0
|
1 |
// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32\nkern\nk_timer.cpp
|
|
15 |
// Fast Millisecond Timer Implementation
|
|
16 |
// This file is just a template - you'd be mad not to machine code this
|
|
17 |
//
|
|
18 |
//
|
|
19 |
|
|
20 |
#include "nk_priv.h"
|
|
21 |
|
|
22 |
const TInt KTimerQDfcPriority=6;
|
|
23 |
|
|
24 |
GLDEF_D NTimerQ TheTimerQ;
|
|
25 |
|
|
26 |
#ifndef __MSTIM_MACHINE_CODED__
|
|
27 |
#ifdef _DEBUG
|
|
28 |
#define __DEBUG_CALLBACK(n) {if (iDebugFn) (*iDebugFn)(iDebugPtr,n);}
|
|
29 |
#else
|
|
30 |
#define __DEBUG_CALLBACK(n)
|
|
31 |
#endif
|
|
32 |
|
|
33 |
|
|
34 |
/** Starts a nanokernel timer in one-shot mode with ISR callback.
|
|
35 |
|
|
36 |
Queues the timer to expire in the specified number of nanokernel ticks. The
|
|
37 |
actual wait time will be at least that much and may be up to one tick more.
|
|
38 |
The expiry handler will be called in ISR context.
|
|
39 |
|
|
40 |
Note that NKern::TimerTicks() can be used to convert milliseconds to ticks.
|
|
41 |
|
|
42 |
@param aTime Timeout in nanokernel ticks
|
|
43 |
|
|
44 |
@return KErrNone if no error; KErrInUse if timer is already active.
|
|
45 |
|
|
46 |
@pre Any context
|
|
47 |
|
|
48 |
@see NKern::TimerTicks()
|
|
49 |
*/
|
|
50 |
EXPORT_C TInt NTimer::OneShot(TInt aTime)
|
|
51 |
{
|
|
52 |
return OneShot(aTime,FALSE);
|
|
53 |
}
|
|
54 |
|
|
55 |
|
|
56 |
/** Starts a nanokernel timer in one-shot mode with ISR or DFC callback.
|
|
57 |
|
|
58 |
Queues the timer to expire in the specified number of nanokernel ticks. The
|
|
59 |
actual wait time will be at least that much and may be up to one tick more.
|
|
60 |
The expiry handler will be called in either ISR context or in the context
|
|
61 |
of the nanokernel timer thread (DfcThread1).
|
|
62 |
|
|
63 |
Note that NKern::TimerTicks() can be used to convert milliseconds to ticks.
|
|
64 |
|
|
65 |
@param aTime Timeout in nanokernel ticks
|
|
66 |
@param aDfc TRUE if DFC callback required, FALSE if ISR callback required.
|
|
67 |
|
|
68 |
@return KErrNone if no error; KErrInUse if timer is already active.
|
|
69 |
|
|
70 |
@pre Any context
|
|
71 |
|
|
72 |
@see NKern::TimerTicks()
|
|
73 |
*/
|
|
74 |
EXPORT_C TInt NTimer::OneShot(TInt aTime, TBool aDfc)
|
|
75 |
{
|
|
76 |
__NK_ASSERT_DEBUG(aTime>=0);
|
|
77 |
|
|
78 |
/** iFunction could be set to NULL after NTimer::OneShot(TInt, TDfc&) call.
|
|
79 |
Call-back mechanism cannot be changed in the life time of a timer. */
|
|
80 |
__NK_ASSERT_DEBUG(iFunction!=NULL);
|
|
81 |
|
|
82 |
TInt irq=NKern::DisableAllInterrupts();
|
|
83 |
if (iState!=EIdle)
|
|
84 |
{
|
|
85 |
NKern::RestoreInterrupts(irq);
|
|
86 |
return KErrInUse;
|
|
87 |
}
|
|
88 |
iCompleteInDfc=TUint8(aDfc?1:0);
|
|
89 |
iTriggerTime=TheTimerQ.iMsCount+(TUint32)aTime;
|
|
90 |
TheTimerQ.Add(this);
|
|
91 |
NKern::RestoreInterrupts(irq);
|
|
92 |
return KErrNone;
|
|
93 |
}
|
|
94 |
|
|
95 |
/** Starts a nanokernel timer in one-shot mode with callback in dfc thread that provided DFC belongs to.
|
|
96 |
|
|
97 |
Queues the timer to expire in the specified number of nanokernel ticks. The
|
|
98 |
actual wait time will be at least that much and may be up to one tick more.
|
|
99 |
On expiry aDfc will be queued in ISR context.
|
|
100 |
|
|
101 |
Note that NKern::TimerTicks() can be used to convert milliseconds to ticks.
|
|
102 |
|
|
103 |
@param aTime Timeout in nanokernel ticks
|
|
104 |
@param aDfc - Dfc to be queued when the timer expires.
|
|
105 |
|
|
106 |
@return KErrNone if no error; KErrInUse if timer is already active.
|
|
107 |
|
|
108 |
@pre Any context
|
|
109 |
|
|
110 |
@see NKern::TimerTicks()
|
|
111 |
*/
|
|
112 |
EXPORT_C TInt NTimer::OneShot(TInt aTime, TDfc& aDfc)
|
|
113 |
{
|
|
114 |
__NK_ASSERT_DEBUG(aTime>=0);
|
|
115 |
TInt irq=NKern::DisableAllInterrupts();
|
|
116 |
if (iState!=EIdle)
|
|
117 |
{
|
|
118 |
NKern::RestoreInterrupts(irq);
|
|
119 |
return KErrInUse;
|
|
120 |
}
|
|
121 |
iCompleteInDfc = 0;
|
|
122 |
iFunction = NULL;
|
|
123 |
iPtr = (TAny*) &aDfc;
|
|
124 |
iTriggerTime=TheTimerQ.iMsCount+(TUint32)aTime;
|
|
125 |
TheTimerQ.Add(this);
|
|
126 |
NKern::RestoreInterrupts(irq);
|
|
127 |
return KErrNone;
|
|
128 |
}
|
|
129 |
|
|
130 |
|
|
131 |
/** Starts a nanokernel timer in zero-drift periodic mode with ISR or DFC callback.
|
|
132 |
|
|
133 |
Queues the timer to expire in the specified number of nanokernel ticks,
|
|
134 |
measured from the time at which it last expired. This allows exact periodic
|
|
135 |
timers to be implemented with no drift caused by delays in requeueing the
|
|
136 |
timer.
|
|
137 |
|
|
138 |
The expiry handler will be called in the same context as the previous timer
|
|
139 |
expiry. Generally the way this is used is that NTimer::OneShot() is used to start
|
|
140 |
the first time interval and this specifies whether the callback is in ISR context
|
|
141 |
or in the context of the nanokernel timer thread (DfcThread1) or other Dfc thread.
|
|
142 |
The expiry handler then uses NTimer::Again() to requeue the timer.
|
|
143 |
|
|
144 |
@param aTime Timeout in nanokernel ticks
|
|
145 |
|
|
146 |
@return KErrNone if no error; KErrInUse if timer is already active;
|
|
147 |
KErrArgument if the requested expiry time is in the past.
|
|
148 |
|
|
149 |
@pre Any context
|
|
150 |
*/
|
|
151 |
EXPORT_C TInt NTimer::Again(TInt aTime)
|
|
152 |
//
|
|
153 |
// Wait aTime from last trigger time - used for periodic timers
|
|
154 |
//
|
|
155 |
{
|
|
156 |
__NK_ASSERT_DEBUG(aTime>0);
|
|
157 |
TInt irq=NKern::DisableAllInterrupts();
|
|
158 |
if (iState!=EIdle)
|
|
159 |
{
|
|
160 |
NKern::RestoreInterrupts(irq);
|
|
161 |
return KErrInUse;
|
|
162 |
}
|
|
163 |
TUint32 nextTick=TheTimerQ.iMsCount;
|
|
164 |
TUint32 trigger=iTriggerTime+(TUint32)aTime;
|
|
165 |
TUint32 d=trigger-nextTick;
|
|
166 |
if (d>=0x80000000)
|
|
167 |
{
|
|
168 |
NKern::RestoreInterrupts(irq);
|
|
169 |
return KErrArgument; // requested time is in the past
|
|
170 |
}
|
|
171 |
iTriggerTime=trigger;
|
|
172 |
TheTimerQ.Add(this);
|
|
173 |
NKern::RestoreInterrupts(irq);
|
|
174 |
return KErrNone;
|
|
175 |
}
|
|
176 |
|
|
177 |
|
|
178 |
/** Cancels a nanokernel timer.
|
|
179 |
|
|
180 |
Removes this timer from the nanokernel timer queue. Does nothing if the
|
|
181 |
timer is inactive or has already expired.
|
|
182 |
Note that if the timer was queued and DFC callback requested it is possible
|
|
183 |
for the expiry handler to run even after Cancel() has been called. This will
|
|
184 |
occur in the case where DfcThread1 is preempted just before calling the
|
|
185 |
expiry handler for this timer and the preempting thread/ISR/IDFC calls
|
|
186 |
Cancel() on the timer.
|
|
187 |
|
|
188 |
@pre Any context
|
|
189 |
@return TRUE if timer was actually cancelled
|
|
190 |
@return FALSE if timer was not cancelled - this could be because it was not
|
|
191 |
active or because its expiry handler was already running on
|
|
192 |
another CPU or in the timer DFC.
|
|
193 |
*/
|
|
194 |
EXPORT_C TBool NTimer::Cancel()
|
|
195 |
{
|
|
196 |
TBool result = TRUE;
|
|
197 |
TInt irq=NKern::DisableAllInterrupts();
|
|
198 |
if (iState>ETransferring) // idle or transferring timers are not on a queue
|
|
199 |
Deque();
|
|
200 |
switch (iState)
|
|
201 |
{
|
|
202 |
case ETransferring: // signal DFC to abort this iteration
|
|
203 |
TheTimerQ.iTransferringCancelled=TRUE;
|
|
204 |
break;
|
|
205 |
case ECritical: // signal DFC to abort this iteration
|
|
206 |
TheTimerQ.iCriticalCancelled=TRUE;
|
|
207 |
break;
|
|
208 |
case EFinal:
|
|
209 |
{
|
|
210 |
// Need to clear bit in iPresent if both final queues now empty
|
|
211 |
// NOTE: Timer might actually be on the completed queue rather than the final queue
|
|
212 |
// but the check is harmless in any case.
|
|
213 |
TInt i=iTriggerTime & NTimerQ::ETimerQMask;
|
|
214 |
NTimerQ::STimerQ& q=TheTimerQ.iTickQ[i];
|
|
215 |
if (q.iIntQ.IsEmpty() && q.iDfcQ.IsEmpty())
|
|
216 |
TheTimerQ.iPresent &= ~(1<<i);
|
|
217 |
break;
|
|
218 |
}
|
|
219 |
case EIdle: // nothing to do
|
|
220 |
result = FALSE;
|
|
221 |
case EHolding: // just deque
|
|
222 |
case EOrdered: // just deque
|
|
223 |
break;
|
|
224 |
}
|
|
225 |
iState=EIdle;
|
|
226 |
NKern::RestoreInterrupts(irq);
|
|
227 |
return result;
|
|
228 |
}
|
|
229 |
#endif
|
|
230 |
|
|
231 |
|
|
232 |
/** Check if a nanokernel timer is pending or not
|
|
233 |
|
|
234 |
@return TRUE if the timer is pending (OneShot() etc. would return KErrInUse)
|
|
235 |
@return FALSE if the timer is idle (OneShot() etc. would succeed)
|
|
236 |
@pre Any context
|
|
237 |
|
|
238 |
@publishedPartner
|
|
239 |
@prototype
|
|
240 |
*/
|
|
241 |
EXPORT_C TBool NTimer::IsPending()
|
|
242 |
{
|
|
243 |
return iState != EIdle;
|
|
244 |
}
|
|
245 |
|
|
246 |
|
|
247 |
/** Obtains the address of the nanokernel timer queue object.
|
|
248 |
|
|
249 |
Not intended for general use. Intended only for base ports in order to get
|
|
250 |
the address used to call NTimerQ::Tick() with.
|
|
251 |
|
|
252 |
@return The address of the nanokernel timer queue object
|
|
253 |
@pre Any context
|
|
254 |
*/
|
|
255 |
EXPORT_C TAny* NTimerQ::TimerAddress()
|
|
256 |
{
|
|
257 |
return &TheTimerQ;
|
|
258 |
}
|
|
259 |
|
|
260 |
NTimerQ::NTimerQ()
|
|
261 |
: iDfc(NTimerQ::DfcFn,this,NULL,KTimerQDfcPriority)
|
|
262 |
{
|
|
263 |
// NOTE: All other members are initialised to zero since the single instance
|
|
264 |
// of NTimerQ resides in .bss
|
|
265 |
}
|
|
266 |
|
|
267 |
void NTimerQ::Init1(TInt aTickPeriod)
|
|
268 |
{
|
|
269 |
TheTimerQ.iTickPeriod=aTickPeriod;
|
|
270 |
__KTRACE_OPT(KBOOT,DEBUGPRINT("NTimerQ::Init1 - period %d us",aTickPeriod));
|
|
271 |
__KTRACE_OPT(KMEMTRACE, DEBUGPRINT("MT:P %d",aTickPeriod));
|
|
272 |
}
|
|
273 |
|
|
274 |
void NTimerQ::Init3(TDfcQue* aDfcQ)
|
|
275 |
{
|
|
276 |
__KTRACE_OPT(KBOOT,DEBUGPRINT("NTimerQ::Init3 DFCQ at %08x",aDfcQ));
|
|
277 |
TheTimerQ.iDfc.SetDfcQ(aDfcQ);
|
|
278 |
}
|
|
279 |
|
|
280 |
#ifndef __MSTIM_MACHINE_CODED__
|
|
281 |
void NTimerQ::Add(NTimer* aTimer)
|
|
282 |
//
|
|
283 |
// Internal function to add a timer to the queue.
|
|
284 |
// Enter and return with all interrupts disabled.
|
|
285 |
//
|
|
286 |
{
|
|
287 |
TInt t=TInt(aTimer->iTriggerTime-iMsCount);
|
|
288 |
if (t<ENumTimerQueues)
|
|
289 |
AddFinal(aTimer);
|
|
290 |
else
|
|
291 |
{
|
|
292 |
// >=32ms to expiry, so put on holding queue
|
|
293 |
aTimer->iState=NTimer::EHolding;
|
|
294 |
iHoldingQ.Add(aTimer);
|
|
295 |
}
|
|
296 |
}
|
|
297 |
|
|
298 |
void NTimerQ::AddFinal(NTimer* aTimer)
|
|
299 |
//
|
|
300 |
// Internal function to add a timer to the corresponding final queue.
|
|
301 |
// Enter and return with all interrupts disabled.
|
|
302 |
//
|
|
303 |
{
|
|
304 |
TInt i=aTimer->iTriggerTime & ETimerQMask;
|
|
305 |
SDblQue* pQ;
|
|
306 |
if (aTimer->iCompleteInDfc)
|
|
307 |
pQ=&iTickQ[i].iDfcQ;
|
|
308 |
else
|
|
309 |
pQ=&iTickQ[i].iIntQ;
|
|
310 |
iPresent |= (1<<i);
|
|
311 |
aTimer->iState=NTimer::EFinal;
|
|
312 |
pQ->Add(aTimer);
|
|
313 |
}
|
|
314 |
|
|
315 |
void NTimerQ::DfcFn(TAny* aPtr)
|
|
316 |
{
|
|
317 |
((NTimerQ*)aPtr)->Dfc();
|
|
318 |
}
|
|
319 |
|
|
320 |
void NTimerQ::Dfc()
|
|
321 |
//
|
|
322 |
// Do deferred timer queue processing and/or DFC completions
|
|
323 |
//
|
|
324 |
{
|
|
325 |
TInt irq;
|
|
326 |
|
|
327 |
// First transfer entries on the Ordered queue to the Final queues
|
|
328 |
FOREVER
|
|
329 |
{
|
|
330 |
irq=NKern::DisableAllInterrupts();
|
|
331 |
if (iOrderedQ.IsEmpty())
|
|
332 |
break;
|
|
333 |
NTimer* pC=(NTimer*)iOrderedQ.First();
|
|
334 |
TInt remain=pC->iTriggerTime-iMsCount;
|
|
335 |
if (remain>=ENumTimerQueues)
|
|
336 |
break;
|
|
337 |
|
|
338 |
// If remaining time <32 ticks, add it to final queue;
|
|
339 |
// also if remain < 0 we've 'missed it' so add to final queue.
|
|
340 |
pC->Deque();
|
|
341 |
AddFinal(pC);
|
|
342 |
NKern::RestoreInterrupts(irq);
|
|
343 |
__DEBUG_CALLBACK(0);
|
|
344 |
}
|
|
345 |
NKern::RestoreInterrupts(irq);
|
|
346 |
__DEBUG_CALLBACK(1);
|
|
347 |
|
|
348 |
// Next transfer entries on the Holding queue to the Ordered queue or final queue
|
|
349 |
FOREVER
|
|
350 |
{
|
|
351 |
irq=NKern::DisableAllInterrupts();
|
|
352 |
if (iHoldingQ.IsEmpty())
|
|
353 |
break;
|
|
354 |
NTimer* pC=(NTimer*)iHoldingQ.First();
|
|
355 |
pC->Deque();
|
|
356 |
pC->iState=NTimer::ETransferring;
|
|
357 |
iTransferringCancelled=FALSE;
|
|
358 |
TUint32 trigger=pC->iTriggerTime;
|
|
359 |
if (TInt(trigger-iMsCount)<ENumTimerQueues)
|
|
360 |
{
|
|
361 |
// <32ms remaining so put it on final queue
|
|
362 |
AddFinal(pC);
|
|
363 |
}
|
|
364 |
else
|
|
365 |
{
|
|
366 |
FOREVER
|
|
367 |
{
|
|
368 |
NKern::RestoreInterrupts(irq);
|
|
369 |
__DEBUG_CALLBACK(2);
|
|
370 |
|
|
371 |
// we now need to walk ordered queue to find correct position for pC
|
|
372 |
SDblQueLink* anchor=&iOrderedQ.iA;
|
|
373 |
iCriticalCancelled=FALSE;
|
|
374 |
irq=NKern::DisableAllInterrupts();
|
|
375 |
NTimer* pN=(NTimer*)iOrderedQ.First();
|
|
376 |
while (pN!=anchor && !iTransferringCancelled)
|
|
377 |
{
|
|
378 |
if ((pN->iTriggerTime-trigger)<0x80000000u)
|
|
379 |
break; // insert before pN
|
|
380 |
pN->iState=NTimer::ECritical;
|
|
381 |
NKern::RestoreInterrupts(irq);
|
|
382 |
__DEBUG_CALLBACK(3);
|
|
383 |
irq=NKern::DisableAllInterrupts();
|
|
384 |
if (iCriticalCancelled)
|
|
385 |
break;
|
|
386 |
pN->iState=NTimer::EOrdered;
|
|
387 |
pN=(NTimer*)pN->iNext;
|
|
388 |
}
|
|
389 |
|
|
390 |
if (iTransferringCancelled)
|
|
391 |
break; // this one has been cancelled, go on to next one
|
|
392 |
if (!iCriticalCancelled)
|
|
393 |
{
|
|
394 |
pC->InsertBefore(pN);
|
|
395 |
pC->iState=NTimer::EOrdered;
|
|
396 |
break; // done this one
|
|
397 |
}
|
|
398 |
}
|
|
399 |
}
|
|
400 |
NKern::RestoreInterrupts(irq);
|
|
401 |
__DEBUG_CALLBACK(4);
|
|
402 |
}
|
|
403 |
NKern::RestoreInterrupts(irq);
|
|
404 |
__DEBUG_CALLBACK(5);
|
|
405 |
|
|
406 |
// Finally do call backs for timers which requested DFC callback
|
|
407 |
FOREVER
|
|
408 |
{
|
|
409 |
irq=NKern::DisableAllInterrupts();
|
|
410 |
if (iCompletedQ.IsEmpty())
|
|
411 |
break;
|
|
412 |
NTimer* pC=(NTimer*)iCompletedQ.First();
|
|
413 |
pC->Deque();
|
|
414 |
pC->iState=NTimer::EIdle;
|
|
415 |
TAny* p=pC->iPtr;
|
|
416 |
NTimerFn f=pC->iFunction;
|
|
417 |
NKern::RestoreInterrupts(irq);
|
|
418 |
__DEBUG_CALLBACK(7);
|
|
419 |
(*f)(p);
|
|
420 |
}
|
|
421 |
NKern::RestoreInterrupts(irq);
|
|
422 |
}
|
|
423 |
|
|
424 |
|
|
425 |
/** Tick over the nanokernel timer queue.
|
|
426 |
This function should be called by the base port in the system tick timer ISR.
|
|
427 |
It should not be called at any other time.
|
|
428 |
The value of 'this' to pass is the value returned by NTimerQ::TimerAddress().
|
|
429 |
|
|
430 |
@see NTimerQ::TimerAddress()
|
|
431 |
*/
|
|
432 |
EXPORT_C void NTimerQ::Tick()
|
|
433 |
{
|
|
434 |
#ifdef _DEBUG
|
|
435 |
// If there are threads waiting to be released by the tick, enqueue the dfc
|
|
436 |
if (!TheScheduler.iDelayedQ.IsEmpty())
|
|
437 |
TheScheduler.iDelayDfc.Add();
|
|
438 |
#endif
|
|
439 |
TheScheduler.TimesliceTick();
|
|
440 |
TInt irq=NKern::DisableAllInterrupts();
|
|
441 |
TInt i=iMsCount & ETimerQMask;
|
|
442 |
iMsCount++;
|
|
443 |
STimerQ* pQ=iTickQ+i;
|
|
444 |
iPresent &= ~(1<<i);
|
|
445 |
TBool doDfc=FALSE;
|
|
446 |
if (!pQ->iDfcQ.IsEmpty())
|
|
447 |
{
|
|
448 |
// transfer DFC completions to completed queue and queue DFC
|
|
449 |
iCompletedQ.MoveFrom(&pQ->iDfcQ);
|
|
450 |
doDfc=TRUE;
|
|
451 |
}
|
|
452 |
if ((i&(ETimerQMask>>1))==0)
|
|
453 |
{
|
|
454 |
// Every 16 ticks we check if a DFC is required.
|
|
455 |
// This allows a DFC latency of up to 16 ticks before timers are missed.
|
|
456 |
if (!iHoldingQ.IsEmpty())
|
|
457 |
doDfc=TRUE; // if holding queue nonempty, queue DFC to sort
|
|
458 |
else if (!iOrderedQ.IsEmpty())
|
|
459 |
{
|
|
460 |
// if first ordered queue entry expires in <32ms, queue the DFC to transfer
|
|
461 |
NTimer* pC=(NTimer*)iOrderedQ.First();
|
|
462 |
#ifdef __EPOC32__
|
|
463 |
__ASSERT_WITH_MESSAGE_DEBUG(iMsCount<=pC->iTriggerTime, "iMsCount has exceeded pC->iTriggerTime; function called later than expected ","NKTimer::Tick()");
|
|
464 |
#endif
|
|
465 |
if (TInt(pC->iTriggerTime-iMsCount)<ENumTimerQueues)
|
|
466 |
doDfc=TRUE;
|
|
467 |
}
|
|
468 |
}
|
|
469 |
if (!pQ->iIntQ.IsEmpty())
|
|
470 |
{
|
|
471 |
// transfer ISR completions to a temporary queue
|
|
472 |
// careful here - higher priority interrupts could dequeue timers!
|
|
473 |
SDblQue q(&pQ->iIntQ,0);
|
|
474 |
while(!q.IsEmpty())
|
|
475 |
{
|
|
476 |
NTimer* pC=(NTimer*)q.First();
|
|
477 |
pC->Deque();
|
|
478 |
pC->iState=NTimer::EIdle;
|
|
479 |
NKern::RestoreInterrupts(irq);
|
|
480 |
if (pC->iFunction)
|
|
481 |
(*pC->iFunction)(pC->iPtr);
|
|
482 |
else
|
|
483 |
((TDfc*)(pC->iPtr))->Add();
|
|
484 |
irq=NKern::DisableAllInterrupts();
|
|
485 |
}
|
|
486 |
}
|
|
487 |
NKern::RestoreInterrupts(irq);
|
|
488 |
if (doDfc)
|
|
489 |
iDfc.Add();
|
|
490 |
}
|
|
491 |
|
|
492 |
|
|
493 |
/** Return the number of ticks before the next nanokernel timer expiry.
|
|
494 |
May on occasion return a pessimistic estimate (i.e. too low).
|
|
495 |
Used by base port to disable the system tick interrupt when the system
|
|
496 |
is idle.
|
|
497 |
|
|
498 |
@return The number of ticks before the next nanokernel timer expiry.
|
|
499 |
|
|
500 |
@pre Interrupts must be disabled.
|
|
501 |
|
|
502 |
@post Interrupts are disabled.
|
|
503 |
*/
|
|
504 |
EXPORT_C TInt NTimerQ::IdleTime()
|
|
505 |
{
|
|
506 |
CHECK_PRECONDITIONS(MASK_INTERRUPTS_DISABLED,"NTimerQ::IdleTime");
|
|
507 |
#ifdef _DEBUG
|
|
508 |
// If there are threads waiting to be released by the tick we can't idle
|
|
509 |
if (!TheScheduler.iDelayedQ.IsEmpty())
|
|
510 |
return 1;
|
|
511 |
#endif
|
|
512 |
NTimerQ& m=TheTimerQ;
|
|
513 |
TUint32 next=m.iMsCount; // number of next tick
|
|
514 |
TUint32 p=m.iPresent;
|
|
515 |
TInt r=KMaxTInt;
|
|
516 |
if (p)
|
|
517 |
{
|
|
518 |
// Final queues nonempty
|
|
519 |
TInt nx=next&0x1f; // number of next tick modulo 32
|
|
520 |
p=(p>>nx)|(p<<(32-nx)); // rotate p right by nx (so lsb corresponds to next tick)
|
|
521 |
r=__e32_find_ls1_32(p); // find number of zeros before LS 1
|
|
522 |
}
|
|
523 |
if (!m.iHoldingQ.IsEmpty())
|
|
524 |
{
|
|
525 |
// Sort operation required - need to process next tick divisible by 16
|
|
526 |
TInt nx=next&0x0f; // number of next tick modulo 16
|
|
527 |
TInt r2=nx?(16-nx):0; // number of ticks before next divisible by 16
|
|
528 |
if (r2<r)
|
|
529 |
r=r2;
|
|
530 |
}
|
|
531 |
if (!m.iOrderedQ.IsEmpty())
|
|
532 |
{
|
|
533 |
// Timers present on ordered queue
|
|
534 |
NTimer* pC=(NTimer*)m.iOrderedQ.First();
|
|
535 |
TUint32 tt=pC->iTriggerTime;
|
|
536 |
tt=(tt&~0x0f)-16; // time at which transfer to final queue would occur
|
|
537 |
TInt r3=(TInt)(tt-next);
|
|
538 |
if (r3<r)
|
|
539 |
r=r3;
|
|
540 |
}
|
|
541 |
return r;
|
|
542 |
}
|
|
543 |
#endif
|
|
544 |
|
|
545 |
|
|
546 |
/** Advance the nanokernel timer queue by the specified number of ticks.
|
|
547 |
It is assumed that no timers expire as a result of this.
|
|
548 |
Used by base port when system comes out of idle mode after disabling the
|
|
549 |
system tick interrupt to bring the timer queue up to date.
|
|
550 |
|
|
551 |
@param aTicks Number of ticks skipped due to tick suppression
|
|
552 |
|
|
553 |
@pre Interrupts must be disabled.
|
|
554 |
|
|
555 |
@post Interrupts are disabled.
|
|
556 |
*/
|
|
557 |
EXPORT_C void NTimerQ::Advance(TInt aTicks)
|
|
558 |
{
|
|
559 |
CHECK_PRECONDITIONS(MASK_INTERRUPTS_DISABLED,"NTimerQ::Advance");
|
|
560 |
TheTimerQ.iMsCount+=(TUint32)aTicks;
|
|
561 |
}
|
|
562 |
|
|
563 |
|
|
564 |
/** Returns the period of the nanokernel timer.
|
|
565 |
@return Period in microseconds
|
|
566 |
@pre any context
|
|
567 |
@see NTimer
|
|
568 |
*/
|
|
569 |
EXPORT_C TInt NKern::TickPeriod()
|
|
570 |
{
|
|
571 |
return TheTimerQ.iTickPeriod;
|
|
572 |
}
|
|
573 |
|
|
574 |
|
|
575 |
/** Converts a time interval to timer ticks.
|
|
576 |
|
|
577 |
@param aMilliseconds time interval in milliseconds.
|
|
578 |
@return Number of nanokernel timer ticks. Non-integral results are rounded up.
|
|
579 |
|
|
580 |
@pre aMilliseconds should be <=2147483 to avoid integer overflow.
|
|
581 |
@pre any context
|
|
582 |
*/
|
|
583 |
EXPORT_C TInt NKern::TimerTicks(TInt aMilliseconds)
|
|
584 |
{
|
|
585 |
__ASSERT_WITH_MESSAGE_DEBUG(aMilliseconds<=2147483,"aMilliseconds should be <=2147483","NKern::TimerTicks");
|
|
586 |
TUint32 msp=TheTimerQ.iTickPeriod;
|
|
587 |
if (msp==1000) // will be true except on pathological hardware
|
|
588 |
return aMilliseconds;
|
|
589 |
TUint32 us=(TUint32)aMilliseconds*1000;
|
|
590 |
return (us+msp-1)/msp;
|
|
591 |
}
|
|
592 |
|