author | Tom Cosgrove <tom.cosgrove@nokia.com> |
Fri, 28 May 2010 16:29:07 +0100 | |
changeset 30 | 8aab599e3476 |
parent 8 | 538db54a451d |
child 43 | c1f20ce4abcf |
permissions | -rw-r--r-- |
0 | 1 |
// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies). |
2 |
// All rights reserved. |
|
3 |
// This component and the accompanying materials are made available |
|
4 |
// under the terms of the License "Eclipse Public License v1.0" |
|
5 |
// which accompanies this distribution, and is available |
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 |
// |
|
8 |
// Initial Contributors: |
|
9 |
// Nokia Corporation - initial contribution. |
|
10 |
// |
|
11 |
// Contributors: |
|
12 |
// |
|
13 |
// Description: |
|
14 |
// e32\nkern\nk_timer.cpp |
|
15 |
// Fast Millisecond Timer Implementation |
|
16 |
// This file is just a template - you'd be mad not to machine code this |
|
17 |
// |
|
18 |
// |
|
19 |
||
20 |
#include "nk_priv.h" |
|
21 |
||
22 |
const TInt KTimerQDfcPriority=6; |
|
23 |
||
24 |
GLDEF_D NTimerQ TheTimerQ; |
|
25 |
||
26 |
#ifndef __MSTIM_MACHINE_CODED__ |
|
27 |
#ifdef _DEBUG |
|
28 |
#define __DEBUG_CALLBACK(n) {if (iDebugFn) (*iDebugFn)(iDebugPtr,n);} |
|
29 |
#else |
|
30 |
#define __DEBUG_CALLBACK(n) |
|
31 |
#endif |
|
32 |
||
33 |
||
34 |
/** Starts a nanokernel timer in one-shot mode with ISR callback. |
|
35 |
||
36 |
Queues the timer to expire in the specified number of nanokernel ticks. The |
|
37 |
actual wait time will be at least that much and may be up to one tick more. |
|
38 |
The expiry handler will be called in ISR context. |
|
39 |
||
40 |
Note that NKern::TimerTicks() can be used to convert milliseconds to ticks. |
|
41 |
||
42 |
@param aTime Timeout in nanokernel ticks |
|
43 |
||
44 |
@return KErrNone if no error; KErrInUse if timer is already active. |
|
45 |
||
46 |
@pre Any context |
|
47 |
||
48 |
@see NKern::TimerTicks() |
|
49 |
*/ |
|
50 |
EXPORT_C TInt NTimer::OneShot(TInt aTime) |
|
51 |
{ |
|
52 |
return OneShot(aTime,FALSE); |
|
53 |
} |
|
54 |
||
55 |
||
56 |
/** Starts a nanokernel timer in one-shot mode with ISR or DFC callback. |
|
57 |
||
58 |
Queues the timer to expire in the specified number of nanokernel ticks. The |
|
59 |
actual wait time will be at least that much and may be up to one tick more. |
|
60 |
The expiry handler will be called in either ISR context or in the context |
|
61 |
of the nanokernel timer thread (DfcThread1). |
|
62 |
||
63 |
Note that NKern::TimerTicks() can be used to convert milliseconds to ticks. |
|
64 |
||
65 |
@param aTime Timeout in nanokernel ticks |
|
66 |
@param aDfc TRUE if DFC callback required, FALSE if ISR callback required. |
|
67 |
||
68 |
@return KErrNone if no error; KErrInUse if timer is already active. |
|
69 |
||
70 |
@pre Any context |
|
71 |
||
72 |
@see NKern::TimerTicks() |
|
73 |
*/ |
|
74 |
EXPORT_C TInt NTimer::OneShot(TInt aTime, TBool aDfc) |
|
75 |
{ |
|
76 |
__NK_ASSERT_DEBUG(aTime>=0); |
|
77 |
||
78 |
/** iFunction could be set to NULL after NTimer::OneShot(TInt, TDfc&) call. |
|
79 |
Call-back mechanism cannot be changed in the life time of a timer. */ |
|
80 |
__NK_ASSERT_DEBUG(iFunction!=NULL); |
|
81 |
||
82 |
TInt irq=NKern::DisableAllInterrupts(); |
|
83 |
if (iState!=EIdle) |
|
84 |
{ |
|
85 |
NKern::RestoreInterrupts(irq); |
|
86 |
return KErrInUse; |
|
87 |
} |
|
88 |
iCompleteInDfc=TUint8(aDfc?1:0); |
|
89 |
iTriggerTime=TheTimerQ.iMsCount+(TUint32)aTime; |
|
90 |
TheTimerQ.Add(this); |
|
91 |
NKern::RestoreInterrupts(irq); |
|
92 |
return KErrNone; |
|
93 |
} |
|
94 |
||
95 |
/** Starts a nanokernel timer in one-shot mode with callback in dfc thread that provided DFC belongs to. |
|
96 |
||
97 |
Queues the timer to expire in the specified number of nanokernel ticks. The |
|
98 |
actual wait time will be at least that much and may be up to one tick more. |
|
99 |
On expiry aDfc will be queued in ISR context. |
|
100 |
||
101 |
Note that NKern::TimerTicks() can be used to convert milliseconds to ticks. |
|
102 |
||
103 |
@param aTime Timeout in nanokernel ticks |
|
104 |
@param aDfc - Dfc to be queued when the timer expires. |
|
105 |
||
106 |
@return KErrNone if no error; KErrInUse if timer is already active. |
|
107 |
||
108 |
@pre Any context |
|
109 |
||
110 |
@see NKern::TimerTicks() |
|
111 |
*/ |
|
112 |
EXPORT_C TInt NTimer::OneShot(TInt aTime, TDfc& aDfc) |
|
113 |
{ |
|
114 |
__NK_ASSERT_DEBUG(aTime>=0); |
|
115 |
TInt irq=NKern::DisableAllInterrupts(); |
|
116 |
if (iState!=EIdle) |
|
117 |
{ |
|
118 |
NKern::RestoreInterrupts(irq); |
|
119 |
return KErrInUse; |
|
120 |
} |
|
121 |
iCompleteInDfc = 0; |
|
122 |
iFunction = NULL; |
|
123 |
iPtr = (TAny*) &aDfc; |
|
124 |
iTriggerTime=TheTimerQ.iMsCount+(TUint32)aTime; |
|
125 |
TheTimerQ.Add(this); |
|
126 |
NKern::RestoreInterrupts(irq); |
|
127 |
return KErrNone; |
|
128 |
} |
|
129 |
||
130 |
||
131 |
/** Starts a nanokernel timer in zero-drift periodic mode with ISR or DFC callback. |
|
132 |
||
133 |
Queues the timer to expire in the specified number of nanokernel ticks, |
|
134 |
measured from the time at which it last expired. This allows exact periodic |
|
135 |
timers to be implemented with no drift caused by delays in requeueing the |
|
136 |
timer. |
|
137 |
||
138 |
The expiry handler will be called in the same context as the previous timer |
|
139 |
expiry. Generally the way this is used is that NTimer::OneShot() is used to start |
|
140 |
the first time interval and this specifies whether the callback is in ISR context |
|
141 |
or in the context of the nanokernel timer thread (DfcThread1) or other Dfc thread. |
|
142 |
The expiry handler then uses NTimer::Again() to requeue the timer. |
|
143 |
||
144 |
@param aTime Timeout in nanokernel ticks |
|
145 |
||
146 |
@return KErrNone if no error; KErrInUse if timer is already active; |
|
147 |
KErrArgument if the requested expiry time is in the past. |
|
148 |
||
149 |
@pre Any context |
|
150 |
*/ |
|
151 |
EXPORT_C TInt NTimer::Again(TInt aTime) |
|
152 |
// |
|
153 |
// Wait aTime from last trigger time - used for periodic timers |
|
154 |
// |
|
155 |
{ |
|
156 |
__NK_ASSERT_DEBUG(aTime>0); |
|
157 |
TInt irq=NKern::DisableAllInterrupts(); |
|
158 |
if (iState!=EIdle) |
|
159 |
{ |
|
160 |
NKern::RestoreInterrupts(irq); |
|
161 |
return KErrInUse; |
|
162 |
} |
|
163 |
TUint32 nextTick=TheTimerQ.iMsCount; |
|
164 |
TUint32 trigger=iTriggerTime+(TUint32)aTime; |
|
165 |
TUint32 d=trigger-nextTick; |
|
166 |
if (d>=0x80000000) |
|
167 |
{ |
|
168 |
NKern::RestoreInterrupts(irq); |
|
169 |
return KErrArgument; // requested time is in the past |
|
170 |
} |
|
171 |
iTriggerTime=trigger; |
|
172 |
TheTimerQ.Add(this); |
|
173 |
NKern::RestoreInterrupts(irq); |
|
174 |
return KErrNone; |
|
175 |
} |
|
176 |
||
177 |
||
178 |
/** Cancels a nanokernel timer. |
|
179 |
||
180 |
Removes this timer from the nanokernel timer queue. Does nothing if the |
|
181 |
timer is inactive or has already expired. |
|
182 |
Note that if the timer was queued and DFC callback requested it is possible |
|
183 |
for the expiry handler to run even after Cancel() has been called. This will |
|
184 |
occur in the case where DfcThread1 is preempted just before calling the |
|
185 |
expiry handler for this timer and the preempting thread/ISR/IDFC calls |
|
186 |
Cancel() on the timer. |
|
187 |
||
188 |
@pre Any context |
|
189 |
@return TRUE if timer was actually cancelled |
|
190 |
@return FALSE if timer was not cancelled - this could be because it was not |
|
191 |
active or because its expiry handler was already running on |
|
192 |
another CPU or in the timer DFC. |
|
193 |
*/ |
|
194 |
EXPORT_C TBool NTimer::Cancel() |
|
195 |
{ |
|
196 |
TBool result = TRUE; |
|
197 |
TInt irq=NKern::DisableAllInterrupts(); |
|
198 |
if (iState>ETransferring) // idle or transferring timers are not on a queue |
|
199 |
Deque(); |
|
200 |
switch (iState) |
|
201 |
{ |
|
202 |
case ETransferring: // signal DFC to abort this iteration |
|
203 |
TheTimerQ.iTransferringCancelled=TRUE; |
|
204 |
break; |
|
205 |
case ECritical: // signal DFC to abort this iteration |
|
206 |
TheTimerQ.iCriticalCancelled=TRUE; |
|
207 |
break; |
|
208 |
case EFinal: |
|
209 |
{ |
|
210 |
// Need to clear bit in iPresent if both final queues now empty |
|
211 |
// NOTE: Timer might actually be on the completed queue rather than the final queue |
|
212 |
// but the check is harmless in any case. |
|
213 |
TInt i=iTriggerTime & NTimerQ::ETimerQMask; |
|
214 |
NTimerQ::STimerQ& q=TheTimerQ.iTickQ[i]; |
|
215 |
if (q.iIntQ.IsEmpty() && q.iDfcQ.IsEmpty()) |
|
216 |
TheTimerQ.iPresent &= ~(1<<i); |
|
217 |
break; |
|
218 |
} |
|
219 |
case EIdle: // nothing to do |
|
220 |
result = FALSE; |
|
221 |
case EHolding: // just deque |
|
222 |
case EOrdered: // just deque |
|
223 |
break; |
|
224 |
} |
|
225 |
iState=EIdle; |
|
226 |
NKern::RestoreInterrupts(irq); |
|
227 |
return result; |
|
228 |
} |
|
229 |
#endif |
|
230 |
||
231 |
||
232 |
/** Check if a nanokernel timer is pending or not |
|
233 |
||
234 |
@return TRUE if the timer is pending (OneShot() etc. would return KErrInUse) |
|
235 |
@return FALSE if the timer is idle (OneShot() etc. would succeed) |
|
236 |
@pre Any context |
|
237 |
||
238 |
@publishedPartner |
|
239 |
@prototype |
|
240 |
*/ |
|
241 |
EXPORT_C TBool NTimer::IsPending() |
|
242 |
{ |
|
243 |
return iState != EIdle; |
|
244 |
} |
|
245 |
||
246 |
||
247 |
/** Obtains the address of the nanokernel timer queue object. |
|
248 |
||
249 |
Not intended for general use. Intended only for base ports in order to get |
|
250 |
the address used to call NTimerQ::Tick() with. |
|
251 |
||
252 |
@return The address of the nanokernel timer queue object |
|
253 |
@pre Any context |
|
254 |
*/ |
|
255 |
EXPORT_C TAny* NTimerQ::TimerAddress() |
|
256 |
{ |
|
257 |
return &TheTimerQ; |
|
258 |
} |
|
259 |
||
260 |
NTimerQ::NTimerQ() |
|
261 |
: iDfc(NTimerQ::DfcFn,this,NULL,KTimerQDfcPriority) |
|
262 |
{ |
|
263 |
// NOTE: All other members are initialised to zero since the single instance |
|
264 |
// of NTimerQ resides in .bss |
|
265 |
} |
|
266 |
||
267 |
void NTimerQ::Init1(TInt aTickPeriod) |
|
268 |
{ |
|
269 |
TheTimerQ.iTickPeriod=aTickPeriod; |
|
270 |
__KTRACE_OPT(KBOOT,DEBUGPRINT("NTimerQ::Init1 - period %d us",aTickPeriod)); |
|
271 |
__KTRACE_OPT(KMEMTRACE, DEBUGPRINT("MT:P %d",aTickPeriod)); |
|
272 |
} |
|
273 |
||
274 |
void NTimerQ::Init3(TDfcQue* aDfcQ) |
|
275 |
{ |
|
276 |
__KTRACE_OPT(KBOOT,DEBUGPRINT("NTimerQ::Init3 DFCQ at %08x",aDfcQ)); |
|
277 |
TheTimerQ.iDfc.SetDfcQ(aDfcQ); |
|
278 |
} |
|
279 |
||
280 |
#ifndef __MSTIM_MACHINE_CODED__ |
|
281 |
void NTimerQ::Add(NTimer* aTimer) |
|
282 |
// |
|
283 |
// Internal function to add a timer to the queue. |
|
284 |
// Enter and return with all interrupts disabled. |
|
285 |
// |
|
286 |
{ |
|
287 |
TInt t=TInt(aTimer->iTriggerTime-iMsCount); |
|
288 |
if (t<ENumTimerQueues) |
|
289 |
AddFinal(aTimer); |
|
290 |
else |
|
291 |
{ |
|
292 |
// >=32ms to expiry, so put on holding queue |
|
293 |
aTimer->iState=NTimer::EHolding; |
|
294 |
iHoldingQ.Add(aTimer); |
|
295 |
} |
|
296 |
} |
|
297 |
||
298 |
void NTimerQ::AddFinal(NTimer* aTimer) |
|
299 |
// |
|
300 |
// Internal function to add a timer to the corresponding final queue. |
|
301 |
// Enter and return with all interrupts disabled. |
|
302 |
// |
|
303 |
{ |
|
304 |
TInt i=aTimer->iTriggerTime & ETimerQMask; |
|
305 |
SDblQue* pQ; |
|
306 |
if (aTimer->iCompleteInDfc) |
|
307 |
pQ=&iTickQ[i].iDfcQ; |
|
308 |
else |
|
309 |
pQ=&iTickQ[i].iIntQ; |
|
310 |
iPresent |= (1<<i); |
|
311 |
aTimer->iState=NTimer::EFinal; |
|
312 |
pQ->Add(aTimer); |
|
313 |
} |
|
314 |
||
315 |
void NTimerQ::DfcFn(TAny* aPtr) |
|
316 |
{ |
|
317 |
((NTimerQ*)aPtr)->Dfc(); |
|
318 |
} |
|
319 |
||
320 |
void NTimerQ::Dfc() |
|
321 |
// |
|
322 |
// Do deferred timer queue processing and/or DFC completions |
|
323 |
// |
|
324 |
{ |
|
325 |
TInt irq; |
|
326 |
||
327 |
// First transfer entries on the Ordered queue to the Final queues |
|
328 |
FOREVER |
|
329 |
{ |
|
330 |
irq=NKern::DisableAllInterrupts(); |
|
331 |
if (iOrderedQ.IsEmpty()) |
|
332 |
break; |
|
333 |
NTimer* pC=(NTimer*)iOrderedQ.First(); |
|
334 |
TInt remain=pC->iTriggerTime-iMsCount; |
|
335 |
if (remain>=ENumTimerQueues) |
|
336 |
break; |
|
337 |
||
338 |
// If remaining time <32 ticks, add it to final queue; |
|
339 |
// also if remain < 0 we've 'missed it' so add to final queue. |
|
340 |
pC->Deque(); |
|
341 |
AddFinal(pC); |
|
342 |
NKern::RestoreInterrupts(irq); |
|
343 |
__DEBUG_CALLBACK(0); |
|
344 |
} |
|
345 |
NKern::RestoreInterrupts(irq); |
|
346 |
__DEBUG_CALLBACK(1); |
|
347 |
||
348 |
// Next transfer entries on the Holding queue to the Ordered queue or final queue |
|
349 |
FOREVER |
|
350 |
{ |
|
351 |
irq=NKern::DisableAllInterrupts(); |
|
352 |
if (iHoldingQ.IsEmpty()) |
|
353 |
break; |
|
354 |
NTimer* pC=(NTimer*)iHoldingQ.First(); |
|
355 |
pC->Deque(); |
|
356 |
pC->iState=NTimer::ETransferring; |
|
357 |
iTransferringCancelled=FALSE; |
|
358 |
TUint32 trigger=pC->iTriggerTime; |
|
359 |
if (TInt(trigger-iMsCount)<ENumTimerQueues) |
|
360 |
{ |
|
361 |
// <32ms remaining so put it on final queue |
|
362 |
AddFinal(pC); |
|
363 |
} |
|
364 |
else |
|
365 |
{ |
|
366 |
FOREVER |
|
367 |
{ |
|
368 |
NKern::RestoreInterrupts(irq); |
|
369 |
__DEBUG_CALLBACK(2); |
|
370 |
||
371 |
// we now need to walk ordered queue to find correct position for pC |
|
372 |
SDblQueLink* anchor=&iOrderedQ.iA; |
|
373 |
iCriticalCancelled=FALSE; |
|
374 |
irq=NKern::DisableAllInterrupts(); |
|
375 |
NTimer* pN=(NTimer*)iOrderedQ.First(); |
|
376 |
while (pN!=anchor && !iTransferringCancelled) |
|
377 |
{ |
|
378 |
if ((pN->iTriggerTime-trigger)<0x80000000u) |
|
379 |
break; // insert before pN |
|
380 |
pN->iState=NTimer::ECritical; |
|
381 |
NKern::RestoreInterrupts(irq); |
|
382 |
__DEBUG_CALLBACK(3); |
|
383 |
irq=NKern::DisableAllInterrupts(); |
|
384 |
if (iCriticalCancelled) |
|
385 |
break; |
|
386 |
pN->iState=NTimer::EOrdered; |
|
387 |
pN=(NTimer*)pN->iNext; |
|
388 |
} |
|
389 |
||
390 |
if (iTransferringCancelled) |
|
391 |
break; // this one has been cancelled, go on to next one |
|
392 |
if (!iCriticalCancelled) |
|
393 |
{ |
|
394 |
pC->InsertBefore(pN); |
|
395 |
pC->iState=NTimer::EOrdered; |
|
396 |
break; // done this one |
|
397 |
} |
|
398 |
} |
|
399 |
} |
|
400 |
NKern::RestoreInterrupts(irq); |
|
401 |
__DEBUG_CALLBACK(4); |
|
402 |
} |
|
403 |
NKern::RestoreInterrupts(irq); |
|
404 |
__DEBUG_CALLBACK(5); |
|
405 |
||
406 |
// Finally do call backs for timers which requested DFC callback |
|
407 |
FOREVER |
|
408 |
{ |
|
409 |
irq=NKern::DisableAllInterrupts(); |
|
410 |
if (iCompletedQ.IsEmpty()) |
|
411 |
break; |
|
412 |
NTimer* pC=(NTimer*)iCompletedQ.First(); |
|
413 |
pC->Deque(); |
|
414 |
pC->iState=NTimer::EIdle; |
|
415 |
TAny* p=pC->iPtr; |
|
416 |
NTimerFn f=pC->iFunction; |
|
417 |
NKern::RestoreInterrupts(irq); |
|
418 |
__DEBUG_CALLBACK(7); |
|
419 |
(*f)(p); |
|
420 |
} |
|
421 |
NKern::RestoreInterrupts(irq); |
|
422 |
} |
|
423 |
||
424 |
||
425 |
/** Tick over the nanokernel timer queue. |
|
426 |
This function should be called by the base port in the system tick timer ISR. |
|
427 |
It should not be called at any other time. |
|
428 |
The value of 'this' to pass is the value returned by NTimerQ::TimerAddress(). |
|
429 |
||
430 |
@see NTimerQ::TimerAddress() |
|
431 |
*/ |
|
432 |
EXPORT_C void NTimerQ::Tick() |
|
433 |
{ |
|
434 |
#ifdef _DEBUG |
|
435 |
// If there are threads waiting to be released by the tick, enqueue the dfc |
|
436 |
if (!TheScheduler.iDelayedQ.IsEmpty()) |
|
437 |
TheScheduler.iDelayDfc.Add(); |
|
438 |
#endif |
|
439 |
TheScheduler.TimesliceTick(); |
|
440 |
TInt irq=NKern::DisableAllInterrupts(); |
|
441 |
TInt i=iMsCount & ETimerQMask; |
|
442 |
iMsCount++; |
|
443 |
STimerQ* pQ=iTickQ+i; |
|
444 |
iPresent &= ~(1<<i); |
|
445 |
TBool doDfc=FALSE; |
|
446 |
if (!pQ->iDfcQ.IsEmpty()) |
|
447 |
{ |
|
448 |
// transfer DFC completions to completed queue and queue DFC |
|
449 |
iCompletedQ.MoveFrom(&pQ->iDfcQ); |
|
450 |
doDfc=TRUE; |
|
451 |
} |
|
452 |
if ((i&(ETimerQMask>>1))==0) |
|
453 |
{ |
|
454 |
// Every 16 ticks we check if a DFC is required. |
|
455 |
// This allows a DFC latency of up to 16 ticks before timers are missed. |
|
456 |
if (!iHoldingQ.IsEmpty()) |
|
457 |
doDfc=TRUE; // if holding queue nonempty, queue DFC to sort |
|
458 |
else if (!iOrderedQ.IsEmpty()) |
|
459 |
{ |
|
460 |
// if first ordered queue entry expires in <32ms, queue the DFC to transfer |
|
461 |
NTimer* pC=(NTimer*)iOrderedQ.First(); |
|
462 |
#ifdef __EPOC32__ |
|
8
538db54a451d
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
463 |
__ASSERT_WITH_MESSAGE_DEBUG(iMsCount<=pC->iTriggerTime, "iMsCount has exceeded pC->iTriggerTime; function called later than expected ","NTimerQ::Tick()"); |
0 | 464 |
#endif |
465 |
if (TInt(pC->iTriggerTime-iMsCount)<ENumTimerQueues) |
|
466 |
doDfc=TRUE; |
|
467 |
} |
|
468 |
} |
|
469 |
if (!pQ->iIntQ.IsEmpty()) |
|
470 |
{ |
|
471 |
// transfer ISR completions to a temporary queue |
|
472 |
// careful here - higher priority interrupts could dequeue timers! |
|
473 |
SDblQue q(&pQ->iIntQ,0); |
|
474 |
while(!q.IsEmpty()) |
|
475 |
{ |
|
476 |
NTimer* pC=(NTimer*)q.First(); |
|
477 |
pC->Deque(); |
|
478 |
pC->iState=NTimer::EIdle; |
|
479 |
NKern::RestoreInterrupts(irq); |
|
480 |
if (pC->iFunction) |
|
481 |
(*pC->iFunction)(pC->iPtr); |
|
482 |
else |
|
483 |
((TDfc*)(pC->iPtr))->Add(); |
|
484 |
irq=NKern::DisableAllInterrupts(); |
|
485 |
} |
|
486 |
} |
|
487 |
NKern::RestoreInterrupts(irq); |
|
488 |
if (doDfc) |
|
489 |
iDfc.Add(); |
|
490 |
} |
|
491 |
||
492 |
||
493 |
/** Return the number of ticks before the next nanokernel timer expiry. |
|
494 |
May on occasion return a pessimistic estimate (i.e. too low). |
|
495 |
Used by base port to disable the system tick interrupt when the system |
|
496 |
is idle. |
|
497 |
||
498 |
@return The number of ticks before the next nanokernel timer expiry. |
|
499 |
||
500 |
@pre Interrupts must be disabled. |
|
501 |
||
502 |
@post Interrupts are disabled. |
|
503 |
*/ |
|
504 |
EXPORT_C TInt NTimerQ::IdleTime() |
|
505 |
{ |
|
506 |
CHECK_PRECONDITIONS(MASK_INTERRUPTS_DISABLED,"NTimerQ::IdleTime"); |
|
507 |
#ifdef _DEBUG |
|
508 |
// If there are threads waiting to be released by the tick we can't idle |
|
509 |
if (!TheScheduler.iDelayedQ.IsEmpty()) |
|
510 |
return 1; |
|
511 |
#endif |
|
512 |
NTimerQ& m=TheTimerQ; |
|
513 |
TUint32 next=m.iMsCount; // number of next tick |
|
514 |
TUint32 p=m.iPresent; |
|
515 |
TInt r=KMaxTInt; |
|
516 |
if (p) |
|
517 |
{ |
|
518 |
// Final queues nonempty |
|
519 |
TInt nx=next&0x1f; // number of next tick modulo 32 |
|
520 |
p=(p>>nx)|(p<<(32-nx)); // rotate p right by nx (so lsb corresponds to next tick) |
|
521 |
r=__e32_find_ls1_32(p); // find number of zeros before LS 1 |
|
522 |
} |
|
523 |
if (!m.iHoldingQ.IsEmpty()) |
|
524 |
{ |
|
525 |
// Sort operation required - need to process next tick divisible by 16 |
|
526 |
TInt nx=next&0x0f; // number of next tick modulo 16 |
|
527 |
TInt r2=nx?(16-nx):0; // number of ticks before next divisible by 16 |
|
528 |
if (r2<r) |
|
529 |
r=r2; |
|
530 |
} |
|
531 |
if (!m.iOrderedQ.IsEmpty()) |
|
532 |
{ |
|
533 |
// Timers present on ordered queue |
|
534 |
NTimer* pC=(NTimer*)m.iOrderedQ.First(); |
|
535 |
TUint32 tt=pC->iTriggerTime; |
|
536 |
tt=(tt&~0x0f)-16; // time at which transfer to final queue would occur |
|
537 |
TInt r3=(TInt)(tt-next); |
|
538 |
if (r3<r) |
|
539 |
r=r3; |
|
540 |
} |
|
541 |
return r; |
|
542 |
} |
|
543 |
#endif |
|
544 |
||
545 |
||
546 |
/** Advance the nanokernel timer queue by the specified number of ticks. |
|
547 |
It is assumed that no timers expire as a result of this. |
|
548 |
Used by base port when system comes out of idle mode after disabling the |
|
549 |
system tick interrupt to bring the timer queue up to date. |
|
550 |
||
551 |
@param aTicks Number of ticks skipped due to tick suppression |
|
552 |
||
553 |
@pre Interrupts must be disabled. |
|
554 |
||
555 |
@post Interrupts are disabled. |
|
556 |
*/ |
|
557 |
EXPORT_C void NTimerQ::Advance(TInt aTicks) |
|
558 |
{ |
|
559 |
CHECK_PRECONDITIONS(MASK_INTERRUPTS_DISABLED,"NTimerQ::Advance"); |
|
560 |
TheTimerQ.iMsCount+=(TUint32)aTicks; |
|
561 |
} |
|
562 |
||
563 |
||
564 |
/** Returns the period of the nanokernel timer. |
|
565 |
@return Period in microseconds |
|
566 |
@pre any context |
|
567 |
@see NTimer |
|
568 |
*/ |
|
569 |
EXPORT_C TInt NKern::TickPeriod() |
|
570 |
{ |
|
571 |
return TheTimerQ.iTickPeriod; |
|
572 |
} |
|
573 |
||
574 |
||
575 |
/** Converts a time interval to timer ticks. |
|
576 |
||
577 |
@param aMilliseconds time interval in milliseconds. |
|
578 |
@return Number of nanokernel timer ticks. Non-integral results are rounded up. |
|
579 |
||
580 |
@pre aMilliseconds should be <=2147483 to avoid integer overflow. |
|
581 |
@pre any context |
|
582 |
*/ |
|
583 |
EXPORT_C TInt NKern::TimerTicks(TInt aMilliseconds) |
|
584 |
{ |
|
585 |
__ASSERT_WITH_MESSAGE_DEBUG(aMilliseconds<=2147483,"aMilliseconds should be <=2147483","NKern::TimerTicks"); |
|
586 |
TUint32 msp=TheTimerQ.iTickPeriod; |
|
587 |
if (msp==1000) // will be true except on pathological hardware |
|
588 |
return aMilliseconds; |
|
589 |
TUint32 us=(TUint32)aMilliseconds*1000; |
|
590 |
return (us+msp-1)/msp; |
|
591 |
} |
|
592 |