0
|
1 |
// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// f32\sfat\fat_table.cpp
|
|
15 |
// FAT12/16 File Allocation Table classes implementation
|
|
16 |
//
|
|
17 |
//
|
|
18 |
|
|
19 |
/**
|
|
20 |
@file
|
|
21 |
@internalTechnology
|
|
22 |
*/
|
|
23 |
|
|
24 |
|
|
25 |
|
|
26 |
#include "sl_std.h"
|
|
27 |
#include "sl_fatcache.h"
|
|
28 |
#include "fat_table.h"
|
|
29 |
|
|
30 |
|
|
31 |
//#######################################################################################################################################
|
|
32 |
//# CFatTable class implementation
|
|
33 |
//#######################################################################################################################################
|
|
34 |
|
|
35 |
/**
|
|
36 |
FAT object factory method.
|
|
37 |
Constructs either CAtaFatTable or CRamFatTable depending on the media type parameter
|
|
38 |
|
|
39 |
@param aOwner Pointer to the owning mount
|
|
40 |
@param aLocDrvCaps local drive attributes
|
|
41 |
@leave KErrNoMemory
|
|
42 |
@return Pointer to the Fat table
|
|
43 |
*/
|
|
44 |
CFatTable* CFatTable::NewL(CFatMountCB& aOwner, const TLocalDriveCaps& aLocDrvCaps)
|
|
45 |
{
|
|
46 |
CFatTable* pFatTable=NULL;
|
|
47 |
|
|
48 |
|
|
49 |
switch(aLocDrvCaps.iType)
|
|
50 |
{
|
|
51 |
case EMediaRam:
|
|
52 |
{//-- this is RAM media, try to create CRamFatTable instance.
|
|
53 |
const TFatType fatType = aOwner.FatType();
|
|
54 |
|
|
55 |
if(fatType != EFat16 )
|
|
56 |
{//-- CRamFatTable doesn't support FAT12; FAT16 only.
|
|
57 |
__PRINT1(_L("CFatTable::NewL() CRamFatTable doesn't support this FAT type:%d"), fatType);
|
|
58 |
ASSERT(0);
|
|
59 |
return NULL;
|
|
60 |
}
|
|
61 |
|
|
62 |
pFatTable = CRamFatTable::NewL(aOwner);
|
|
63 |
}
|
|
64 |
break;
|
|
65 |
|
|
66 |
default:
|
|
67 |
//-- other media
|
|
68 |
pFatTable = CAtaFatTable::NewL(aOwner);
|
|
69 |
break;
|
|
70 |
};
|
|
71 |
|
|
72 |
return pFatTable;
|
|
73 |
}
|
|
74 |
|
|
75 |
CFatTable::CFatTable(CFatMountCB& aOwner)
|
|
76 |
{
|
|
77 |
iOwner = &aOwner;
|
|
78 |
ASSERT(iOwner);
|
|
79 |
}
|
|
80 |
|
|
81 |
CFatTable::~CFatTable()
|
|
82 |
{
|
|
83 |
//-- destroy cache ignoring dirty data in cache
|
|
84 |
//-- the destructor isn't an appropriate place to flush the data.
|
|
85 |
Dismount(ETrue);
|
|
86 |
}
|
|
87 |
|
|
88 |
//-----------------------------------------------------------------------------
|
|
89 |
|
|
90 |
/**
|
|
91 |
Initialise the object, get data from the owning CFatMountCB
|
|
92 |
*/
|
|
93 |
void CFatTable::InitializeL()
|
|
94 |
{
|
|
95 |
ASSERT(iOwner);
|
|
96 |
|
|
97 |
//-- get FAT type from the owner
|
|
98 |
iFatType = iOwner->FatType();
|
|
99 |
ASSERT(IsFat12() || IsFat16());
|
|
100 |
|
|
101 |
iFreeClusterHint = KFatFirstSearchCluster;
|
|
102 |
|
|
103 |
//-- cache the media attributes
|
|
104 |
TLocalDriveCapsV2 caps;
|
|
105 |
TPckg<TLocalDriveCapsV2> capsPckg(caps);
|
|
106 |
User::LeaveIfError(iOwner->LocalDrive()->Caps(capsPckg));
|
|
107 |
iMediaAtt = caps.iMediaAtt;
|
|
108 |
|
|
109 |
//-- obtain maximal number of entries in the table
|
|
110 |
iMaxEntries = iOwner->UsableClusters()+KFatFirstSearchCluster; //-- FAT[0] & FAT[1] are not in use
|
|
111 |
|
|
112 |
__PRINT3(_L("CFatTable::InitializeL(), drv:%d, iMediaAtt = %08X, max Entries:%d"), iOwner->DriveNumber(), iMediaAtt, iMaxEntries);
|
|
113 |
}
|
|
114 |
|
|
115 |
//-----------------------------------------------------------------------------
|
|
116 |
|
|
117 |
/**
|
|
118 |
Decrements the free cluster count.
|
|
119 |
Note that can be quite expensive operation (especially for overrides with synchronisation), if it is called for every
|
|
120 |
cluster of a large file. Use more than one cluster granularity.
|
|
121 |
|
|
122 |
@param aCount a number of clusters
|
|
123 |
*/
|
|
124 |
void CFatTable::DecrementFreeClusterCount(TUint32 aCount)
|
|
125 |
{
|
|
126 |
__ASSERT_DEBUG(iFreeClusters >= aCount, Fault(EFatCorrupt));
|
|
127 |
iFreeClusters -= aCount;
|
|
128 |
}
|
|
129 |
|
|
130 |
/**
|
|
131 |
Increments the free cluster count.
|
|
132 |
Note that can be quite expensive operation (especially for overrides with synchronisation), if it is called for every
|
|
133 |
cluster of a large file. Use more than one cluster granularity.
|
|
134 |
|
|
135 |
@param aCount a number of clusters
|
|
136 |
*/
|
|
137 |
void CFatTable::IncrementFreeClusterCount(TUint32 aCount)
|
|
138 |
{
|
|
139 |
const TUint32 newVal = iFreeClusters+aCount;
|
|
140 |
__ASSERT_DEBUG(newVal<=MaxEntries(), Fault(EFatCorrupt));
|
|
141 |
|
|
142 |
iFreeClusters = newVal;
|
|
143 |
}
|
|
144 |
|
|
145 |
/** @return number of free clusters in the FAT */
|
|
146 |
TUint32 CFatTable::NumberOfFreeClusters(TBool /*aSyncOperation=EFalse*/) const
|
|
147 |
{
|
|
148 |
return FreeClusters();
|
|
149 |
}
|
|
150 |
|
|
151 |
void CFatTable::SetFreeClusters(TUint32 aFreeClusters)
|
|
152 |
{
|
|
153 |
iFreeClusters=aFreeClusters;
|
|
154 |
}
|
|
155 |
|
|
156 |
/**
|
|
157 |
Get the hint about the last known free cluster number.
|
|
158 |
Note that can be quite expensive operation (especially for overrides with synchronisation), if it is called for every
|
|
159 |
cluster of a large file.
|
|
160 |
|
|
161 |
@return cluster number supposedly close to the free one.
|
|
162 |
*/
|
|
163 |
TUint32 CFatTable::FreeClusterHint() const
|
|
164 |
{
|
|
165 |
ASSERT(ClusterNumberValid(iFreeClusterHint));
|
|
166 |
return iFreeClusterHint;
|
|
167 |
}
|
|
168 |
|
|
169 |
/**
|
|
170 |
Set a free cluster hint. The next search fro the free cluster can start from this value.
|
|
171 |
aCluster doesn't have to be a precise number of free FAT entry; it just needs to be as close as possible to the
|
|
172 |
free entries chain.
|
|
173 |
Note that can be quite expensive operation (especially for overrides with synchronisation), if it is called for every
|
|
174 |
cluster of a large file.
|
|
175 |
|
|
176 |
@param aCluster cluster number hint.
|
|
177 |
*/
|
|
178 |
void CFatTable::SetFreeClusterHint(TUint32 aCluster)
|
|
179 |
{
|
|
180 |
ASSERT(ClusterNumberValid(aCluster));
|
|
181 |
iFreeClusterHint=aCluster;
|
|
182 |
}
|
|
183 |
|
|
184 |
//-----------------------------------------------------------------------------
|
|
185 |
|
|
186 |
/**
|
|
187 |
Find out the number of free clusters on the volume.
|
|
188 |
Reads whole FAT and counts free clusters.
|
|
189 |
*/
|
|
190 |
void CFatTable::CountFreeClustersL()
|
|
191 |
{
|
|
192 |
__PRINT1(_L("#- CFatTable::CountFreeClustersL(), drv:%d"), iOwner->DriveNumber());
|
|
193 |
|
|
194 |
const TUint32 KUsableClusters = iOwner->UsableClusters();
|
|
195 |
(void)KUsableClusters;
|
|
196 |
|
|
197 |
TUint32 freeClusters = 0;
|
|
198 |
TUint32 firstFreeCluster = 0;
|
|
199 |
|
|
200 |
TTime timeStart;
|
|
201 |
TTime timeEnd;
|
|
202 |
timeStart.UniversalTime(); //-- take start time
|
|
203 |
|
|
204 |
//-- walk through whole FAT table looking for free clusters
|
|
205 |
for(TUint i=KFatFirstSearchCluster; i<MaxEntries(); ++i)
|
|
206 |
{
|
|
207 |
if(ReadL(i) == KSpareCluster)
|
|
208 |
{//-- found a free cluster
|
|
209 |
++freeClusters;
|
|
210 |
|
|
211 |
if(!firstFreeCluster)
|
|
212 |
firstFreeCluster = i;
|
|
213 |
}
|
|
214 |
}
|
|
215 |
|
|
216 |
timeEnd.UniversalTime(); //-- take end time
|
|
217 |
const TInt msScanTime = (TInt)( (timeEnd.MicroSecondsFrom(timeStart)).Int64() / K1mSec);
|
|
218 |
__PRINT1(_L("#- CFatTable::CountFreeClustersL() finished. Taken:%d ms"), msScanTime);
|
|
219 |
(void)msScanTime;
|
|
220 |
|
|
221 |
if(!firstFreeCluster) //-- haven't found free clusters on the volume
|
|
222 |
firstFreeCluster = KFatFirstSearchCluster;
|
|
223 |
|
|
224 |
ASSERT(freeClusters <= KUsableClusters);
|
|
225 |
|
|
226 |
SetFreeClusters(freeClusters);
|
|
227 |
SetFreeClusterHint(firstFreeCluster);
|
|
228 |
}
|
|
229 |
|
|
230 |
//-----------------------------------------------------------------------------
|
|
231 |
|
|
232 |
/**
|
|
233 |
Count the number of contiguous cluster from a start cluster
|
|
234 |
|
|
235 |
@param aStartCluster cluster to start counting from
|
|
236 |
@param anEndCluster contains the end cluster number upon return
|
|
237 |
@param aMaxCount Maximum cluster required
|
|
238 |
@leave System wide error values
|
|
239 |
@return Number of contiguous clusters from aStartCluster.
|
|
240 |
*/
|
|
241 |
TInt CFatTable::CountContiguousClustersL(TUint32 aStartCluster,TInt& anEndCluster,TUint32 aMaxCount) const
|
|
242 |
{
|
|
243 |
__PRINT2(_L("CFatTable::CountContiguousClustersL() start:%d, max:%d"),aStartCluster, aMaxCount);
|
|
244 |
TUint32 clusterListLen=1;
|
|
245 |
TInt endCluster=aStartCluster;
|
|
246 |
TInt64 endClusterPos=DataPositionInBytes(endCluster);
|
|
247 |
while (clusterListLen<aMaxCount)
|
|
248 |
{
|
|
249 |
TInt oldCluster=endCluster;
|
|
250 |
TInt64 oldClusterPos=endClusterPos;
|
|
251 |
if (GetNextClusterL(endCluster)==EFalse || (endClusterPos=DataPositionInBytes(endCluster))!=(oldClusterPos+(1<<iOwner->ClusterSizeLog2())))
|
|
252 |
{
|
|
253 |
endCluster=oldCluster;
|
|
254 |
break;
|
|
255 |
}
|
|
256 |
clusterListLen++;
|
|
257 |
}
|
|
258 |
anEndCluster=endCluster;
|
|
259 |
return(clusterListLen);
|
|
260 |
}
|
|
261 |
|
|
262 |
//-----------------------------------------------------------------------------
|
|
263 |
|
|
264 |
/**
|
|
265 |
Extend a file or directory cluster chain, leaves if there are no free clusters (the disk is full).
|
|
266 |
|
|
267 |
@param aNumber amount of clusters to allocate
|
|
268 |
@param aCluster FAT entry index to start with.
|
|
269 |
|
|
270 |
@leave KErrDiskFull + system wide error codes
|
|
271 |
*/
|
|
272 |
void CFatTable::ExtendClusterListL(TUint32 aNumber,TInt& aCluster)
|
|
273 |
{
|
|
274 |
__PRINT2(_L("CFatTable::ExtendClusterListL() num:%d, clust:%d"), aNumber, aCluster);
|
|
275 |
__ASSERT_DEBUG(aNumber>0,Fault(EFatBadParameter));
|
|
276 |
|
|
277 |
while(aNumber && GetNextClusterL(aCluster))
|
|
278 |
aNumber--;
|
|
279 |
|
|
280 |
if(!aNumber)
|
|
281 |
return;
|
|
282 |
|
|
283 |
if (iFreeClusters<aNumber)
|
|
284 |
{
|
|
285 |
__PRINT(_L("CFatTable::ExtendClusterListL - leaving KErrDirFull"));
|
|
286 |
User::Leave(KErrDiskFull);
|
|
287 |
}
|
|
288 |
|
|
289 |
|
|
290 |
TUint32 freeCluster = 0;
|
|
291 |
|
|
292 |
//-- note: this can be impoved by trying to fing as long chain of free clusters as possible in FindClosestFreeClusterL()
|
|
293 |
for(TUint i=0; i<aNumber; ++i)
|
|
294 |
{
|
|
295 |
freeCluster = FindClosestFreeClusterL(aCluster);
|
|
296 |
WriteFatEntryEofL(freeCluster); // Must write EOF for FindClosestFreeCluster to work again
|
|
297 |
WriteL(aCluster,freeCluster);
|
|
298 |
aCluster=freeCluster;
|
|
299 |
}
|
|
300 |
|
|
301 |
//-- decrement number of available clusters
|
|
302 |
DecrementFreeClusterCount(aNumber);
|
|
303 |
|
|
304 |
//-- update free cluster hint, it isn't required to be a precise value, just a hint where to start the from from
|
|
305 |
SetFreeClusterHint(aCluster);
|
|
306 |
|
|
307 |
}
|
|
308 |
|
|
309 |
//-----------------------------------------------------------------------------
|
|
310 |
|
|
311 |
/**
|
|
312 |
Allocate and mark as EOF a single cluster as close as possible to aNearestCluster
|
|
313 |
|
|
314 |
@param aNearestCluster Cluster the new cluster should be nearest to
|
|
315 |
@leave System wide error codes
|
|
316 |
@return The cluster number allocated
|
|
317 |
*/
|
|
318 |
TUint32 CFatTable::AllocateSingleClusterL(TUint32 aNearestCluster)
|
|
319 |
{
|
|
320 |
__PRINT1(_L("CFatTable::AllocateSingleCluster() nearest:%d"), aNearestCluster);
|
|
321 |
if (iFreeClusters==0)
|
|
322 |
User::Leave(KErrDiskFull);
|
|
323 |
const TInt freeCluster=FindClosestFreeClusterL(aNearestCluster);
|
|
324 |
WriteFatEntryEofL(freeCluster);
|
|
325 |
DecrementFreeClusterCount(1);
|
|
326 |
|
|
327 |
//-- update free cluster hint, it isn't required to be a precise value, just a hint where to start the from from.
|
|
328 |
SetFreeClusterHint(freeCluster);
|
|
329 |
|
|
330 |
return(freeCluster);
|
|
331 |
}
|
|
332 |
|
|
333 |
//-----------------------------------------------------------------------------
|
|
334 |
|
|
335 |
/**
|
|
336 |
Allocate and link a cluster chain, leaves if there are not enough free clusters.
|
|
337 |
Chain starts as close as possible to aNearestCluster, last cluster will be marked as EOF.
|
|
338 |
|
|
339 |
@param aNumber Number of clusters to allocate
|
|
340 |
@param aNearestCluster Cluster the new chain should be nearest to
|
|
341 |
@leave System wide error codes
|
|
342 |
@return The first cluster number allocated
|
|
343 |
*/
|
|
344 |
TUint32 CFatTable::AllocateClusterListL(TUint32 aNumber, TUint32 aNearestCluster)
|
|
345 |
{
|
|
346 |
__PRINT2(_L("#>> CFatTable::AllocateClusterList() N:%d,NearestCL:%d"),aNumber,aNearestCluster);
|
|
347 |
__ASSERT_DEBUG(aNumber>0,Fault(EFatBadParameter));
|
|
348 |
|
|
349 |
if (iFreeClusters<aNumber)
|
|
350 |
{
|
|
351 |
__PRINT(_L("CFatTable::AllocateClusterListL - leaving KErrDirFull"));
|
|
352 |
User::Leave(KErrDiskFull);
|
|
353 |
}
|
|
354 |
|
|
355 |
TInt firstCluster = aNearestCluster = AllocateSingleClusterL(aNearestCluster);
|
|
356 |
if (aNumber>1)
|
|
357 |
ExtendClusterListL(aNumber-1, (TInt&)aNearestCluster);
|
|
358 |
|
|
359 |
return(firstCluster);
|
|
360 |
}
|
|
361 |
|
|
362 |
//-----------------------------------------------------------------------------
|
|
363 |
|
|
364 |
/**
|
|
365 |
Notify the media drive about media areas that shall be treated as "deleted" if this feature is supported.
|
|
366 |
@param aFreedClusters array with FAT numbers of clusters that shall be marked as "deleted"
|
|
367 |
*/
|
|
368 |
void CFatTable::DoFreedClustersNotify(RClusterArray &aFreedClusters)
|
|
369 |
{
|
|
370 |
ASSERT(iMediaAtt & KMediaAttDeleteNotify);
|
|
371 |
|
|
372 |
const TUint clusterCount = aFreedClusters.Count();
|
|
373 |
|
|
374 |
if(!clusterCount)
|
|
375 |
return;
|
|
376 |
|
|
377 |
FlushL(); //-- Commit the FAT changes to disk first to be safe
|
|
378 |
|
|
379 |
const TUint bytesPerCluster = 1 << iOwner->ClusterSizeLog2();
|
|
380 |
|
|
381 |
TInt64 byteAddress = 0;
|
|
382 |
TUint deleteLen = 0; // zero indicates no clusters accumulated yet
|
|
383 |
|
|
384 |
for (TUint i=0; i<clusterCount; ++i)
|
|
385 |
{
|
|
386 |
const TUint currCluster = aFreedClusters[i];
|
|
387 |
|
|
388 |
if (deleteLen == 0)
|
|
389 |
byteAddress = DataPositionInBytes(currCluster); //-- start of the media range
|
|
390 |
|
|
391 |
deleteLen += bytesPerCluster;
|
|
392 |
|
|
393 |
//-- if this is the last entry in the array or the net cluster number is not consecutive, notify the driver
|
|
394 |
if ((i+1) == clusterCount || aFreedClusters[i+1] != (currCluster+1))
|
|
395 |
{
|
|
396 |
//__PRINT3(_L("DeleteNotify(%08X:%08X, %u), first cluster %u last cluster #%u"), I64HIGH(byteAddress), I64LOW(byteAddress), deleteLen);
|
|
397 |
//__PRINT2(_L(" first cluster %u last cluster #%u"), I64LOW((byteAddress - iOwner->ClusterBasePosition()) >> iOwner->ClusterSizeLog2()) + 2, cluster);
|
|
398 |
const TInt r = iOwner->LocalDrive()->DeleteNotify(byteAddress, deleteLen);
|
|
399 |
if(r != KErrNone)
|
|
400 |
{//-- if DeleteNotify() failed, it means that something terribly wrong happened to the NAND media;
|
|
401 |
//-- in normal circumstances it can not happen. One of the reasons: totally worn out media.
|
|
402 |
const TBool platSecEnabled = PlatSec::ConfigSetting(PlatSec::EPlatSecEnforcement);
|
|
403 |
__PRINT3(_L("CFatTable::DoFreedClustersNotify() DeleteNotify failure! drv:%d err:%d, PlatSec:%d"),iOwner->DriveNumber(), r, platSecEnabled);
|
|
404 |
|
|
405 |
if(platSecEnabled)
|
|
406 |
{
|
|
407 |
//-- if PlatSec is enabled, we can't afford jeopardize the security; without DeleteNotify()
|
|
408 |
//-- it's possible to pick up data from deleted files, so, panic the file server.
|
|
409 |
Fault(EFatBadLocalDrive);
|
|
410 |
}
|
|
411 |
else
|
|
412 |
{
|
|
413 |
//-- if PlatSec is disabled, it's OK to ignore the NAND fault in release mode.
|
|
414 |
__ASSERT_DEBUG(0, Fault(EFatBadLocalDrive));
|
|
415 |
}
|
|
416 |
}
|
|
417 |
|
|
418 |
|
|
419 |
deleteLen = 0;
|
|
420 |
}
|
|
421 |
|
|
422 |
}
|
|
423 |
|
|
424 |
//-- empty the array.
|
|
425 |
aFreedClusters.Reset();
|
|
426 |
}
|
|
427 |
|
|
428 |
//-----------------------------------------------------------------------------
|
|
429 |
/**
|
|
430 |
Mark a chain of clusters as free in the FAT.
|
|
431 |
|
|
432 |
@param aCluster Start cluster of cluster chain to free
|
|
433 |
@leave System wide error codes
|
|
434 |
*/
|
|
435 |
void CFatTable::FreeClusterListL(TUint32 aCluster)
|
|
436 |
{
|
|
437 |
__PRINT1(_L("CFatTable::FreeClusterListL startCluster=%d"),aCluster);
|
|
438 |
if (aCluster == KSpareCluster)
|
|
439 |
return;
|
|
440 |
|
|
441 |
//-- here we can store array of freed cluster numbers in order to
|
|
442 |
//-- notify media drive about the media addresses marked as "invalid"
|
|
443 |
RClusterArray deletedClusters;
|
|
444 |
CleanupClosePushL(deletedClusters);
|
|
445 |
|
|
446 |
//-- if ETrue, we need to notify media driver about invalidated media addressses
|
|
447 |
const TBool bFreeClustersNotify = iMediaAtt & KMediaAttDeleteNotify;
|
|
448 |
|
|
449 |
//-- this is a maximal number of FAT entries in the deletedClusters array.
|
|
450 |
//-- as soon as we collect this number of entries in the array, FAT cache will be flushed
|
|
451 |
//-- and driver notified. The array will be emptied. Used to avoid huge array when deleting
|
|
452 |
//-- large files on NAND media
|
|
453 |
const TUint KSubListLen = 4096;
|
|
454 |
ASSERT(IsPowerOf2(KSubListLen));
|
|
455 |
|
|
456 |
TUint32 lastKnownFreeCluster = FreeClusterHint();
|
|
457 |
TUint32 cntFreedClusters = 0;
|
|
458 |
|
|
459 |
TUint32 currCluster = aCluster;
|
|
460 |
TInt nextCluster = aCluster;
|
|
461 |
|
|
462 |
for(;;)
|
|
463 |
{
|
|
464 |
const TBool bEOF = !GetNextClusterL(nextCluster);
|
|
465 |
WriteL(currCluster, KSpareCluster);
|
|
466 |
|
|
467 |
lastKnownFreeCluster = Min(currCluster, lastKnownFreeCluster);
|
|
468 |
|
|
469 |
// Keep a record of the deleted clusters so that we can subsequently notify the media driver. This is only safe
|
|
470 |
// to do once the FAT changes have been written to disk.
|
|
471 |
if(bFreeClustersNotify)
|
|
472 |
deletedClusters.Append(currCluster);
|
|
473 |
|
|
474 |
++cntFreedClusters;
|
|
475 |
currCluster = nextCluster;
|
|
476 |
|
|
477 |
if (bEOF || aCluster == KSpareCluster)
|
|
478 |
break;
|
|
479 |
|
|
480 |
if(bFreeClustersNotify && cntFreedClusters && (cntFreedClusters & (KSubListLen-1))==0)
|
|
481 |
{//-- reached a limit of the entries in the array. Flush FAT cache, notify the driver and empty the array.
|
|
482 |
IncrementFreeClusterCount(cntFreedClusters);
|
|
483 |
cntFreedClusters = 0;
|
|
484 |
|
|
485 |
SetFreeClusterHint(lastKnownFreeCluster);
|
|
486 |
DoFreedClustersNotify(deletedClusters);
|
|
487 |
}
|
|
488 |
|
|
489 |
}
|
|
490 |
|
|
491 |
//-- increase the number of free clusters and notify the driver if required.
|
|
492 |
IncrementFreeClusterCount(cntFreedClusters);
|
|
493 |
SetFreeClusterHint(lastKnownFreeCluster);
|
|
494 |
|
|
495 |
if(bFreeClustersNotify)
|
|
496 |
DoFreedClustersNotify(deletedClusters);
|
|
497 |
|
|
498 |
CleanupStack::PopAndDestroy(&deletedClusters);
|
|
499 |
}
|
|
500 |
|
|
501 |
//-----------------------------------------------------------------------------
|
|
502 |
|
|
503 |
/**
|
|
504 |
Find a free cluster nearest to aCluster, Always checks to the right of aCluster first
|
|
505 |
but checks in both directions in the Fat.
|
|
506 |
|
|
507 |
@param aCluster Cluster to find nearest free cluster to.
|
|
508 |
@leave KErrDiskFull + system wide error codes
|
|
509 |
@return cluster number found
|
|
510 |
*/
|
|
511 |
TUint32 CFatTable::FindClosestFreeClusterL(TUint32 aCluster)
|
|
512 |
{
|
|
513 |
__PRINT2(_L("CFatTable::FindClosestFreeClusterL() drv:%d cl:%d"),iOwner->DriveNumber(),aCluster);
|
|
514 |
|
|
515 |
if(!ClusterNumberValid(aCluster))
|
|
516 |
{
|
|
517 |
ASSERT(0);
|
|
518 |
User::Leave(KErrCorrupt);
|
|
519 |
}
|
|
520 |
|
|
521 |
|
|
522 |
if(iFreeClusters==0)
|
|
523 |
{//-- there is no at least 1 free cluster available
|
|
524 |
__PRINT(_L("CFatTable::FindClosestFreeClusterL() leaving KErrDiskFull #1"));
|
|
525 |
User::Leave(KErrDiskFull);
|
|
526 |
}
|
|
527 |
|
|
528 |
//-- 1. look if the given index contains a free entry
|
|
529 |
if(ReadL(aCluster) != KSpareCluster)
|
|
530 |
{//-- no, it doesn't...
|
|
531 |
|
|
532 |
//-- 2. look in both directions starting from the aCluster, looking in the right direction first
|
|
533 |
|
|
534 |
const TUint32 maxEntries = MaxEntries();
|
|
535 |
const TUint32 MinIdx = KFatFirstSearchCluster;
|
|
536 |
const TUint32 MaxIdx = maxEntries-1;
|
|
537 |
|
|
538 |
TBool canGoRight = ETrue;
|
|
539 |
TBool canGoLeft = ETrue;
|
|
540 |
|
|
541 |
TUint32 rightIdx = aCluster;
|
|
542 |
TUint32 leftIdx = aCluster;
|
|
543 |
|
|
544 |
for(TUint i=0; i<maxEntries; ++i)
|
|
545 |
{
|
|
546 |
if(canGoRight)
|
|
547 |
{
|
|
548 |
if(rightIdx < MaxIdx)
|
|
549 |
++rightIdx;
|
|
550 |
else
|
|
551 |
canGoRight = EFalse;
|
|
552 |
}
|
|
553 |
|
|
554 |
if(canGoLeft)
|
|
555 |
{
|
|
556 |
if(leftIdx > MinIdx)
|
|
557 |
--leftIdx;
|
|
558 |
else
|
|
559 |
canGoLeft = EFalse;
|
|
560 |
}
|
|
561 |
|
|
562 |
if(!canGoRight && !canGoLeft)
|
|
563 |
{
|
|
564 |
__PRINT(_L("CFatTable::FindClosestFreeClusterL() leaving KErrDiskFull #2"));
|
|
565 |
User::Leave(KErrDiskFull);
|
|
566 |
}
|
|
567 |
|
|
568 |
if (canGoRight && ReadL(rightIdx) == KSpareCluster)
|
|
569 |
{
|
|
570 |
aCluster = rightIdx;
|
|
571 |
break;
|
|
572 |
}
|
|
573 |
|
|
574 |
if (canGoLeft && ReadL(leftIdx) == KSpareCluster)
|
|
575 |
{
|
|
576 |
aCluster = leftIdx;
|
|
577 |
break;
|
|
578 |
}
|
|
579 |
}//for(..)
|
|
580 |
|
|
581 |
}//if(ReadL(aCluster) != KSpareCluster)
|
|
582 |
|
|
583 |
|
|
584 |
//-- note: do not update free cluster hint here by calling SetFreeClusterHint(). This is going to be
|
|
585 |
//-- expensive especially if overridden methods with synchronisation are called. Instead, set the number of
|
|
586 |
//-- the last known free cluster in the caller of this internal method.
|
|
587 |
|
|
588 |
// __PRINT1(_L("CFatTable::FindClosestFreeClusterL found:%d"),aCluster);
|
|
589 |
|
|
590 |
return aCluster;
|
|
591 |
}
|
|
592 |
|
|
593 |
//-----------------------------------------------------------------------------
|
|
594 |
|
|
595 |
/**
|
|
596 |
Converts a cluster number to byte offset in the FAT
|
|
597 |
|
|
598 |
@param aFatIndex Cluster number
|
|
599 |
@return Number of bytes from the beginning of the FAT
|
|
600 |
*/
|
|
601 |
TUint32 CFatTable::PosInBytes(TUint32 aFatIndex) const
|
|
602 |
{
|
|
603 |
switch(FatType())
|
|
604 |
{
|
|
605 |
case EFat12:
|
|
606 |
return (((aFatIndex>>1)<<1) + (aFatIndex>>1)); //-- 1.5 bytes per FAT entry
|
|
607 |
|
|
608 |
case EFat16:
|
|
609 |
return aFatIndex<<1; //-- 2 bytes per FAT entry
|
|
610 |
|
|
611 |
default:
|
|
612 |
ASSERT(0);
|
|
613 |
return 0;//-- get rid of warning
|
|
614 |
};
|
|
615 |
|
|
616 |
}
|
|
617 |
|
|
618 |
//-----------------------------------------------------------------------------
|
|
619 |
|
|
620 |
/**
|
|
621 |
Checks if we have at least aClustersRequired clusters free in the FAT.
|
|
622 |
This is, actually a dummy implementation.
|
|
623 |
|
|
624 |
@param aClustersRequired number of free clusters required
|
|
625 |
@return ETrue if there is at least aClustersRequired free clusters available, EFalse otherwise.
|
|
626 |
*/
|
|
627 |
TBool CFatTable::RequestFreeClusters(TUint32 aClustersRequired) const
|
|
628 |
{
|
|
629 |
//ASSERT(aClustersRequired >0 && aClustersRequired <= iOwner->UsableClusters());
|
|
630 |
ASSERT(aClustersRequired >0);
|
|
631 |
return (NumberOfFreeClusters() >= aClustersRequired);
|
|
632 |
}
|
|
633 |
|
|
634 |
//-----------------------------------------------------------------------------
|
|
635 |
/**
|
|
636 |
@return ETrue if the cluster number aClusterNo is valid, i.e. belongs to the FAT table
|
|
637 |
*/
|
|
638 |
TBool CFatTable::ClusterNumberValid(TUint32 aClusterNo) const
|
|
639 |
{
|
|
640 |
return (aClusterNo >= KFatFirstSearchCluster) && (aClusterNo < iMaxEntries);
|
|
641 |
}
|
|
642 |
|
|
643 |
|
|
644 |
|
|
645 |
//#######################################################################################################################################
|
|
646 |
//# CAtaFatTable class implementation
|
|
647 |
//#######################################################################################################################################
|
|
648 |
|
|
649 |
/**
|
|
650 |
Constructor
|
|
651 |
*/
|
|
652 |
CAtaFatTable::CAtaFatTable(CFatMountCB& aOwner)
|
|
653 |
:CFatTable(aOwner)
|
|
654 |
{
|
|
655 |
}
|
|
656 |
|
|
657 |
|
|
658 |
/** factory method */
|
|
659 |
CAtaFatTable* CAtaFatTable::NewL(CFatMountCB& aOwner)
|
|
660 |
{
|
|
661 |
__PRINT1(_L("CAtaFatTable::NewL() drv:%d"),aOwner.DriveNumber());
|
|
662 |
CAtaFatTable* pSelf = new (ELeave) CAtaFatTable(aOwner);
|
|
663 |
|
|
664 |
CleanupStack::PushL(pSelf);
|
|
665 |
pSelf->InitializeL();
|
|
666 |
CleanupStack::Pop();
|
|
667 |
|
|
668 |
return pSelf;
|
|
669 |
}
|
|
670 |
|
|
671 |
|
|
672 |
//---------------------------------------------------------------------------------------------------------------------------------------
|
|
673 |
|
|
674 |
/**
|
|
675 |
CAtaFatTable's FAT cache factory method.
|
|
676 |
Creates fixed cache for FAT12 or FAT16
|
|
677 |
*/
|
|
678 |
void CAtaFatTable::CreateCacheL()
|
|
679 |
{
|
|
680 |
ASSERT(iOwner);
|
|
681 |
const TUint32 fatSize=iOwner->FatSizeInBytes();
|
|
682 |
__PRINT3(_L("CAtaFatTable::CreateCacheL drv:%d, FAT:%d, FAT Size:%d"), iOwner->DriveNumber(), FatType(), fatSize);
|
|
683 |
|
|
684 |
|
|
685 |
//-- according to FAT specs:
|
|
686 |
//-- FAT12 max size is 4084 entries or 6126 bytes => create fixed cache for whole FAT
|
|
687 |
//-- FAT16 min size is 4085 entries or 8170 bytes, max size is 65525 entries or 131048 bytes => create fixed cache for whole FAT
|
|
688 |
|
|
689 |
ASSERT(!iCache);
|
|
690 |
|
|
691 |
//-- this is used for chaches granularity sanity check
|
|
692 |
const TUint32 KMaxGranularityLog2 = 18; //-- 256K is a maximal allowed granularity
|
|
693 |
const TUint32 KMinGranularityLog2 = KDefSectorSzLog2; //-- 512 bytes is a minimal allowed granularity
|
|
694 |
|
|
695 |
switch(FatType())
|
|
696 |
{
|
|
697 |
case EFat12: //-- create fixed FAT12 cache
|
|
698 |
iCache = CFat12Cache::NewL(iOwner, fatSize);
|
|
699 |
break;
|
|
700 |
|
|
701 |
case EFat16: //-- create fixed FAT16 cache
|
|
702 |
{
|
|
703 |
TUint32 fat16_ReadGranularity_Log2; //-- FAT16 cache read granularity Log2
|
|
704 |
TUint32 fat16_WriteGranularity_Log2;//-- FAT16 cache write granularity Log2
|
|
705 |
|
|
706 |
iOwner->FatConfig().Fat16FixedCacheParams(fat16_ReadGranularity_Log2, fat16_WriteGranularity_Log2);
|
|
707 |
|
|
708 |
//-- check if granularity values look sensible
|
|
709 |
const TBool bParamsValid = fat16_ReadGranularity_Log2 >= KMinGranularityLog2 && fat16_ReadGranularity_Log2 <= KMaxGranularityLog2 &&
|
|
710 |
fat16_WriteGranularity_Log2 >= KMinGranularityLog2 && fat16_WriteGranularity_Log2 <= KMaxGranularityLog2;
|
|
711 |
|
|
712 |
__ASSERT_ALWAYS(bParamsValid, Fault(EFatCache_BadGranularity));
|
|
713 |
|
|
714 |
|
|
715 |
iCache = CFat16FixedCache::NewL(iOwner, fatSize, fat16_ReadGranularity_Log2, fat16_WriteGranularity_Log2);
|
|
716 |
}
|
|
717 |
break;
|
|
718 |
|
|
719 |
default:
|
|
720 |
ASSERT(0);
|
|
721 |
User::Leave(KErrCorrupt);
|
|
722 |
break;
|
|
723 |
};
|
|
724 |
|
|
725 |
ASSERT(iCache);
|
|
726 |
}
|
|
727 |
|
|
728 |
//---------------------------------------------------------------------------------------------------------------------------------------
|
|
729 |
|
|
730 |
|
|
731 |
/**
|
|
732 |
Flush the FAT cache on disk
|
|
733 |
@leave System wide error codes
|
|
734 |
*/
|
|
735 |
void CAtaFatTable::FlushL()
|
|
736 |
{
|
|
737 |
//-- the data can't be written if the mount is inconsistent
|
|
738 |
iOwner->CheckStateConsistentL();
|
|
739 |
|
|
740 |
if (iCache)
|
|
741 |
iCache->FlushL();
|
|
742 |
}
|
|
743 |
|
|
744 |
/**
|
|
745 |
Clear any cached data
|
|
746 |
@param aDiscardDirtyData if ETrue, non-flushed data in the cache will be discarded.
|
|
747 |
*/
|
|
748 |
void CAtaFatTable::Dismount(TBool aDiscardDirtyData)
|
|
749 |
{
|
|
750 |
if (iCache)
|
|
751 |
{
|
|
752 |
//-- cache's Close() can check if the cache is clean.
|
|
753 |
//-- ignore dirty data in cache if the mount is not in consistent state (it's impossible to flush cache data)
|
|
754 |
//-- or if we are asked to do so.
|
|
755 |
const TBool bIgnoreDirtyData = aDiscardDirtyData || !iOwner->ConsistentState();
|
|
756 |
iCache->Close(bIgnoreDirtyData);
|
|
757 |
|
|
758 |
delete iCache;
|
|
759 |
iCache=NULL;
|
|
760 |
}
|
|
761 |
|
|
762 |
}
|
|
763 |
|
|
764 |
//---------------------------------------------------------------------------------------------------------------------------------------
|
|
765 |
|
|
766 |
/**
|
|
767 |
Invalidate whole FAT cache.
|
|
768 |
Depending of cache type this may just mark cache invalid with reading on demand or re-read whole cache from the media
|
|
769 |
*/
|
|
770 |
void CAtaFatTable::InvalidateCacheL()
|
|
771 |
{
|
|
772 |
__PRINT1(_L("CAtaFatTable::InvalidateCache(), drv:%d"), iOwner->DriveNumber());
|
|
773 |
|
|
774 |
//-- if we have a cache, invalidate it entirely
|
|
775 |
if(iCache)
|
|
776 |
{
|
|
777 |
User::LeaveIfError(iCache->Invalidate());
|
|
778 |
}
|
|
779 |
}
|
|
780 |
|
|
781 |
|
|
782 |
//---------------------------------------------------------------------------------------------------------------------------------------
|
|
783 |
|
|
784 |
/**
|
|
785 |
Invalidate specified region of the FAT cache
|
|
786 |
Depending of cache type this may just mark part of the cache invalid with reading on demand later
|
|
787 |
or re-read whole cache from the media.
|
|
788 |
|
|
789 |
@param aPos absolute media position where the region being invalidated starts.
|
|
790 |
@param aLength length in bytes of region to invalidate / refresh
|
|
791 |
*/
|
|
792 |
void CAtaFatTable::InvalidateCacheL(TInt64 aPos, TUint32 aLength)
|
|
793 |
{
|
|
794 |
__PRINT3(_L("CAtaFatTable::InvalidateCacheL() drv:%d, pos:%LU, len:%u,"), iOwner->DriveNumber(), aPos, aLength);
|
|
795 |
|
|
796 |
if(I64HIGH(aPos) || !aLength || I64HIGH(aPos+aLength))
|
|
797 |
return; //-- FAT tables can't span over 4G
|
|
798 |
|
|
799 |
const TUint32 mediaPos32 = I64LOW(aPos);
|
|
800 |
|
|
801 |
//-- we do not use other copies of FAT, so trach changes only in FAT1
|
|
802 |
const TUint32 fat1StartPos = iOwner->StartOfFatInBytes();
|
|
803 |
const TUint32 fat1EndPos = fat1StartPos + iOwner->FatSizeInBytes();
|
|
804 |
|
|
805 |
TUint32 invRegionPosStart = 0; //-- media pos where the invalidated region starts
|
|
806 |
TUint32 invRegionLen = 0; //-- size of the invalidated region, bytes
|
|
807 |
|
|
808 |
//-- calculate the FAT1 region being invalidated
|
|
809 |
if(mediaPos32 < fat1StartPos)
|
|
810 |
{
|
|
811 |
if((mediaPos32 + aLength) <= fat1StartPos)
|
|
812 |
return;
|
|
813 |
|
|
814 |
invRegionPosStart = fat1StartPos;
|
|
815 |
invRegionLen = aLength - (fat1StartPos-mediaPos32);
|
|
816 |
}
|
|
817 |
else //if(mediaPos32 < fat1StartPos)
|
|
818 |
{//-- mediaPos32 >= fat1StartPos)
|
|
819 |
if(mediaPos32 >= fat1EndPos)
|
|
820 |
return;
|
|
821 |
|
|
822 |
invRegionPosStart = mediaPos32;
|
|
823 |
|
|
824 |
if((mediaPos32 + aLength) <= fat1EndPos)
|
|
825 |
{
|
|
826 |
invRegionLen = aLength;
|
|
827 |
}
|
|
828 |
else
|
|
829 |
{
|
|
830 |
invRegionLen = mediaPos32+aLength-fat1EndPos;
|
|
831 |
}
|
|
832 |
}
|
|
833 |
|
|
834 |
//-- convert the media pos of the region into FAT entries basis, depending on the FAT type
|
|
835 |
ASSERT(invRegionPosStart >= fat1StartPos && invRegionLen <= (TUint)iOwner->FatSizeInBytes());
|
|
836 |
|
|
837 |
TUint32 startFatEntry=0;
|
|
838 |
TUint32 numEntries = 0;
|
|
839 |
|
|
840 |
switch(FatType())
|
|
841 |
{
|
|
842 |
case EFat12:
|
|
843 |
//-- invalidate whole cache; it is not worth making calculations for such small memory region.
|
|
844 |
User::LeaveIfError(iCache->Invalidate());
|
|
845 |
return;
|
|
846 |
|
|
847 |
case EFat16:
|
|
848 |
startFatEntry = (invRegionPosStart-fat1StartPos) >> KFat16EntrySzLog2;
|
|
849 |
numEntries = (invRegionLen + (sizeof(TFat16Entry)-1)) >> KFat16EntrySzLog2;
|
|
850 |
break;
|
|
851 |
|
|
852 |
default:
|
|
853 |
ASSERT(0);
|
|
854 |
return;
|
|
855 |
};
|
|
856 |
|
|
857 |
if(startFatEntry < KFatFirstSearchCluster)
|
|
858 |
{//-- FAT[0] and FAT[1] can't be legally accessed, they are reserved entries. We need to adjust region being refreshed.
|
|
859 |
if(numEntries <= KFatFirstSearchCluster)
|
|
860 |
return; //-- nothing to refresh
|
|
861 |
|
|
862 |
startFatEntry += KFatFirstSearchCluster;
|
|
863 |
numEntries -= KFatFirstSearchCluster;
|
|
864 |
}
|
|
865 |
|
|
866 |
User::LeaveIfError(iCache->InvalidateRegion(startFatEntry, numEntries));
|
|
867 |
}
|
|
868 |
|
|
869 |
|
|
870 |
//-----------------------------------------------------------------------------
|
|
871 |
/**
|
|
872 |
Initialize the object, create FAT cache if required
|
|
873 |
@leave KErrNoMemory
|
|
874 |
*/
|
|
875 |
void CAtaFatTable::InitializeL()
|
|
876 |
{
|
|
877 |
__PRINT1(_L("CAtaFatTable::InitializeL() drv:%d"), iOwner->DriveNumber());
|
|
878 |
CFatTable::InitializeL();
|
|
879 |
|
|
880 |
//-- create the FAT cache.
|
|
881 |
ASSERT(!iCache);
|
|
882 |
CreateCacheL();
|
|
883 |
}
|
|
884 |
|
|
885 |
|
|
886 |
//-----------------------------------------------------------------------------
|
|
887 |
/**
|
|
888 |
Remount the FAT table. This method call means that the media parameters wasn't changed,
|
|
889 |
otherwise CFatMountCB::DoReMountL() would reject it.
|
|
890 |
Just do some re-initialisation work.
|
|
891 |
*/
|
|
892 |
void CAtaFatTable::ReMountL()
|
|
893 |
{
|
|
894 |
__PRINT1(_L("CAtaFatTable::ReMountL() drv:%d"), iOwner->DriveNumber());
|
|
895 |
|
|
896 |
if(iCache)
|
|
897 |
{
|
|
898 |
iCache->Invalidate();
|
|
899 |
}
|
|
900 |
else
|
|
901 |
{
|
|
902 |
//-- this situation can happen when someone called CAtaFatTable::Dismount() that deletes the cache object
|
|
903 |
//-- and then ReMount happens. We need to re-initialise this object.
|
|
904 |
InitializeL();
|
|
905 |
}
|
|
906 |
}
|
|
907 |
|
|
908 |
|
|
909 |
//-----------------------------------------------------------------------------
|
|
910 |
/**
|
|
911 |
Read an entry from the FAT table
|
|
912 |
|
|
913 |
@param aFatIndex FAT entry number to read
|
|
914 |
@return FAT entry value
|
|
915 |
*/
|
|
916 |
TUint32 CAtaFatTable::ReadL(TUint32 aFatIndex) const
|
|
917 |
{
|
|
918 |
if(!ClusterNumberValid(aFatIndex))
|
|
919 |
{
|
|
920 |
//ASSERT(0); //-- for some silly reason some callers pass 0 here and expect it to leave
|
|
921 |
User::Leave(KErrCorrupt);
|
|
922 |
}
|
|
923 |
|
|
924 |
|
|
925 |
const TUint entry = iCache->ReadEntryL(aFatIndex);
|
|
926 |
return entry;
|
|
927 |
}
|
|
928 |
|
|
929 |
|
|
930 |
//-----------------------------------------------------------------------------
|
|
931 |
/**
|
|
932 |
Write an entry to the FAT table
|
|
933 |
|
|
934 |
@param aFatIndex aFatIndex FAT entry number to write
|
|
935 |
@param aValue FAT entry to write
|
|
936 |
@leave
|
|
937 |
*/
|
|
938 |
void CAtaFatTable::WriteL(TUint32 aFatIndex, TUint32 aValue)
|
|
939 |
{
|
|
940 |
const TUint32 KFat16EntryMask = 0x0FFFF;
|
|
941 |
|
|
942 |
__PRINT2(_L("CAtaFatTable::WriteL() entry:%d, val:0x%x"), aFatIndex, aValue);
|
|
943 |
|
|
944 |
if(!ClusterNumberValid(aFatIndex))
|
|
945 |
{
|
|
946 |
ASSERT(0);
|
|
947 |
User::Leave(KErrCorrupt);
|
|
948 |
}
|
|
949 |
|
|
950 |
if(aValue != KSpareCluster && (aValue < KFatFirstSearchCluster || aValue > KFat16EntryMask))
|
|
951 |
{
|
|
952 |
ASSERT(0);
|
|
953 |
User::Leave(KErrCorrupt);
|
|
954 |
}
|
|
955 |
iCache->WriteEntryL(aFatIndex, aValue);
|
|
956 |
}
|
|
957 |
|
|
958 |
|
|
959 |
/**
|
|
960 |
Get the next cluster in the chain from the FAT
|
|
961 |
|
|
962 |
@param aCluster number to read, contains next cluster upon return
|
|
963 |
@leave
|
|
964 |
@return False if end of cluster chain
|
|
965 |
*/
|
|
966 |
TBool CFatTable::GetNextClusterL(TInt& aCluster) const
|
|
967 |
{
|
|
968 |
__PRINT1(_L("CAtaFatTable::GetNextClusterL(%d)"), aCluster);
|
|
969 |
|
|
970 |
const TInt nextCluster = ReadL(aCluster);
|
|
971 |
TBool ret = EFalse;
|
|
972 |
|
|
973 |
switch(FatType())
|
|
974 |
{
|
|
975 |
case EFat12:
|
|
976 |
ret=!IsEof12Bit(nextCluster);
|
|
977 |
break;
|
|
978 |
|
|
979 |
case EFat16:
|
|
980 |
ret=!IsEof16Bit(nextCluster);
|
|
981 |
break;
|
|
982 |
|
|
983 |
default:
|
|
984 |
ASSERT(0);
|
|
985 |
return EFalse;//-- get rid of warning
|
|
986 |
};
|
|
987 |
|
|
988 |
if (ret)
|
|
989 |
{
|
|
990 |
aCluster=nextCluster;
|
|
991 |
}
|
|
992 |
|
|
993 |
return ret;
|
|
994 |
|
|
995 |
}
|
|
996 |
|
|
997 |
/**
|
|
998 |
Write EOF to aFatIndex
|
|
999 |
@param aFatIndex index in FAT (cluster number) to be written
|
|
1000 |
*/
|
|
1001 |
void CFatTable::WriteFatEntryEofL(TUint32 aFatIndex)
|
|
1002 |
{
|
|
1003 |
__PRINT1(_L("CAtaFatTable::WriteFatEntryEofL(%d)"), aFatIndex);
|
|
1004 |
|
|
1005 |
//-- use EOF_16Bit (0x0ffff) for all types of FAT, FAT cache will mask it appropriately
|
|
1006 |
WriteL(aFatIndex, EOF_16Bit);
|
|
1007 |
}
|
|
1008 |
|
|
1009 |
|
|
1010 |
|
|
1011 |
/**
|
|
1012 |
Mark cluster number aFatIndex in FAT as bad
|
|
1013 |
@param aFatIndex index in FAT (cluster number) to be written
|
|
1014 |
*/
|
|
1015 |
void CFatTable::MarkAsBadClusterL(TUint32 aFatIndex)
|
|
1016 |
{
|
|
1017 |
__PRINT1(_L("CAtaFatTable::MarkAsBadClusterL(%d)"),aFatIndex);
|
|
1018 |
|
|
1019 |
//-- use KBad_16Bit (0x0fff7) for all types of FAT, FAT cache will mask it appropriately
|
|
1020 |
WriteL(aFatIndex, KBad_16Bit);
|
|
1021 |
|
|
1022 |
FlushL();
|
|
1023 |
}
|
|
1024 |
|
|
1025 |
|
|
1026 |
/**
|
|
1027 |
Return the location of a Cluster in the data section of the media
|
|
1028 |
|
|
1029 |
@param aCluster to find location of
|
|
1030 |
@return Byte offset of the cluster data
|
|
1031 |
*/
|
|
1032 |
TInt64 CAtaFatTable::DataPositionInBytes(TUint32 aCluster) const
|
|
1033 |
{
|
|
1034 |
__ASSERT_DEBUG(ClusterNumberValid(aCluster), Fault(EFatTable_InvalidIndex));
|
|
1035 |
|
|
1036 |
const TInt clusterBasePosition=iOwner->ClusterBasePosition();
|
|
1037 |
return(((TInt64(aCluster)-KFatFirstSearchCluster) << iOwner->ClusterSizeLog2()) + clusterBasePosition);
|
|
1038 |
}
|
|
1039 |
|
|
1040 |
|
|
1041 |
|
|
1042 |
|
|
1043 |
|
|
1044 |
|