OK since we can't migrate yet
|
|
54 |
TUint32 apicid = *(volatile TUint32*)(X86_LOCAL_APIC_BASE + X86_LOCAL_APIC_OFFSET_ID) >> 24;
|
|
55 |
TSubScheduler& ss = TheSubSchedulers[cpu];
|
|
56 |
ss.i_APICID = (TAny*)(apicid<<24);
|
|
57 |
ss.iCurrentThread = this;
|
|
58 |
SubSchedulerLookupTable[apicid] = &ss;
|
|
59 |
ss.iLastTimestamp64 = NKern::Timestamp();
|
|
60 |
iRunCount64 = UI64LIT(1);
|
|
61 |
__KTRACE_OPT(KBOOT,DEBUGPRINT("Init: cpu=%d APICID=%08x ss=%08x", cpu, apicid, &ss));
|
|
62 |
if (cpu)
|
|
63 |
{
|
|
64 |
__ltr(TSS_SELECTOR(cpu));
|
|
65 |
NIrq::HwInit2AP();
|
|
66 |
__e32_atomic_ior_ord32(&TheScheduler.iActiveCpus1, 1<<cpu);
|
|
67 |
__e32_atomic_ior_ord32(&TheScheduler.iActiveCpus2, 1<<cpu);
|
|
68 |
__e32_atomic_ior_ord32(&TheScheduler.iCpusNotIdle, 1<<cpu);
|
|
69 |
__KTRACE_OPT(KBOOT,DEBUGPRINT("AP TR=%x",__tr()));
|
|
70 |
}
|
|
71 |
}
|
|
72 |
TInt r=NThreadBase::Create(aInfo,aInitial);
|
|
73 |
if (r!=KErrNone)
|
|
74 |
return r;
|
|
75 |
if (!aInitial)
|
|
76 |
{
|
|
77 |
TLinAddr stack_top = (TLinAddr)iStackBase + (TLinAddr)iStackSize;
|
|
78 |
TLinAddr sp = stack_top;
|
|
79 |
TUint32 pb = (TUint32)aInfo.iParameterBlock;
|
|
80 |
SThreadStackStub* tss = 0;
|
|
81 |
if (aInfo.iParameterBlockSize)
|
|
82 |
{
|
|
83 |
tss = (SThreadStackStub*)stack_top;
|
|
84 |
--tss;
|
|
85 |
tss->iVector = SThreadStackStub::EVector;
|
|
86 |
tss->iError = 0;
|
|
87 |
tss->iEip = 0;
|
|
88 |
tss->iCs = 0;
|
|
89 |
tss->iEflags = 0;
|
|
90 |
sp = (TLinAddr)tss;
|
|
91 |
sp -= (TLinAddr)aInfo.iParameterBlockSize;
|
|
92 |
wordmove((TAny*)sp, aInfo.iParameterBlock, aInfo.iParameterBlockSize);
|
|
93 |
pb = (TUint32)sp;
|
|
94 |
tss->iPBlock = sp;
|
|
95 |
}
|
|
96 |
SThreadInitStack* tis = (SThreadInitStack*)sp;
|
|
97 |
--tis;
|
|
98 |
tis->iR.iCR0 = X86::DefaultCR0 | KX86CR0_TS;
|
|
99 |
tis->iR.iReschedFlag = 1;
|
|
100 |
tis->iR.iEip = (TUint32)&__StartThread;
|
|
101 |
tis->iR.iReason = 0;
|
|
102 |
tis->iX.iEcx = 0;
|
|
103 |
tis->iX.iEdx = 0;
|
|
104 |
tis->iX.iEbx = pb; // parameter block pointer
|
|
105 |
tis->iX.iEsi = 0;
|
|
106 |
tis->iX.iEdi = 0;
|
|
107 |
tis->iX.iEbp = stack_top;
|
|
108 |
tis->iX.iEax = (TUint32)aInfo.iFunction;
|
|
109 |
tis->iX.iDs = KRing0DS;
|
|
110 |
tis->iX.iEs = KRing0DS;
|
|
111 |
tis->iX.iFs = 0;
|
|
112 |
tis->iX.iGs = KRing0DS;
|
|
113 |
tis->iX.iVector = SThreadInitStack::EVector;
|
|
114 |
tis->iX.iError = 0;
|
|
115 |
tis->iX.iEip = (TUint32)aInfo.iFunction;
|
|
116 |
tis->iX.iCs = KRing0CS;
|
|
117 |
tis->iX.iEflags = (TUint32)(EX86FlagIF|EX86FlagAC|0x1002);
|
|
118 |
tis->iX.iEsp3 = 0xFFFFFFFFu;
|
|
119 |
tis->iX.iSs3 = 0xFFFFFFFFu;
|
|
120 |
wordmove(&iCoprocessorState, DefaultCoprocessorState, sizeof(iCoprocessorState));
|
|
121 |
iSavedSP = (TLinAddr)tis;
|
|
122 |
}
|
|
123 |
else
|
|
124 |
{
|
|
125 |
NKern::EnableAllInterrupts();
|
|
126 |
|
|
127 |
// synchronize AP's timestamp with BP's
|
|
128 |
if (cpu>0)
|
|
129 |
InitAPTimestamp(aInfo);
|
|
130 |
}
|
|
131 |
#ifdef BTRACE_THREAD_IDENTIFICATION
|
|
132 |
BTrace4(BTrace::EThreadIdentification,BTrace::ENanoThreadCreate,this);
|
|
133 |
#endif
|
|
134 |
return KErrNone;
|
|
135 |
}
|
|
136 |
|
|
137 |
void DumpExcInfo(TX86ExcInfo& a)
|
|
138 |
{
|
|
139 |
DEBUGPRINT("Exc %02x EFLAGS=%08x FAR=%08x ErrCode=%08x",a.iExcId,a.iEflags,a.iFaultAddress,a.iExcErrorCode);
|
|
140 |
DEBUGPRINT("EAX=%08x EBX=%08x ECX=%08x EDX=%08x",a.iEax,a.iEbx,a.iEcx,a.iEdx);
|
|
141 |
DEBUGPRINT("ESP=%08x EBP=%08x ESI=%08x EDI=%08x",a.iEsp,a.iEbp,a.iEsi,a.iEdi);
|
|
142 |
DEBUGPRINT(" CS=%08x EIP=%08x DS=%08x SS=%08x",a.iCs,a.iEip,a.iDs,a.iSs);
|
|
143 |
DEBUGPRINT(" ES=%08x FS=%08x GS=%08x",a.iEs,a.iFs,a.iGs);
|
|
144 |
if (a.iCs&3)
|
|
145 |
{
|
|
146 |
DEBUGPRINT("SS3=%08x ESP3=%08x",a.iSs3,a.iEsp3);
|
|
147 |
}
|
|
148 |
TScheduler& s = TheScheduler;
|
|
149 |
TInt irq = NKern::DisableAllInterrupts();
|
|
150 |
TSubScheduler& ss = SubScheduler();
|
|
151 |
NThreadBase* ct = ss.iCurrentThread;
|
|
152 |
TInt inc = TInt(ss.i_IrqNestCount);
|
|
153 |
TInt cpu = ss.iCpuNum;
|
|
154 |
NKern::RestoreInterrupts(irq);
|
|
155 |
DEBUGPRINT("Thread %T, CPU %d, KLCount=%08x, IrqNest=%d",ct,cpu,ss.iKernLockCount,inc);
|
|
156 |
}
|
|
157 |
|
|
158 |
|
|
159 |
void GetContextAfterExc(TX86RegSet& aContext, SThreadExcStack* txs, TUint32& aAvailRegistersMask, TBool aSystem)
|
|
160 |
{
|
|
161 |
TInt cpl = txs->iCs & 3;
|
|
162 |
aAvailRegistersMask = 0xffffu; // EAX,EBX,ECX,EDX,ESP,EBP,ESI,EDI,CS,DS,ES,FS,GS,SS,EFLAGS,EIP all valid
|
|
163 |
aContext.iEax = txs->iEax;
|
|
164 |
aContext.iEbx = txs->iEbx;
|
|
165 |
aContext.iEcx = txs->iEcx;
|
|
166 |
aContext.iEdx = txs->iEdx;
|
|
167 |
if (aSystem)
|
|
168 |
{
|
|
169 |
aContext.iEsp = TUint32(txs+1);
|
|
170 |
if (cpl==0)
|
|
171 |
aContext.iEsp -= 8; // two less words pushed if interrupt taken while CPL=0
|
|
172 |
aContext.iSs = KRing0DS;
|
|
173 |
aAvailRegistersMask &= ~0x2000u; // SS assumed not read
|
|
174 |
}
|
|
175 |
else if (cpl==3)
|
|
176 |
{
|
|
177 |
aContext.iEsp = txs->iEsp3;
|
|
178 |
aContext.iSs = txs->iSs3;
|
|
179 |
}
|
|
180 |
else
|
|
181 |
{
|
|
182 |
__crash();
|
|
183 |
}
|
|
184 |
aContext.iEbp = txs->iEbp;
|
|
185 |
aContext.iEsi = txs->iEsi;
|
|
186 |
aContext.iEdi = txs->iEdi;
|
|
187 |
aContext.iCs = txs->iCs;
|
|
188 |
aContext.iDs = txs->iDs;
|
|
189 |
aContext.iEs = txs->iEs;
|
|
190 |
aContext.iFs = txs->iFs;
|
|
191 |
aContext.iGs = txs->iGs;
|
|
192 |
aContext.iEflags = txs->iEflags;
|
|
193 |
aContext.iEip = txs->iEip;
|
|
194 |
}
|
|
195 |
|
|
196 |
void GetContextAfterSlowExec(TX86RegSet& aContext, SThreadSlowExecStack* tsxs, TUint32& aAvailRegistersMask)
|
|
197 |
{
|
|
198 |
TInt cpl = tsxs->iCs & 3;
|
|
199 |
if (cpl!=3)
|
|
200 |
{
|
|
201 |
__crash();
|
|
202 |
}
|
|
203 |
aAvailRegistersMask = 0xffffu; // EAX,EBX,ECX,EDX,ESP,EBP,ESI,EDI,CS,DS,ES,FS,GS,SS,EFLAGS,EIP all valid
|
|
204 |
aContext.iEax = tsxs->iEax;
|
|
205 |
aContext.iEbx = tsxs->iEbx;
|
|
206 |
aContext.iEcx = tsxs->iEcx;
|
|
207 |
aContext.iEdx = tsxs->iEdx;
|
|
208 |
aContext.iEsp = tsxs->iEsp3;
|
|
209 |
aContext.iSs = tsxs->iSs3;
|
|
210 |
aContext.iEbp = tsxs->iEbp;
|
|
211 |
aContext.iEsi = tsxs->iEsi;
|
|
212 |
aContext.iEdi = tsxs->iEdi;
|
|
213 |
aContext.iCs = tsxs->iCs;
|
|
214 |
aContext.iDs = tsxs->iDs;
|
|
215 |
aContext.iEs = tsxs->iEs;
|
|
216 |
aContext.iFs = tsxs->iFs;
|
|
217 |
aContext.iGs = tsxs->iGs;
|
|
218 |
aContext.iEflags = tsxs->iEflags;
|
|
219 |
aContext.iEip = tsxs->iEip;
|
|
220 |
}
|
|
221 |
|
|
222 |
|
|
223 |
// Enter and return with kernel locked
|
|
224 |
void NThread::GetUserContext(TX86RegSet& aContext, TUint32& aAvailRegistersMask)
|
|
225 |
{
|
|
226 |
NThread* pC = NCurrentThreadL();
|
|
227 |
TSubScheduler* ss = 0;
|
|
228 |
if (pC != this)
|
|
229 |
{
|
|
230 |
AcqSLock();
|
|
231 |
if (iWaitState.ThreadIsDead())
|
|
232 |
{
|
|
233 |
RelSLock();
|
|
234 |
aAvailRegistersMask = 0;
|
|
235 |
return;
|
|
236 |
}
|
|
237 |
if (iReady && iParent->iReady)
|
|
238 |
{
|
|
239 |
ss = TheSubSchedulers + (iParent->iReady & EReadyCpuMask);
|
|
240 |
ss->iReadyListLock.LockOnly();
|
|
241 |
}
|
|
242 |
if (iCurrent)
|
|
243 |
{
|
|
244 |
// thread is actually running on another CPU
|
|
245 |
// interrupt that CPU and wait for it to enter interrupt mode
|
|
246 |
// this allows a snapshot of the thread user state to be observed
|
|
247 |
// and ensures the thread cannot return to user mode
|
|
248 |
send_resched_ipi_and_wait(iLastCpu);
|
|
249 |
}
|
|
250 |
}
|
|
251 |
TUint32* stack = (TUint32*)(TLinAddr(iStackBase) + TLinAddr(iStackSize));
|
|
252 |
if (stack[-1]!=0xFFFFFFFFu && stack[-2]!=0xFFFFFFFFu && stack[-7]<0x100u) // if not, thread never entered user mode
|
|
253 |
{
|
|
254 |
if (stack[-7] == 0x21) // slow exec
|
|
255 |
GetContextAfterSlowExec(aContext, ((SThreadSlowExecStack*)stack)-1, aAvailRegistersMask);
|
|
256 |
else
|
|
257 |
GetContextAfterExc(aContext, ((SThreadExcStack*)stack)-1, aAvailRegistersMask, FALSE);
|
|
258 |
}
|
|
259 |
if (pC != this)
|
|
260 |
{
|
|
261 |
if (ss)
|
|
262 |
ss->iReadyListLock.UnlockOnly();
|
|
263 |
RelSLock();
|
|
264 |
}
|
|
265 |
}
|
|
266 |
|
|
267 |
class TGetContextIPI : public TGenericIPI
|
|
268 |
{
|
|
269 |
public:
|
|
270 |
void Get(TInt aCpu, TX86RegSet& aContext, TUint32& aAvailRegistersMask);
|
|
271 |
static void Isr(TGenericIPI*);
|
|
272 |
public:
|
|
273 |
TX86RegSet* iContext;
|
|
274 |
TUint32* iAvailRegsMask;
|
|
275 |
};
|
|
276 |
|
|
277 |
void TGetContextIPI::Isr(TGenericIPI* aPtr)
|
|
278 |
{
|
|
279 |
TGetContextIPI& ipi = *(TGetContextIPI*)aPtr;
|
|
280 |
TX86RegSet& a = *ipi.iContext;
|
|
281 |
TSubScheduler& ss = SubScheduler();
|
|
282 |
TUint32* irqstack = (TUint32*)ss.i_IrqStackTop;
|
|
283 |
SThreadExcStack* txs = (SThreadExcStack*)irqstack[-1]; // first word pushed on IRQ stack points to thread supervisor stack
|
|
284 |
GetContextAfterExc(a, txs, *ipi.iAvailRegsMask, TRUE);
|
|
285 |
}
|
|
286 |
|
|
287 |
void TGetContextIPI::Get(TInt aCpu, TX86RegSet& aContext, TUint32& aAvailRegsMask)
|
|
288 |
{
|
|
289 |
iContext = &aContext;
|
|
290 |
iAvailRegsMask = &aAvailRegsMask;
|
|
291 |
Queue(&Isr, 1u<<aCpu);
|
|
292 |
WaitCompletion();
|
|
293 |
}
|
|
294 |
|
|
295 |
// Enter and return with kernel locked
|
|
296 |
void NThread::GetSystemContext(TX86RegSet& aContext, TUint32& aAvailRegsMask)
|
|
297 |
{
|
|
298 |
aAvailRegsMask = 0;
|
|
299 |
NThread* pC = NCurrentThreadL();
|
|
300 |
__NK_ASSERT_ALWAYS(pC!=this);
|
|
301 |
TSubScheduler* ss = 0;
|
|
302 |
AcqSLock();
|
|
303 |
if (iWaitState.ThreadIsDead())
|
|
304 |
{
|
|
305 |
RelSLock();
|
|
306 |
return;
|
|
307 |
}
|
|
308 |
if (iReady && iParent->iReady)
|
|
309 |
{
|
|
310 |
ss = TheSubSchedulers + (iParent->iReady & EReadyCpuMask);
|
|
311 |
ss->iReadyListLock.LockOnly();
|
|
312 |
}
|
|
313 |
if (iCurrent)
|
|
314 |
{
|
|
315 |
// thread is actually running on another CPU
|
|
316 |
// use an interprocessor interrupt to get a snapshot of the state
|
|
317 |
TGetContextIPI ipi;
|
|
318 |
ipi.Get(iLastCpu, aContext, aAvailRegsMask);
|
|
319 |
}
|
|
320 |
else
|
|
321 |
{
|
|
322 |
// thread is not running and can't start
|
|
323 |
SThreadReschedStack* trs = (SThreadReschedStack*)iSavedSP;
|
|
324 |
TUint32 kct = trs->iReason;
|
|
325 |
TLinAddr sp = TLinAddr(trs+1);
|
|
326 |
TUint32* stack = (TUint32*)sp;
|
|
327 |
switch (kct)
|
|
328 |
{
|
|
329 |
case 0: // thread not yet started
|
|
330 |
{
|
|
331 |
aContext.iEcx = stack[0];
|
|
332 |
aContext.iEdx = stack[1];
|
|
333 |
aContext.iEbx = stack[2];
|
|
334 |
aContext.iEsi = stack[3];
|
|
335 |
aContext.iEdi = stack[4];
|
|
336 |
aContext.iEbp = stack[5];
|
|
337 |
aContext.iEax = stack[6];
|
|
338 |
aContext.iDs = stack[7];
|
|
339 |
aContext.iEs = stack[8];
|
|
340 |
aContext.iFs = stack[9];
|
|
341 |
aContext.iGs = stack[10];
|
|
342 |
aContext.iEsp = sp + 40 - 8; // entry to initial function
|
|
343 |
aContext.iEip = aContext.iEax;
|
|
344 |
aContext.iEflags = 0x41202; // guess
|
|
345 |
aContext.iCs = KRing0CS;
|
|
346 |
aContext.iSs = KRing0DS;
|
|
347 |
aAvailRegsMask = 0x9effu;
|
|
348 |
break;
|
|
349 |
}
|
|
350 |
case 1: // unlock
|
|
351 |
{
|
|
352 |
aContext.iFs = stack[0];
|
|
353 |
aContext.iGs = stack[1];
|
|
354 |
aContext.iEbx = stack[2];
|
|
355 |
aContext.iEbp = stack[3];
|
|
356 |
aContext.iEdi = stack[4];
|
|
357 |
aContext.iEsi = stack[5];
|
|
358 |
aContext.iEip = stack[6]; // return address from NKern::Unlock()
|
|
359 |
aContext.iCs = KRing0CS;
|
|
360 |
aContext.iDs = KRing0DS;
|
|
361 |
aContext.iEs = KRing0DS;
|
|
362 |
aContext.iSs = KRing0DS;
|
|
363 |
aContext.iEsp = sp + 28; // ESP after return from NKern::Unlock()
|
|
364 |
aContext.iEax = 0; // unknown
|
|
365 |
aContext.iEcx = 0; // unknown
|
|
366 |
aContext.iEdx = 0; // unknown
|
|
367 |
aContext.iEflags = 0x41202; // guess
|
|
368 |
aAvailRegsMask =0x98f2u; // EIP,GS,FS,EDI,ESI,EBP,ESP,EBX available, others guessed or unavailable
|
|
369 |
break;
|
|
370 |
}
|
|
371 |
case 2: // IRQ
|
|
372 |
{
|
|
373 |
GetContextAfterExc(aContext, (SThreadExcStack*)sp, aAvailRegsMask, TRUE);
|
|
374 |
break;
|
|
375 |
}
|
|
376 |
default: // unknown reschedule reason
|
|
377 |
__NK_ASSERT_ALWAYS(0);
|
|
378 |
}
|
|
379 |
}
|
|
380 |
if (ss)
|
|
381 |
ss->iReadyListLock.UnlockOnly();
|
|
382 |
RelSLock();
|
|
383 |
}
|
|
384 |
|
|
385 |
// Enter and return with kernel locked
|
|
386 |
void NThread::SetUserContext(const TX86RegSet& aContext, TUint32& aRegMask)
|
|
387 |
{
|
|
388 |
NThread* pC = NCurrentThreadL();
|
|
389 |
TSubScheduler* ss = 0;
|
|
390 |
if (pC != this)
|
|
391 |
{
|
|
392 |
AcqSLock();
|
|
393 |
if (iWaitState.ThreadIsDead())
|
|
394 |
{
|
|
395 |
RelSLock();
|
|
396 |
aRegMask = 0;
|
|
397 |
return;
|
|
398 |
}
|
|
399 |
if (iReady && iParent->iReady)
|
|
400 |
{
|
|
401 |
ss = TheSubSchedulers + (iParent->iReady & EReadyCpuMask);
|
|
402 |
ss->iReadyListLock.LockOnly();
|
|
403 |
}
|
|
404 |
if (iCurrent)
|
|
405 |
{
|
|
406 |
// thread is actually running on another CPU
|
|
407 |
// interrupt that CPU and wait for it to enter interrupt mode
|
|
408 |
// this allows a snapshot of the thread user state to be observed
|
|
409 |
// and ensures the thread cannot return to user mode
|
|
410 |
send_resched_ipi_and_wait(iLastCpu);
|
|
411 |
}
|
|
412 |
}
|
|
413 |
TUint32* stack = (TUint32*)(TLinAddr(iStackBase) + TLinAddr(iStackSize));
|
|
414 |
SThreadExcStack* txs = 0;
|
|
415 |
SThreadSlowExecStack* tsxs = 0;
|
|
416 |
aRegMask &= 0xffffu;
|
|
417 |
if (stack[-1]!=0xFFFFFFFFu && stack[-2]!=0xFFFFFFFFu && stack[-7]<0x100u) // if not, thread never entered user mode
|
|
418 |
{
|
|
419 |
if (stack[-7] == 0x21) // slow exec
|
|
420 |
tsxs = ((SThreadSlowExecStack*)stack)-1;
|
|
421 |
else
|
|
422 |
txs = ((SThreadExcStack*)stack)-1;
|
|
423 |
|
|
424 |
#define WRITE_REG(reg, value) \
|
|
425 |
{ if (tsxs) tsxs->reg=(value); else txs->reg=(value); }
|
|
426 |
|
|
427 |
if (aRegMask & 0x0001u)
|
|
428 |
WRITE_REG(iEax, aContext.iEax);
|
|
429 |
if (aRegMask & 0x0002u)
|
|
430 |
WRITE_REG(iEbx, aContext.iEbx);
|
|
431 |
if (aRegMask & 0x0004u)
|
|
432 |
{
|
|
433 |
// don't allow write to iEcx if in slow exec since this may conflict
|
|
434 |
// with handle preprocessing
|
|
435 |
if (tsxs)
|
|
436 |
aRegMask &= ~0x0004u;
|
|
437 |
else
|
|
438 |
txs->iEcx = aContext.iEcx;
|
|
439 |
}
|
|
440 |
if (aRegMask & 0x0008u)
|
|
441 |
WRITE_REG(iEdx, aContext.iEdx);
|
|
442 |
if (aRegMask & 0x0010u)
|
|
443 |
WRITE_REG(iEsp3, aContext.iEsp);
|
|
444 |
if (aRegMask & 0x0020u)
|
|
445 |
WRITE_REG(iEbp, aContext.iEbp);
|
|
446 |
if (aRegMask & 0x0040u)
|
|
447 |
WRITE_REG(iEsi, aContext.iEsi);
|
|
448 |
if (aRegMask & 0x0080u)
|
|
449 |
WRITE_REG(iEdi, aContext.iEdi);
|
|
450 |
if (aRegMask & 0x0100u)
|
|
451 |
WRITE_REG(iCs, aContext.iCs|3);
|
|
452 |
if (aRegMask & 0x0200u)
|
|
453 |
WRITE_REG(iDs, aContext.iDs|3);
|
|
454 |
if (aRegMask & 0x0400u)
|
|
455 |
WRITE_REG(iEs, aContext.iEs|3);
|
|
456 |
if (aRegMask & 0x0800u)
|
|
457 |
WRITE_REG(iFs, aContext.iFs|3);
|
|
458 |
if (aRegMask & 0x1000u)
|
|
459 |
WRITE_REG(iGs, aContext.iGs|3);
|
|
460 |
if (aRegMask & 0x2000u)
|
|
461 |
WRITE_REG(iSs3, aContext.iSs|3);
|
|
462 |
if (aRegMask & 0x4000u)
|
|
463 |
WRITE_REG(iEflags, aContext.iEflags);
|
|
464 |
if (aRegMask & 0x8000u)
|
|
465 |
WRITE_REG(iEip, aContext.iEip);
|
|
466 |
}
|
|
467 |
else
|
|
468 |
aRegMask = 0;
|
|
469 |
if (pC != this)
|
|
470 |
{
|
|
471 |
if (ss)
|
|
472 |
ss->iReadyListLock.UnlockOnly();
|
|
473 |
RelSLock();
|
|
474 |
}
|
|
475 |
}
|
|
476 |
|
|
477 |
/** Get (subset of) user context of specified thread.
|
|
478 |
|
|
479 |
The nanokernel does not systematically save all registers in the supervisor
|
|
480 |
stack on entry into privileged mode and the exact subset depends on why the
|
|
481 |
switch to privileged mode occured. So in general only a subset of the
|
|
482 |
register set is available.
|
|
483 |
|
|
484 |
@param aThread Thread to inspect. It can be the current thread or a
|
|
485 |
non-current one.
|
|
486 |
|
|
487 |
@param aContext Pointer to TX86RegSet structure where the context is
|
|
488 |
copied.
|
|
489 |
|
|
490 |
@param aAvailRegistersMask Bit mask telling which subset of the context is
|
|
491 |
available and has been copied to aContext (1: register available / 0: not
|
|
492 |
available). Bits represent fields in TX86RegSet, i.e.
|
|
493 |
0:EAX 1:EBX 2:ECX 3:EDX 4:ESP 5:EBP 6:ESI 7:EDI
|
|
494 |
8:CS 9:DS 10:ES 11:FS 12:GS 13:SS 14:EFLAGS 15:EIP
|
|
495 |
|
|
496 |
@see TX86RegSet
|
|
497 |
@see ThreadSetUserContext
|
|
498 |
|
|
499 |
@pre Call in a thread context.
|
|
500 |
@pre Interrupts must be enabled.
|
|
501 |
*/
|
|
502 |
EXPORT_C void NKern::ThreadGetUserContext(NThread* aThread, TAny* aContext, TUint32& aAvailRegistersMask)
|
|
503 |
{
|
|
504 |
CHECK_PRECONDITIONS(MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::ThreadGetUserContext");
|
|
505 |
TX86RegSet& a = *(TX86RegSet*)aContext;
|
|
506 |
memclr(aContext, sizeof(TX86RegSet));
|
|
507 |
NKern::Lock();
|
|
508 |
aThread->GetUserContext(a, aAvailRegistersMask);
|
|
509 |
NKern::Unlock();
|
|
510 |
}
|
|
511 |
|
|
512 |
|
|
513 |
/** Get (subset of) system context of specified thread.
|
|
514 |
|
|
515 |
@param aThread Thread to inspect. It can be the current thread or a
|
|
516 |
non-current one.
|
|
517 |
|
|
518 |
@param aContext Pointer to TX86RegSet structure where the context is
|
|
519 |
copied.
|
|
520 |
|
|
521 |
@param aAvailRegistersMask Bit mask telling which subset of the context is
|
|
522 |
available and has been copied to aContext (1: register available / 0: not
|
|
523 |
available). Bits represent fields in TX86RegSet, i.e.
|
|
524 |
0:EAX 1:EBX 2:ECX 3:EDX 4:ESP 5:EBP 6:ESI 7:EDI
|
|
525 |
8:CS 9:DS 10:ES 11:FS 12:GS 13:SS 14:EFLAGS 15:EIP
|
|
526 |
|
|
527 |
@see TX86RegSet
|
|
528 |
@see ThreadGetUserContext
|
|
529 |
|
|
530 |
@pre Call in a thread context.
|
|
531 |
@pre Interrupts must be enabled.
|
|
532 |
*/
|
|
533 |
EXPORT_C void NKern::ThreadGetSystemContext(NThread* aThread, TAny* aContext, TUint32& aAvailRegistersMask)
|
|
534 |
{
|
|
535 |
CHECK_PRECONDITIONS(MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::ThreadGetSystemContext");
|
|
536 |
TX86RegSet& a = *(TX86RegSet*)aContext;
|
|
537 |
memclr(aContext, sizeof(TX86RegSet));
|
|
538 |
NKern::Lock();
|
|
539 |
aThread->GetSystemContext(a, aAvailRegistersMask);
|
|
540 |
NKern::Unlock();
|
|
541 |
}
|
|
542 |
|
|
543 |
|
|
544 |
/** Set (subset of) user context of specified thread.
|
|
545 |
|
|
546 |
@param aThread Thread to modify. It can be the current thread or a
|
|
547 |
non-current one.
|
|
548 |
|
|
549 |
@param aContext Pointer to TX86RegSet structure containing the context
|
|
550 |
to set. The values of registers which aren't part of the context saved
|
|
551 |
on the supervisor stack are ignored.
|
|
552 |
|
|
553 |
@see TX86RegSet
|
|
554 |
@see ThreadGetUserContext
|
|
555 |
|
|
556 |
@pre Call in a thread context.
|
|
557 |
@pre Interrupts must be enabled.
|
|
558 |
*/
|
|
559 |
EXPORT_C void NKern::ThreadSetUserContext(NThread* aThread, TAny* aContext)
|
|
560 |
{
|
|
561 |
CHECK_PRECONDITIONS(MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::ThreadSetUserContext");
|
|
562 |
TX86RegSet& a = *(TX86RegSet*)aContext;
|
|
563 |
TUint32 mask = 0xffffu;
|
|
564 |
NKern::Lock();
|
|
565 |
aThread->SetUserContext(a, mask);
|
|
566 |
NKern::Unlock();
|
|
567 |
}
|
|
568 |
|
|
569 |
|
|
570 |
/** Return the total CPU time so far used by the specified thread.
|
|
571 |
|
|
572 |
@return The total CPU time in units of 1/NKern::CpuTimeMeasFreq().
|
|
573 |
*/
|
|
574 |
EXPORT_C TUint64 NKern::ThreadCpuTime(NThread* aThread)
|
|
575 |
{
|
|
576 |
TSubScheduler* ss = 0;
|
|
577 |
NKern::Lock();
|
|
578 |
aThread->AcqSLock();
|
|
579 |
if (aThread->i_NThread_Initial)
|
|
580 |
ss = &TheSubSchedulers[aThread->iLastCpu];
|
|
581 |
else if (aThread->iReady && aThread->iParent->iReady)
|
|
582 |
ss = &TheSubSchedulers[aThread->iParent->iReady & NSchedulable::EReadyCpuMask];
|
|
583 |
if (ss)
|
|
584 |
ss->iReadyListLock.LockOnly();
|
|
585 |
TUint64 t = aThread->iTotalCpuTime64;
|
|
586 |
if (aThread->iCurrent || (aThread->i_NThread_Initial && !ss->iCurrentThread))
|
|
587 |
t += (NKern::Timestamp() - ss->iLastTimestamp64);
|
|
588 |
if (ss)
|
|
589 |
ss->iReadyListLock.UnlockOnly();
|
|
590 |
aThread->RelSLock();
|
|
591 |
NKern::Unlock();
|
|
592 |
return t;
|
|
593 |
}
|
|
594 |
|
|
595 |
extern "C" void __fastcall add_dfc(TDfc* aDfc)
|
|
596 |
{
|
|
597 |
aDfc->Add();
|
|
598 |
}
|
|
599 |
|
|
600 |
|
|
601 |
TInt NKern::QueueUserModeCallback(NThreadBase* aThread, TUserModeCallback* aCallback)
|
|
602 |
{
|
|
603 |
__e32_memory_barrier();
|
|
604 |
if (aCallback->iNext != KUserModeCallbackUnqueued)
|
|
605 |
return KErrInUse;
|
|
606 |
TInt result = KErrDied;
|
|
607 |
NKern::Lock();
|
|
608 |
TUserModeCallback* listHead = aThread->iUserModeCallbacks;
|
|
609 |
do {
|
|
610 |
if (TLinAddr(listHead) & 3)
|
|
611 |
goto done; // thread exiting
|
|
612 |
aCallback->iNext = listHead;
|
|
613 |
} while (!__e32_atomic_cas_ord_ptr(&aThread->iUserModeCallbacks, &listHead, aCallback));
|
|
614 |
result = KErrNone;
|
|
615 |
|
|
616 |
if (!listHead) // if this isn't first callback someone else will have done this bit
|
|
617 |
{
|
|
618 |
/*
|
|
619 |
* If aThread is currently running on another CPU we need to send an IPI so
|
|
620 |
* that it will enter kernel mode and run the callback.
|
|
621 |
* The synchronization is tricky here. We want to check if the thread is
|
|
622 |
* running and if so on which core. We need to avoid any possibility of
|
|
623 |
* the thread entering user mode without having seen the callback,
|
|
624 |
* either because we thought it wasn't running so didn't send an IPI or
|
|
625 |
* because the thread migrated after we looked and we sent the IPI to
|
|
626 |
* the wrong processor. Sending a redundant IPI is not a problem (e.g.
|
|
627 |
* because the thread is running in kernel mode - which we can't tell -
|
|
628 |
* or because the thread stopped running after we looked)
|
|
629 |
* The following events are significant:
|
|
630 |
* Event A: Target thread writes to iCurrent when it starts running
|
|
631 |
* Event B: Target thread reads iUserModeCallbacks before entering user
|
|
632 |
* mode
|
|
633 |
* Event C: This thread writes to iUserModeCallbacks
|
|
634 |
* Event D: This thread reads iCurrent to check if aThread is running
|
|
635 |
* There is a barrier between A and B since A occurs with the ready
|
|
636 |
* list lock for the CPU involved or the thread lock for aThread held
|
|
637 |
* and this lock is released before B occurs.
|
|
638 |
* There is a barrier between C and D (__e32_atomic_cas_ord_ptr).
|
|
639 |
* Any observer which observes B must also have observed A.
|
|
640 |
* Any observer which observes D must also have observed C.
|
|
641 |
* If aThread observes B before C (i.e. enters user mode without running
|
|
642 |
* the callback) it must observe A before C and so it must also observe
|
|
643 |
* A before D (i.e. D reads the correct value for iCurrent).
|
|
644 |
*/
|
|
645 |
TInt current = aThread->iCurrent;
|
|
646 |
if (current)
|
|
647 |
{
|
|
648 |
TInt cpu = current & NSchedulable::EReadyCpuMask;
|
|
649 |
if (cpu != NKern::CurrentCpu())
|
|
650 |
send_resched_ipi(cpu);
|
|
651 |
}
|
|
652 |
}
|
|
653 |
done:
|
|
654 |
NKern::Unlock();
|
|
655 |
return result;
|
|
656 |
}
|
|
657 |
|
|
658 |
|