author | Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com> |
Tue, 31 Aug 2010 16:34:26 +0300 | |
branch | RCL_3 |
changeset 43 | c1f20ce4abcf |
parent 42 | a179b74831c9 |
permissions | -rw-r--r-- |
0 | 1 |
// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies). |
2 |
// All rights reserved. |
|
3 |
// This component and the accompanying materials are made available |
|
4 |
// under the terms of the License "Eclipse Public License v1.0" |
|
5 |
// which accompanies this distribution, and is available |
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 |
// |
|
8 |
// Initial Contributors: |
|
9 |
// Nokia Corporation - initial contribution. |
|
10 |
// |
|
11 |
// Contributors: |
|
12 |
// |
|
13 |
// Description: |
|
14 |
// f32\sfat32\sl_fatcache.cpp |
|
15 |
// FAT12 and FAT16 cache implementation |
|
16 |
// |
|
17 |
// |
|
18 |
||
19 |
/** |
|
20 |
@file |
|
21 |
*/ |
|
22 |
||
2
4122176ea935
Revision: 200948 + Removing redundant base integration tests and fixing build errors
John Imhofe <john.imhofe@nokia.com>
parents:
0
diff
changeset
|
23 |
|
4122176ea935
Revision: 200948 + Removing redundant base integration tests and fixing build errors
John Imhofe <john.imhofe@nokia.com>
parents:
0
diff
changeset
|
24 |
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
4122176ea935
Revision: 200948 + Removing redundant base integration tests and fixing build errors
John Imhofe <john.imhofe@nokia.com>
parents:
0
diff
changeset
|
25 |
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
4122176ea935
Revision: 200948 + Removing redundant base integration tests and fixing build errors
John Imhofe <john.imhofe@nokia.com>
parents:
0
diff
changeset
|
26 |
//!! |
4122176ea935
Revision: 200948 + Removing redundant base integration tests and fixing build errors
John Imhofe <john.imhofe@nokia.com>
parents:
0
diff
changeset
|
27 |
//!! WARNING!! DO NOT edit this file !! '\sfat' component is obsolete and is not being used. '\sfat32'replaces it |
4122176ea935
Revision: 200948 + Removing redundant base integration tests and fixing build errors
John Imhofe <john.imhofe@nokia.com>
parents:
0
diff
changeset
|
28 |
//!! |
4122176ea935
Revision: 200948 + Removing redundant base integration tests and fixing build errors
John Imhofe <john.imhofe@nokia.com>
parents:
0
diff
changeset
|
29 |
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
4122176ea935
Revision: 200948 + Removing redundant base integration tests and fixing build errors
John Imhofe <john.imhofe@nokia.com>
parents:
0
diff
changeset
|
30 |
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
4122176ea935
Revision: 200948 + Removing redundant base integration tests and fixing build errors
John Imhofe <john.imhofe@nokia.com>
parents:
0
diff
changeset
|
31 |
|
0 | 32 |
#include "sl_std.h" |
33 |
#include "sl_fatcache.h" |
|
34 |
||
35 |
||
36 |
//################################################################################################################################# |
|
37 |
// CFatCacheBase implementation |
|
38 |
// Base class for all types of FAT cache |
|
39 |
//################################################################################################################################# |
|
40 |
||
41 |
CFatCacheBase::~CFatCacheBase() |
|
42 |
{ |
|
43 |
Close(ETrue); //-- deallocate cache's memory discarding any dirty data |
|
44 |
} |
|
45 |
||
46 |
CFatCacheBase::CFatCacheBase() |
|
47 |
{ |
|
48 |
iCurrentFatNo = KInvalidFatNo; |
|
49 |
SetDirty(EFalse); |
|
50 |
} |
|
51 |
||
52 |
||
53 |
/** |
|
54 |
FAT cache initialisation. |
|
55 |
||
56 |
@param aOwner pointer to the owning FAT mount |
|
57 |
*/ |
|
58 |
void CFatCacheBase::InitialiseL(CFatMountCB* aOwner) |
|
59 |
{ |
|
60 |
ASSERT(aOwner); |
|
61 |
||
62 |
Close(ETrue); //-- deallocate cache's memory discarding any dirty data |
|
63 |
||
64 |
//-- populate parameters from the owning mount |
|
65 |
iFatType = aOwner->FatType(); |
|
66 |
__ASSERT_ALWAYS((iFatType == EFat12 || iFatType == EFat16 || iFatType == EFat32), User::Leave(KErrCorrupt)); |
|
67 |
||
68 |
ipDrive = &aOwner->DriveInterface(); |
|
69 |
iFatStartPos = aOwner->FirstFatSector() << aOwner->SectorSizeLog2(); |
|
70 |
iFatSize = aOwner->FatSizeInBytes(); |
|
71 |
iNumFATs = (TUint16)aOwner->NumberOfFats(); |
|
72 |
iFatSecSzLog2 = (TUint16)aOwner->SectorSizeLog2(); |
|
73 |
iFatClustSzLog2 = (TUint16)aOwner->ClusterSizeLog2(); |
|
74 |
||
75 |
__ASSERT_ALWAYS(iNumFATs >=1, User::Leave(KErrCorrupt)); |
|
76 |
||
77 |
__PRINT3(_L("#-CFatCacheBase::InitialiseL() FatStart:%u, FatSz:%d, drv:%d"),iFatStartPos, iFatSize, aOwner->DriveNumber()); |
|
78 |
} |
|
79 |
||
80 |
//----------------------------------------------------------------------------- |
|
81 |
/** |
|
82 |
This method shall be called to check if we are allowed to invalidate dirty cache, i.e. discard non-flushed data. |
|
83 |
The behaviour is hardcoded (see KAllowInvalidateDirtyCache constant) |
|
84 |
||
85 |
@return ETrue if invalidating dirty cache is allowed. Otherwise panics the current thread |
|
86 |
*/ |
|
87 |
TBool CFatCacheBase::CheckInvalidatingDirtyCache() const |
|
88 |
{ |
|
89 |
||
90 |
//-- If not EFalse, invalidating dirty cache (pages) is allowed. This shall be OK, because |
|
91 |
//-- invalidating the cache is required only after direct media writes to the FAT by RawWrite, which can corrupt it anyway. |
|
92 |
TBool KAllowInvalidateDirtyCache = ETrue; |
|
93 |
||
94 |
if(!IsDirty()) |
|
95 |
return KAllowInvalidateDirtyCache; |
|
96 |
||
97 |
__PRINT(_L("#-CFatCacheBase::Invalidating dirty cache !")); |
|
98 |
||
99 |
if(!KAllowInvalidateDirtyCache) |
|
100 |
{ |
|
101 |
__ASSERT_ALWAYS(0, Fault(EFatCache_DiscardingDirtyData)); |
|
102 |
} |
|
103 |
||
104 |
return KAllowInvalidateDirtyCache; |
|
105 |
} |
|
106 |
||
107 |
//----------------------------------------------------------------------------- |
|
108 |
||
109 |
/** |
|
110 |
Read portion of raw data from 1st FAT copy. |
|
111 |
||
112 |
@param aPos media position in the _FIRST_ FAT to start reading with |
|
113 |
@param aLen number of bytes to read |
|
114 |
@param aData data descriptor |
|
115 |
||
116 |
@return standard error code. |
|
117 |
*/ |
|
118 |
TInt CFatCacheBase::ReadFatData(TUint32 aPos, TUint32 aLen, TDes8& aData) const |
|
119 |
{ |
|
120 |
//__PRINT2(_L("#-CFatCacheNew::ReadFatData() pos:%u, Len:%d"), aPos, aLen); |
|
121 |
||
122 |
//-- this method can pick up data corresponding to invalid FAT entries, like FAT[0], FAT[1] and |
|
123 |
//-- the last portion beyond FAT because of read granularity. This isn't a problem, because the data there |
|
124 |
//-- won't be written on disk. |
|
125 |
ASSERT(aPos >= FatStartPos()); |
|
126 |
||
127 |
return ipDrive->ReadNonCritical(aPos, aLen, aData); |
|
128 |
} |
|
129 |
||
130 |
//----------------------------------------------------------------------------- |
|
131 |
||
132 |
/** |
|
133 |
Writes data to the FAT table, which number is set in iCurrentFatNo member variable. |
|
134 |
@param aPos data media position in the _FIRST_ FAT copy |
|
135 |
@param aData data descriptor |
|
136 |
@return standard error code. |
|
137 |
*/ |
|
138 |
TInt CFatCacheBase::WriteFatData(TUint32 aPos, const TDesC8& aData) const |
|
139 |
{ |
|
140 |
//__PRINT3(_L("#-CFatCacheBase::WriteFatData() pos:%u, Len:%d, FAT:%d"), aPos, aData.Length(), iCurrentFatNo); |
|
141 |
||
142 |
#ifdef _DEBUG |
|
143 |
//-- FAT[0] and FAT[1] entries are reserved and we must not write data there. It's up to the caller of this method to |
|
144 |
//-- calculate correct data position in FAT |
|
145 |
TInt reserved_Entries_Offset=0; |
|
146 |
switch(iFatType) |
|
147 |
{ |
|
148 |
case EFat32: reserved_Entries_Offset = KFatFirstSearchCluster*sizeof(TFat32Entry); break; //-- FAT32 |
|
149 |
case EFat16: reserved_Entries_Offset = KFatFirstSearchCluster*sizeof(TFat16Entry); break; //-- FAT16 |
|
150 |
case EFat12: reserved_Entries_Offset = 3; break; //-- FAT12 |
|
151 |
default: ASSERT(0); break; |
|
152 |
} |
|
153 |
ASSERT(aPos >= FatStartPos()+reserved_Entries_Offset); |
|
154 |
ASSERT((aPos+aData.Length()) <= FatStartPos()+FatSize()); |
|
155 |
ASSERT(iCurrentFatNo < iNumFATs); |
|
156 |
#endif |
|
157 |
||
158 |
//-- goto the required FAT copy. iCurrentFatNo shall contain FAT number we are writing to. |
|
159 |
aPos+=iCurrentFatNo*FatSize(); |
|
160 |
||
161 |
return ipDrive->WriteCritical(aPos, aData); |
|
162 |
} |
|
163 |
||
164 |
//----------------------------------------------------------------------------- |
|
165 |
/** |
|
166 |
get a pointer to the CFatBitCache interface. |
|
167 |
@return NULL because it is not present here |
|
168 |
*/ |
|
169 |
CFatBitCache* CFatCacheBase::BitCacheInterface() |
|
170 |
{ |
|
171 |
return NULL; |
|
172 |
} |
|
173 |
||
174 |
||
175 |
//################################################################################################################################# |
|
176 |
// CFatPagedCacheBase implementation |
|
177 |
// Base class for all paged FAT caches |
|
178 |
//################################################################################################################################# |
|
179 |
||
180 |
CFatPagedCacheBase::CFatPagedCacheBase() |
|
181 |
:CFatCacheBase() |
|
182 |
{ |
|
183 |
} |
|
184 |
||
185 |
||
186 |
//################################################################################################################################# |
|
187 |
// CFatCachePageBase implementation |
|
188 |
// Base class for FAT cache pages (FAT16 fixed and FAT32 LRU) |
|
189 |
//################################################################################################################################# |
|
190 |
||
191 |
CFatCachePageBase::CFatCachePageBase(CFatPagedCacheBase& aCache) |
|
192 |
:iCache(aCache) |
|
193 |
{ |
|
194 |
ASSERT(IsPowerOf2(aCache.PageSize())); |
|
195 |
iStartIndexInFAT = KMaxTUint; |
|
196 |
||
197 |
//-- calculate number of FAT entries in the page, it depends on FAT type |
|
198 |
switch(aCache.FatType()) |
|
199 |
{ |
|
200 |
case EFat32: |
|
201 |
iFatEntriesInPage = PageSize() >> KFat32EntrySzLog2; |
|
202 |
break; |
|
203 |
||
204 |
case EFat16: |
|
205 |
iFatEntriesInPage = PageSize() >> KFat16EntrySzLog2; |
|
206 |
break; |
|
207 |
||
208 |
default: |
|
209 |
ASSERT(0); |
|
210 |
Fault(EFatCache_BadFatType); |
|
211 |
break; |
|
212 |
||
213 |
}; |
|
214 |
||
215 |
SetState(EInvalid); |
|
216 |
} |
|
217 |
||
218 |
CFatCachePageBase::~CFatCachePageBase() |
|
219 |
{ |
|
220 |
iData.Close(); |
|
221 |
} |
|
222 |
||
223 |
//----------------------------------------------------------------------------- |
|
224 |
/** |
|
225 |
Mark the page as "invalid". I.e containing inalid data. |
|
226 |
On the first read/write access to such page it will be re-read from the media |
|
227 |
||
228 |
@param aIgnoreDirtyData if ETrue, it is allowed to ignore the fact that the page contains dirty (not flushed) data. |
|
229 |
*/ |
|
230 |
void CFatCachePageBase::Invalidate(TBool aIgnoreDirtyData /*= EFalse*/) |
|
231 |
{ |
|
232 |
if(!aIgnoreDirtyData && IsDirty()) |
|
233 |
{ |
|
234 |
__PRINT1(_L("#-CFatCachePageBase::Invalidate() dirty page! FAT idx:%d"), iStartIndexInFAT); |
|
235 |
__ASSERT_ALWAYS(0, Fault(EFatCache_DiscardingDirtyData)); |
|
236 |
} |
|
237 |
||
238 |
iDirtySectors.Clear(); //-- clear dirty sectors bitmap |
|
239 |
SetState(EInvalid); |
|
240 |
} |
|
241 |
||
242 |
//----------------------------------------------------------------------------- |
|
243 |
/** |
|
244 |
Flush all dirty page sectors to the media and mark the page as "clean" if required. |
|
245 |
If the page is "clean" i.e doesn't contain changed data, does nothing. |
|
246 |
||
247 |
@param aKeepDirty if ETrue, the "dirty" flag isn't reset after page flushing. |
|
248 |
*/ |
|
249 |
void CFatCachePageBase::FlushL(TBool aKeepDirty) |
|
250 |
{ |
|
251 |
if(!IsDirty()) |
|
252 |
return; |
|
253 |
||
254 |
if(!IsValid()) |
|
255 |
{ |
|
256 |
__PRINT1(_L("#-CFatCachePageBase::FlushL() Invalid page! FAT idx:%d"), iStartIndexInFAT); |
|
257 |
ASSERT(0); |
|
258 |
User::Leave(KErrCorrupt); |
|
259 |
return; |
|
260 |
} |
|
261 |
||
262 |
//__PRINT1(_L("#-CFatCachePageBase::FlushL() FAT idx:%d"), iStartIndexInFAT); |
|
263 |
||
264 |
//-- write dirty FAT sectors to the media one by one. |
|
265 |
//-- merging adjacent dirty subsectors into larger clusters and writing them at once looks like a good idea, but |
|
266 |
//-- in reality it showed FAT performance degradation, at least on MMC/SD media. |
|
267 |
||
268 |
const TInt MaxSectors = iCache.SectorsInPage(); |
|
269 |
||
270 |
for(TInt i=0; i<MaxSectors; ++i) |
|
271 |
{ |
|
272 |
if(iDirtySectors[i]) |
|
273 |
{ |
|
274 |
DoWriteSectorL(i); |
|
275 |
} |
|
276 |
} |
|
277 |
||
278 |
//-- All data flushed; mark page as clean if it isn't required not to do. |
|
279 |
if(!aKeepDirty) |
|
280 |
SetClean(); |
|
281 |
||
282 |
} |
|
283 |
||
284 |
||
285 |
//################################################################################################################################# |
|
286 |
// CFat16FixedCache implementation |
|
287 |
// Fixed cache (caches all FAT16) but organised as an array of pages |
|
288 |
//################################################################################################################################# |
|
289 |
||
290 |
CFat16FixedCache::CFat16FixedCache() |
|
291 |
:CFatPagedCacheBase(),iPages(1) //-- array granularity is 1 |
|
292 |
{ |
|
293 |
} |
|
294 |
||
295 |
//----------------------------------------------------------------------------- |
|
296 |
/** |
|
297 |
FAT16 fixed cache factory function. |
|
298 |
@param aOwner pointer to the owning FAT mount |
|
299 |
@param aFatSize size of the FAT table in bytes |
|
300 |
@param aRdGranularityLog2 Log2(read granularity) |
|
301 |
@param aWrGranularityLog2 Log2(write granularity) |
|
302 |
||
303 |
@return pointer to the constructed object. |
|
304 |
*/ |
|
305 |
CFat16FixedCache* CFat16FixedCache::NewL(CFatMountCB* aOwner, TUint32 aFatSize, TUint32 aRdGranularityLog2, TUint32 aWrGranularityLog2) |
|
306 |
{ |
|
307 |
__PRINT(_L("#-CFat16FixedCache::NewL()")); |
|
308 |
||
309 |
CFat16FixedCache* pSelf = NULL; |
|
310 |
pSelf = new (ELeave) CFat16FixedCache; |
|
311 |
||
312 |
CleanupStack::PushL(pSelf); |
|
313 |
pSelf->InitialiseL(aOwner, aFatSize, aRdGranularityLog2, aWrGranularityLog2); |
|
314 |
CleanupStack::Pop(); |
|
315 |
||
316 |
return pSelf; |
|
317 |
} |
|
318 |
||
319 |
//----------------------------------------------------------------------------- |
|
320 |
/** |
|
321 |
FAT16 fixed cache initialisation. |
|
322 |
@param aOwner pointer to the owning FAT mount |
|
323 |
@param aFatSize size of the FAT table in bytes |
|
324 |
@param aRdGranularityLog2 Log2(read granularity) |
|
325 |
@param aWrGranularityLog2 Log2(write granularity) |
|
326 |
*/ |
|
327 |
void CFat16FixedCache::InitialiseL(CFatMountCB* aOwner, TUint32 aFatSize, TUint32 aRdGranularityLog2, TUint32 aWrGranularityLog2) |
|
328 |
{ |
|
329 |
const TUint32 ReadGranularity = Pow2(aRdGranularityLog2); |
|
330 |
const TUint32 WriteGranularity = Pow2(aWrGranularityLog2); |
|
331 |
||
332 |
__PRINT3(_L("#-CFat16FixedCache::InitialiseL FatSz:%u, RdGr:%d, WrGr:%d"),aFatSize, ReadGranularity, WriteGranularity); |
|
333 |
(void)ReadGranularity; |
|
334 |
(void)WriteGranularity; |
|
335 |
||
336 |
TBool bParamsValid = (aRdGranularityLog2 >= aWrGranularityLog2) && (aWrGranularityLog2 >= KDefSectorSzLog2); |
|
337 |
__ASSERT_ALWAYS(bParamsValid, Fault(EFatCache_BadGranularity)); |
|
338 |
||
339 |
CFatPagedCacheBase::InitialiseL(aOwner); |
|
340 |
||
341 |
ASSERT(FatType() == EFat16); |
|
342 |
||
343 |
//-- See FAT specs, and round up the limit to the FAT sector boundary |
|
344 |
const TUint32 KMaxFat16Size = ((65524*sizeof(TFat16Entry)+FAT_SectorSz()-1) >> FAT_SectorSzLog2()) << FAT_SectorSzLog2(); |
|
345 |
const TUint32 KMinFat16Size = 4086*sizeof(TFat16Entry); //-- See FAT specs |
|
346 |
||
347 |
bParamsValid = aFatSize >= KMinFat16Size && aFatSize <= KMaxFat16Size; |
|
2
4122176ea935
Revision: 200948 + Removing redundant base integration tests and fixing build errors
John Imhofe <john.imhofe@nokia.com>
parents:
0
diff
changeset
|
348 |
__ASSERT_ALWAYS(bParamsValid, User::Leave(KErrCorrupt)); |
0 | 349 |
|
350 |
//-- cache page size is (2^aRdGranularityLog2) bytes and consists of 2^(aRdGranularityLog2-aWrGranularity) sectors. |
|
351 |
iPageSizeLog2 = aRdGranularityLog2; |
|
352 |
iSectorSizeLog2 = aWrGranularityLog2; //-- Log2(number of sectors in cache page) |
|
353 |
||
354 |
__ASSERT_ALWAYS(SectorsInPage() < KMaxSectorsInPage, Fault(EFatCache_BadGranularity)); |
|
355 |
||
356 |
const TUint numPages = (aFatSize+(PageSize()-1)) >> iPageSizeLog2; |
|
357 |
__PRINT1(_L("#-CFat16FixedCache Num Pages:%d"), numPages); |
|
358 |
||
359 |
//-- prepare pointer array for pages. NULL entry in the array means that the page at this index isn't allocated. |
|
360 |
for(TUint i=0; i<numPages; ++i) |
|
42
a179b74831c9
Revision: 201033
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
2
diff
changeset
|
361 |
iPages.AppendL(NULL); |
0 | 362 |
|
363 |
} |
|
364 |
||
365 |
||
366 |
//----------------------------------------------------------------------------- |
|
367 |
/** |
|
368 |
Close the cache and deallocate its memory. |
|
369 |
@param aDiscardDirtyData if ETrue, will ignore dirty data. If EFalse, will panic on atempt to close dirty cache. |
|
370 |
*/ |
|
371 |
void CFat16FixedCache::Close(TBool aDiscardDirtyData) |
|
372 |
{ |
|
373 |
__PRINT1(_L("#-CFat16FixedCache::Close(%d)"), aDiscardDirtyData); |
|
374 |
||
375 |
TInt cnt = iPages.Count(); |
|
376 |
while(cnt--) |
|
377 |
{//-- delete pages |
|
378 |
CFat16FixedCachePage *pPage = iPages[cnt]; |
|
379 |
if(pPage && (pPage->IsDirty())) |
|
380 |
{//-- trying to destroy the cache that has dirty pages |
|
381 |
__PRINT1(_L("#-CFat16FixedCache::Close() The page is dirty! Start idx:%d"), pPage->StartFatIndex()); |
|
382 |
if(!aDiscardDirtyData) |
|
383 |
{ |
|
384 |
__ASSERT_ALWAYS(0, Fault(EFatCache_DiscardingDirtyData)); |
|
385 |
} |
|
386 |
//-- ignore this fact if requested. |
|
387 |
} |
|
388 |
||
389 |
delete pPage; |
|
390 |
} |
|
391 |
||
392 |
iPages.Close(); |
|
393 |
SetDirty(EFalse); |
|
394 |
} |
|
395 |
||
396 |
//----------------------------------------------------------------------------- |
|
397 |
/** |
|
398 |
Read FAT entry from the cache. |
|
399 |
||
400 |
@param aIndex FAT entry index to read |
|
401 |
@return FAT entry value at the index "aIndex" |
|
402 |
*/ |
|
403 |
TUint32 CFat16FixedCache::ReadEntryL(TUint32 aIndex) |
|
404 |
{ |
|
405 |
//__PRINT1(_L("#-CFat16FixedCache::ReadEntryL() FAT idx:%d"), aIndex); |
|
406 |
ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() >> KFat16EntrySzLog2)); |
|
407 |
||
408 |
//-- calculate page index in the array |
|
409 |
const TInt pgIdx = aIndex >> (PageSizeLog2()-KFat16EntrySzLog2); |
|
410 |
CFat16FixedCachePage *pPage = iPages[pgIdx]; |
|
411 |
||
412 |
TUint32 entry = KMaxTUint; |
|
413 |
||
414 |
if(!pPage) |
|
415 |
{//-- page at this position isn't allocated yet |
|
416 |
pPage = CFat16FixedCachePage::NewL(*this); |
|
417 |
iPages[pgIdx] = pPage; |
|
418 |
||
419 |
//-- read the page from media |
|
420 |
entry = pPage->ReadFromMediaL(aIndex); |
|
421 |
} |
|
422 |
else |
|
423 |
{//-- get cached entry from the page |
|
424 |
TBool bRes = pPage->ReadCachedEntryL(aIndex, entry); |
|
425 |
ASSERT(bRes); |
|
426 |
(void)bRes; |
|
427 |
} |
|
428 |
||
429 |
return entry; |
|
430 |
} |
|
431 |
||
432 |
//----------------------------------------------------------------------------- |
|
433 |
/** |
|
434 |
Write FAT entry to the cache. |
|
435 |
Appropriate FAT cache sector will be marked as "dirty" and will be eventually flushed to the media. |
|
436 |
||
437 |
@param aIndex FAT entry index |
|
438 |
@param aEntry FAT entry value |
|
439 |
*/ |
|
440 |
void CFat16FixedCache::WriteEntryL(TUint32 aIndex, TUint32 aEntry) |
|
441 |
{ |
|
442 |
//__PRINT2(_L("#-CFat16FixedCache::WriteEntryL() FAT idx:%d, val:%d"), aIndex, aEntry); |
|
443 |
||
444 |
ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() >> KFat16EntrySzLog2)); |
|
445 |
||
446 |
SetDirty(ETrue); |
|
447 |
||
448 |
//-- calculate page index in the array |
|
449 |
const TInt pgIdx = aIndex >> (PageSizeLog2()-KFat16EntrySzLog2); |
|
450 |
CFat16FixedCachePage *pPage = iPages[pgIdx]; |
|
451 |
||
452 |
if(!pPage) |
|
453 |
{//-- page at this position isn't allocated yet |
|
454 |
pPage = CFat16FixedCachePage::NewL(*this); |
|
455 |
iPages[pgIdx] = pPage; |
|
456 |
||
457 |
//-- read the page from media |
|
458 |
pPage->ReadFromMediaL(aIndex); |
|
459 |
} |
|
460 |
||
461 |
//-- overwrite entry in cache |
|
462 |
TBool bRes = pPage->WriteCachedEntryL(aIndex, aEntry); |
|
463 |
ASSERT(bRes); |
|
464 |
(void)bRes; |
|
465 |
} |
|
466 |
||
467 |
/** |
|
468 |
A debug method that asserts that the cache is really clean |
|
469 |
*/ |
|
470 |
void CFat16FixedCache::AssertCacheReallyClean() const |
|
471 |
{ |
|
472 |
#ifdef _DEBUG |
|
473 |
for(TUint i=0; i<NumPages(); ++i) |
|
474 |
{ |
|
475 |
CFat16FixedCachePage* pPage = iPages[i]; |
|
476 |
if(pPage && pPage->IsDirty()) |
|
477 |
{ |
|
478 |
__PRINT(_L("#-CFat16FixedCache::AssertCacheReallyClean()")); |
|
479 |
ASSERT(0); |
|
480 |
} |
|
481 |
} |
|
482 |
#endif |
|
483 |
} |
|
484 |
||
485 |
||
486 |
//----------------------------------------------------------------------------- |
|
487 |
/** |
|
488 |
Flushes all dirty data to the media. |
|
489 |
*/ |
|
490 |
void CFat16FixedCache::FlushL() |
|
491 |
{ |
|
492 |
if(!IsDirty()) |
|
493 |
{ |
|
494 |
AssertCacheReallyClean(); |
|
495 |
return; |
|
496 |
} |
|
497 |
||
498 |
||
499 |
//-- flush dirty data to all copies of FAT |
|
500 |
for(iCurrentFatNo=0; iCurrentFatNo < NumFATs(); ++iCurrentFatNo) |
|
501 |
{ |
|
502 |
const TInt nPages = NumPages(); |
|
503 |
for(TInt i=0; i<nPages; ++i) |
|
504 |
{ |
|
505 |
const TBool keepDirty = iCurrentFatNo < (NumFATs() - 1); |
|
506 |
||
507 |
CFat16FixedCachePage* pPage = iPages[i]; |
|
508 |
if(pPage) |
|
509 |
pPage->FlushL(keepDirty); |
|
510 |
} |
|
511 |
||
512 |
} |
|
513 |
||
514 |
iCurrentFatNo = KInvalidFatNo; |
|
515 |
SetDirty(EFalse); |
|
516 |
} |
|
517 |
||
518 |
//----------------------------------------------------------------------------- |
|
519 |
/** |
|
520 |
Invalidate whole cache. All pages will be marked as invalid and will be re-read from the media on first access to them. |
|
521 |
@return always KErrNone |
|
522 |
*/ |
|
523 |
TInt CFat16FixedCache::Invalidate() |
|
524 |
{ |
|
525 |
__PRINT(_L("#-CFat16FixedCache::Invalidate()")); |
|
526 |
const TBool bIgnoreDirtyData = CheckInvalidatingDirtyCache(); |
|
527 |
||
528 |
//-- iterate through the array of pages marking invalidating every page |
|
529 |
TInt cnt = iPages.Count(); |
|
530 |
while(cnt--) |
|
531 |
{//-- delete pages |
|
532 |
CFat16FixedCachePage *pPage = iPages[cnt]; |
|
533 |
if(pPage) |
|
534 |
pPage->Invalidate(bIgnoreDirtyData); |
|
535 |
} |
|
536 |
||
537 |
||
538 |
SetDirty(EFalse); |
|
539 |
||
540 |
return KErrNone; |
|
541 |
} |
|
542 |
||
543 |
//----------------------------------------------------------------------------- |
|
544 |
/** |
|
545 |
Invalidate FAT cache pages that contain FAT entries from aStartIndex to (aStartIndex+aNumEntries) |
|
546 |
These pages will be marked as invalid and will be re-read from the media on first access to them. |
|
547 |
||
548 |
@param aStartIndex FAT start index of the region being invalidated |
|
549 |
@param aNumEntries number of entries to invalidate |
|
550 |
@return always KErrNone |
|
551 |
*/ |
|
552 |
TInt CFat16FixedCache::InvalidateRegion(TUint32 aStartIndex, TUint32 aNumEntries) |
|
553 |
{ |
|
554 |
__PRINT2(_L("#-CFat16FixedCache::InvalidateRegion() startIndex:%d, entries:%d"),aStartIndex, aNumEntries); |
|
555 |
ASSERT(aStartIndex >= KFatFirstSearchCluster && aStartIndex < (FatSize() >> KFat16EntrySzLog2)); |
|
556 |
||
557 |
if(!aNumEntries) |
|
558 |
{ |
|
559 |
ASSERT(0); |
|
560 |
return KErrNone; |
|
561 |
} |
|
562 |
||
563 |
const TBool bIgnoreDirtyData = CheckInvalidatingDirtyCache(); |
|
564 |
const TUint startPgIdx = aStartIndex >> (PageSizeLog2()-KFat16EntrySzLog2); |
|
565 |
const TUint nPagesToInv = 1+(aNumEntries >> (PageSizeLog2()-KFat16EntrySzLog2)); |
|
566 |
||
567 |
TUint i; |
|
568 |
//-- invalidate pages that contain [aStartIndex ... aStartIndex+aNumEntries] entries |
|
569 |
for(i=0; i<nPagesToInv; ++i) |
|
570 |
{ |
|
571 |
const TUint pageIdx = i+startPgIdx; |
|
572 |
if(pageIdx >= NumPages()) |
|
573 |
break; |
|
574 |
||
575 |
CFat16FixedCachePage* pPage = iPages[pageIdx]; |
|
576 |
if(pPage) |
|
577 |
pPage->Invalidate(bIgnoreDirtyData); |
|
578 |
} |
|
579 |
||
580 |
SetDirty(EFalse); |
|
581 |
||
582 |
//-- check if the cache still has dirty pages |
|
583 |
for(i=0; i<NumPages(); ++i) |
|
584 |
{ |
|
585 |
CFat16FixedCachePage* pPage = iPages[i]; |
|
586 |
if(pPage && pPage->IsDirty()) |
|
587 |
{ |
|
588 |
SetDirty(ETrue); |
|
589 |
break; |
|
590 |
} |
|
591 |
} |
|
592 |
||
593 |
return KErrNone; |
|
594 |
} |
|
595 |
||
596 |
//################################################################################################################################# |
|
597 |
// CFat16FixedCachePage implementation |
|
598 |
// Page for the FAT16 fixed cache |
|
599 |
//################################################################################################################################# |
|
600 |
||
601 |
//----------------------------------------------------------------------------- |
|
602 |
||
603 |
CFat16FixedCachePage::CFat16FixedCachePage(CFatPagedCacheBase& aCache) |
|
604 |
:CFatCachePageBase(aCache) |
|
605 |
{ |
|
606 |
ASSERT(IsPowerOf2(EntriesInPage())); |
|
607 |
} |
|
608 |
||
609 |
||
610 |
/** |
|
611 |
Factory function. |
|
612 |
@param aCache reference to the owning cache. |
|
613 |
@return pointer to the constructed object or NULL on error |
|
614 |
*/ |
|
615 |
CFat16FixedCachePage* CFat16FixedCachePage::NewL(CFatPagedCacheBase& aCache) |
|
616 |
{ |
|
617 |
CFat16FixedCachePage* pSelf = NULL; |
|
618 |
pSelf = new (ELeave) CFat16FixedCachePage(aCache); |
|
619 |
||
620 |
CleanupStack::PushL(pSelf); |
|
621 |
||
622 |
pSelf->iData.CreateMaxL(aCache.PageSize()); //-- allocate memory for the page |
|
623 |
||
624 |
CleanupStack::Pop(); |
|
625 |
||
626 |
return pSelf; |
|
627 |
} |
|
628 |
||
629 |
||
630 |
//----------------------------------------------------------------------------- |
|
631 |
/** |
|
632 |
Read FAT16 entry from the cache. |
|
633 |
||
634 |
1. If page's data are valid, just extracts data from the page buffer. |
|
635 |
2. If page's data are invalid firstly reads data from the media and goto 1 |
|
636 |
||
637 |
@param aFatIndex entry's absolute FAT index (from the FAT start) |
|
638 |
@param aResult on sucess there will be FAT16 entry value |
|
639 |
@return ETrue, because FAT16 cache pages never get eviched. |
|
640 |
*/ |
|
641 |
TBool CFat16FixedCachePage::ReadCachedEntryL (TUint32 aFatIndex, TUint32& aResult) |
|
642 |
{ |
|
643 |
if(IsValid()) |
|
644 |
{//-- read entry directly from page buffer, the cached data are valid |
|
645 |
aResult = (*GetEntryPtr(aFatIndex)) & KFat16EntryMask; |
|
646 |
} |
|
647 |
else |
|
648 |
{//-- aFatIndex belongs to this page, but the page is invalid and needs to be read from the media |
|
649 |
//__PRINT(_L("#-CFat16FixedCachePage::ReadCachedEntry() The page is invalid, reading from the media")); |
|
650 |
aResult = ReadFromMediaL(aFatIndex); |
|
651 |
} |
|
652 |
||
653 |
return ETrue; |
|
654 |
} |
|
655 |
||
656 |
//----------------------------------------------------------------------------- |
|
657 |
||
658 |
/** |
|
659 |
Writes FAT cache page sector to the media (to all copies of the FAT) |
|
660 |
@param aSector sector number winthin this page |
|
661 |
*/ |
|
662 |
void CFat16FixedCachePage::DoWriteSectorL(TUint32 aSector) |
|
663 |
{ |
|
664 |
//__PRINT1(_L("#-CFat16FixedCachePage::DoWriteSectorL() startSec:%d, cnt:%d"), aSector); |
|
665 |
||
666 |
ASSERT(aSector < iCache.SectorsInPage()); |
|
667 |
||
668 |
TInt offset = 0; |
|
669 |
||
670 |
if(iStartIndexInFAT == 0 && aSector == 0) |
|
671 |
{//-- this is the very beginning of FAT16. We must skip FAT[0] & FAT[1] entries and do not write them to media. |
|
672 |
offset = KFatFirstSearchCluster << KFat16EntrySzLog2; |
|
673 |
} |
|
674 |
||
675 |
const TUint8* pData = iData.Ptr()+offset+(aSector << iCache.SectorSizeLog2()); |
|
676 |
||
677 |
TUint32 dataLen = (1 << iCache.SectorSizeLog2()) - offset; |
|
678 |
||
679 |
const TUint32 mediaPosStart = iCache.FatStartPos() + (iStartIndexInFAT << KFat16EntrySzLog2) + (aSector << iCache.SectorSizeLog2()) + offset; |
|
680 |
const TUint32 mediaPosEnd = mediaPosStart + dataLen; |
|
681 |
||
682 |
//-- check if we are going to write beyond FAT. It can happen if the write granularity is bigger that the sector size. |
|
683 |
const TUint32 posFatEnd = iCache.FatStartPos() + iCache.FatSize(); |
|
684 |
if(mediaPosEnd > posFatEnd) |
|
685 |
{//-- correct the leength of the data to write. |
|
686 |
dataLen -= (mediaPosEnd-posFatEnd); |
|
687 |
} |
|
688 |
||
689 |
TPtrC8 ptrData(pData, dataLen); //-- source data descriptor |
|
690 |
||
691 |
TInt nRes = iCache.WriteFatData(mediaPosStart, ptrData); |
|
692 |
||
693 |
if(nRes != KErrNone) |
|
694 |
{ |
|
695 |
__PRINT1(_L("#-CFat16FixedCachePage::DoWriteSectorsL() failed! code:%d"), nRes); |
|
696 |
User::Leave(nRes); |
|
697 |
} |
|
698 |
||
699 |
} |
|
700 |
||
701 |
//----------------------------------------------------------------------------- |
|
702 |
/** |
|
703 |
Write FAT16 entry at aFatIndex to the cache. Note that the data are not written to the media, only to the cache page. |
|
704 |
Corresponding page sector is marked as dirty and will be flushed on FlushL() call later. |
|
705 |
||
706 |
1. If page's data are valid, copies data to the page buffer and marks sector as dirty. |
|
707 |
2. If page's data are invalid, firstly reads data from the media and goto 1 |
|
708 |
||
709 |
@param aFatIndex entry's absolute FAT index (from the FAT start) |
|
710 |
@param aFatEntry FAT16 entry value |
|
711 |
@return ETrue because FAT16 cache pages never get eviched. |
|
712 |
*/ |
|
713 |
TBool CFat16FixedCachePage::WriteCachedEntryL(TUint32 aFatIndex, TUint32 aFatEntry) |
|
714 |
{ |
|
715 |
||
716 |
ASSERT(IsEntryCached(aFatIndex)); |
|
717 |
||
718 |
if(!IsValid()) |
|
719 |
{//-- we are trying to write data to the page that has invalid data. //-- read the data from the media first. |
|
720 |
ReadFromMediaL(aFatIndex); |
|
721 |
} |
|
722 |
||
723 |
TFat16Entry* pEntry = GetEntryPtr(aFatIndex); |
|
724 |
||
725 |
const TFat16Entry orgEntry = *pEntry; |
|
726 |
*pEntry = (TFat16Entry)((orgEntry & ~KFat16EntryMask) | (aFatEntry & KFat16EntryMask)); |
|
727 |
||
728 |
//-- mark corresponding sector of the cache page as dirty |
|
729 |
const TUint entryIndexInPage = aFatIndex & (EntriesInPage()-1); //-- number of entries in page is always a power of 2 |
|
730 |
const TUint dirtySectorNum = entryIndexInPage >> (iCache.SectorSizeLog2() - KFat16EntrySzLog2); |
|
731 |
||
732 |
ASSERT(dirtySectorNum < iCache.SectorsInPage()); |
|
733 |
||
734 |
iDirtySectors.SetBit(dirtySectorNum); |
|
735 |
SetState(EDirty); //-- mark page as dirty. |
|
736 |
||
737 |
return ETrue; |
|
738 |
} |
|
739 |
||
740 |
//----------------------------------------------------------------------------- |
|
741 |
||
742 |
/** |
|
743 |
Get a pointer to the FAT16 entry in the page buffer. |
|
744 |
The page 's data shall be valid and the entry shall belong to this page. |
|
745 |
||
746 |
@param aFatIndex absolute FAT index (from the FAT start) of the entry |
|
747 |
@return pointer to the FAT16 entry in the page buffer. |
|
748 |
*/ |
|
749 |
TFat16Entry* CFat16FixedCachePage::GetEntryPtr(TUint32 aFatIndex) const |
|
750 |
{ |
|
751 |
ASSERT(IsValid() && IsEntryCached(aFatIndex)); |
|
752 |
||
753 |
const TUint KEntryIndexInPage = aFatIndex & (EntriesInPage()-1); //-- number of entries in page is always a power of 2 |
|
754 |
TFat16Entry* pEntry = ((TFat16Entry*)iData.Ptr()) + KEntryIndexInPage; |
|
755 |
||
756 |
return pEntry; |
|
757 |
} |
|
758 |
||
759 |
//----------------------------------------------------------------------------- |
|
760 |
/** |
|
761 |
Read the FAT16 cache page from the media and returns required FAT16 entry. |
|
762 |
||
763 |
@param aFatIndex entry's absolute FAT index (from the FAT start) |
|
764 |
@return entry value at aFatIndex. |
|
765 |
*/ |
|
766 |
TUint32 CFat16FixedCachePage::ReadFromMediaL(TUint32 aFatIndex) |
|
767 |
{ |
|
768 |
//__PRINT1(_L("#-CFat16FixedCachePage::ReadFromMediaL() FAT idx:%d"), aFatIndex); |
|
769 |
const TUint KFat16EntriesInPageLog2 = iCache.PageSizeLog2()-KFat16EntrySzLog2; //-- number of FAT16 entries in page is always a power of 2 |
|
770 |
||
771 |
//-- find out index in FAT this page starts from |
|
772 |
iStartIndexInFAT = (aFatIndex >> KFat16EntriesInPageLog2) << KFat16EntriesInPageLog2; |
|
773 |
SetState(EInvalid); //-- mark the page as invalid just in case if the read fails. |
|
774 |
||
775 |
//-- read page from the media |
|
776 |
const TUint32 pageStartPos = iCache.FatStartPos() + (iStartIndexInFAT << KFat16EntrySzLog2); |
|
777 |
||
778 |
TInt nRes = iCache.ReadFatData(pageStartPos, iCache.PageSize(), iData); |
|
779 |
if(nRes != KErrNone) |
|
780 |
{ |
|
781 |
__PRINT1(_L("#-CFat16FixedCachePage::ReadFromMediaL() failed! code:%d"), nRes); |
|
782 |
User::Leave(nRes); |
|
783 |
} |
|
784 |
||
785 |
SetClean(); //-- mark this page as clean |
|
786 |
||
787 |
const TFat16Entry entry = (TFat16Entry)((*GetEntryPtr(aFatIndex)) & KFat16EntryMask); |
|
788 |
||
789 |
return entry; |
|
790 |
} |
|
791 |
||
792 |
||
793 |
//----------------------------------------------------------------------------- |
|
794 |
||
795 |
//################################################################################################################################# |
|
796 |
// CFat12Cache implementation |
|
797 |
// FAT12 non-paged fixed cache. This cache consists from only 1 page, logically divided up to 32 sectors (write granularity unit) |
|
798 |
//################################################################################################################################# |
|
799 |
||
800 |
CFat12Cache::CFat12Cache() |
|
801 |
:CFatCacheBase() |
|
802 |
{ |
|
803 |
} |
|
804 |
||
805 |
//----------------------------------------------------------------------------- |
|
806 |
/** |
|
807 |
FAT12 fixed cache factory function. |
|
808 |
@param aOwner pointer to the owning FAT mount |
|
809 |
@param aFatSize size of the FAT table in bytes |
|
810 |
||
811 |
@return pointer to the constructed object. |
|
812 |
*/ |
|
813 |
CFat12Cache* CFat12Cache::NewL(CFatMountCB* aOwner, TUint32 aFatSize) |
|
814 |
{ |
|
815 |
__PRINT(_L("#-CFat12Cache::NewL()")); |
|
816 |
CFat12Cache* pSelf = NULL; |
|
817 |
pSelf = new (ELeave) CFat12Cache; |
|
818 |
||
819 |
CleanupStack::PushL(pSelf); |
|
820 |
pSelf->InitialiseL(aOwner, aFatSize); |
|
821 |
CleanupStack::Pop(); |
|
822 |
||
823 |
return pSelf; |
|
824 |
} |
|
825 |
||
826 |
//----------------------------------------------------------------------------- |
|
827 |
/** |
|
828 |
FAT16 fixed cache initialisation. |
|
829 |
@param aOwner pointer to the owning FAT mount |
|
830 |
@param aFatSize size of the FAT table in bytes |
|
831 |
*/ |
|
832 |
void CFat12Cache::InitialiseL(CFatMountCB* aOwner, TUint32 aFatSize) |
|
833 |
{ |
|
834 |
__PRINT1(_L("#-CFat12Cache::InitialiseL FatSz:%u"),aFatSize); |
|
835 |
||
836 |
CFatCacheBase::InitialiseL(aOwner); |
|
837 |
ASSERT(FatType() == EFat12); |
|
838 |
||
839 |
//-- see FAT specs; 4084 is a max. number of clusters, fat12 entry is 1.5 bytes; but we need to round up FAT12 size to the sector size |
|
840 |
const TUint32 KMaxFat12Size = ( ((TUint32)(4084*1.5+FAT_SectorSz()-1)) >> FAT_SectorSzLog2()) << FAT_SectorSzLog2(); |
|
841 |
const TUint32 KMinFat12Size = FAT_SectorSz(); //-- 1 FAT sector |
|
2
4122176ea935
Revision: 200948 + Removing redundant base integration tests and fixing build errors
John Imhofe <john.imhofe@nokia.com>
parents:
0
diff
changeset
|
842 |
__ASSERT_ALWAYS(aFatSize >= KMinFat12Size && aFatSize <= KMaxFat12Size, User::Leave(KErrCorrupt)); |
0 | 843 |
(void)KMaxFat12Size; |
844 |
(void)KMinFat12Size; |
|
845 |
||
846 |
//-- as soon as FAT12 max size is 4084 entries or 6126 bytes, the cache is contiguous and divided |
|
847 |
//-- to logical sectors (write granularity). |
|
848 |
||
849 |
//-- calculate number write cache sector in the cache |
|
850 |
iSectorsInCache = (aFatSize + (FAT_SectorSz()-1)) >> FAT_SectorSzLog2(); |
|
851 |
__ASSERT_ALWAYS(NumSectors() <= KMaxSectorsInCache, Fault(EFatCache_BadGranularity)); |
|
852 |
||
853 |
//-- round up cache size to write granularity (sector size) |
|
854 |
const TUint32 cacheSize = NumSectors() << FAT_SectorSzLog2(); |
|
855 |
||
856 |
//-- create buffer for the whole FAT12 |
|
857 |
iData.CreateMaxL(cacheSize); |
|
858 |
||
859 |
//-- this will read whole FAT into the cache |
|
860 |
User::LeaveIfError(Invalidate()); |
|
861 |
} |
|
862 |
||
863 |
//----------------------------------------------------------------------------- |
|
864 |
/** |
|
865 |
Close the cache and deallocate its memory. |
|
866 |
@param aDiscardDirtyData if ETrue, will ignore dirty data. If EFalse, will panic on atempt to close dirty cache. |
|
867 |
*/ |
|
868 |
void CFat12Cache::Close(TBool aDiscardDirtyData) |
|
869 |
{ |
|
870 |
__PRINT1(_L("#-CFat12Cache::Close(%d)"), aDiscardDirtyData); |
|
871 |
||
872 |
for(TUint32 i=0; i<NumSectors(); ++i) |
|
873 |
{ |
|
874 |
if(iDirtySectors[i]) |
|
875 |
{//-- trying to destroy the cache that has dirty sectors |
|
876 |
__PRINT1(_L("#-CFat12Cache::Close() The cache is dirty! cache sector:%d"), i); |
|
877 |
if(!aDiscardDirtyData) |
|
878 |
{ |
|
879 |
__ASSERT_ALWAYS(0, Fault(EFatCache_DiscardingDirtyData)); |
|
880 |
} |
|
881 |
//-- ignore this fact if requested. |
|
882 |
} |
|
883 |
} |
|
884 |
||
885 |
iData.Close(); |
|
886 |
SetDirty(EFalse); |
|
887 |
} |
|
888 |
||
889 |
//----------------------------------------------------------------------------- |
|
890 |
/** |
|
891 |
Read FAT entry from the cache. |
|
892 |
||
893 |
@param aIndex FAT entry index to read |
|
894 |
@return FAT entry value at the index "aIndex" |
|
895 |
*/ |
|
896 |
TUint32 CFat12Cache::ReadEntryL(TUint32 aIndex) |
|
897 |
{ |
|
898 |
//__PRINT1(_L("#-CFat12Cache::ReadEntryL() FAT idx:%d"), aIndex); |
|
899 |
ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() + FatSize()/2)); //-- FAT12 entry is 1.5 bytes long |
|
900 |
||
901 |
TUint32 entry; |
|
902 |
||
903 |
if(aIndex & 0x01) |
|
904 |
{//-- odd index |
|
905 |
--aIndex; |
|
906 |
const TUint32 byteIdx = 1 + aIndex + (aIndex >> 1); //-- byteIdx = 1+(aIndex-1)*1.5 |
|
907 |
Mem::Copy(&entry, iData.Ptr()+byteIdx, 2); |
|
908 |
entry >>= 4; |
|
909 |
} |
|
910 |
else |
|
911 |
{//-- even index |
|
912 |
const TUint32 byteIdx = aIndex + (aIndex >> 1); //-- byteIdx = aIndex*1.5 |
|
913 |
Mem::Copy(&entry, iData.Ptr()+byteIdx, 2); |
|
914 |
} |
|
915 |
||
916 |
entry &= KFat12EntryMask; |
|
917 |
||
918 |
return entry; |
|
919 |
} |
|
920 |
||
921 |
//----------------------------------------------------------------------------- |
|
922 |
/** |
|
923 |
Write FAT entry to the cache. |
|
924 |
Appropriate FAT cache sector will be marked as "dirty" and will be eventually flushed to the media. |
|
925 |
||
926 |
@param aIndex FAT entry index |
|
927 |
@param aEntry FAT entry value |
|
928 |
*/ |
|
929 |
void CFat12Cache::WriteEntryL(TUint32 aIndex, TUint32 aEntry) |
|
930 |
{ |
|
931 |
//__PRINT2(_L("#-CFat12Cache::WriteEntryL() FAT idx:%d, entry:%u"), aIndex, aEntry); |
|
932 |
ASSERT(aIndex >= KFatFirstSearchCluster && aIndex < (FatSize() + FatSize()/2)); //-- FAT12 entry is 1.5 bytes long |
|
933 |
||
934 |
aEntry &= KFat12EntryMask; |
|
935 |
||
936 |
TUint32 byteIdx = 0; |
|
937 |
TUint8 tmp; |
|
938 |
||
939 |
if(aIndex & 0x01) |
|
940 |
{//-- odd index |
|
941 |
--aIndex; |
|
942 |
byteIdx = 1 + aIndex + (aIndex >> 1); //-- byteIdx = 1+(aIndex-1)*1.5 |
|
943 |
tmp = (TUint8)(iData[byteIdx] & 0x0F); //-- we modifying a higher nibble |
|
944 |
tmp |= (TUint8) ((aEntry & 0x0F)<<4); |
|
945 |
iData[byteIdx] = tmp; |
|
946 |
||
947 |
iData[byteIdx+1] = (TUint8)(aEntry >> 4); |
|
948 |
} |
|
949 |
else |
|
950 |
{//-- even index |
|
951 |
byteIdx = aIndex + (aIndex >> 1); //-- byteIdx = aIndex*1.5 |
|
952 |
iData[byteIdx] = (TUint8)aEntry; |
|
953 |
||
954 |
const TUint32 nextIdx = byteIdx+1; |
|
955 |
tmp = (TUint8)(iData[nextIdx] & 0xF0); //-- we modifying a lower nibble |
|
956 |
tmp |= (TUint8)((aEntry >> 8) & 0x0F); |
|
957 |
iData[nextIdx] = tmp; |
|
958 |
||
959 |
} |
|
960 |
||
961 |
//-- mark changed sectors dirty. We modified 2 bytes at [byteIdx] and [byteIdx+1] |
|
962 |
iDirtySectors.SetBit(byteIdx >> FAT_SectorSzLog2()); |
|
963 |
iDirtySectors.SetBit((byteIdx+1) >> FAT_SectorSzLog2()); |
|
964 |
||
965 |
SetDirty(ETrue); |
|
966 |
} |
|
967 |
||
968 |
//----------------------------------------------------------------------------- |
|
969 |
/** |
|
970 |
A debug method that asserts that the cache is really clean |
|
971 |
*/ |
|
972 |
void CFat12Cache::AssertCacheReallyClean() const |
|
973 |
{ |
|
974 |
#ifdef _DEBUG |
|
975 |
if(iDirtySectors.HasBitsSet()) |
|
976 |
{ |
|
977 |
__PRINT(_L("#-CFat12Cache::AssertCacheReallyClean()")); |
|
978 |
ASSERT(0); |
|
979 |
} |
|
980 |
||
981 |
#endif |
|
982 |
} |
|
983 |
||
984 |
//----------------------------------------------------------------------------- |
|
985 |
/** |
|
986 |
Flushes all dirty data to the media. |
|
987 |
Walks through all sectors in this cache and flushes dirty ones. |
|
988 |
*/ |
|
989 |
void CFat12Cache::FlushL() |
|
990 |
{ |
|
991 |
if(!IsDirty()) |
|
992 |
{ |
|
993 |
AssertCacheReallyClean(); |
|
994 |
return; |
|
995 |
} |
|
996 |
||
997 |
//-- write all dirty sectors to the media (into all copies of FAT) |
|
998 |
for(iCurrentFatNo=0; iCurrentFatNo < NumFATs(); ++iCurrentFatNo) |
|
999 |
{ |
|
1000 |
for(TUint secNo=0; secNo<NumSectors(); ++secNo) |
|
1001 |
{ |
|
1002 |
if(iDirtySectors[secNo]) |
|
1003 |
{//-- this sector is dirty, write it to the media |
|
1004 |
||
1005 |
TInt offset = 0; |
|
1006 |
if(secNo == 0) |
|
1007 |
{//-- this is a first sector in FAT. We must skip FAT[0] & FAT[1] entries and do not write them to the media. |
|
1008 |
offset = 3; //-- 2 FAT12 entries |
|
1009 |
} |
|
1010 |
||
1011 |
const TUint32 secPos = secNo << FAT_SectorSzLog2(); //-- relative sector position in FAT |
|
1012 |
const TUint8* pData = iData.Ptr()+offset+secPos; //-- pointer to the data in cache buffer |
|
1013 |
const TUint32 len = FAT_SectorSz() - offset; |
|
1014 |
TPtrC8 ptrData(pData, len); //-- source data descriptor |
|
1015 |
const TUint32 mediaPos = FatStartPos() + secPos + offset; |
|
1016 |
||
1017 |
TInt nRes = WriteFatData(mediaPos, ptrData); |
|
1018 |
||
1019 |
if(nRes != KErrNone) |
|
1020 |
{ |
|
1021 |
__PRINT1(_L("#-CFat12Cache::FlushL() failed! code:%d"), nRes); |
|
1022 |
User::Leave(nRes); |
|
1023 |
} |
|
1024 |
||
1025 |
}//if(iDirtySectors[secNo]) |
|
1026 |
} |
|
1027 |
||
1028 |
} |
|
1029 |
||
1030 |
iCurrentFatNo = KInvalidFatNo; |
|
1031 |
||
1032 |
//-- mark the cache as clean |
|
1033 |
iDirtySectors.Clear(); |
|
1034 |
SetDirty(EFalse); |
|
1035 |
||
1036 |
} |
|
1037 |
||
1038 |
//----------------------------------------------------------------------------- |
|
1039 |
/** |
|
1040 |
Invalidates whole cache. Because FAT12 is tiny, just re-reads data from the media to the cache |
|
1041 |
@return Media read result code. |
|
1042 |
*/ |
|
1043 |
TInt CFat12Cache::Invalidate() |
|
1044 |
{ |
|
1045 |
__PRINT(_L("#-CFat12Cache::Invalidate()")); |
|
1046 |
CheckInvalidatingDirtyCache(); |
|
1047 |
||
1048 |
//-- read whole cache from the media |
|
1049 |
const TUint32 posStart = FatStartPos(); |
|
1050 |
const TUint32 len = NumSectors() << FAT_SectorSzLog2(); |
|
1051 |
||
1052 |
TInt nRes = ReadFatData(posStart, len, iData); |
|
1053 |
if(nRes != KErrNone) |
|
1054 |
return nRes; |
|
1055 |
||
1056 |
//-- mark the cache as clean |
|
1057 |
SetDirty(EFalse); |
|
1058 |
iDirtySectors.Clear(); |
|
1059 |
||
1060 |
return KErrNone; |
|
1061 |
} |
|
1062 |
||
1063 |
//----------------------------------------------------------------------------- |
|
1064 |
/** |
|
1065 |
Invalidate wholes cache. Because FAT12 is tiny, just re-reads data from the media to the cache |
|
1066 |
@param aStartIndex ignored |
|
1067 |
@param aNumEntries ignored |
|
1068 |
@return Media read result code. |
|
1069 |
*/ |
|
1070 |
TInt CFat12Cache::InvalidateRegion(TUint32 aStartIndex, TUint32 aNumEntries) |
|
1071 |
{ |
|
1072 |
__PRINT2(_L("#-CFat12Cache::InvalidateRegion() startIndex:%d, entries:%d"),aStartIndex, aNumEntries); |
|
1073 |
ASSERT(aStartIndex >= KFatFirstSearchCluster && aStartIndex < (FatSize() + FatSize()/2)); //-- FAT12 entry is 1.5 bytes long |
|
1074 |
(void)aStartIndex; |
|
1075 |
(void)aNumEntries; |
|
1076 |
||
1077 |
//-- just re-read all FAT12, it is just 6K max and isn't worth calculating invalid sectors |
|
1078 |
return Invalidate(); |
|
1079 |
} |
|
1080 |
||
1081 |
||
1082 |
||
1083 |
||
1084 |
||
1085 |
||
1086 |
||
1087 |
||
1088 |
||
1089 |
||
1090 |
||
1091 |
||
1092 |
||
1093 |
||
1094 |
||
1095 |
||
1096 |
||
1097 |
||
1098 |
||
1099 |
||
1100 |
||
1101 |
||
1102 |
||
1103 |
||
1104 |
||
1105 |
||
1106 |
||
1107 |
||
1108 |
||
1109 |
||
1110 |
||
1111 |
||
1112 |
||
1113 |
||
1114 |
||
1115 |
||
1116 |
||
1117 |
||
1118 |
||
1119 |
||
1120 |
||
1121 |
||
1122 |