0
|
1 |
// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// f32\sfat32\sl_fatcache32.cpp
|
|
15 |
//
|
|
16 |
//
|
|
17 |
|
|
18 |
#include "sl_std.h"
|
|
19 |
#include "sl_fatcache32.h"
|
|
20 |
|
|
21 |
/**
|
|
22 |
@file
|
|
23 |
Various FAT32 caches implementation
|
|
24 |
*/
|
|
25 |
|
|
26 |
|
|
27 |
|
|
28 |
//#################################################################################################################################
|
|
29 |
//# CFat32LruCache implementation
|
|
30 |
//#################################################################################################################################
|
|
31 |
|
|
32 |
//-----------------------------------------------------------------------------
|
|
33 |
CFat32LruCache::CFat32LruCache()
|
|
34 |
:CFatPagedCacheBase(), iPageList(_FOFF(CFat32LruCachePage, iLink))
|
|
35 |
{
|
|
36 |
}
|
|
37 |
|
|
38 |
//-----------------------------------------------------------------------------
|
|
39 |
/**
|
|
40 |
FAT32 LRU cache factory function.
|
|
41 |
@param aOwner pointer to the owning FAT mount
|
|
42 |
@param aMaxMemSize maximal size of the memory the cache can use, bytes
|
|
43 |
@param aRdGranularityLog2 Log2(read granularity)
|
|
44 |
@param aWrGranularityLog2 Log2(write granularity)
|
|
45 |
|
|
46 |
@return pointer to the constructed object.
|
|
47 |
*/
|
|
48 |
CFat32LruCache* CFat32LruCache::NewL(CFatMountCB* aOwner, TUint32 aMaxMemSize, TUint32 aRdGranularityLog2, TUint32 aWrGranularityLog2)
|
|
49 |
{
|
|
50 |
__PRINT(_L("#-CFat32LruCache::NewL()"));
|
|
51 |
CFat32LruCache* pSelf = NULL;
|
|
52 |
pSelf = new (ELeave) CFat32LruCache;
|
|
53 |
|
|
54 |
CleanupStack::PushL(pSelf);
|
|
55 |
pSelf->InitialiseL(aOwner, aMaxMemSize, aRdGranularityLog2, aWrGranularityLog2);
|
|
56 |
CleanupStack::Pop();
|
|
57 |
|
|
58 |
return pSelf;
|
|
59 |
}
|
|
60 |
|
|
61 |
//-----------------------------------------------------------------------------
|
|
62 |
/**
|
|
63 |
@return pointer to the CFatBitCache interface.
|
|
64 |
*/
|
|
65 |
CFatBitCache* CFat32LruCache::BitCacheInterface()
|
|
66 |
{
|
|
67 |
return iBitCache;
|
|
68 |
}
|
|
69 |
|
|
70 |
//-----------------------------------------------------------------------------
|
|
71 |
|
|
72 |
/**
|
|
73 |
FAT32 LRU cache initialisation.
|
|
74 |
|
|
75 |
@param aOwner pointer to the owning FAT mount
|
|
76 |
@param aMaxMemSize maximal size of the memory the cache can use, bytes
|
|
77 |
@param aRdGranularityLog2 Log2(read granularity)
|
|
78 |
@param aWrGranularityLog2 Log2(write granularity)
|
|
79 |
|
|
80 |
@return pointer to the constructed object.
|
|
81 |
*/
|
|
82 |
void CFat32LruCache::InitialiseL(CFatMountCB* aOwner, TUint32 aMaxMemSize, TUint32 aRdGranularityLog2, TUint32 aWrGranularityLog2)
|
|
83 |
{
|
|
84 |
const TUint32 KReadGranularity = Pow2(aRdGranularityLog2);
|
|
85 |
const TUint32 KWriteGranularity = Pow2(aWrGranularityLog2);
|
|
86 |
|
|
87 |
__PRINT3(_L("#-CFat32LruCache::InitialiseL MaxMem:%u, RdGr:%d, WrGr:%d"),aMaxMemSize, KReadGranularity, KWriteGranularity);
|
|
88 |
(void)KReadGranularity;
|
|
89 |
(void)KWriteGranularity;
|
|
90 |
|
|
91 |
|
|
92 |
const TBool bParamsValid = (aRdGranularityLog2 >= aWrGranularityLog2) && (aWrGranularityLog2 >= KDefSectorSzLog2) && (aMaxMemSize > KReadGranularity);
|
|
93 |
__ASSERT_ALWAYS(bParamsValid, Fault(EFatCache_BadGranularity));
|
|
94 |
|
|
95 |
CFatPagedCacheBase::InitialiseL(aOwner);
|
|
96 |
|
|
97 |
ASSERT(FatType() == EFat32);
|
|
98 |
|
|
99 |
//-- according to the FAT32 specs, FAT32 min size is 65526 entries or 262104 bytes.
|
|
100 |
//-- It's possible to incorrectly format a small volume to FAT32, it shall be accessible read-only.
|
|
101 |
if(aMaxMemSize > FatSize())
|
|
102 |
{//-- strange situation, memory allocated for LRU cache is enough to cache whole FAT32
|
|
103 |
__PRINT(_L("#-CFat32LruCache::InitialiseL warning: LRU cache becomes fixed! (too much memory allowed)"));
|
|
104 |
aMaxMemSize = FatSize();
|
|
105 |
}
|
|
106 |
|
|
107 |
//-- LRU cache page size is (2^aRdGranularityLog2) bytes and consists of 2^(aRdGranularityLog2-aWrGranularity) sectors.
|
|
108 |
iPageSizeLog2 = aRdGranularityLog2;
|
|
109 |
iSectorSizeLog2 = aWrGranularityLog2; //-- Log2(number of sectors in cache page)
|
|
110 |
|
|
111 |
iMaxPages = aMaxMemSize / PageSize(); //-- maximal number of cache pages we can allocate
|
|
112 |
iNumPagesAllocated = 0;
|
|
113 |
|
|
114 |
__ASSERT_ALWAYS((iMaxPages > 1 && SectorsInPage() < KMaxSectorsInPage), Fault(EFatCache_BadGranularity));
|
|
115 |
|
|
116 |
//-- obtain maximal number of entries in the table
|
|
117 |
if(aOwner->UsableClusters() < 1)
|
|
118 |
{
|
|
119 |
ASSERT(0);
|
|
120 |
User::Leave(KErrCorrupt);
|
|
121 |
}
|
|
122 |
|
|
123 |
iMaxFatEntries = aOwner->UsableClusters()+KFatFirstSearchCluster; //-- FAT[0] & FAT[1] are not in use
|
|
124 |
|
|
125 |
//-- create FAT bit supercache if it is enabled in config
|
|
126 |
ASSERT(!iBitCache);
|
|
127 |
if(aOwner->FatConfig().FAT32_UseBitSupercache())
|
|
128 |
{
|
|
129 |
iBitCache = CFatBitCache::New(*this);
|
|
130 |
}
|
|
131 |
else
|
|
132 |
{
|
|
133 |
__PRINT(_L("#++ !! Fat Bit Supercache is disabled in config !!"));
|
|
134 |
}
|
|
135 |
|
|
136 |
}
|
|
137 |
|
|
138 |
//-----------------------------------------------------------------------------
|
|
139 |
/**
|
|
140 |
Close the cache and deallocate its memory.
|
|
141 |
@param aDiscardDirtyData if ETrue, will ignore dirty data. If EFalse, will panic on atempt to close dirty cache.
|
|
142 |
*/
|
|
143 |
void CFat32LruCache::Close(TBool aDiscardDirtyData)
|
|
144 |
{
|
|
145 |
__PRINT1(_L("#-CFat32LruCache::Close(%d)"), aDiscardDirtyData);
|
|
146 |
|
|
147 |
//-- delete FAT bit supercache if present
|
|
148 |
delete iBitCache;
|
|
149 |
iBitCache=NULL;
|
|
150 |
|
|
151 |
|
|
152 |
//-- delete existing cache pages
|
|
153 |
TPageIterator itr(iPageList);
|
|
154 |
|
|
155 |
for(;;)
|
|
156 |
{
|
|
157 |
CFat32LruCachePage* pPage = itr++;
|
|
158 |
if(!pPage)
|
|
159 |
break;
|
|
160 |
|
|
161 |
pPage->iLink.Deque(); //-- remove page from the list
|
|
162 |
|
|
163 |
if(pPage->IsDirty())
|
|
164 |
{//-- trying to destroy the cache that has dirty pages
|
|
165 |
__PRINT1(_L("#-CFat32LruCache::Close() The page is dirty! Start idx:%d"), pPage->StartFatIndex());
|
|
166 |
if(!aDiscardDirtyData)
|
|
167 |
{
|
|
168 |
Fault(EFatCache_DiscardingDirtyData);
|
|
169 |
}
|
|
170 |
//-- ignore this fact if requested.
|
|
171 |
}
|
|
172 |
|
|
173 |
delete pPage;
|
|
174 |
--iNumPagesAllocated;
|
|
175 |
}
|
|
176 |
|
|
177 |
SetDirty(EFalse);
|
|
178 |
ASSERT(!iNumPagesAllocated);
|
|
179 |
}
|
|
180 |
|
|
181 |
|
|
182 |
//-----------------------------------------------------------------------------
|
|
183 |
/**
|
|
184 |
Tries to read FAT entry from the cache. If the entry at aFatIndex is not cached, does nothing and returns EFalse.
|
|
185 |
If finds the cache page that contains entry at index "aFatIndex", reads it and returns ETrue.
|
|
186 |
|
|
187 |
@param aFatIndex FAT entry index within FAT table
|
|
188 |
@param aFatEntry on success it will contain FAT entry value
|
|
189 |
@return ETrue if the entry has been read
|
|
190 |
EFalse if index aFatIndex isn't cached
|
|
191 |
*/
|
|
192 |
TBool CFat32LruCache::ReadCachedEntryL(TUint32 aFatIndex, TFat32Entry& aResult)
|
|
193 |
{
|
|
194 |
//-- iterate through LRU list looking if the entry is cached.
|
|
195 |
TPageIterator itr(iPageList);
|
|
196 |
|
|
197 |
for(;;)
|
|
198 |
{
|
|
199 |
CFat32LruCachePage* pPage = itr++;
|
|
200 |
if(!pPage)
|
|
201 |
break;
|
|
202 |
|
|
203 |
if(pPage->ReadCachedEntryL(aFatIndex, aResult))
|
|
204 |
{//-- found entry in some cache page. Make this page LRU
|
|
205 |
if(!iPageList.IsFirst(pPage))
|
|
206 |
{
|
|
207 |
pPage->iLink.Deque();
|
|
208 |
iPageList.AddFirst(*pPage);
|
|
209 |
}
|
|
210 |
return ETrue;
|
|
211 |
}
|
|
212 |
}
|
|
213 |
|
|
214 |
return EFalse; //-- the entry is not cached
|
|
215 |
}
|
|
216 |
|
|
217 |
//-----------------------------------------------------------------------------
|
|
218 |
/**
|
|
219 |
Tries to write FAT entry to the cache. If the entry at aFatIndex is not cached, does nothing and returns EFalse.
|
|
220 |
If finds the cache page that contains entry at index "aFatIndex", overwrites it and returns ETrue
|
|
221 |
|
|
222 |
@param aFatIndex FAT entry index within FAT table
|
|
223 |
@param aFatEntry new FAT entry value
|
|
224 |
@return ETrue if the entry has been overwritten
|
|
225 |
EFalse if index aFatIndex isn't cached
|
|
226 |
*/
|
|
227 |
TBool CFat32LruCache::WriteCachedEntryL(TUint32 aFatIndex, TFat32Entry aFatEntry)
|
|
228 |
{
|
|
229 |
//-- iterate through LRU list looking if the entry is cached.
|
|
230 |
TPageIterator itr(iPageList);
|
|
231 |
|
|
232 |
for(;;)
|
|
233 |
{
|
|
234 |
CFat32LruCachePage* pPage = itr++;
|
|
235 |
if(!pPage)
|
|
236 |
break;
|
|
237 |
|
|
238 |
if(pPage->WriteCachedEntryL(aFatIndex, aFatEntry))
|
|
239 |
{//-- the entry was cached and modified now. Make this page LRU
|
|
240 |
if(!iPageList.IsFirst(pPage))
|
|
241 |
{
|
|
242 |
pPage->iLink.Deque();
|
|
243 |
iPageList.AddFirst(*pPage);
|
|
244 |
}
|
|
245 |
return ETrue;
|
|
246 |
}
|
|
247 |
}
|
|
248 |
|
|
249 |
return EFalse; //-- the entry is not cached
|
|
250 |
}
|
|
251 |
|
|
252 |
//-----------------------------------------------------------------------------
|
|
253 |
/**
|
|
254 |
Get a spare page. This function can either allocate a page if memory limit isn't reached yet
|
|
255 |
or find the least recently used (in the end of the LRU list) and evict it.
|
|
256 |
|
|
257 |
@return pointer to the cache page to use, it will be insertet to the beginning of the LRU list
|
|
258 |
*/
|
|
259 |
CFat32LruCachePage* CFat32LruCache::DoGetSpareCachePageL()
|
|
260 |
{
|
|
261 |
CFat32LruCachePage* pPage=NULL;
|
|
262 |
|
|
263 |
if(iNumPagesAllocated < iMaxPages)
|
|
264 |
{//-- we still can allocate a page
|
|
265 |
|
|
266 |
pPage = CFat32LruCachePage::NewL(*this);
|
|
267 |
++iNumPagesAllocated;
|
|
268 |
iPageList.AddFirst(*pPage); //-- insert the page into the beginning of LRU list
|
|
269 |
return pPage;
|
|
270 |
}
|
|
271 |
|
|
272 |
//-- all pages are already allocated, evict the last recently used and remove it from the list
|
|
273 |
pPage = iPageList.Last(); //-- least recently used page, last in the list
|
|
274 |
pPage->iLink.Deque(); //-- remove it from the LRU list
|
|
275 |
iPageList.AddFirst(*pPage); //-- insert the page into the beginning of LRU list
|
|
276 |
|
|
277 |
//__PRINT1(_L("#-CFat32LruCache::DoGetSpareCachePageL() page @FAT idx:%d evicted"), pPage->StartFatIndex());
|
|
278 |
|
|
279 |
//-- flush the page, writing its data to all copies of FAT, to FAT1, then to FAT2 etc.
|
|
280 |
ASSERT(NumFATs() >0);
|
|
281 |
if(pPage->IsDirty())
|
|
282 |
{
|
|
283 |
//-- write page data to all copies of FAT
|
|
284 |
for(iCurrentFatNo=0; iCurrentFatNo < NumFATs(); ++iCurrentFatNo)
|
|
285 |
{
|
|
286 |
const TBool keepDirty = iCurrentFatNo < (NumFATs()-1);
|
|
287 |
pPage->FlushL(keepDirty);
|
|
288 |
}
|
|
289 |
|
|
290 |
iCurrentFatNo = KInvalidFatNo;
|
|
291 |
}
|
|
292 |
|
|
293 |
|
|
294 |
return pPage;
|
|
295 |
}
|
|
296 |
|
|
297 |
|
|
298 |
|
|
299 |
//-----------------------------------------------------------------------------
|
|
300 |
/**
|
|
301 |
Read FAT entry from the cache.
|
|
302 |
|
|
303 |
@param aIndex FAT entry index to read
|
|
304 |
@return FAT entry value at the index "aIndex"
|
|
305 |
*/
|
|
306 |
TUint32 CFat32LruCache::ReadEntryL(TUint32 aIndex)
|
|
307 |
{
|
|
308 |
// __PRINT1(_L("#-CFat32LruCache::ReadEntryL() FAT idx:%d"), aIndex);
|
|
309 |
|
|
310 |
ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() >> KFat32EntrySzLog2));
|
|
311 |
|
|
312 |
//-- firstly try to locate required entry in cache
|
|
313 |
TFat32Entry entry;
|
|
314 |
if(ReadCachedEntryL(aIndex, entry))
|
|
315 |
return entry; //-- the requested entry found in cache
|
|
316 |
|
|
317 |
//-- No luck, get a spare cache page (it will be inserted to the head of the LRU list)
|
|
318 |
CFat32LruCachePage* pPage = DoGetSpareCachePageL();
|
|
319 |
ASSERT(pPage);
|
|
320 |
|
|
321 |
entry = pPage->ReadFromMediaL(aIndex); //-- read whole FAT page from the media
|
|
322 |
|
|
323 |
return entry;
|
|
324 |
}
|
|
325 |
|
|
326 |
//-----------------------------------------------------------------------------
|
|
327 |
/**
|
|
328 |
Write FAT entry to the cache.
|
|
329 |
Appropriate FAT cache sector will be marked as "dirty" and will be eventually flushed to the media.
|
|
330 |
|
|
331 |
@param aIndex FAT entry index
|
|
332 |
@param aEntry FAT entry value
|
|
333 |
*/
|
|
334 |
void CFat32LruCache::WriteEntryL(TUint32 aIndex, TUint32 aEntry)
|
|
335 |
{
|
|
336 |
//__PRINT2(_L("#-CFat32LruCache::WriteEntryL() FAT idx:%d, val:%d"), aIndex, aEntry);
|
|
337 |
|
|
338 |
ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() >> KFat32EntrySzLog2));
|
|
339 |
|
|
340 |
SetDirty(ETrue);
|
|
341 |
|
|
342 |
//-- 1. try to locate entry in the cache and overwrite it there if it is cached
|
|
343 |
if(WriteCachedEntryL(aIndex, aEntry))
|
|
344 |
return; //-- the entry in cache altered
|
|
345 |
|
|
346 |
//-- 2. the entry isn't cached; find a spare cache page (it will be inserted to the head of the LRU list)
|
|
347 |
CFat32LruCachePage* pPage = DoGetSpareCachePageL();
|
|
348 |
ASSERT(pPage);
|
|
349 |
|
|
350 |
pPage->ReadFromMediaL(aIndex); //-- read whole FAT page from the media
|
|
351 |
|
|
352 |
|
|
353 |
//-- 3. overwrite entry in cache
|
|
354 |
TBool bRes = pPage->WriteCachedEntryL(aIndex, aEntry);
|
|
355 |
ASSERT(bRes);
|
|
356 |
(void)bRes;
|
|
357 |
}
|
|
358 |
|
|
359 |
//-----------------------------------------------------------------------------
|
|
360 |
/**
|
|
361 |
A debug method that asserts that the cache is really clean
|
|
362 |
*/
|
|
363 |
void CFat32LruCache::AssertCacheReallyClean()
|
|
364 |
{
|
|
365 |
#ifdef _DEBUG
|
|
366 |
|
|
367 |
TPageIterator itr(iPageList);
|
|
368 |
for(;;)
|
|
369 |
{//-- iterate through LRU list flushing pages into the current copy of FAT
|
|
370 |
CFat32LruCachePage* pPage = itr++;
|
|
371 |
|
|
372 |
if(!pPage)
|
|
373 |
break;
|
|
374 |
|
|
375 |
if(pPage->IsDirty())
|
|
376 |
{
|
|
377 |
__PRINT(_L("#-CFat32LruCache::AssertCacheReallyClean()"));
|
|
378 |
ASSERT(0);
|
|
379 |
}
|
|
380 |
}
|
|
381 |
|
|
382 |
#endif
|
|
383 |
}
|
|
384 |
|
|
385 |
//-----------------------------------------------------------------------------
|
|
386 |
/**
|
|
387 |
Flushes all dirty data to the media.
|
|
388 |
*/
|
|
389 |
void CFat32LruCache::FlushL()
|
|
390 |
{
|
|
391 |
if(!IsDirty())
|
|
392 |
{
|
|
393 |
AssertCacheReallyClean();
|
|
394 |
return;
|
|
395 |
}
|
|
396 |
|
|
397 |
//-- flush dirty data to all copies of FAT
|
|
398 |
//-- all dirty pages will be written firstly to FAT1, then all of them will be written to FAT2 etc.
|
|
399 |
for(iCurrentFatNo=0; iCurrentFatNo < NumFATs(); ++iCurrentFatNo)
|
|
400 |
{
|
|
401 |
TPageIterator itr(iPageList);
|
|
402 |
for(;;)
|
|
403 |
{//-- iterate through LRU list flushing pages into the current copy of FAT
|
|
404 |
CFat32LruCachePage* pPage = itr++;
|
|
405 |
if(!pPage)
|
|
406 |
break;
|
|
407 |
|
|
408 |
//-- we need to keep page dirty until it is flushed to the last copy of FAT table
|
|
409 |
const TBool keepDirty = iCurrentFatNo < (NumFATs() - 1);
|
|
410 |
pPage->FlushL(keepDirty);
|
|
411 |
}
|
|
412 |
}
|
|
413 |
|
|
414 |
iCurrentFatNo = KInvalidFatNo;
|
|
415 |
|
|
416 |
SetDirty(EFalse);
|
|
417 |
}
|
|
418 |
|
|
419 |
//-----------------------------------------------------------------------------
|
|
420 |
|
|
421 |
/**
|
|
422 |
Invalidate whole cache. All pages will be marked as invalid and will be re-read from the media on first access to them.
|
|
423 |
@return always KErrNone
|
|
424 |
*/
|
|
425 |
TInt CFat32LruCache::Invalidate()
|
|
426 |
{
|
|
427 |
__PRINT(_L("#-CFat32LruCache::Invalidate()"));
|
|
428 |
const TBool bIgnoreDirtyData = CheckInvalidatingDirtyCache();
|
|
429 |
|
|
430 |
//-- iterate through LRU list marking every page as invalid
|
|
431 |
TPageIterator itr(iPageList);
|
|
432 |
for(;;)
|
|
433 |
{
|
|
434 |
CFat32LruCachePage* pPage = itr++;
|
|
435 |
if(!pPage)
|
|
436 |
break;
|
|
437 |
|
|
438 |
pPage->Invalidate(bIgnoreDirtyData);
|
|
439 |
}
|
|
440 |
|
|
441 |
SetDirty(EFalse);
|
|
442 |
|
|
443 |
return KErrNone;
|
|
444 |
}
|
|
445 |
|
|
446 |
|
|
447 |
//-----------------------------------------------------------------------------
|
|
448 |
|
|
449 |
/**
|
|
450 |
Invalidate FAT cache pages that contain FAT32 entries from aStartIndex to (aStartIndex+aNumEntries)
|
|
451 |
These pages will be marked as invalid and will be re-read from the media on first access to them.
|
|
452 |
|
|
453 |
@param aStartIndex FAT start index of the region being invalidated
|
|
454 |
@param aNumEntries number of entries to invalidate
|
|
455 |
@return always KErrNone
|
|
456 |
*/
|
|
457 |
TInt CFat32LruCache::InvalidateRegion(TUint32 aStartIndex, TUint32 aNumEntries)
|
|
458 |
{
|
|
459 |
__PRINT2(_L("#-CFat32LruCache::InvalidateRegion() startIndex:%d, entries:%d"),aStartIndex, aNumEntries);
|
|
460 |
ASSERT(aStartIndex >= KFatFirstSearchCluster && aStartIndex < (FatSize() >> KFat32EntrySzLog2));
|
|
461 |
|
|
462 |
if(!aNumEntries)
|
|
463 |
{
|
|
464 |
ASSERT(0);
|
|
465 |
return KErrNone;
|
|
466 |
}
|
|
467 |
|
|
468 |
const TBool bIgnoreDirtyData = CheckInvalidatingDirtyCache();
|
|
469 |
const TUint KEntriesInPage = Pow2(PageSizeLog2() - KFat32EntrySzLog2);
|
|
470 |
const TUint KLastIndex = aStartIndex+aNumEntries;
|
|
471 |
|
|
472 |
TBool bCacheIsStillDirty = EFalse; //-- ETrue if the cache is still dirty after invalidating its region
|
|
473 |
|
|
474 |
for(TUint currIndex = aStartIndex; currIndex < KLastIndex; currIndex+=KEntriesInPage)
|
|
475 |
{
|
|
476 |
TPageIterator itr(iPageList);
|
|
477 |
for(;;)
|
|
478 |
{//-- iterate through all pages, invalidating required
|
|
479 |
CFat32LruCachePage* pPage = itr++;
|
|
480 |
if(!pPage)
|
|
481 |
break;
|
|
482 |
|
|
483 |
if(pPage->IsEntryCached(currIndex))
|
|
484 |
{
|
|
485 |
pPage->Invalidate(bIgnoreDirtyData);
|
|
486 |
}
|
|
487 |
else if(pPage->IsDirty()) //-- invalid page can't be ditry.
|
|
488 |
{
|
|
489 |
bCacheIsStillDirty = ETrue; //-- we have at least 1 dirty page
|
|
490 |
}
|
|
491 |
}
|
|
492 |
}
|
|
493 |
|
|
494 |
SetDirty(bCacheIsStillDirty);
|
|
495 |
|
|
496 |
return KErrNone;
|
|
497 |
}
|
|
498 |
|
|
499 |
//-----------------------------------------------------------------------------
|
|
500 |
|
|
501 |
|
|
502 |
|
|
503 |
/**
|
|
504 |
Look for free FAT entry in the FAT sector that corresponds to the aFatEntryIndex.
|
|
505 |
Search is performed in both directions, the right one has more priority (FAT cluster chain needs to grow right).
|
|
506 |
See FindFreeEntryInCacheSector()
|
|
507 |
*/
|
|
508 |
TBool CFat32LruCache::FindFreeEntryInCacheSectorL(TUint32& aFatEntryIndex)
|
|
509 |
{
|
|
510 |
if(ReadEntryL(aFatEntryIndex) == KSpareCluster)
|
|
511 |
return ETrue;
|
|
512 |
|
|
513 |
//-- look for free FAT entries in the FAT cache sector corresponting to the aStartIndex.
|
|
514 |
//-- use the same approach as in CFatTable::FindClosestFreeClusterL()
|
|
515 |
const TUint32 coeff = SectorSizeLog2()-KFat32EntrySzLog2;
|
|
516 |
const TUint32 numEntriesInSector = Pow2(coeff); //-- number of FAT32 entries in FAT cache sector
|
|
517 |
|
|
518 |
TUint32 MinIdx = (aFatEntryIndex >> coeff) << coeff;
|
|
519 |
TUint32 MaxIdx = MinIdx+numEntriesInSector-1;
|
|
520 |
|
|
521 |
if(MinIdx == 0)
|
|
522 |
{//-- correct values if this is the first FAT sector; FAT[0] & FAT[1] are reserved
|
|
523 |
MinIdx += KFatFirstSearchCluster;
|
|
524 |
}
|
|
525 |
|
|
526 |
//-- actual number of usable FAT entries can be less than deducted from number of FAT sectors.
|
|
527 |
MaxIdx = Min(MaxIdx, iMaxFatEntries-1);
|
|
528 |
|
|
529 |
//-- look in both directions starting from the aFatEntryIndex
|
|
530 |
//-- but in one FAT cache page sector only
|
|
531 |
TBool canGoRight = ETrue;
|
|
532 |
TBool canGoLeft = ETrue;
|
|
533 |
|
|
534 |
TUint32 rightIdx=aFatEntryIndex;
|
|
535 |
TUint32 leftIdx=aFatEntryIndex;
|
|
536 |
|
|
537 |
for(TUint i=0; i<numEntriesInSector; ++i)
|
|
538 |
{
|
|
539 |
if(canGoRight)
|
|
540 |
{
|
|
541 |
if(rightIdx < MaxIdx)
|
|
542 |
++rightIdx;
|
|
543 |
else
|
|
544 |
canGoRight = EFalse;
|
|
545 |
}
|
|
546 |
|
|
547 |
if(canGoLeft)
|
|
548 |
{
|
|
549 |
if(leftIdx > MinIdx)
|
|
550 |
--leftIdx;
|
|
551 |
else
|
|
552 |
canGoLeft = EFalse;
|
|
553 |
}
|
|
554 |
|
|
555 |
if(!canGoRight && !canGoLeft)
|
|
556 |
return EFalse; //-- no free entries in this sector
|
|
557 |
|
|
558 |
if(canGoRight && ReadEntryL(rightIdx) == KSpareCluster)
|
|
559 |
{
|
|
560 |
aFatEntryIndex = rightIdx;
|
|
561 |
return ETrue;
|
|
562 |
}
|
|
563 |
|
|
564 |
if (canGoLeft && ReadEntryL(leftIdx) == KSpareCluster)
|
|
565 |
{
|
|
566 |
aFatEntryIndex = leftIdx;
|
|
567 |
return ETrue;
|
|
568 |
}
|
|
569 |
}//for(TUint i=0; i<numEntriesInSector; ++i)
|
|
570 |
|
|
571 |
return EFalse;
|
|
572 |
}
|
|
573 |
|
|
574 |
|
|
575 |
|
|
576 |
//#################################################################################################################################
|
|
577 |
// CFat32LruCachePage implementation
|
|
578 |
//#################################################################################################################################
|
|
579 |
|
|
580 |
|
|
581 |
CFat32LruCachePage::CFat32LruCachePage(CFatPagedCacheBase& aCache)
|
|
582 |
:CFatCachePageBase(aCache)
|
|
583 |
{
|
|
584 |
|
|
585 |
ASSERT(IsPowerOf2(EntriesInPage()));
|
|
586 |
}
|
|
587 |
|
|
588 |
|
|
589 |
/**
|
|
590 |
Factory function.
|
|
591 |
@param aCache reference to the owning cache.
|
|
592 |
@return pointer to the constructed object or NULL on error
|
|
593 |
*/
|
|
594 |
CFat32LruCachePage* CFat32LruCachePage::NewL(CFatPagedCacheBase& aCache)
|
|
595 |
{
|
|
596 |
|
|
597 |
CFat32LruCachePage* pSelf = NULL;
|
|
598 |
pSelf = new (ELeave) CFat32LruCachePage(aCache);
|
|
599 |
|
|
600 |
CleanupStack::PushL(pSelf);
|
|
601 |
|
|
602 |
pSelf->iData.CreateMaxL(pSelf->PageSize()); //-- allocate memory for the page
|
|
603 |
|
|
604 |
CleanupStack::Pop();
|
|
605 |
|
|
606 |
return pSelf;
|
|
607 |
}
|
|
608 |
|
|
609 |
|
|
610 |
//-----------------------------------------------------------------------------
|
|
611 |
|
|
612 |
/**
|
|
613 |
Get a pointer to the FAT32 entry in the page buffer.
|
|
614 |
The page 's data shall be valid and the entry shall belong to this page.
|
|
615 |
|
|
616 |
@param aFatIndex absolute FAT index (from the FAT start) of the entry
|
|
617 |
@return pointer to the FAT32 entry in the page buffer.
|
|
618 |
*/
|
|
619 |
TFat32Entry* CFat32LruCachePage::GetEntryPtr(TUint32 aFatIndex) const
|
|
620 |
{
|
|
621 |
|
|
622 |
ASSERT(IsValid() && IsEntryCached(aFatIndex));
|
|
623 |
|
|
624 |
const TUint KEntryIndexInPage = aFatIndex & (EntriesInPage()-1); //-- number of entries in page is always a power of 2
|
|
625 |
|
|
626 |
TFat32Entry* pEntry = ((TFat32Entry*)iData.Ptr()) + KEntryIndexInPage;
|
|
627 |
return pEntry;
|
|
628 |
}
|
|
629 |
|
|
630 |
//-----------------------------------------------------------------------------
|
|
631 |
|
|
632 |
/**
|
|
633 |
Read FAT32 entry from the cache.
|
|
634 |
|
|
635 |
1. If the entry at aFatIndex doesn't belong to this page, returns EFalse
|
|
636 |
2. If page's data are valid and the entry is cached just extracts data from the page buffer.
|
|
637 |
3. If page's data are invalid but the entry's index belongs to this page, firstly reads data from the media and goto 2
|
|
638 |
|
|
639 |
@param aFatIndex entry's absolute FAT index (from the FAT start)
|
|
640 |
@param aResult on sucess there will be FAT32 entry value
|
|
641 |
@return ETrue if the entry at aFatIndex belongs to this page (cached) and in this case aResult will contain this entry.
|
|
642 |
EFalse if the entry isn't cached.
|
|
643 |
|
|
644 |
*/
|
|
645 |
TBool CFat32LruCachePage::ReadCachedEntryL(TUint32 aFatIndex, TUint32& aResult)
|
|
646 |
{
|
|
647 |
if(!IsEntryCached(aFatIndex))
|
|
648 |
return EFalse; //-- the page doesn't contain required index
|
|
649 |
|
|
650 |
if(IsValid())
|
|
651 |
{//-- read entry directly from page buffer, the cached data are valid
|
|
652 |
aResult = (*GetEntryPtr(aFatIndex)) & KFat32EntryMask;
|
|
653 |
}
|
|
654 |
else
|
|
655 |
{//-- aFatIndex belongs to this page, but the page is invalid and needs to be read from the media
|
|
656 |
__PRINT1(_L("#-CFat32LruCachePage::ReadCachedEntry(%d) The page is invalid, reading from the media"), aFatIndex);
|
|
657 |
aResult = ReadFromMediaL(aFatIndex);
|
|
658 |
}
|
|
659 |
|
|
660 |
return ETrue;
|
|
661 |
}
|
|
662 |
|
|
663 |
//-----------------------------------------------------------------------------
|
|
664 |
|
|
665 |
/**
|
|
666 |
Read the FAT32 cache page from the media and return required FAT32 entry.
|
|
667 |
|
|
668 |
@param aFatIndex entry's absolute FAT index (from the FAT start)
|
|
669 |
@return entry value at aFatIndex.
|
|
670 |
*/
|
|
671 |
TUint32 CFat32LruCachePage::ReadFromMediaL(TUint32 aFatIndex)
|
|
672 |
{
|
|
673 |
//__PRINT1(_L("#-CFat32LruCachePage::ReadFromMediaL() FAT idx:%d"), aFatIndex);
|
|
674 |
|
|
675 |
const TUint KFat32EntriesInPageLog2 = iCache.PageSizeLog2()-KFat32EntrySzLog2; //-- number of FAT32 entries in page is always a power of 2
|
|
676 |
|
|
677 |
//-- find out index in FAT this page starts from
|
|
678 |
iStartIndexInFAT = (aFatIndex >> KFat32EntriesInPageLog2) << KFat32EntriesInPageLog2;
|
|
679 |
|
|
680 |
SetState(EInvalid); //-- mark the page as invalid just in case if the read fails.
|
|
681 |
|
|
682 |
//-- read page from the media
|
|
683 |
const TUint32 pageStartPos = iCache.FatStartPos() + (iStartIndexInFAT << KFat32EntrySzLog2);
|
|
684 |
TInt nRes = iCache.ReadFatData(pageStartPos, iCache.PageSize(), iData);
|
|
685 |
if(nRes != KErrNone)
|
|
686 |
{
|
|
687 |
__PRINT1(_L("#-CFat32LruCachePage::ReadFromMediaL() failed! code:%d"), nRes);
|
|
688 |
User::Leave(nRes);
|
|
689 |
}
|
|
690 |
|
|
691 |
SetClean(); //-- mark this page as clean
|
|
692 |
|
|
693 |
const TFat32Entry entry = (*GetEntryPtr(aFatIndex)) & KFat32EntryMask;
|
|
694 |
|
|
695 |
return entry;
|
|
696 |
}
|
|
697 |
|
|
698 |
//-----------------------------------------------------------------------------
|
|
699 |
|
|
700 |
/**
|
|
701 |
Writes FAT cache page sector to the media (to all copies of the FAT)
|
|
702 |
@param aSector page sector number
|
|
703 |
*/
|
|
704 |
void CFat32LruCachePage::DoWriteSectorL(TUint32 aSector)
|
|
705 |
{
|
|
706 |
//__PRINT1(_L("#-CFat32LruCachePage::DoWriteContiguousSectorsL() startSec:%d"),aSector);
|
|
707 |
|
|
708 |
ASSERT(aSector < iCache.SectorsInPage());
|
|
709 |
|
|
710 |
const TUint CacheSecSzLog2=iCache.SectorSizeLog2();
|
|
711 |
|
|
712 |
TInt offset = 0;
|
|
713 |
if(iStartIndexInFAT == 0 && aSector == 0)
|
|
714 |
{//-- this is the very beginning of FAT32. We must skip FAT[0] & FAT[1] entries and do not write them to media.
|
|
715 |
offset = KFatFirstSearchCluster << KFat32EntrySzLog2;
|
|
716 |
}
|
|
717 |
|
|
718 |
const TUint8* pData = iData.Ptr()+offset+(aSector << CacheSecSzLog2);
|
|
719 |
|
|
720 |
TUint32 dataLen = (1 << CacheSecSzLog2) - offset;
|
|
721 |
|
|
722 |
const TUint32 mediaPosStart = iCache.FatStartPos() + (iStartIndexInFAT << KFat32EntrySzLog2) + (aSector << CacheSecSzLog2) + offset;
|
|
723 |
const TUint32 mediaPosEnd = mediaPosStart + dataLen;
|
|
724 |
|
|
725 |
//-- check if we are going to write beyond FAT. It can happen if the write granularity is bigger that the sector size.
|
|
726 |
const TUint32 posFatEnd = iCache.FatStartPos() + iCache.FatSize();
|
|
727 |
if(mediaPosEnd > posFatEnd)
|
|
728 |
{//-- correct the leength of the data to write.
|
|
729 |
dataLen -= (mediaPosEnd-posFatEnd);
|
|
730 |
}
|
|
731 |
|
|
732 |
TPtrC8 ptrData(pData, dataLen); //-- source data descriptor
|
|
733 |
|
|
734 |
TInt nRes = iCache.WriteFatData(mediaPosStart, ptrData);
|
|
735 |
|
|
736 |
if(nRes != KErrNone)
|
|
737 |
{
|
|
738 |
__PRINT1(_L("#-CFat32LruCachePage::DoWriteSectorsL() failed! code:%d"), nRes);
|
|
739 |
User::Leave(nRes);
|
|
740 |
}
|
|
741 |
|
|
742 |
|
|
743 |
//-- if we have FAT bit supercache and it is in consistent state, check if the entry in this cache differs from the data in dirty FAT cache sector.
|
|
744 |
CFatBitCache *pFatBitCache = iCache.BitCacheInterface();
|
|
745 |
if(pFatBitCache && pFatBitCache->UsableState())
|
|
746 |
{
|
|
747 |
//-- absolute FAT cache sector number corresponding aSector number in _this_ cache page
|
|
748 |
const TUint32 absSectorNum = (iStartIndexInFAT >> (CacheSecSzLog2-KFat32EntrySzLog2)) + aSector;
|
|
749 |
|
|
750 |
if(pFatBitCache->FatSectorHasFreeEntry(absSectorNum))
|
|
751 |
{ //-- it means that the corresponding FAT cache sector may or may not contain free FAT entry.
|
|
752 |
//-- in this case we need to repopulate corresponding bit cache entry.
|
|
753 |
|
|
754 |
const TUint32 numEntries = dataLen >> KFat32EntrySzLog2; //-- amount of FAT entries in this sector
|
|
755 |
const TFat32Entry* pFat32Entry = (const TFat32Entry* )pData;
|
|
756 |
|
|
757 |
TBool bHasFreeFatEntry = EFalse;
|
|
758 |
|
|
759 |
for(TUint i=0; i<numEntries; ++i)
|
|
760 |
{//-- look for free entries in this particular FAT cache sector.
|
|
761 |
if(pFat32Entry[i] == KSpareCluster)
|
|
762 |
{
|
|
763 |
bHasFreeFatEntry = ETrue;
|
|
764 |
break;
|
|
765 |
}
|
|
766 |
}
|
|
767 |
|
|
768 |
if(!bHasFreeFatEntry)
|
|
769 |
{ //-- FAT bit cache indicates that FAT sector absSectorNum has free entries, but it doesn't.
|
|
770 |
//-- this is because we can only set "has free entry" flag in CAtaFatTable::WriteL().
|
|
771 |
//-- correct FAT bit cache entry
|
|
772 |
pFatBitCache->SetFreeEntryInFatSector(absSectorNum, EFalse);
|
|
773 |
|
|
774 |
//__PRINT2(_L("#++ :DoWriteSectorL() Fixed FAT bit cache BitVec[%d]=%d"), absSectorNum, pFatBitCache->FatSectorHasFreeEntry(absSectorNum));
|
|
775 |
}
|
|
776 |
|
|
777 |
}
|
|
778 |
else //if(pBitCache->FatSectorHasFreeEntry(absSectorNum))
|
|
779 |
{//-- don't need to do anything. The corresponding FAT cache sector never contained free FAT entry and
|
|
780 |
//-- free FAT entry has never been written there in CAtaFatTable::WriteL().
|
|
781 |
}
|
|
782 |
|
|
783 |
}//if(pFatBitCache && pFatBitCache->UsableState())
|
|
784 |
|
|
785 |
|
|
786 |
}
|
|
787 |
|
|
788 |
|
|
789 |
//-----------------------------------------------------------------------------
|
|
790 |
/**
|
|
791 |
Write FAT32 entry at aFatIndex to the cache. Note that the data are not written to the media, only to the cache page.
|
|
792 |
Corresponding page sector is marked as dirty and will be flushed on FlushL() call later.
|
|
793 |
|
|
794 |
1. If the entry at aFatIndex doesn't belong to this page, returns EFalse
|
|
795 |
2. If page's data are valid and the entry is cached, copies data to the page buffer and marks sector as dirty.
|
|
796 |
3. If page's data are invalid but the entry's index belongs to this page, firstly reads data from the media and goto 2
|
|
797 |
|
|
798 |
@param aFatIndex entry's absolute FAT index (from the FAT start)
|
|
799 |
@param aFatEntry FAT32 entry value
|
|
800 |
@return ETrue if the entry at aFatIndex belongs to this page (cached) and in this case aResult will contain this entry.
|
|
801 |
EFalse if the entry isn't cached.
|
|
802 |
|
|
803 |
*/
|
|
804 |
TBool CFat32LruCachePage::WriteCachedEntryL(TUint32 aFatIndex, TUint32 aFatEntry)
|
|
805 |
{
|
|
806 |
|
|
807 |
if(!IsEntryCached(aFatIndex))
|
|
808 |
return EFalse; //-- the page doesn't contain required index
|
|
809 |
|
|
810 |
if(!IsValid())
|
|
811 |
{//-- we are trying to write data to the page that has invalid data. //-- read the data from the media first.
|
|
812 |
ReadFromMediaL(aFatIndex);
|
|
813 |
}
|
|
814 |
|
|
815 |
//-- for FAT32 only low 28 bits are used, 4 high are reserved; preserve them
|
|
816 |
TFat32Entry* pEntry = GetEntryPtr(aFatIndex);
|
|
817 |
const TFat32Entry orgEntry = *pEntry;
|
|
818 |
*pEntry = (orgEntry & ~KFat32EntryMask) | (aFatEntry & KFat32EntryMask);
|
|
819 |
|
|
820 |
//-- mark corresponding sector of the cache page as dirty
|
|
821 |
const TUint entryIndexInPage = aFatIndex & (EntriesInPage()-1); //-- number of entries in page is always a power of 2
|
|
822 |
const TUint dirtySectorNum = entryIndexInPage >> (iCache.SectorSizeLog2() - KFat32EntrySzLog2);
|
|
823 |
|
|
824 |
ASSERT(dirtySectorNum < iCache.SectorsInPage());
|
|
825 |
|
|
826 |
iDirtySectors.SetBit(dirtySectorNum);
|
|
827 |
SetState(EDirty); //-- mark page as dirty.
|
|
828 |
|
|
829 |
return ETrue;
|
|
830 |
}
|
|
831 |
|
|
832 |
|
|
833 |
|
|
834 |
//#################################################################################################################################
|
|
835 |
// CFatBitCache implementation
|
|
836 |
//#################################################################################################################################
|
|
837 |
|
|
838 |
//-- define this macro for extra debugging facilities for the CFatBitCache
|
|
839 |
//-- probably needs to be removed completely as soon as everything settles
|
|
840 |
//#define FAT_BIT_CACHE_DEBUG
|
|
841 |
|
|
842 |
//-----------------------------------------------------------------------------
|
|
843 |
|
|
844 |
CFatBitCache::CFatBitCache(CFat32LruCache& aOnwerFatCache)
|
|
845 |
:iOwnerFatCache(aOnwerFatCache)
|
|
846 |
{
|
|
847 |
SetState(EInvalid);
|
|
848 |
DBG_STATEMENT(iPopulatingThreadId=0);
|
|
849 |
}
|
|
850 |
|
|
851 |
CFatBitCache::~CFatBitCache()
|
|
852 |
{
|
|
853 |
Close();
|
|
854 |
}
|
|
855 |
|
|
856 |
//-----------------------------------------------------------------------------
|
|
857 |
/**
|
|
858 |
FAT bit supercache factory method
|
|
859 |
@return pointer to the created object or NULL if it coud not create or initialise it.
|
|
860 |
*/
|
|
861 |
CFatBitCache* CFatBitCache::New(CFat32LruCache& aOnwerFatCache)
|
|
862 |
{
|
|
863 |
__PRINT(_L("#++ CFatBitCache::New()"));
|
|
864 |
|
|
865 |
CFatBitCache* pSelf = NULL;
|
|
866 |
pSelf = new CFatBitCache(aOnwerFatCache);
|
|
867 |
|
|
868 |
if(!pSelf)
|
|
869 |
return NULL; //-- failed to create object
|
|
870 |
|
|
871 |
TInt nRes = pSelf->Initialise();
|
|
872 |
if(nRes != KErrNone)
|
|
873 |
{//-- failed to initialise the object
|
|
874 |
delete pSelf;
|
|
875 |
pSelf = NULL;
|
|
876 |
}
|
|
877 |
|
|
878 |
return pSelf;
|
|
879 |
}
|
|
880 |
|
|
881 |
|
|
882 |
//-----------------------------------------------------------------------------
|
|
883 |
|
|
884 |
/**
|
|
885 |
Initialisation.
|
|
886 |
Note that this cache suports FAT32 only.
|
|
887 |
@return KErrNone on success; otherwise standard error code.
|
|
888 |
*/
|
|
889 |
TInt CFatBitCache::Initialise()
|
|
890 |
{
|
|
891 |
__PRINT(_L("#++ CFatBitCache::Initialise()"));
|
|
892 |
|
|
893 |
Close();
|
|
894 |
|
|
895 |
//-- only FAT32 supported
|
|
896 |
if(iOwnerFatCache.FatType() != EFat32)
|
|
897 |
{
|
|
898 |
ASSERT(0);
|
|
899 |
Fault(EFatCache_BadFatType);
|
|
900 |
}
|
|
901 |
|
|
902 |
//-- create the bit vector. each bit position there represents one FAT cache sector (in FAT cache page terms, see FAT page structure)
|
|
903 |
const TUint fatSize = iOwnerFatCache.FatSize(); //-- FAT size in bytes
|
|
904 |
const TUint fatCacheSecSize = Pow2(iOwnerFatCache.SectorSizeLog2()); //-- FAT cache sector size
|
|
905 |
const TUint maxFatUsableCacheSectors = (fatSize + (fatCacheSecSize-1)) >> iOwnerFatCache.SectorSizeLog2(); //-- maximal number of usable fat cache sectors in whole FAT table
|
|
906 |
|
|
907 |
//-- create a bit vector
|
|
908 |
__PRINT1(_L("#++ CFatBitCache::Initialise() FAT supercache bits:%u"), maxFatUsableCacheSectors);
|
|
909 |
|
|
910 |
TInt nRes = iBitCache.Create(maxFatUsableCacheSectors);
|
|
911 |
if(nRes != KErrNone)
|
|
912 |
{
|
|
913 |
__PRINT1(_L("#++ Failed to create a bit vector! code:%d"), nRes);
|
|
914 |
return nRes;
|
|
915 |
}
|
|
916 |
|
|
917 |
//-- calculate the coefficient to be used to convet FAT index to FAT cache sector number (bit vector index).
|
|
918 |
iFatIdxToSecCoeff = iOwnerFatCache.SectorSizeLog2()-KFat32EntrySzLog2;
|
|
919 |
SetState(ENotPopulated);
|
|
920 |
|
|
921 |
return KErrNone;
|
|
922 |
}
|
|
923 |
|
|
924 |
//-----------------------------------------------------------------------------
|
|
925 |
/**
|
|
926 |
Closes the cache and deallocates bit vector memory.
|
|
927 |
*/
|
|
928 |
void CFatBitCache::Close()
|
|
929 |
{
|
|
930 |
__PRINT(_L("#++ CFatBitCache::Close()"));
|
|
931 |
|
|
932 |
//-- this method must not be called during populating (optionally by another thread)
|
|
933 |
ASSERT(State() != EPopulating);
|
|
934 |
ASSERT(iPopulatingThreadId == 0);
|
|
935 |
|
|
936 |
iBitCache.Close();
|
|
937 |
SetState(EInvalid);
|
|
938 |
}
|
|
939 |
|
|
940 |
//-----------------------------------------------------------------------------
|
|
941 |
|
|
942 |
/**
|
|
943 |
Tell the cache that we are starting to populate it.
|
|
944 |
N.B. Start, Finish and populating methods shall be called from the same thread.
|
|
945 |
Only one thread can be populating the bit vector;
|
|
946 |
|
|
947 |
@return ETrue on success. Efalse means that the cache is in the invalid state for some reason.
|
|
948 |
*/
|
|
949 |
TBool CFatBitCache::StartPopulating()
|
|
950 |
{
|
|
951 |
__PRINT2(_L("#++ CFatBitCache::StartPopulating(), State:%d, ThreadId:%d"), State(), (TUint)RThread().Id());
|
|
952 |
|
|
953 |
if(State() != ENotPopulated)
|
|
954 |
{//-- wrong state
|
|
955 |
ASSERT(0);
|
|
956 |
return EFalse;
|
|
957 |
}
|
|
958 |
|
|
959 |
ASSERT(iPopulatingThreadId == 0);
|
|
960 |
|
|
961 |
iBitCache.Fill(0);
|
|
962 |
SetState(EPopulating);
|
|
963 |
|
|
964 |
//-- store the the ID of the thread that starts populating the cache; it'll be checked later during populating.
|
|
965 |
DBG_STATEMENT(iPopulatingThreadId = RThread().Id());
|
|
966 |
|
|
967 |
return ETrue;
|
|
968 |
}
|
|
969 |
|
|
970 |
//-----------------------------------------------------------------------------
|
|
971 |
|
|
972 |
/**
|
|
973 |
Tell the cache that we have finished to populate it.
|
|
974 |
|
|
975 |
@return ETrue on success. EFalse means that the cache is in the invalid state for some reason.
|
|
976 |
*/
|
|
977 |
TBool CFatBitCache::FinishPopulating(TBool aSuccess)
|
|
978 |
{
|
|
979 |
__PRINT2(_L("#++ CFatBitCache::PopulatingFinished(), ThreadId:%d, success:%d"), (TUint)RThread().Id(), aSuccess);
|
|
980 |
|
|
981 |
if(State() != EPopulating)
|
|
982 |
{//-- wrong state
|
|
983 |
ASSERT(0);
|
|
984 |
return EFalse;
|
|
985 |
}
|
|
986 |
|
|
987 |
ASSERT(iPopulatingThreadId == RThread().Id()); //-- check that this method is called from the same thread that started populating
|
|
988 |
DBG_STATEMENT(iPopulatingThreadId = 0);
|
|
989 |
|
|
990 |
if(aSuccess)
|
|
991 |
SetState(EPopulated); //-- the cache is usable; populated OK
|
|
992 |
else
|
|
993 |
SetState(EInvalid); //-- the cache isn't populated properly, make it not usable
|
|
994 |
|
|
995 |
return ETrue;
|
|
996 |
}
|
|
997 |
|
|
998 |
//-----------------------------------------------------------------------------
|
|
999 |
/**
|
|
1000 |
Tell FAT bit cache that there is a free entry at FAT aFatIndex.
|
|
1001 |
Only this method can be used to populate the bit array (in EPopulating state).
|
|
1002 |
Other methods can't access bit array in EPopulating state i.e. it is safe to populate the cache
|
|
1003 |
from the thread other than FS drive thread (e.g within background FAT scan)
|
|
1004 |
|
|
1005 |
@param aFatIndex free FAT32 entry index
|
|
1006 |
@return ETrue on success. EFalse means that the cache is in the invalid state for some reason.
|
|
1007 |
*/
|
|
1008 |
TBool CFatBitCache::SetFreeFatEntry(TUint32 aFatIndex)
|
|
1009 |
{
|
|
1010 |
//__PRINT3(_L("#++ ReportFreeFatEntry: idx:%d, state:%s, tid:%d"), aFatIndex, State(), (TUint)RThread().Id());
|
|
1011 |
|
|
1012 |
if(State() != EPopulating && State() != EPopulated)
|
|
1013 |
{//-- wrong state, this can happen if someone forcedly invalidated this cache during populating
|
|
1014 |
return EFalse;
|
|
1015 |
}
|
|
1016 |
|
|
1017 |
#if defined _DEBUG && defined FAT_BIT_CACHE_DEBUG
|
|
1018 |
//-- This leads to serious performance degradation, so be careful with it.
|
|
1019 |
if(State() == EPopulating)
|
|
1020 |
{//-- check that this method is called from the same thread that started populating
|
|
1021 |
if(iPopulatingThreadId != RThread().Id())
|
|
1022 |
{
|
|
1023 |
__PRINT3(_L("#++ !! ReportFreeFatEntry: Access from different thread!! idx:%d, state:%d, tid:%d"), aFatIndex, State(), (TUint)RThread().Id());
|
|
1024 |
}
|
|
1025 |
//ASSERT(iPopulatingThreadId == RThread().Id());
|
|
1026 |
}
|
|
1027 |
#endif
|
|
1028 |
|
|
1029 |
//-- set bit to '1' which indicates that the FAT cache sector corresponding to the aFatIndex has at least one free FAT entry
|
|
1030 |
const TUint32 bitNumber = FatIndexToCacheSectorNumber(aFatIndex); //-- index in the bit array corresponding FAT cache sector
|
|
1031 |
|
|
1032 |
#if defined _DEBUG && defined FAT_BIT_CACHE_DEBUG
|
|
1033 |
//-- This leads to serious performance degradation, so be careful with it.
|
|
1034 |
TBool b = iBitCache[bitNumber];
|
|
1035 |
if(!b && State()==EPopulated)
|
|
1036 |
{//-- someone is reporting a free entry in the given cache sector.
|
|
1037 |
__PRINT1(_L("#++ CFatBitCache::ReportFreeFatEntry BitVec[%d]=1"), bitNumber);
|
|
1038 |
}
|
|
1039 |
#endif
|
|
1040 |
|
|
1041 |
|
|
1042 |
iBitCache.SetBit(bitNumber);
|
|
1043 |
|
|
1044 |
return ETrue;
|
|
1045 |
}
|
|
1046 |
|
|
1047 |
//-----------------------------------------------------------------------------
|
|
1048 |
/**
|
|
1049 |
Forcedly mark a part of the FAT bit super cache as containing free clusters (or not).
|
|
1050 |
|
|
1051 |
@param aStartFatIndex start FAT index of the range
|
|
1052 |
@param aEndFatIndex end FAT index of the range
|
|
1053 |
@param aAsFree if ETrue, the range will be marked as containing free clusters
|
|
1054 |
*/
|
|
1055 |
void CFatBitCache::MarkFatRange(TUint32 aStartFatIndex, TUint32 aEndFatIndex, TBool aAsFree)
|
|
1056 |
{
|
|
1057 |
__PRINT3(_L("#++ CFatBitCache::MarkFatRange(%d, %d, %d)"), aStartFatIndex, aEndFatIndex, aAsFree);
|
|
1058 |
|
|
1059 |
ASSERT(State() == EPopulating || State() == EPopulated);
|
|
1060 |
|
|
1061 |
const TUint32 bitNumberStart = FatIndexToCacheSectorNumber(aStartFatIndex);
|
|
1062 |
const TUint32 bitNumberEnd = FatIndexToCacheSectorNumber(aEndFatIndex);
|
|
1063 |
|
|
1064 |
iBitCache.Fill(bitNumberStart, bitNumberEnd, aAsFree);
|
|
1065 |
}
|
|
1066 |
|
|
1067 |
|
|
1068 |
//-----------------------------------------------------------------------------
|
|
1069 |
/**
|
|
1070 |
Try to locate closest to the aFatIndex free FAT entry in the FAT32 LRU cache.
|
|
1071 |
This is done by several steps:
|
|
1072 |
|
|
1073 |
1. Try to find FAT cache sector containing free FAT entry (by using FAT sectors bitmap)
|
|
1074 |
2. locate free FAT entry within this sector.
|
|
1075 |
|
|
1076 |
@param aFatIndex in: absolute FAT entry index that will be used to start search from (we need to find the closest free entry to it)
|
|
1077 |
out: may contain FAT index of the located free entry.
|
|
1078 |
|
|
1079 |
@return one of the completion codes:
|
|
1080 |
KErrNone free entry found and its index is in aFatIndex
|
|
1081 |
KErrNotFound FAT sector closest to the aFatIndex entry doesn't contain free FAT entries; the conflict is resolved, need to call this method again
|
|
1082 |
KErrEof couldn't find any free sectors in FAT; need to fall back to the old search method
|
|
1083 |
KErrCorrupt if the state of the cache is inconsistent
|
|
1084 |
*/
|
|
1085 |
TInt CFatBitCache::FindClosestFreeFatEntry(TUint32& aFatIndex)
|
|
1086 |
{
|
|
1087 |
const TUint32 startFatCacheSec = FatIndexToCacheSectorNumber(aFatIndex);
|
|
1088 |
|
|
1089 |
//__PRINT2(_L("#++ CFatBitCache::FindClosestFreeFatEntry() start idx:%d, start cache sec:%d"), aFatIndex, startFatCacheSec);
|
|
1090 |
|
|
1091 |
ASSERT(aFatIndex >= KFatFirstSearchCluster);
|
|
1092 |
if(!UsableState())
|
|
1093 |
{
|
|
1094 |
ASSERT(0);
|
|
1095 |
return KErrCorrupt;
|
|
1096 |
}
|
|
1097 |
|
|
1098 |
TUint32 fatSeekCacheSec = startFatCacheSec; //-- FAT cache sector number that has free FAT entry, used for search .
|
|
1099 |
TUint32 fatSeekIndex = aFatIndex; //-- FAT index to start search with
|
|
1100 |
|
|
1101 |
//-- 1. look if FAT sector that corresponds to the aStartFatIndex already has free entries.
|
|
1102 |
//-- 2. if not, try to locate closest FAT cache sector that has by searching a bit vector
|
|
1103 |
if(FatSectorHasFreeEntry(fatSeekCacheSec))
|
|
1104 |
{
|
|
1105 |
}
|
|
1106 |
else
|
|
1107 |
{//-- look in iBitCache for '1' entries nearest to the fatCacheSec, right side priority
|
|
1108 |
|
|
1109 |
if(!iBitCache.Find(fatSeekCacheSec, 1, RBitVector::ENearestR))
|
|
1110 |
{//-- strange situation, there are no '1' bits in whole vector, search failed
|
|
1111 |
__PRINT(_L("#++ CFatBitCache::FindClosestFreeFatEntry() bit vector search failed!"));
|
|
1112 |
return KErrEof;
|
|
1113 |
}
|
|
1114 |
|
|
1115 |
//-- bit cache found FAT sector(fatSeekCacheSec) that may have free FAT entries
|
|
1116 |
//-- calculate FAT entry start index in this sector
|
|
1117 |
fatSeekIndex = Max(KFatFirstSearchCluster, CacheSectorNumberToFatIndex(fatSeekCacheSec));
|
|
1118 |
}
|
|
1119 |
|
|
1120 |
//-- here we have absolute FAT cache sector number, which may contain at least one free FAT entty
|
|
1121 |
ASSERT(FatSectorHasFreeEntry(fatSeekCacheSec));
|
|
1122 |
|
|
1123 |
//-- ask FAT cache to find the exact index of free FAT entry in this particular FAT cache sector
|
|
1124 |
TInt nRes;
|
|
1125 |
TBool bFreeEntryFound=EFalse;
|
|
1126 |
|
|
1127 |
TRAP(nRes, bFreeEntryFound = iOwnerFatCache.FindFreeEntryInCacheSectorL(fatSeekIndex));
|
|
1128 |
if(nRes != KErrNone)
|
|
1129 |
{//-- it's possible on media read error
|
|
1130 |
return KErrCorrupt;
|
|
1131 |
}
|
|
1132 |
|
|
1133 |
if(bFreeEntryFound)
|
|
1134 |
{//-- found free entry at aNewFreeEntryIndex
|
|
1135 |
aFatIndex = fatSeekIndex;
|
|
1136 |
return KErrNone;
|
|
1137 |
}
|
|
1138 |
|
|
1139 |
//-- bit cache mismatch; its entry ('1') indicates that cache sector number fatCacheSec has free FAT entries,
|
|
1140 |
//-- while in reality it doesnt. We need to fix the bit cache.
|
|
1141 |
//__PRINT1(_L("#++ CFatBitCache::FindClosestFreeFatEntry fixing cache conflict; BitVec[%d]=0"), fatSeekCacheSec);
|
|
1142 |
SetFreeEntryInFatSector(fatSeekCacheSec, EFalse);
|
|
1143 |
|
|
1144 |
return KErrNotFound;
|
|
1145 |
}
|
|
1146 |
|
|
1147 |
|
|
1148 |
//-----------------------------------------------------------------------------
|
|
1149 |
/**
|
|
1150 |
Print out the contents of the object. This is a debug only method
|
|
1151 |
*/
|
|
1152 |
void CFatBitCache::Dump() const
|
|
1153 |
{
|
|
1154 |
#if defined _DEBUG && defined FAT_BIT_CACHE_DEBUG
|
|
1155 |
|
|
1156 |
const TUint32 vecSz = iBitCache.Size();
|
|
1157 |
__PRINT2(_L("#++ CFatBitCache::Dump(): state:%d, entries:%d"), State(), vecSz);
|
|
1158 |
|
|
1159 |
|
|
1160 |
TBuf<120> printBuf;
|
|
1161 |
const TUint KPrintEntries = 32;
|
|
1162 |
|
|
1163 |
TUint i;
|
|
1164 |
printBuf.Append(_L(" "));
|
|
1165 |
for(i=0; i<KPrintEntries; ++i)
|
|
1166 |
{
|
|
1167 |
printBuf.AppendFormat(_L("%02d "),i);
|
|
1168 |
}
|
|
1169 |
|
|
1170 |
__PRINT(printBuf);
|
|
1171 |
for(i=0; i<vecSz;)
|
|
1172 |
{
|
|
1173 |
printBuf.Format(_L("%03d: "), i);
|
|
1174 |
for(TInt j=0; j<KPrintEntries; ++j)
|
|
1175 |
{
|
|
1176 |
if(i >= vecSz)
|
|
1177 |
break;
|
|
1178 |
|
|
1179 |
printBuf.AppendFormat(_L("% d "), (iBitCache[i]!=0));
|
|
1180 |
++i;
|
|
1181 |
}
|
|
1182 |
__PRINT(printBuf);
|
|
1183 |
|
|
1184 |
}
|
|
1185 |
#endif
|
|
1186 |
}
|
|
1187 |
|
|
1188 |
|
|
1189 |
|
|
1190 |
|
|
1191 |
|
|
1192 |
|
|
1193 |
|
|
1194 |
|
|
1195 |
|
|
1196 |
|
|
1197 |
|
|
1198 |
|
|
1199 |
|
|
1200 |
|
|
1201 |
|
|
1202 |
|
|
1203 |
|
|
1204 |
|
|
1205 |
|
|
1206 |
|
|
1207 |
|
|
1208 |
|
|
1209 |
|
|
1210 |
|
|
1211 |
|
|
1212 |
|
|
1213 |
|
|
1214 |
|
|
1215 |
|
|
1216 |
|
|
1217 |
|
|
1218 |
|
|
1219 |
|
|
1220 |
|
|
1221 |
|
|
1222 |
|
|
1223 |
|
|
1224 |
|
|
1225 |
|
|
1226 |
|
|
1227 |
|