kernel/eka/include/e32cmn.h
changeset 9 96e5fb8b040d
child 10 36bfc973b146
equal deleted inserted replaced
-1:000000000000 9:96e5fb8b040d
       
     1 // Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
       
     2 // All rights reserved.
       
     3 // This component and the accompanying materials are made available
       
     4 // under the terms of the License "Eclipse Public License v1.0"
       
     5 // which accompanies this distribution, and is available
       
     6 // at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     7 //
       
     8 // Initial Contributors:
       
     9 // Nokia Corporation - initial contribution.
       
    10 //
       
    11 // Contributors:
       
    12 //
       
    13 // Description:
       
    14 // e32\include\e32cmn.h
       
    15 // 
       
    16 //
       
    17 
       
    18 #ifndef __E32CMN_H__
       
    19 #define __E32CMN_H__
       
    20 #include <e32const.h>
       
    21 
       
    22 extern "C" {
       
    23 /**
       
    24 @publishedAll
       
    25 @released
       
    26 
       
    27 A Nanokernel utility function that compares two memory buffers for equality.
       
    28 
       
    29 The two buffers are considered equal only if:
       
    30 
       
    31 1. the buffers have the same length
       
    32 
       
    33 and
       
    34  
       
    35 2. the binary content of both buffers is the same.
       
    36 
       
    37 @param aLeft     The start address of the first buffer in the comparison.
       
    38 @param aLeftLen  The length of the first buffer in the comparison.
       
    39 @param aRight    The start address of the second buffer in the comparison.
       
    40 @param aRightLen The length of the second buffer in the comparison.
       
    41 
       
    42 @return Zero if both buffers are equal; non-zero, otherwise.
       
    43 
       
    44 @panic USER 88        In debug mode only, if aLeftL is negative, 
       
    45                       and the function is called on the user side.
       
    46 @panic KERN-COMMON 88 In debug mode only, if aLeftL is negative,
       
    47                       and the function is called on the kernel side.
       
    48 @panic USER 89        In debug mode only, if aRightL is negative, 
       
    49                       and the function is called on the user side.
       
    50 @panic KERN-COMMON 89 In debug mode only, if aRightL is negative,
       
    51                       and the function is called on the kernel side.
       
    52 */
       
    53 IMPORT_C TInt memcompare(const TUint8* aLeft, TInt aLeftLen, const TUint8* aRight, TInt aRightLen);
       
    54 
       
    55 
       
    56 
       
    57 
       
    58 /**
       
    59 @publishedAll
       
    60 @released
       
    61 
       
    62 A Nanokernel utility function that moves (copies) bytes in memory.
       
    63 
       
    64 The function assumes that the addresses are aligned on word boundaries,
       
    65 and that the length value is a multiple of 4.
       
    66 
       
    67 @param aTrg    The target address.
       
    68 @param aSrc    The source address.
       
    69 @param aLength The number of bytes to be moved.
       
    70 
       
    71 @return The target address.
       
    72 
       
    73 @panic USER 91        In debug mode only, if aLength is not a multiple of 4,
       
    74                       and the function is called on the user side.
       
    75 @panic KERN-COMMON 91 In debug mode only, if aLength is not a multiple of 4,
       
    76                       and the function is called on the kernel side.
       
    77 @panic USER 92        In debug mode only, if aSrc is not aligned on a word boundary,
       
    78                       and the function is called on the user side.
       
    79 @panic KERN-COMMON 92 In debug mode only, if aSrc is not aligned on a word boundary,
       
    80                       and the function is called on the kernel side.
       
    81 @panic USER 93        In debug mode only, if aTrg is not aligned on a word boundary,
       
    82                       and the function is called on the user side.
       
    83 @panic KERN-COMMON 93 In debug mode only, if aTrg is not aligned on a word boundary,
       
    84                       and the function is called on the kernel side.
       
    85 */
       
    86 IMPORT_C TAny* wordmove(TAny* aTrg, const TAny* aSrc, unsigned int aLength);
       
    87 
       
    88 
       
    89 
       
    90 
       
    91 /**
       
    92 @publishedAll
       
    93 @released
       
    94 
       
    95 A Nanokernel utility function that sets the specified number of bytes
       
    96 to binary zero.
       
    97 
       
    98 @param aTrg    The start address.
       
    99 @param aLength The number of bytes to be set.
       
   100 
       
   101 @return The target address.
       
   102 */
       
   103 IMPORT_C TAny* memclr(TAny* aTrg, unsigned int aLength);
       
   104 }
       
   105 
       
   106 
       
   107 
       
   108 
       
   109 #ifndef __TOOLS__
       
   110 extern "C" {
       
   111 /**
       
   112 @publishedAll
       
   113 @released
       
   114 
       
   115 A Nanokernel utility function that sets all of the specified number of bytes to
       
   116 the specified fill value.
       
   117 
       
   118 @param aTrg    The start address.
       
   119 @param aValue  The fill value (the first or junior byte).
       
   120 @param aLength The number of bytes to be set.
       
   121 
       
   122 @return The target address.
       
   123 */
       
   124 	IMPORT_C TAny* memset(TAny* aTrg, TInt aValue, unsigned int aLength);
       
   125 
       
   126 
       
   127 
       
   128 
       
   129 /**
       
   130 @publishedAll
       
   131 @released
       
   132 
       
   133 A Nanokernel utility function that copies bytes in memory.
       
   134 
       
   135 @param aTrg    The target address.
       
   136 @param aSrc    The source address.
       
   137 @param aLength The number of bytes to be moved.
       
   138 
       
   139 @return The target address.
       
   140 */
       
   141 	IMPORT_C TAny* memcpy(TAny* aTrg, const TAny* aSrc, unsigned int aLength);
       
   142 
       
   143 
       
   144 
       
   145 
       
   146 /**
       
   147 @publishedAll
       
   148 @released
       
   149 
       
   150 A Nanokernel utility function that moves (copies) bytes in memory.
       
   151 
       
   152 @param aTrg    The target address.
       
   153 @param aSrc    The source address.
       
   154 @param aLength The number of bytes to be moved.
       
   155 
       
   156 @return The target address.
       
   157 */
       
   158 	IMPORT_C TAny* memmove(TAny* aTrg, const TAny* aSrc, unsigned int aLength);
       
   159 }
       
   160 #else
       
   161 #include <string.h>
       
   162 #endif
       
   163 
       
   164 
       
   165 
       
   166 
       
   167 /** 
       
   168 @publishedAll
       
   169 @released
       
   170 
       
   171 Tests whether the specified value is less than or equal to the
       
   172 specified upper limit.
       
   173 
       
   174 @param aVal   The value to be tested.
       
   175 @param aLimit The upper limit.
       
   176 
       
   177 @return True, if the value is less than or equal to the specified upper limit;
       
   178         false, otherwise.
       
   179 */
       
   180 inline TInt Lim(TInt aVal,TUint aLimit)
       
   181 	{return(((TUint)aVal)<=aLimit);}
       
   182 
       
   183 
       
   184 
       
   185 
       
   186 /** 
       
   187 @publishedAll
       
   188 @released
       
   189 
       
   190 Tests whether the specified value is strictly less than the
       
   191 specified upper limit.
       
   192 
       
   193 @param aVal   The value to be tested.
       
   194 @param aLimit The upper limit.
       
   195 
       
   196 @return True, if the value is strictly less than the specified upper limit;
       
   197         false, otherwise.
       
   198 */
       
   199 inline TInt LimX(TInt aVal,TUint aLimit)
       
   200 	{return(((TUint)aVal)<aLimit);}
       
   201 
       
   202 
       
   203 
       
   204 
       
   205 /** 
       
   206 @publishedAll
       
   207 @released
       
   208 
       
   209 Returns the smaller of two values.
       
   210 
       
   211 @param aLeft  The first value to be compared.
       
   212 @param aRight The second value to be compared.
       
   213 
       
   214 @return The smaller value.
       
   215 */
       
   216 template <class T>
       
   217 inline T Min(T aLeft,T aRight)
       
   218 	{return(aLeft<aRight ? aLeft : aRight);}
       
   219 
       
   220 
       
   221 
       
   222 
       
   223 /**
       
   224 @publishedAll
       
   225 @released
       
   226 
       
   227 Returns the smaller of two objects, where the right hand object is a treated
       
   228 as a TInt for the  purpose of comparison.
       
   229 
       
   230 @param aLeft  The first value to be compared.
       
   231 @param aRight The second value to be compared.
       
   232 
       
   233 @return The smaller value.
       
   234 */
       
   235 template <class T>
       
   236 inline T Min(T aLeft,TUint aRight)
       
   237 	{return(aLeft<(TInt)aRight ? aLeft : (T)aRight);}
       
   238 
       
   239 
       
   240 
       
   241 
       
   242 /** 
       
   243 @publishedAll
       
   244 @released
       
   245 
       
   246 Returns the larger of two values.
       
   247 
       
   248 @param aLeft  The first value to be compared.
       
   249 @param aRight The second value to be compared.
       
   250 
       
   251 @return The larger value.
       
   252 */
       
   253 template <class T>
       
   254 inline T Max(T aLeft,T aRight)
       
   255 	{return(aLeft<aRight ? aRight : aLeft);}
       
   256 
       
   257 
       
   258 
       
   259 
       
   260 /**
       
   261 @publishedAll
       
   262 @released
       
   263 
       
   264 Returns the larger of two objects, where the right hand object is a treated
       
   265 as a TInt for the  purpose of comparison.
       
   266 
       
   267 @param aLeft  The first value to be compared.
       
   268 @param aRight The second value to be compared.
       
   269 
       
   270 @return The larger value.
       
   271 */
       
   272 template <class T>
       
   273 inline T Max(T aLeft,TUint aRight)
       
   274 	{return(aLeft<(TInt)aRight ? (TInt)aRight : aLeft);}
       
   275 
       
   276 
       
   277 
       
   278 
       
   279 /**
       
   280 @publishedAll
       
   281 @released
       
   282 
       
   283 Returns an absolute value.
       
   284 
       
   285 @param aVal The source value.
       
   286 
       
   287 @return The absolute value
       
   288 */
       
   289 template <class T>
       
   290 inline T Abs(T aVal)
       
   291 	{return(aVal<0 ? -aVal : aVal);}
       
   292 
       
   293 
       
   294 
       
   295 
       
   296 /** 
       
   297 @publishedAll
       
   298 @released
       
   299 
       
   300 Determines whether a specified value lies within a defined range of values.
       
   301 
       
   302 @param aMin The lower value of the range.
       
   303 @param aVal The value to be compared.
       
   304 @param aMax The higher value of the range.
       
   305 
       
   306 @return True, if the specified value lies within the range; false, otherwise.
       
   307 */
       
   308 template <class T>
       
   309 inline TBool Rng(T aMin,T aVal,T aMax)
       
   310 	{return(aVal>=aMin && aVal<=aMax);}
       
   311 
       
   312 
       
   313 
       
   314 
       
   315 /**
       
   316 @publishedAll
       
   317 @released
       
   318 
       
   319 Adds a value to a pointer.
       
   320 
       
   321 @param aPtr Pointer to an object of type T.
       
   322 @param aVal The value to be added.
       
   323 
       
   324 @return The resulting pointer value, as a pointer to a type T.
       
   325 */
       
   326 template <class T,class S>
       
   327 inline T* PtrAdd(T* aPtr,S aVal)
       
   328 	{return((T*)(((TUint8*)aPtr)+aVal));}
       
   329 
       
   330 
       
   331 
       
   332 
       
   333 /**
       
   334 @publishedAll
       
   335 @released
       
   336 
       
   337 Subtracts a value from a pointer.
       
   338 
       
   339 @param aPtr Pointer to an object of type T.
       
   340 @param aVal The value to be added.
       
   341 
       
   342 @return The resulting pointer value, as a pointer to a type T.
       
   343 */
       
   344 template <class T,class S>
       
   345 inline T* PtrSub(T* aPtr,S aVal)
       
   346 	{return((T*)(((TUint8*)aPtr)-aVal));}
       
   347 
       
   348 
       
   349 
       
   350 
       
   351 /**
       
   352 @publishedAll
       
   353 @released
       
   354 
       
   355 Aligns the specified value onto a 2-byte boundary.
       
   356 
       
   357 @param aValue The value to be aligned.
       
   358 
       
   359 @return The aligned value. 
       
   360 */
       
   361 template <class T>
       
   362 inline T Align2(T aValue)
       
   363 	{return((T)((((TUint)aValue)+sizeof(TUint16)-1)&~(sizeof(TUint16)-1)));}
       
   364 
       
   365 
       
   366 
       
   367 
       
   368 /**
       
   369 @publishedAll
       
   370 @released
       
   371 
       
   372 Aligns the specified value onto a 4-byte boundary.
       
   373 
       
   374 @param aValue The value to be aligned.
       
   375 
       
   376 @return The aligned value. 
       
   377 */
       
   378 template <class T>
       
   379 inline T Align4(T aValue)
       
   380 	{return((T)((((TUint)aValue)+sizeof(TUint32)-1)&~(sizeof(TUint32)-1)));}
       
   381 
       
   382 
       
   383 
       
   384 
       
   385 /**
       
   386 @publishedAll
       
   387 @released
       
   388 
       
   389 A templated class which encapsulates a reference to an object within a wrapper.
       
   390 
       
   391 The wrapper object can be passed to a function as a value type. This allows 
       
   392 a reference to be passed to a function as a value type.
       
   393 
       
   394 This wrapper object is commonly termed a value reference.
       
   395 */
       
   396 template <class T>
       
   397 class TRefByValue
       
   398 	{
       
   399 public:
       
   400 	inline TRefByValue(T& aRef);
       
   401 	inline operator T&();
       
   402 private:
       
   403 	TRefByValue& operator=(TRefByValue aRef);
       
   404 private:
       
   405 	T &iRef;
       
   406 	};
       
   407 
       
   408 
       
   409 
       
   410 
       
   411 #if !defined (__KERNEL_MODE__)
       
   412 class TDesC16;	// forward declaration for TChar member functions
       
   413 class TPtrC16;	// forward declaration for TChar member functions
       
   414 #endif
       
   415 
       
   416 
       
   417 
       
   418 
       
   419 /**
       
   420 @publishedAll
       
   421 @released
       
   422 
       
   423 Holds a character value and provides a number of utility functions to
       
   424 manipulate it and test its properties.
       
   425 
       
   426 For example, there are functions to convert the character 
       
   427 to uppercase and test whether or not it is a control character.
       
   428 
       
   429 The character value is stored as a 32-bit unsigned integer. The shorthand 
       
   430 "TChar value" is used to describe the character value wrapped by a TChar 
       
   431 object.
       
   432 
       
   433 TChar can be used to represent Unicode values outside plane 0 (that is, the 
       
   434 extended Unicode range from 0x10000 to 0xFFFFF). This differentiates it from 
       
   435 TText which can only be used for 16-bit Unicode character values.
       
   436 
       
   437 @see TText
       
   438 */
       
   439 class TChar
       
   440 	{
       
   441 public:
       
   442 
       
   443 	
       
   444     /**
       
   445     General Unicode character category.
       
   446 
       
   447     The high nibble encodes the major category (Mark, Number, etc.) and a low 
       
   448     nibble encodes the subdivisions of that category.
       
   449 
       
   450     The category codes can be used in three ways:
       
   451     
       
   452     (i) as unique constants: there is one for each Unicode category, with a
       
   453     name of the form
       
   454     @code
       
   455     E<XX>Category
       
   456     @endcode
       
   457     where
       
   458     @code
       
   459     <XX>
       
   460     @endcode
       
   461     is the category name given by
       
   462     the Unicode database (e.g., the constant ELuCategory is used for lowercase
       
   463     letters, category Lu);
       
   464     
       
   465     (ii) as numbers in certain ranges: letter categories are all <= EMaxLetterCategory;
       
   466     
       
   467     (iii) as codes in which the upper nibble gives the category group
       
   468     (e.g., punctuation categories all yield TRUE for
       
   469     the test (category & 0xF0) ==EPunctuationGroup).
       
   470     */
       
   471 	enum TCategory
       
   472 		{
       
   473         /**
       
   474         Alphabetic letters.
       
   475 	
       
   476         Includes ELuCategory, ELlCategory and ELtCategory.
       
   477         */
       
   478 		EAlphaGroup = 0x00,								
       
   479         
       
   480         
       
   481         /**
       
   482         Other letters.
       
   483 	
       
   484         Includes ELoCategory.
       
   485         */
       
   486 		ELetterOtherGroup = 0x10,						
       
   487         
       
   488         
       
   489         /**
       
   490         Letter modifiers.
       
   491 	
       
   492         Includes ELmCategory.
       
   493         */
       
   494 		ELetterModifierGroup = 0x20,					
       
   495         
       
   496         
       
   497         /**
       
   498         Marks group.
       
   499 	
       
   500         Includes EMnCategory, EMcCategory and EMeCategory.
       
   501         */
       
   502 		EMarkGroup = 0x30,
       
   503         
       
   504         
       
   505         /**
       
   506         Numbers group.
       
   507 	
       
   508 	    Includes ENdCategory, ENlCategory and ENoCategory.
       
   509 	    */
       
   510 		ENumberGroup = 0x40,
       
   511         
       
   512         
       
   513         /**
       
   514         Punctuation group.
       
   515 	
       
   516 	    IncludesEPcCategory, PdCategory, EpeCategory, EPsCategory and EPoCategory.
       
   517 	    */
       
   518 		EPunctuationGroup = 0x50,
       
   519         
       
   520         
       
   521         /**
       
   522         Symbols group.
       
   523 	
       
   524         Includes ESmCategory, EScCategory, ESkCategory and ESoCategory.
       
   525         */
       
   526 		ESymbolGroup = 0x60,
       
   527         
       
   528         
       
   529         /**
       
   530         Separators group.
       
   531 	
       
   532         Includes EZsCategory, EZlCategory and EZlpCategory.
       
   533         */
       
   534 		ESeparatorGroup = 0x70,
       
   535         
       
   536         
       
   537         /**
       
   538         Control, format, private use, unassigned.
       
   539 	
       
   540      	Includes ECcCategory, ECtCategory, ECsCategory,
       
   541      	ECoCategory and ECnCategory.
       
   542      	*/
       
   543 		EControlGroup = 0x80,
       
   544 	    
       
   545 	    
       
   546 	    /**
       
   547 	    The highest possible groups category.
       
   548 	    */
       
   549 		EMaxAssignedGroup = 0xE0,
       
   550         
       
   551         
       
   552         /**
       
   553         Unassigned to any other group.
       
   554         */
       
   555 		EUnassignedGroup = 0xF0,
       
   556 
       
   557 
       
   558         /**
       
   559         Letter, Uppercase.
       
   560         */
       
   561 		ELuCategory = EAlphaGroup | 0,					
       
   562         
       
   563         
       
   564         /**
       
   565         Letter, Lowercase.
       
   566         */
       
   567 		ELlCategory = EAlphaGroup | 1,					
       
   568 	    
       
   569 	    
       
   570 	    /**
       
   571 	    Letter, Titlecase.
       
   572 	    */
       
   573 		ELtCategory = EAlphaGroup | 2,					
       
   574      	
       
   575      	
       
   576      	/**
       
   577      	Letter, Other.
       
   578      	*/
       
   579 		ELoCategory = ELetterOtherGroup | 0,			
       
   580 	    
       
   581 	    
       
   582 	    /**
       
   583 	    The highest possible (non-modifier) letter category.
       
   584 	    */
       
   585 		EMaxLetterCategory = ELetterOtherGroup | 0x0F,	
       
   586 
       
   587 	    /**
       
   588 	    Letter, Modifier.
       
   589 	    */
       
   590 		ELmCategory = ELetterModifierGroup | 0,			
       
   591 	    
       
   592 	    
       
   593 	    /**
       
   594 	    The highest possible letter category.
       
   595 	    */
       
   596 		EMaxLetterOrLetterModifierCategory = ELetterModifierGroup | 0x0F, 
       
   597 
       
   598 	    /**
       
   599 	    Mark, Non-Spacing
       
   600 	    */
       
   601 		EMnCategory = EMarkGroup | 0,					
       
   602         
       
   603         
       
   604         /**
       
   605         Mark, Combining.
       
   606         */
       
   607 		EMcCategory = EMarkGroup | 1,					
       
   608         
       
   609         
       
   610         /**
       
   611         Mark, Enclosing.
       
   612         */
       
   613 		EMeCategory = EMarkGroup | 2,					
       
   614         
       
   615         
       
   616         /**
       
   617         Number, Decimal Digit.
       
   618         */
       
   619 		ENdCategory = ENumberGroup | 0,					
       
   620         
       
   621         
       
   622         /**
       
   623         Number, Letter.
       
   624         */
       
   625 		ENlCategory = ENumberGroup | 1,					
       
   626         
       
   627         
       
   628         /**
       
   629         Number, Other.
       
   630         */
       
   631 		ENoCategory = ENumberGroup | 2,					
       
   632         
       
   633         
       
   634         /**
       
   635         Punctuation, Connector.
       
   636         */
       
   637 		EPcCategory = EPunctuationGroup | 0,			
       
   638         
       
   639         
       
   640         /**
       
   641         Punctuation, Dash.
       
   642         */
       
   643 		EPdCategory = EPunctuationGroup | 1,			
       
   644         
       
   645         
       
   646         /**
       
   647         Punctuation, Open.
       
   648         */
       
   649 		EPsCategory = EPunctuationGroup | 2,			
       
   650         
       
   651         
       
   652         /**
       
   653         Punctuation, Close.
       
   654         */
       
   655 		EPeCategory = EPunctuationGroup | 3,
       
   656 		
       
   657 		
       
   658 		/**
       
   659 		Punctuation, Initial Quote
       
   660 		*/			
       
   661 		EPiCategory = EPunctuationGroup | 4,			
       
   662 		
       
   663 		
       
   664 		/**
       
   665 		Punctuation, Final Quote
       
   666 		*/
       
   667 		EPfCategory = EPunctuationGroup | 5,			
       
   668         
       
   669         
       
   670         /**
       
   671         Punctuation, Other.
       
   672         */
       
   673 		EPoCategory = EPunctuationGroup | 6,			
       
   674         
       
   675         
       
   676         /**
       
   677         Symbol, Math.
       
   678         */
       
   679 		ESmCategory = ESymbolGroup | 0,					
       
   680         
       
   681         
       
   682         /**
       
   683         Symbol, Currency.
       
   684         */
       
   685 		EScCategory = ESymbolGroup | 1,					
       
   686         
       
   687         
       
   688         /**
       
   689         Symbol, Modifier.
       
   690         */
       
   691 		ESkCategory = ESymbolGroup | 2,					
       
   692         
       
   693         
       
   694         /**
       
   695         Symbol, Other.
       
   696         */
       
   697 		ESoCategory = ESymbolGroup | 3,					
       
   698         
       
   699         
       
   700         /**
       
   701         The highest possible graphic character category.
       
   702         */
       
   703 		EMaxGraphicCategory = ESymbolGroup | 0x0F,		
       
   704 
       
   705 
       
   706         /**
       
   707         Separator, Space.
       
   708         */
       
   709 		EZsCategory = ESeparatorGroup | 0,				
       
   710 
       
   711 
       
   712         /**
       
   713         The highest possible printable character category.
       
   714         */
       
   715 		EMaxPrintableCategory = EZsCategory,			
       
   716 
       
   717 
       
   718         /**
       
   719         Separator, Line.
       
   720         */
       
   721 		EZlCategory = ESeparatorGroup | 1,				
       
   722 
       
   723 
       
   724         /**
       
   725         Separator, Paragraph.
       
   726         */
       
   727 		EZpCategory = ESeparatorGroup | 2,				
       
   728 
       
   729 
       
   730         /**
       
   731         Other, Control.
       
   732         */
       
   733 		ECcCategory = EControlGroup | 0,				
       
   734 
       
   735 
       
   736         /**
       
   737         Other, Format.
       
   738         */
       
   739 		ECfCategory = EControlGroup | 1,				
       
   740 
       
   741 
       
   742         /**
       
   743         The highest possible category for assigned 16-bit characters; does not
       
   744         include surrogates, which are interpreted as pairs and have no meaning
       
   745         on their own.
       
   746         */
       
   747 		EMaxAssignedCategory = EMaxAssignedGroup | 0x0F,
       
   748 														
       
   749 
       
   750         /**
       
   751         Other, Surrogate.
       
   752         */
       
   753 		ECsCategory = EUnassignedGroup | 0,				
       
   754         
       
   755         
       
   756         /**
       
   757         Other, Private Use.
       
   758         */
       
   759 		ECoCategory = EUnassignedGroup | 1,				
       
   760         
       
   761         
       
   762         /**
       
   763         Other, Not Assigned.
       
   764         */
       
   765 		ECnCategory = EUnassignedGroup | 2				
       
   766 		};
       
   767 
       
   768 	
       
   769     /**
       
   770     The bi-directional Unicode character category.
       
   771 
       
   772     For more information on the bi-directional algorithm, see Unicode Technical 
       
   773     Report No. 9 available at: http://www.unicode.org/unicode/reports/tr9.
       
   774     */
       
   775 	enum TBdCategory
       
   776 		{
       
   777 	    /**
       
   778 	    Left to right.
       
   779 	    */
       
   780 		ELeftToRight,				// L Left-to-Right 
       
   781 	   
       
   782 	   
       
   783 	    /**
       
   784 	    Left to right embedding.
       
   785 	    */
       
   786 		ELeftToRightEmbedding,		// LRE Left-to-Right Embedding 
       
   787 	   
       
   788 	   
       
   789 	    /**
       
   790 	    Left-to-Right Override.
       
   791 	    */
       
   792 		ELeftToRightOverride,		// LRO Left-to-Right Override 
       
   793 	   
       
   794 	   
       
   795 	    /**
       
   796 	    Right to left.
       
   797 	    */
       
   798 		ERightToLeft,				// R Right-to-Left 
       
   799 	   
       
   800 	   
       
   801 	    /**
       
   802 	    Right to left Arabic.
       
   803 	    */
       
   804 		ERightToLeftArabic,			// AL Right-to-Left Arabic 
       
   805 	   
       
   806 	   
       
   807 	    /**
       
   808 	    Right to left embedding.
       
   809 	    */
       
   810 		ERightToLeftEmbedding,		// RLE Right-to-Left Embedding 
       
   811 	   
       
   812 	   
       
   813 	    /**
       
   814 	    Right-to-Left Override.
       
   815 	    */
       
   816 		ERightToLeftOverride,		// RLO Right-to-Left Override 
       
   817 	   
       
   818 	   
       
   819 	    /**
       
   820 	    Pop Directional Format.
       
   821 	    */
       
   822 		EPopDirectionalFormat,		// PDF Pop Directional Format 
       
   823 	   
       
   824 	   
       
   825 	    /**
       
   826 	    European number.
       
   827 	    */
       
   828 		EEuropeanNumber,			// EN European Number 
       
   829 	   
       
   830 	   
       
   831 	    /**
       
   832 	    European number separator.
       
   833 	    */
       
   834 		EEuropeanNumberSeparator,	// ES European Number Separator 
       
   835 	   
       
   836 	   
       
   837 	    /**
       
   838 	    European number terminator.
       
   839 	    */
       
   840 		EEuropeanNumberTerminator,	// ET European Number Terminator 
       
   841 	   
       
   842 	   
       
   843 	    /**
       
   844 	    Arabic number.
       
   845 	    */
       
   846 		EArabicNumber,				// AN Arabic Number 
       
   847 	   
       
   848 	   
       
   849 	    /**
       
   850 	    Common number separator.
       
   851 	    */
       
   852 		ECommonNumberSeparator,		// CS Common Number Separator 
       
   853 	   
       
   854 	   
       
   855 	    /**
       
   856 	    Non Spacing Mark.
       
   857 	    */
       
   858 		ENonSpacingMark,			// NSM Non-Spacing Mark 
       
   859 	   
       
   860 	   
       
   861 	    /**
       
   862 	    Boundary Neutral.
       
   863 	    */
       
   864 		EBoundaryNeutral,			// BN Boundary Neutral 
       
   865 	   
       
   866 	   
       
   867 	    /**
       
   868 	    Paragraph Separator.
       
   869 	    */
       
   870 		EParagraphSeparator,		// B Paragraph Separator 
       
   871 	   
       
   872 	   
       
   873 	    /**
       
   874 	    Segment separator.
       
   875 	    */
       
   876 		ESegmentSeparator,			// S Segment Separator 
       
   877 
       
   878 		
       
   879 		/**
       
   880 		Whitespace
       
   881 		*/
       
   882 		EWhitespace,				// WS Whitespace 
       
   883 
       
   884 
       
   885 	    /**
       
   886 	    Other neutrals; all other characters: punctuation, symbols.
       
   887 	    */
       
   888 		EOtherNeutral				// ON Other Neutrals 
       
   889 		};
       
   890 
       
   891 
       
   892 	/**
       
   893     Notional character width as known to East Asian (Chinese, Japanese,
       
   894     Korean (CJK)) coding systems.
       
   895     */
       
   896 	enum TCjkWidth
       
   897 		{
       
   898 	    /**
       
   899 	    Includes 'ambiguous width' defined in Unicode Technical Report 11: East Asian Width
       
   900 	    */
       
   901 		ENeutralWidth,			
       
   902 	    
       
   903 	    
       
   904 	    /**
       
   905 	    Character which occupies a single cell.
       
   906 	    */
       
   907 		EHalfWidth,				// other categories are as defined in the report
       
   908         
       
   909         
       
   910         /**
       
   911         Character which occupies 2 cells.
       
   912         */
       
   913 		EFullWidth,
       
   914         
       
   915         
       
   916         /**
       
   917         Characters that are always narrow and have explicit full-width
       
   918         counterparts. All of ASCII is an example of East Asian Narrow
       
   919         characters.
       
   920         */
       
   921 		ENarrow,
       
   922 	    
       
   923 	    /**
       
   924 	    Characters that are always wide. This category includes characters that
       
   925 	    have explicit half-width counterparts.
       
   926 	    */
       
   927 		EWide
       
   928 		};
       
   929 
       
   930 
       
   931 	/**
       
   932 	@deprecated
       
   933     
       
   934     Encoding systems used by the translation functions.
       
   935     */
       
   936   	enum TEncoding
       
   937   		{
       
   938   		/**
       
   939   		The Unicode encoding.
       
   940   		*/
       
   941   		EUnicode,
       
   942         
       
   943         
       
   944         /**
       
   945         The shift-JIS encoding (used in Japan).
       
   946         */
       
   947   		EShiftJIS		
       
   948   		};
       
   949 
       
   950 
       
   951 	/**
       
   952 	Flags defining operations to be performed using TChar::Fold().
       
   953 	
       
   954 	The flag values are passed to the Fold() funtion.
       
   955 
       
   956 	@see TChar::Fold
       
   957 	*/
       
   958 	enum
       
   959 		{
       
   960 		/**
       
   961 		Convert characters to their lower case form if any.
       
   962 		*/
       
   963 		EFoldCase = 1,			
       
   964 
       
   965 
       
   966 		/**
       
   967 		Strip accents
       
   968      	*/
       
   969 		EFoldAccents = 2,		
       
   970 
       
   971 
       
   972 		/**
       
   973 		Convert digits representing values 0..9 to characters '0'..'9'
       
   974      	*/
       
   975 		EFoldDigits = 4,		
       
   976 
       
   977 
       
   978 		/**
       
   979 		Convert all spaces (ordinary, fixed-width, ideographic, etc.) to ' '
       
   980      	*/
       
   981 		EFoldSpaces = 8,		
       
   982 
       
   983 
       
   984 		/**
       
   985 		Convert hiragana to katakana.
       
   986      	*/
       
   987 		EFoldKana = 16,			
       
   988 
       
   989 
       
   990 		/**
       
   991 	    Fold fullwidth and halfwidth variants to their standard forms
       
   992      	*/
       
   993 		EFoldWidth = 32,		
       
   994 
       
   995 
       
   996 		/**
       
   997 		Perform standard folding operations, i.e.those done by Fold() with no argument
       
   998      	*/
       
   999 		EFoldStandard = EFoldCase | EFoldAccents | EFoldDigits | EFoldSpaces,
       
  1000 
       
  1001 
       
  1002         /**
       
  1003         Perform all possible folding operations
       
  1004         */
       
  1005 		EFoldAll = -1	
       
  1006 		};
       
  1007 
       
  1008 
       
  1009 	struct TCharInfo
       
  1010     /**
       
  1011     A structure to hold information about a Unicode character.
       
  1012     
       
  1013     An object of this type is passed to TChar::GetInfo().
       
  1014  
       
  1015     @see TChar::GetInfo
       
  1016     */
       
  1017 		{
       
  1018 	    /**
       
  1019 	    General category.
       
  1020 	    */
       
  1021 		TCategory iCategory;				
       
  1022         
       
  1023         
       
  1024         /**
       
  1025         Bi-directional category.
       
  1026         */
       
  1027 		TBdCategory iBdCategory;			
       
  1028         
       
  1029         
       
  1030         /**
       
  1031         Combining class: number (currently) in the range 0..234
       
  1032         */
       
  1033 		TInt iCombiningClass;				
       
  1034         
       
  1035         
       
  1036         /**
       
  1037         Lower case form.
       
  1038         */
       
  1039 		TUint iLowerCase;					
       
  1040         
       
  1041         
       
  1042         /**
       
  1043         Upper case form.
       
  1044         */
       
  1045 		TUint iUpperCase;					
       
  1046         
       
  1047         
       
  1048         /**
       
  1049         Title case form.
       
  1050         */
       
  1051 		TUint iTitleCase;					
       
  1052         
       
  1053         
       
  1054         /**
       
  1055         True, if the character is mirrored.
       
  1056         */
       
  1057 		TBool iMirrored;					
       
  1058         
       
  1059         
       
  1060         /**
       
  1061         Integer numeric value: -1 if none, -2 if a fraction.
       
  1062         */
       
  1063 		TInt iNumericValue;					
       
  1064 		};
       
  1065 
       
  1066 	inline TChar();
       
  1067 	inline TChar(TUint aChar);
       
  1068 	inline TChar& operator-=(TUint aChar);
       
  1069 	inline TChar& operator+=(TUint aChar);
       
  1070 	inline TChar operator-(TUint aChar);
       
  1071 	inline TChar operator+(TUint aChar);
       
  1072 	inline operator TUint() const;
       
  1073 #ifndef __KERNEL_MODE__
       
  1074 	inline void Fold();
       
  1075 	inline void LowerCase();
       
  1076 	inline void UpperCase();
       
  1077 	inline TBool Eos() const;
       
  1078 	IMPORT_C TUint GetUpperCase() const;
       
  1079 	IMPORT_C TUint GetLowerCase() const;
       
  1080 	IMPORT_C TBool IsLower() const;
       
  1081 	IMPORT_C TBool IsUpper() const;
       
  1082 	IMPORT_C TBool IsAlpha() const;
       
  1083 	IMPORT_C TBool IsDigit() const;
       
  1084 	IMPORT_C TBool IsAlphaDigit() const;
       
  1085 	IMPORT_C TBool IsHexDigit() const;
       
  1086 	IMPORT_C TBool IsSpace() const;
       
  1087 	IMPORT_C TBool IsPunctuation() const;
       
  1088 	IMPORT_C TBool IsGraph() const;
       
  1089 	IMPORT_C TBool IsPrint() const;
       
  1090 	IMPORT_C TBool IsControl() const;
       
  1091 	inline void Fold(TInt aFlags);
       
  1092 	inline void TitleCase();
       
  1093 	IMPORT_C TUint GetTitleCase() const;
       
  1094 	IMPORT_C TBool IsTitle() const;
       
  1095 	IMPORT_C TBool IsAssigned() const;
       
  1096 	IMPORT_C void GetInfo(TCharInfo& aInfo) const;
       
  1097 	IMPORT_C TCategory GetCategory() const;
       
  1098 	IMPORT_C TBdCategory GetBdCategory() const;
       
  1099 	IMPORT_C TInt GetCombiningClass() const;
       
  1100 	IMPORT_C TBool IsMirrored() const;
       
  1101 	IMPORT_C TInt GetNumericValue() const;
       
  1102 	IMPORT_C TCjkWidth GetCjkWidth() const;
       
  1103 	IMPORT_C static TBool Compose(TUint& aResult,const TDesC16& aSource);
       
  1104 	IMPORT_C TBool Decompose(TPtrC16& aResult) const;
       
  1105 
       
  1106 protected:
       
  1107 	inline void SetChar(TUint aChar);
       
  1108 #endif
       
  1109 private:
       
  1110 	TUint iChar;
       
  1111 	__DECLARE_TEST;
       
  1112 	};
       
  1113 
       
  1114 #include <e32des8.h>
       
  1115 #ifndef __KERNEL_MODE__
       
  1116 #include <e32des16.h>
       
  1117 #endif
       
  1118 
       
  1119 
       
  1120 
       
  1121 
       
  1122 #if defined(_UNICODE) && !defined(__KERNEL_MODE__)
       
  1123 #define __Size (sizeof(TUint)/sizeof(TUint16))
       
  1124 /**
       
  1125 @publishedAll
       
  1126 @released
       
  1127 
       
  1128 Defines a build-independent non-modifiable descriptor.
       
  1129 
       
  1130 A 16-bit build variant is generated for a Unicode, non-kernel
       
  1131 mode build.
       
  1132 
       
  1133 A build-independent type should always be used unless an explicit 8-bit 
       
  1134 or 16-bit type is required.
       
  1135 
       
  1136 @see TDesC8
       
  1137 @see TDesC16
       
  1138 */
       
  1139 typedef TDesC16 TDesC;
       
  1140 
       
  1141 
       
  1142 
       
  1143 
       
  1144 /**
       
  1145 @publishedAll
       
  1146 @released
       
  1147 
       
  1148 Defines a build-independent non-modifiable pointer descriptor.
       
  1149 
       
  1150 A 16-bit build variant is generated for a Unicode, non-kernel
       
  1151 mode build.
       
  1152 
       
  1153 A build-independent type should always be used unless an explicit 8-bit 
       
  1154 or 16-bit type is required.
       
  1155 
       
  1156 @see TPtrC8
       
  1157 @see TPtrC16
       
  1158 */
       
  1159 typedef TPtrC16 TPtrC;
       
  1160 
       
  1161 
       
  1162 
       
  1163 
       
  1164 /**
       
  1165 @publishedAll
       
  1166 @released
       
  1167 
       
  1168 Defines a build-independent modifiable descriptor.
       
  1169 
       
  1170 A 16-bit build variant is generated for a Unicode, non-kernel
       
  1171 mode build.
       
  1172 
       
  1173 A build-independent type should always be used unless an explicit 8-bit 
       
  1174 or 16-bit type is required.
       
  1175 
       
  1176 @see TDes8
       
  1177 @see TDes16
       
  1178 */
       
  1179 typedef TDes16 TDes;
       
  1180 
       
  1181 
       
  1182 
       
  1183 
       
  1184 /**
       
  1185 @publishedAll
       
  1186 @released
       
  1187 
       
  1188 Defines a build-independent modifiable pointer descriptor.
       
  1189 
       
  1190 A 16-bit build variant is generated for a Unicode, non-kernel
       
  1191 mode build.
       
  1192 
       
  1193 A build-independent type should always be used unless an explicit 8-bit 
       
  1194 or 16-bit type is required.
       
  1195 
       
  1196 @see TPtr8
       
  1197 @see TPtr16
       
  1198 */
       
  1199 typedef TPtr16 TPtr;
       
  1200 
       
  1201 
       
  1202 
       
  1203 
       
  1204 #ifndef __KERNEL_MODE__
       
  1205 /**
       
  1206 @publishedAll
       
  1207 @released
       
  1208 
       
  1209 Defines a build-independent heap descriptor. 
       
  1210 
       
  1211 A 16-bit build variant is generated for a Unicode, non-kernel
       
  1212 mode build.
       
  1213 
       
  1214 A build-independent type should always be used unless an explicit 8-bit 
       
  1215 or 16-bit type is required.
       
  1216 
       
  1217 @see HBufC8
       
  1218 @see HBufC16
       
  1219 */
       
  1220 typedef HBufC16 HBufC;
       
  1221 
       
  1222 
       
  1223 
       
  1224 
       
  1225 /** 
       
  1226 @publishedAll
       
  1227 @released
       
  1228 
       
  1229 Defines a build-independent descriptor overflow handler.
       
  1230 
       
  1231 A 16-bit build variant is generated for a Unicode, non-kernel
       
  1232 mode build.
       
  1233 
       
  1234 A build-independent type should always be used unless an explicit 8-bit 
       
  1235 or 16-bit type is required.
       
  1236 
       
  1237 @see TDes8Overflow
       
  1238 @see TDes16Overflow
       
  1239 */
       
  1240 typedef TDes16Overflow TDesOverflow;
       
  1241 
       
  1242 
       
  1243 /** 
       
  1244 @publishedAll
       
  1245 @released
       
  1246 
       
  1247 Defines a build-independent resizable buffer descriptor.
       
  1248 
       
  1249 A 16-bit build variant is generated for a Unicode, non-kernel mode build.
       
  1250 
       
  1251 A build-independent type should always be used unless an explicit 8-bit 
       
  1252 or 16-bit type is required.
       
  1253 
       
  1254 @see RBuf8
       
  1255 @see RBuf16
       
  1256 */
       
  1257 typedef RBuf16 RBuf;
       
  1258 
       
  1259 #endif
       
  1260 #else
       
  1261 #define __Size (sizeof(TUint)/sizeof(TUint8))
       
  1262 
       
  1263 
       
  1264 
       
  1265 
       
  1266 /**
       
  1267 @publishedAll
       
  1268 @released
       
  1269 
       
  1270 Defines a build-independent non-modifiable descriptor.
       
  1271 
       
  1272 An 8-bit build variant is generated for a non-Unicode build.
       
  1273 
       
  1274 This build-independent type should always be used unless an explicit 8-bit 
       
  1275 or 16-bit build variant is required.
       
  1276 
       
  1277 @see TDesC8
       
  1278 @see TDesC16
       
  1279 */
       
  1280 typedef TDesC8 TDesC;
       
  1281 
       
  1282 
       
  1283 
       
  1284 
       
  1285 /**
       
  1286 @publishedAll
       
  1287 @released
       
  1288 
       
  1289 Defines a build-independent non-modifiable pointer descriptor.
       
  1290 
       
  1291 An 8-bit build variant is generated for a non-Unicode build.
       
  1292 
       
  1293 This build-independent type should always be used unless an explicit 8-bit 
       
  1294 or 16-bit build variant is required.
       
  1295 
       
  1296 @see TPtrC8
       
  1297 @see TPtrC16
       
  1298 */
       
  1299 typedef TPtrC8 TPtrC;
       
  1300 
       
  1301 
       
  1302 
       
  1303 
       
  1304 /**
       
  1305 @publishedAll
       
  1306 @released
       
  1307 
       
  1308 Defines a build-independent modifiable descriptor.
       
  1309 
       
  1310 An 8-bit build variant is generated for a non-Unicode build.
       
  1311 
       
  1312 This build-independent type should always be used unless an explicit 8-bit 
       
  1313 or 16-bit build variant is required.
       
  1314 
       
  1315 @see TDes8
       
  1316 @see TDes16
       
  1317 */
       
  1318 typedef TDes8 TDes;
       
  1319 
       
  1320 
       
  1321 
       
  1322 
       
  1323 /**
       
  1324 @publishedAll
       
  1325 @released
       
  1326 
       
  1327 Defines a build-independent modifiable pointer descriptor.
       
  1328 
       
  1329 An 8-bit build variant is generated for a non-Unicode build.
       
  1330 
       
  1331 This build-independent type should always be used unless an explicit 8-bit 
       
  1332 or 16-bit build variant is required.
       
  1333 
       
  1334 @see TPtr8
       
  1335 @see TPtr16
       
  1336 */
       
  1337 typedef TPtr8 TPtr;
       
  1338 #ifndef __KERNEL_MODE__
       
  1339 
       
  1340 
       
  1341 
       
  1342 
       
  1343 /**
       
  1344 @publishedAll
       
  1345 @released
       
  1346 
       
  1347 Defines a build-independent heap descriptor.
       
  1348 
       
  1349 An 8-bit build variant is generated for a non-Unicode, non-kernel
       
  1350 mode build.
       
  1351 
       
  1352 This build-independent type should always be used unless an explicit 8-bit 
       
  1353 or 16-bit build variant is required.
       
  1354 
       
  1355 @see HBufC8
       
  1356 @see HBufC16
       
  1357 */
       
  1358 typedef HBufC8 HBufC;
       
  1359 
       
  1360 
       
  1361 
       
  1362 
       
  1363 /**
       
  1364 @publishedAll
       
  1365 @released
       
  1366 
       
  1367 Defines a build-independent descriptor overflow handler. 
       
  1368 
       
  1369 An 8-bit build variant is generated for a non-Unicode, non-kernel
       
  1370 mode build.
       
  1371 
       
  1372 This build-independent type should always be used unless an explicit 8-bit 
       
  1373 or 16-bit build variant is required.
       
  1374 
       
  1375 @see TDes8Overflow
       
  1376 @see TDes16Overflow
       
  1377 */
       
  1378 typedef TDes8Overflow TDesOverflow;
       
  1379 
       
  1380 
       
  1381 /**
       
  1382 @publishedAll
       
  1383 @released
       
  1384 
       
  1385 Defines a build-independent resizable buffer descriptor.
       
  1386 
       
  1387 An 8-bit build variant is generated for a non-Unicode, non-kernel mode build.
       
  1388 
       
  1389 This build-independent type should always be used unless an explicit 8-bit 
       
  1390 or 16-bit build variant is required.
       
  1391 
       
  1392 @see RBuf8
       
  1393 @see RBuf16
       
  1394 */
       
  1395 typedef RBuf8 RBuf;
       
  1396 
       
  1397 #endif
       
  1398 #endif
       
  1399 
       
  1400 
       
  1401 #if defined(_UNICODE) && !defined(__KERNEL_MODE__)
       
  1402 typedef TBufCBase16 TBufCBase;
       
  1403 #else
       
  1404 typedef TBufCBase8 TBufCBase;
       
  1405 #endif
       
  1406 
       
  1407 /**
       
  1408 @publishedAll
       
  1409 @released
       
  1410 
       
  1411 A build-independent non-modifiable buffer descriptor.
       
  1412 
       
  1413 This is a descriptor class which provides a buffer of fixed length for
       
  1414 containing and accessing TUint16 or TUint8 data, depending on the build.
       
  1415 
       
  1416 The class intended for instantiation. The data that the descriptor represents 
       
  1417 is part of the descriptor object itself.
       
  1418 
       
  1419 The class is templated, based on an integer value which defines the size of 
       
  1420 the descriptor's data area.
       
  1421 
       
  1422 The data is intended to be accessed, but not modified; however, it can be 
       
  1423 completely replaced using the assignment operators of this class. The base 
       
  1424 class provides the functions through which the data is accessed.
       
  1425 
       
  1426 This class derives from TBufCBase16 for a Unicode, non-kernel build, but
       
  1427 derives from TBufCBase8 for a non-Unicode build.
       
  1428 
       
  1429 @see TDesC
       
  1430 @see TDesC8
       
  1431 @see TDesC16
       
  1432 @see TPtr
       
  1433 @see TPtr8
       
  1434 @see TPtr16
       
  1435 @see TBufC8
       
  1436 @see TBufC16
       
  1437 */
       
  1438 template <TInt S>
       
  1439 #if defined(_UNICODE) && !defined(__KERNEL_MODE__)
       
  1440 class TBufC : public TBufCBase16
       
  1441 #else
       
  1442 class TBufC : public TBufCBase8
       
  1443 #endif
       
  1444 	{
       
  1445 public:
       
  1446 	inline TBufC();
       
  1447 	inline TBufC(const TText* aString);
       
  1448 	inline TBufC(const TDesC& aDes);
       
  1449 	inline TBufC<S>& operator=(const TText* aString);
       
  1450 	inline TBufC<S>& operator=(const TDesC& aDes);
       
  1451 	inline TPtr Des();
       
  1452 private:
       
  1453 	TText iBuf[__Align(S)];
       
  1454 	};
       
  1455 
       
  1456 
       
  1457 
       
  1458 /**
       
  1459 @publishedAll
       
  1460 @released
       
  1461 
       
  1462 A build-independent modifiable buffer descriptor.
       
  1463 
       
  1464 This is a descriptor class which provides a buffer of fixed length for
       
  1465 containing, accessing and manipulating TUint16 or TUint8 data, depending
       
  1466 on the build.
       
  1467 
       
  1468 The class is intended for instantiation. The data that the descriptor represents 
       
  1469 is part of the descriptor object itself.
       
  1470 
       
  1471 The class is templated, based on an integer value which determines the size 
       
  1472 of the data area created as part of the buffer descriptor object; this is 
       
  1473 also the maximum length of the descriptor.
       
  1474 
       
  1475 The data is intended to be both accessed and modified. The base classes provide 
       
  1476 the functions through which the data is accessed.
       
  1477 
       
  1478 This class derives from TBufCBase16 for a Unicode, non-kernel build, but
       
  1479 derives from TBufCBase8 for a non-Unicode build.
       
  1480 
       
  1481 @see TDesC
       
  1482 @see TDesC8
       
  1483 @see TDesC16
       
  1484 @see TDes
       
  1485 @see TDes8
       
  1486 @see TDes16
       
  1487 @see TPtr
       
  1488 @see TPtr8
       
  1489 @see TPtr16
       
  1490 */
       
  1491 template <TInt S>
       
  1492 #if defined(_UNICODE) && !defined(__KERNEL_MODE__)
       
  1493 class TBuf : public TBufBase16
       
  1494 #else
       
  1495 class TBuf : public TBufBase8
       
  1496 #endif
       
  1497 	{
       
  1498 public:
       
  1499 	inline TBuf();
       
  1500 	inline explicit TBuf(TInt aLength);
       
  1501 	inline TBuf(const TText* aString);
       
  1502 	inline TBuf(const TDesC& aDes);
       
  1503 	inline TBuf<S>& operator=(const TText* aString);
       
  1504 	inline TBuf<S>& operator=(const TDesC& aDes);
       
  1505 	inline TBuf<S>& operator=(const TBuf<S>& aBuf);
       
  1506 private:
       
  1507 	TText iBuf[__Align(S)];
       
  1508 	};
       
  1509 
       
  1510 
       
  1511 
       
  1512 
       
  1513 /**
       
  1514 @publishedAll
       
  1515 @released
       
  1516 
       
  1517 Value reference used in operator TLitC::__TRefDesC().
       
  1518 
       
  1519 @see TRefByValue
       
  1520 */
       
  1521 typedef TRefByValue<const TDesC> __TRefDesC;
       
  1522 
       
  1523 
       
  1524 
       
  1525 
       
  1526 /**
       
  1527 @publishedAll
       
  1528 @released
       
  1529 
       
  1530 Encapsulates literal text.
       
  1531 
       
  1532 This is always constructed using an _LIT macro.
       
  1533 
       
  1534 This class is build independent; i.e. for a non-Unicode build, an 8-bit build
       
  1535 variant is generated; for a Unicode build, a 16 bit build variant is generated.
       
  1536 
       
  1537 The class has no explicit constructors. See the _LIT macro definition.
       
  1538 */
       
  1539 template <TInt S>
       
  1540 class TLitC
       
  1541 	{
       
  1542 public:
       
  1543     /**
       
  1544     @internalComponent
       
  1545     */
       
  1546 	enum {BufferSize=S-1};
       
  1547 	inline const TDesC* operator&() const;
       
  1548 	inline operator const TDesC&() const;
       
  1549 	inline const TDesC& operator()() const;
       
  1550 	inline operator const __TRefDesC() const;
       
  1551 public:
       
  1552 #if !defined(_UNICODE) || defined(__KERNEL_MODE__)
       
  1553 
       
  1554     /**
       
  1555     @internalComponent
       
  1556     */
       
  1557 	typedef TUint8 __TText;
       
  1558 #elif defined(__GCC32__)
       
  1559 
       
  1560     /**
       
  1561     @internalComponent
       
  1562     */
       
  1563 	typedef wchar_t __TText;
       
  1564 #elif defined(__VC32__)
       
  1565 
       
  1566 	/**
       
  1567     @internalComponent
       
  1568     */
       
  1569 	typedef TUint16 __TText;
       
  1570 
       
  1571 #elif defined(__CW32__)
       
  1572 
       
  1573     /**
       
  1574     @internalComponent
       
  1575     */
       
  1576 	typedef TUint16 __TText;
       
  1577 #elif !defined(__TText_defined)
       
  1578 #error  no typedef for __TText
       
  1579 #endif
       
  1580 public:
       
  1581     /**
       
  1582     @internalComponent
       
  1583     */
       
  1584 	TUint iTypeLength;
       
  1585 
       
  1586     /**
       
  1587     @internalComponent
       
  1588     */
       
  1589 	__TText iBuf[__Align(S)];
       
  1590 	};
       
  1591 
       
  1592 
       
  1593 /**
       
  1594 @publishedAll
       
  1595 @released
       
  1596 
       
  1597 Defines an empty or null literal descriptor.
       
  1598 
       
  1599 This is the build independent form.
       
  1600 An 8 bit build variant is generated for a non-Unicode build;
       
  1601 a 16 bit build variant is generated for a Unicode build.
       
  1602 */
       
  1603 _LIT(KNullDesC,"");
       
  1604 
       
  1605 
       
  1606 
       
  1607 /**
       
  1608 @publishedAll
       
  1609 @released
       
  1610 
       
  1611 Defines an empty or null literal descriptor for use with 8-bit descriptors.
       
  1612 */
       
  1613 _LIT8(KNullDesC8,"");
       
  1614 #ifndef __KERNEL_MODE__
       
  1615 
       
  1616 
       
  1617 
       
  1618 /**
       
  1619 @publishedAll
       
  1620 @released
       
  1621 
       
  1622 Defines an empty or null literal descriptor for use with 16-bit descriptors
       
  1623 */
       
  1624 _LIT16(KNullDesC16,"");
       
  1625 #endif
       
  1626 
       
  1627 
       
  1628 
       
  1629 
       
  1630 /**
       
  1631 @publishedAll
       
  1632 @released
       
  1633 
       
  1634 Packages a non-modifiable pointer descriptor which represents an object of 
       
  1635 specific type.
       
  1636 
       
  1637 The template parameter defines the type of object.
       
  1638 
       
  1639 The object represented by the packaged pointer descriptor is accessible through 
       
  1640 the package but cannot be changed. */
       
  1641 template <class T>
       
  1642 class TPckgC : public TPtrC8
       
  1643 	{
       
  1644 public:
       
  1645 	inline TPckgC(const T& aRef);
       
  1646 	inline const T& operator()() const;
       
  1647 private:
       
  1648 	TPckgC<T>& operator=(const TPckgC<T>& aRef);
       
  1649 	};
       
  1650 
       
  1651 
       
  1652 
       
  1653 
       
  1654 /**
       
  1655 @publishedAll
       
  1656 @released
       
  1657 
       
  1658 Packages a modifiable pointer descriptor which represents an object of specific 
       
  1659 type.
       
  1660 
       
  1661 The template parameter defines the type of object.
       
  1662 
       
  1663 The object represented by the packaged pointer descriptor is accessible through 
       
  1664 the package.
       
  1665 */
       
  1666 template <class T>
       
  1667 class TPckg : public TPtr8
       
  1668 	{
       
  1669 public:
       
  1670 	inline TPckg(const T& aRef);
       
  1671 	inline T& operator()();
       
  1672 private:
       
  1673 	TPckg<T>& operator=(const TPckg<T>& aRef);
       
  1674 	};
       
  1675 
       
  1676 
       
  1677 
       
  1678 
       
  1679 /**
       
  1680 @publishedAll
       
  1681 @released
       
  1682 
       
  1683 Packages an object into a modifiable buffer descriptor.
       
  1684 
       
  1685 The template parameter defines the type of object to be packaged.
       
  1686 
       
  1687 The package provides a type safe way of transferring an object or data structure 
       
  1688 which is contained within a modifiable buffer descriptor. Typically, a package 
       
  1689 is used for passing data via inter thread communication.
       
  1690 
       
  1691 The contained object is accessible through the package.
       
  1692 */
       
  1693 template <class T>
       
  1694 class TPckgBuf : public TAlignedBuf8<sizeof(T)>
       
  1695 	{
       
  1696 public:
       
  1697 	inline TPckgBuf();
       
  1698 	inline TPckgBuf(const T& aRef);
       
  1699 	inline TPckgBuf& operator=(const TPckgBuf<T>& aRef);
       
  1700 	inline T& operator=(const T& aRef);
       
  1701 	inline T& operator()();
       
  1702 	inline const T& operator()() const;
       
  1703 	};
       
  1704 
       
  1705 
       
  1706 
       
  1707 
       
  1708 /**
       
  1709 @publishedAll
       
  1710 @released
       
  1711 
       
  1712 Defines a modifiable buffer descriptor that can contain the name of a reference 
       
  1713 counting object.
       
  1714 
       
  1715 @see TBuf
       
  1716 @see CObject
       
  1717 */
       
  1718 typedef TBuf<KMaxName> TName;
       
  1719 
       
  1720 
       
  1721 /**
       
  1722 @publishedAll
       
  1723 @released
       
  1724 
       
  1725 Defines a modifiable buffer descriptor that can contain the full name of a 
       
  1726 reference counting object.
       
  1727 
       
  1728 @see TBuf
       
  1729 @see CObject
       
  1730 */
       
  1731 typedef TBuf<KMaxFullName> TFullName;
       
  1732 
       
  1733 
       
  1734 
       
  1735 /**
       
  1736 @publishedAll
       
  1737 @released
       
  1738 
       
  1739 Defines a modifiable buffer descriptor to contain the category name identifying
       
  1740 the cause of thread or process termination. The buffer takes a maximum length
       
  1741 of KMaxExitCategoryName.
       
  1742 
       
  1743 @see RThread::ExitCategory
       
  1744 @see RThread::ExitCategory
       
  1745 */
       
  1746 typedef TBuf<KMaxExitCategoryName> TExitCategoryName;
       
  1747 
       
  1748 
       
  1749 
       
  1750 /**
       
  1751 @publishedAll
       
  1752 @released
       
  1753 
       
  1754 A buffer that can contain the name of a file.
       
  1755 The name can have a maximum length of KMaxFileName
       
  1756 (currently 256 but check the definition of KMaxFileName).
       
  1757 
       
  1758 @see KMaxFileName
       
  1759 */
       
  1760 typedef TBuf<KMaxFileName> TFileName;
       
  1761 
       
  1762 
       
  1763 
       
  1764 /**
       
  1765 @publishedAll
       
  1766 @released
       
  1767 
       
  1768 A buffer that can contain the name of a path.
       
  1769 The name can have a maximum length of KMaxPath
       
  1770 (currently 256 but check the definition of KMaxPath).
       
  1771 
       
  1772 @see KMaxPath
       
  1773 */
       
  1774 typedef TBuf<KMaxPath> TPath;
       
  1775 
       
  1776 
       
  1777 
       
  1778 
       
  1779 /**
       
  1780 @publishedAll
       
  1781 @released
       
  1782 
       
  1783 Version name type.
       
  1784 
       
  1785 This is a buffer descriptor with a maximum length of KMaxVersionName.
       
  1786 A TVersion object returns the formatted character representation of its version
       
  1787 information in a descriptor of this type.
       
  1788 
       
  1789 @see TVersion
       
  1790 */
       
  1791 typedef TBuf<KMaxVersionName> TVersionName;
       
  1792 
       
  1793 
       
  1794 
       
  1795 
       
  1796 /**
       
  1797 @publishedAll
       
  1798 @released
       
  1799 
       
  1800 Defines a modifiable buffer descriptor for the text form of the UID.
       
  1801 The descriptor has a maximum length of KMaxUidName and is used to contain
       
  1802 the standard text format returned by the function TUid::Name().
       
  1803 
       
  1804 @see TUid::Name
       
  1805 */
       
  1806 typedef TBuf<KMaxUidName> TUidName;
       
  1807 
       
  1808 
       
  1809 
       
  1810 
       
  1811 /**
       
  1812 @publishedAll
       
  1813 @released
       
  1814 
       
  1815 Defines a null UID
       
  1816 */
       
  1817 #define KNullUid TUid::Null()
       
  1818 
       
  1819 
       
  1820 
       
  1821 
       
  1822 /**
       
  1823 @publishedAll
       
  1824 @released
       
  1825 
       
  1826 A globally unique 32-bit number.
       
  1827 */
       
  1828 class TUid
       
  1829 	{
       
  1830 public:
       
  1831 #ifndef __KERNEL_MODE__
       
  1832 	IMPORT_C TBool operator==(const TUid& aUid) const;
       
  1833 	IMPORT_C TBool operator!=(const TUid& aUid) const;
       
  1834 	IMPORT_C TUidName Name() const;
       
  1835 #endif
       
  1836 	static inline TUid Uid(TInt aUid);
       
  1837 	static inline TUid Null();
       
  1838 public:
       
  1839 	/**
       
  1840 	The 32-bit integer UID value.
       
  1841 	*/
       
  1842 	TInt32 iUid;
       
  1843 	};
       
  1844 
       
  1845 
       
  1846 
       
  1847 
       
  1848 /**
       
  1849 @publishedAll
       
  1850 @released
       
  1851 
       
  1852 Encapsulates a set of three unique identifiers (UIDs) which, in combination, 
       
  1853 identify a system object such as a GUI application or a DLL. The three
       
  1854 component UIDs are referred to as UID1, UID2 and UID3.
       
  1855 
       
  1856 An object of this type is referred to as a compound identifier or a UID type.
       
  1857 */
       
  1858 class TUidType
       
  1859 	{
       
  1860 public:
       
  1861 #ifndef __KERNEL_MODE__
       
  1862 	IMPORT_C TUidType();
       
  1863 	IMPORT_C TUidType(TUid aUid1);
       
  1864 	IMPORT_C TUidType(TUid aUid1,TUid aUid2);
       
  1865 	IMPORT_C TUidType(TUid aUid1,TUid aUid2,TUid aUid3);
       
  1866 	IMPORT_C TBool operator==(const TUidType& aUidType) const;
       
  1867 	IMPORT_C TBool operator!=(const TUidType& aUidType) const;
       
  1868 	IMPORT_C const TUid& operator[](TInt anIndex) const;
       
  1869 	IMPORT_C TUid MostDerived() const;
       
  1870 	IMPORT_C TBool IsPresent(TUid aUid) const;
       
  1871 	IMPORT_C TBool IsValid() const;
       
  1872 private:
       
  1873 #endif
       
  1874 	TUid iUid[KMaxCheckedUid];
       
  1875 	};
       
  1876 
       
  1877 
       
  1878 
       
  1879 
       
  1880 /**
       
  1881 A class used to represent the Secure ID of a process or executable image.
       
  1882 
       
  1883 Constructors and conversion operators are provided to enable conversion
       
  1884 of this class to and from both TUint32 and TUid objects.
       
  1885 
       
  1886 Because this class has non-default constructors, compilers will not initialise
       
  1887 this objects at compile time, instead code will be generated to construct the object
       
  1888 at run-time. This is wastefull, and Symbian OS DLLs are not permitted to have
       
  1889 such uninitialised data. To overcome these problems a macro is provided to construct
       
  1890 a const object which behaves like a TSecureId. This is _LIT_SECURE_ID.
       
  1891 This macro should be used where it is desirable to define const TSecureId objects,
       
  1892 like in header files. E.g. Instead of writing:
       
  1893 @code
       
  1894 	const TSecureId MyId=0x1234567
       
  1895 @endcode
       
  1896 use
       
  1897 @code
       
  1898 	_LIT_SECURE_ID(MyId,0x1234567)
       
  1899 @endcode
       
  1900 
       
  1901 @publishedAll
       
  1902 @released
       
  1903 
       
  1904 @see _LIT_SECURE_ID
       
  1905 */
       
  1906 class TSecureId
       
  1907 	{
       
  1908 public:
       
  1909 	inline TSecureId();
       
  1910 	inline TSecureId(TUint32 aId);
       
  1911 	inline operator TUint32() const;
       
  1912 	inline TSecureId(TUid aId);
       
  1913 	inline operator TUid() const;
       
  1914 public:
       
  1915 	TUint32 iId;
       
  1916 	};
       
  1917 
       
  1918 
       
  1919 
       
  1920 
       
  1921 /**
       
  1922 A class used to represent the Vendor ID of a process or executable image
       
  1923 
       
  1924 Constructors and conversion operators are provided to enable conversion
       
  1925 of this class to and from both TUint32 and TUid objects.
       
  1926 
       
  1927 Because this class has non-default constructors, compilers will not initialise
       
  1928 this objects at compile time, instead code will be generated to construct the object
       
  1929 at run-time. This is wastefull, and Symbian OS DLLs are not permitted to have
       
  1930 such uninitialised data. To overcome these problems a macro is provided to construct
       
  1931 a const object which behaves like a TSecureId. This is _LIT_VENDOR_ID.
       
  1932 This macro should be used where it is desirable to define const TSecureId objects,
       
  1933 like in header files. E.g. Instead of writing:
       
  1934 @code
       
  1935 	const TVendorId MyId=0x1234567
       
  1936 @endcode
       
  1937 use
       
  1938 @code
       
  1939 	_LIT_VENDOR_ID(MyId,0x1234567)
       
  1940 @endcode
       
  1941 
       
  1942 @publishedAll
       
  1943 @released
       
  1944 
       
  1945 @see _LIT_VENDOR_ID
       
  1946 */
       
  1947 class TVendorId
       
  1948 	{
       
  1949 public:
       
  1950 	inline TVendorId();
       
  1951 	inline TVendorId(TUint32 aId);
       
  1952 	inline operator TUint32() const;
       
  1953 	inline TVendorId(TUid aId);
       
  1954 	inline operator TUid() const;
       
  1955 public:
       
  1956 	TUint32 iId;
       
  1957 	};
       
  1958 
       
  1959 
       
  1960 
       
  1961 /**
       
  1962 Structure for compile-time definition of a secure ID
       
  1963 @internalComponent
       
  1964 */
       
  1965 class SSecureId
       
  1966 	{
       
  1967 public:
       
  1968 	inline const TSecureId* operator&() const;
       
  1969 	inline operator const TSecureId&() const;
       
  1970 	inline operator TUint32() const;
       
  1971 	inline operator TUid() const;
       
  1972 public:
       
  1973 	TUint32 iId;
       
  1974 	};
       
  1975 
       
  1976 
       
  1977 	
       
  1978 	
       
  1979 /**
       
  1980 Structure for compile-time definition of a vendor ID
       
  1981 @internalComponent
       
  1982 */
       
  1983 class SVendorId
       
  1984 	{
       
  1985 public:
       
  1986 	inline const TVendorId* operator&() const;
       
  1987 	inline operator const TVendorId&() const;
       
  1988 	inline operator TUint32() const;
       
  1989 	inline operator TUid() const;
       
  1990 public:
       
  1991 	TUint32 iId;
       
  1992 	};
       
  1993 
       
  1994 
       
  1995 
       
  1996 
       
  1997 /**
       
  1998 Macro for compile-time definition of a secure ID
       
  1999 @param name Name to use for secure ID
       
  2000 @param value Value of secure ID
       
  2001 @publishedAll
       
  2002 @released
       
  2003 */
       
  2004 #define _LIT_SECURE_ID(name,value) const SSecureId name={value}
       
  2005 
       
  2006 
       
  2007 
       
  2008 
       
  2009 /**
       
  2010 Macro for compile-time definition of a vendor ID
       
  2011 @param name Name to use for vendor ID
       
  2012 @param value Value of vendor ID
       
  2013 @publishedAll
       
  2014 @released
       
  2015 */
       
  2016 #define _LIT_VENDOR_ID(name,value) const SVendorId name={value}
       
  2017 
       
  2018 
       
  2019 
       
  2020 
       
  2021 /**
       
  2022 @publishedAll
       
  2023 @released
       
  2024 
       
  2025 Contains version information.
       
  2026 
       
  2027 A version is defined by a set of three numbers:
       
  2028 
       
  2029 1. the major version number, ranging from 0 to 127, inclusive
       
  2030 
       
  2031 2. the minor version number, ranging from 0 to 99 inclusive
       
  2032 
       
  2033 3. the build number, ranging from 0 to 32767 inclusive.
       
  2034 
       
  2035 The class provides a constructor for setting all three numbers.
       
  2036 It also provides a member function to build a character representation of
       
  2037 this information in a TVersionName descriptor.
       
  2038 
       
  2039 @see TVersionName
       
  2040 */
       
  2041 class TVersion
       
  2042 	{
       
  2043 public:
       
  2044 	IMPORT_C TVersion();
       
  2045 	IMPORT_C TVersion(TInt aMajor,TInt aMinor,TInt aBuild);
       
  2046 	IMPORT_C TVersionName Name() const;
       
  2047 public:
       
  2048     /**
       
  2049     The major version number.
       
  2050     */
       
  2051 	TInt8 iMajor;
       
  2052 
       
  2053 
       
  2054     /**
       
  2055     The minor version number.
       
  2056     */
       
  2057 	TInt8 iMinor;
       
  2058 
       
  2059 	
       
  2060 	/**
       
  2061 	The build number.
       
  2062 	*/
       
  2063 	TInt16 iBuild;
       
  2064 	};
       
  2065 
       
  2066 
       
  2067 
       
  2068 
       
  2069 /**
       
  2070 @publishedAll
       
  2071 @released
       
  2072 
       
  2073 Indicates the completion status of a request made to a service provider.
       
  2074 
       
  2075 When a thread makes a request, it passes a request status as a parameter. 
       
  2076 On completion, the provider signals the requesting thread's request semaphore 
       
  2077 and stores a completion code in the request status. Typically, this is KErrNone 
       
  2078 or one of the other system-wide error codes.
       
  2079 
       
  2080 This class is not intended for user derivation.
       
  2081 */
       
  2082 class TRequestStatus
       
  2083 	{
       
  2084 public:
       
  2085 	inline TRequestStatus();
       
  2086 	inline TRequestStatus(TInt aVal);
       
  2087 	inline TInt operator=(TInt aVal);
       
  2088 	inline TBool operator==(TInt aVal) const;
       
  2089 	inline TBool operator!=(TInt aVal) const;
       
  2090 	inline TBool operator>=(TInt aVal) const;
       
  2091 	inline TBool operator<=(TInt aVal) const;
       
  2092 	inline TBool operator>(TInt aVal) const;
       
  2093 	inline TBool operator<(TInt aVal) const;
       
  2094 	inline TInt Int() const;
       
  2095 private:
       
  2096 	enum
       
  2097 		{
       
  2098 		EActive				= 1,  //bit0
       
  2099 		ERequestPending		= 2,  //bit1
       
  2100 		};
       
  2101 	TInt iStatus;
       
  2102 	TUint iFlags;
       
  2103 	friend class CActive;
       
  2104 	friend class CActiveScheduler;
       
  2105 	friend class CServer2;
       
  2106 	};
       
  2107 
       
  2108 
       
  2109 
       
  2110 
       
  2111 class TSize;
       
  2112 /**
       
  2113 @publishedAll
       
  2114 @released
       
  2115 
       
  2116 Stores a two-dimensional point in Cartesian co-ordinates.
       
  2117 
       
  2118 Its data members (iX and iY) are public and can be manipulated directly, or 
       
  2119 by means of the functions provided. Functions are provided to set and manipulate 
       
  2120 the point, and to compare points for equality.
       
  2121 */
       
  2122 class TPoint
       
  2123 	{
       
  2124 public:
       
  2125 #ifndef __KERNEL_MODE__
       
  2126 	enum TUninitialized { EUninitialized };
       
  2127 	/**
       
  2128 	Constructs default point, initialising its iX and iY members to zero.
       
  2129 	*/
       
  2130 	TPoint(TUninitialized) {}
       
  2131 	inline TPoint();
       
  2132 	inline TPoint(TInt aX,TInt aY);
       
  2133 	IMPORT_C TBool operator==(const TPoint& aPoint) const;
       
  2134 	IMPORT_C TBool operator!=(const TPoint& aPoint) const;
       
  2135 	IMPORT_C TPoint& operator-=(const TPoint& aPoint);
       
  2136 	IMPORT_C TPoint& operator+=(const TPoint& aPoint);
       
  2137 	IMPORT_C TPoint& operator-=(const TSize& aSize);
       
  2138 	IMPORT_C TPoint& operator+=(const TSize& aSize);
       
  2139 	IMPORT_C TPoint operator-(const TPoint& aPoint) const;
       
  2140 	IMPORT_C TPoint operator+(const TPoint& aPoint) const;
       
  2141 	IMPORT_C TPoint operator-(const TSize& aSize) const;
       
  2142 	IMPORT_C TPoint operator+(const TSize& aSize) const;
       
  2143 	IMPORT_C TPoint operator-() const;
       
  2144 	IMPORT_C void SetXY(TInt aX,TInt aY);
       
  2145 	IMPORT_C TSize AsSize() const;
       
  2146 #endif
       
  2147 public:
       
  2148 	/**
       
  2149 	The x co-ordinate.
       
  2150 	*/
       
  2151 	TInt iX;
       
  2152 	/**
       
  2153 	The y co-ordinate.
       
  2154 	*/
       
  2155 	TInt iY;
       
  2156 	};
       
  2157 
       
  2158 
       
  2159 
       
  2160 
       
  2161 /**
       
  2162 @publishedAll
       
  2163 @prototype
       
  2164 
       
  2165 Stores a three-dimensional point in Cartesian or polar co-ordinates.
       
  2166 Its data members (iX, iY and iZ) are public and can be manipulated directly.
       
  2167 
       
  2168 */
       
  2169 class TPoint3D
       
  2170 	{
       
  2171 public:
       
  2172 #ifndef __KERNEL_MODE__
       
  2173 	enum TUninitialized { EUninitialized };
       
  2174 
       
  2175 	/**
       
  2176 	TUninitialized Constructor
       
  2177 	*/
       
  2178 	TPoint3D(TUninitialized) {}
       
  2179 	/**
       
  2180 	Constructs default TPoint3D, initialising its iX , iY and iZ members to zero.
       
  2181 	*/
       
  2182 	inline TPoint3D();
       
  2183 	/**
       
  2184 	Constructs  TPoint3D with the specified x,y  and z co-ordinates.
       
  2185 	*/
       
  2186 	inline TPoint3D(TInt aX,TInt aY,TInt aZ);
       
  2187 	/** 
       
  2188 	Copy Construct from TPoint , initialises Z co-ordinate to  Zero
       
  2189 	*/
       
  2190 	inline TPoint3D(const  TPoint& aPoint);
       
  2191 
       
  2192 	IMPORT_C TBool operator==(const TPoint3D& aPoint3D) const;
       
  2193 	IMPORT_C TBool operator!=(const TPoint3D& aPoint3D) const;
       
  2194 
       
  2195 	IMPORT_C TPoint3D& operator-=(const TPoint3D& aPoint3D);
       
  2196 	IMPORT_C TPoint3D& operator-=(const TPoint& aPoint);
       
  2197 
       
  2198 	IMPORT_C TPoint3D& operator+=(const TPoint3D& aPoint3D);	
       
  2199 	IMPORT_C TPoint3D& operator+=(const TPoint& aPoint);
       
  2200 
       
  2201 	IMPORT_C TPoint3D operator-(const TPoint3D& aPoint3D) const;
       
  2202 	IMPORT_C TPoint3D operator-(const TPoint& aPoint) const;	
       
  2203 
       
  2204 	IMPORT_C TPoint3D operator+(const TPoint3D& aPoint3D) const;
       
  2205 	IMPORT_C TPoint3D operator+(const TPoint& aPoint) const;
       
  2206 	/**
       
  2207     Unary minus operator. The operator returns the negation of this Point3D 
       
  2208 	*/
       
  2209 	IMPORT_C TPoint3D operator-() const;
       
  2210 	
       
  2211 	/**
       
  2212 	Set Method to set the xyz co-ordinates of TPoint3D
       
  2213 	*/
       
  2214 	IMPORT_C void SetXYZ(TInt aX,TInt aY,TInt aZ);
       
  2215 	
       
  2216 	/**
       
  2217 	TPoint3D from TPoint, sets the Z co-ordinate to  Zero
       
  2218 	*/
       
  2219 	IMPORT_C void SetPoint(const TPoint& aPoint);
       
  2220 
       
  2221 	/**
       
  2222 	Returns TPoint from TPoint3D
       
  2223 	*/
       
  2224 	IMPORT_C TPoint AsPoint() const;
       
  2225 #endif
       
  2226 public:
       
  2227 	/**
       
  2228 	The x co-ordinate.
       
  2229 	*/
       
  2230 	TInt iX;
       
  2231 	/**
       
  2232 	The y co-ordinate.
       
  2233 	*/
       
  2234 	TInt iY;
       
  2235 	/**
       
  2236 	The z co-ordinate.
       
  2237 	*/
       
  2238 	TInt iZ;
       
  2239 	};
       
  2240 
       
  2241 
       
  2242 
       
  2243 /**
       
  2244 @internalTechnology
       
  2245 @prototype For now, only intended to be used by TRwEvent and the Windows Server
       
  2246 
       
  2247 Stores the angular spherical coordinates (Phi,Theta) of a three-dimensional point.
       
  2248 
       
  2249 Its data members (iPhi, iTheta) are public and can be manipulated directly.
       
  2250 */
       
  2251 class TAngle3D
       
  2252 	{
       
  2253 public:
       
  2254 	/**
       
  2255 	The Phi co-ordinate (angle between X-axis and the line that links the projection of the point on the X-Y plane and the origin).
       
  2256 	*/
       
  2257 	TInt iPhi;
       
  2258 	/**
       
  2259 	The Theta co-ordinate (angle between the Z-axis and the line that links the point and the origin).
       
  2260 	*/
       
  2261 	TInt iTheta;
       
  2262 	};
       
  2263 
       
  2264 	
       
  2265 /**
       
  2266 @publishedAll
       
  2267 @released
       
  2268 
       
  2269 Stores a two-dimensional size as a width and a height value.
       
  2270 
       
  2271 Its data members are public and can be manipulated directly, or by means of 
       
  2272 the functions provided.
       
  2273 */
       
  2274 class TSize
       
  2275 	{
       
  2276 public:
       
  2277 #ifndef __KERNEL_MODE__
       
  2278 	enum TUninitialized { EUninitialized };
       
  2279 	/**
       
  2280 	Constructs the size object with its iWidth and iHeight members set to zero.
       
  2281 	*/
       
  2282 	TSize(TUninitialized) {}
       
  2283 	inline TSize();
       
  2284 	inline TSize(TInt aWidth,TInt aHeight);
       
  2285 	IMPORT_C TBool operator==(const TSize& aSize) const;
       
  2286 	IMPORT_C TBool operator!=(const TSize& aSize) const;
       
  2287 	IMPORT_C TSize& operator-=(const TSize& aSize);
       
  2288 	IMPORT_C TSize& operator-=(const TPoint& aPoint);
       
  2289 	IMPORT_C TSize& operator+=(const TSize& aSize);
       
  2290 	IMPORT_C TSize& operator+=(const TPoint& aPoint);
       
  2291 	IMPORT_C TSize operator-(const TSize& aSize) const;
       
  2292 	IMPORT_C TSize operator-(const TPoint& aPoint) const;
       
  2293 	IMPORT_C TSize operator+(const TSize& aSize) const;
       
  2294 	IMPORT_C TSize operator+(const TPoint& aPoint) const;
       
  2295 	IMPORT_C TSize operator-() const;
       
  2296 	IMPORT_C void SetSize(TInt aWidth,TInt aHeight);
       
  2297 	IMPORT_C TPoint AsPoint() const;
       
  2298 #endif
       
  2299 public:
       
  2300 	/**
       
  2301 	The width of this TSize object.
       
  2302 	*/
       
  2303 	TInt iWidth;
       
  2304 	/**
       
  2305 	The height of this TSize object.
       
  2306 	*/
       
  2307 	TInt iHeight;
       
  2308 	};
       
  2309 
       
  2310 
       
  2311 
       
  2312 
       
  2313 /**
       
  2314 @publishedAll
       
  2315 @released
       
  2316 
       
  2317 Information about a kernel object.
       
  2318 
       
  2319 This type of object is passed to RHandleBase::HandleInfo(). The function 
       
  2320 fetches information on the usage of the kernel object associated with that 
       
  2321 handle and stores the information in the THandleInfo object.
       
  2322 
       
  2323 The class contains four data members and no explicitly defined function
       
  2324 members.
       
  2325 */
       
  2326 class THandleInfo
       
  2327 	{
       
  2328 public:
       
  2329 	/**
       
  2330 	The number of times that the kernel object is open in the current process.
       
  2331 	*/
       
  2332 	TInt iNumOpenInProcess;
       
  2333 	
       
  2334 	/**
       
  2335 	The number of times that the kernel object is open in the current thread.
       
  2336 	*/
       
  2337 	TInt iNumOpenInThread;
       
  2338 	
       
  2339 	/**
       
  2340 	The number of processes which have a handle on the kernel object.
       
  2341 	*/
       
  2342 	TInt iNumProcesses;
       
  2343 	
       
  2344 	/**
       
  2345 	The number of threads which have a handle on the kernel object.
       
  2346 	*/
       
  2347 	TInt iNumThreads;
       
  2348 	};
       
  2349 
       
  2350 
       
  2351 
       
  2352 
       
  2353 /**
       
  2354 @internalComponent
       
  2355 */
       
  2356 class TFindHandle
       
  2357 	{
       
  2358 public:
       
  2359 	inline TFindHandle();
       
  2360 	inline TInt Handle() const;
       
  2361 #ifdef __KERNEL_MODE__
       
  2362 	inline TInt Index() const;
       
  2363 	inline TInt UniqueID() const;
       
  2364 	inline TUint64 ObjectID() const;
       
  2365 	inline void Set(TInt aIndex, TInt aUniqueId, TUint64 aObjectId);
       
  2366 #else
       
  2367 protected:
       
  2368 	inline void Reset();
       
  2369 #endif
       
  2370 private:
       
  2371 	TInt iHandle;
       
  2372 	TInt iSpare1;
       
  2373 	TInt iObjectIdLow;
       
  2374 	TInt iObjectIdHigh;
       
  2375 	};
       
  2376 
       
  2377 
       
  2378 
       
  2379 class RThread;
       
  2380 class TFindHandleBase;
       
  2381 class TFindSemaphore;
       
  2382 /**
       
  2383 @publishedAll
       
  2384 @released
       
  2385 
       
  2386 A handle to an object.
       
  2387 
       
  2388 The class encapsulates the basic behaviour of a handle, hiding the
       
  2389 handle-number which identifies the object which the handle represents.
       
  2390 
       
  2391 The class is abstract in the sense that a RHandleBase object is never
       
  2392 explicitly instantiated. It is always a base class to a concrete handle class;
       
  2393 for example, RSemaphore, RThread, RProcess, RCriticalSection etc.
       
  2394 */
       
  2395 class RHandleBase
       
  2396 	{
       
  2397 public:
       
  2398     /**
       
  2399     @publishedAll
       
  2400     @released
       
  2401 
       
  2402 	Read/Write attributes for the handle.
       
  2403     */
       
  2404     enum TAttributes
       
  2405 		{
       
  2406 		EReadAccess=0x1,
       
  2407 		EWriteAccess=0x2,
       
  2408 		EDirectReadAccess=0x4,
       
  2409 		EDirectWriteAccess=0x8,
       
  2410 		};
       
  2411 public:
       
  2412 	inline RHandleBase();
       
  2413 	inline TInt Handle() const;
       
  2414 	inline void SetHandle(TInt aHandle);
       
  2415 	inline TInt SetReturnedHandle(TInt aHandleOrError);	
       
  2416 	static void DoExtendedClose();
       
  2417 #ifndef __KERNEL_MODE__
       
  2418 	IMPORT_C void Close();
       
  2419 	IMPORT_C TName Name() const;
       
  2420 	IMPORT_C TFullName FullName() const;
       
  2421 	IMPORT_C void FullName(TDes& aName) const;
       
  2422 	IMPORT_C void SetHandleNC(TInt aHandle);
       
  2423 	IMPORT_C TInt Duplicate(const RThread& aSrc,TOwnerType aType=EOwnerProcess);
       
  2424 	IMPORT_C void HandleInfo(THandleInfo* anInfo);
       
  2425 	IMPORT_C TUint Attributes() const;
       
  2426 	IMPORT_C TInt BTraceId() const;
       
  2427 	IMPORT_C void NotifyDestruction(TRequestStatus& aStatus);	/**< @internalTechnology */
       
  2428 protected:
       
  2429 	inline RHandleBase(TInt aHandle);
       
  2430 	IMPORT_C TInt Open(const TFindHandleBase& aHandle,TOwnerType aType);
       
  2431 	static TInt SetReturnedHandle(TInt aHandleOrError,RHandleBase& aHandle);
       
  2432 	TInt OpenByName(const TDesC &aName,TOwnerType aOwnerType,TInt aObjectType);
       
  2433 #endif
       
  2434 private:
       
  2435 	static void DoExtendedCloseL();
       
  2436 protected:
       
  2437 	TInt iHandle;
       
  2438 	};
       
  2439 
       
  2440 
       
  2441 
       
  2442 
       
  2443 class RMessagePtr2;
       
  2444 /**
       
  2445 @publishedAll
       
  2446 @released
       
  2447 
       
  2448 A handle to a semaphore.
       
  2449 
       
  2450 The semaphore itself is a Kernel side object.
       
  2451 
       
  2452 As with all handles, they should be closed after use. RHandleBase provides 
       
  2453 the necessary Close() function, which should be called when the handle is 
       
  2454 no longer required.
       
  2455 
       
  2456 @see RHandleBase::Close
       
  2457 */
       
  2458 class RSemaphore : public RHandleBase
       
  2459 	{
       
  2460 public:
       
  2461 #ifndef __KERNEL_MODE__
       
  2462 	inline TInt Open(const TFindSemaphore& aFind,TOwnerType aType=EOwnerProcess);
       
  2463 	IMPORT_C TInt CreateLocal(TInt aCount,TOwnerType aType=EOwnerProcess);
       
  2464 	IMPORT_C TInt CreateGlobal(const TDesC& aName,TInt aCount,TOwnerType aType=EOwnerProcess);
       
  2465 	IMPORT_C TInt OpenGlobal(const TDesC& aName,TOwnerType aType=EOwnerProcess);
       
  2466 	IMPORT_C TInt Open(RMessagePtr2 aMessage,TInt aParam,TOwnerType aType=EOwnerProcess);
       
  2467 	IMPORT_C TInt Open(TInt aArgumentIndex, TOwnerType aType=EOwnerProcess);
       
  2468 	IMPORT_C void Wait();
       
  2469 	IMPORT_C TInt Wait(TInt aTimeout);	// timeout in microseconds
       
  2470 	IMPORT_C void Signal();
       
  2471 	IMPORT_C void Signal(TInt aCount);
       
  2472 #endif
       
  2473 	};
       
  2474 
       
  2475 
       
  2476 
       
  2477 
       
  2478 /**
       
  2479 @publishedAll
       
  2480 @released
       
  2481 
       
  2482 A fast semaphore.
       
  2483 
       
  2484 This is a layer over a standard semaphore, and only calls into the kernel side
       
  2485 if there is contention.
       
  2486 */
       
  2487 class RFastLock : public RSemaphore
       
  2488 	{
       
  2489 public:
       
  2490 	inline RFastLock();
       
  2491 	IMPORT_C TInt CreateLocal(TOwnerType aType=EOwnerProcess);
       
  2492 	IMPORT_C void Wait();
       
  2493 	IMPORT_C void Signal();
       
  2494 private:
       
  2495 	TInt iCount;
       
  2496 	};
       
  2497 
       
  2498 
       
  2499 
       
  2500 
       
  2501 /**
       
  2502 @publishedAll
       
  2503 @released
       
  2504 
       
  2505 A read-write lock.
       
  2506 
       
  2507 This is a lock for co-ordinating readers and writers to shared resources.
       
  2508 It is designed to allow multiple concurrent readers.
       
  2509 It is not a kernel side object and so does not inherit from RHandleBase.
       
  2510 */
       
  2511 class RReadWriteLock
       
  2512 	{
       
  2513 public:
       
  2514 	enum TReadWriteLockPriority
       
  2515 		{
       
  2516 		/** Pending writers always get the lock before pending readers */
       
  2517 		EWriterPriority,
       
  2518 		/** Lock is given alternately to pending readers and writers */
       
  2519 		EAlternatePriority,
       
  2520 		/** Pending readers always get the lock before pending writers - beware writer starvation! */
       
  2521 		EReaderPriority,
       
  2522 		};
       
  2523 	enum TReadWriteLockClientCategoryLimit
       
  2524 		{
       
  2525 		/** Maximum number of clients in each category: read locked, read lock pending, write lock pending */
       
  2526 		EReadWriteLockClientCategoryLimit = KMaxTUint16
       
  2527 		};
       
  2528 
       
  2529 public:
       
  2530 	inline RReadWriteLock();
       
  2531 	IMPORT_C TInt CreateLocal(TReadWriteLockPriority aPriority = EWriterPriority);
       
  2532 	IMPORT_C void Close();
       
  2533 
       
  2534 	IMPORT_C void ReadLock();
       
  2535 	IMPORT_C void WriteLock();
       
  2536 	IMPORT_C TBool TryReadLock();
       
  2537 	IMPORT_C TBool TryWriteLock();
       
  2538 	IMPORT_C TBool TryUpgradeReadLock();
       
  2539 	IMPORT_C void DowngradeWriteLock();
       
  2540 	IMPORT_C void Unlock();
       
  2541 
       
  2542 private:
       
  2543 	RReadWriteLock(const RReadWriteLock& aLock);
       
  2544 	RReadWriteLock& operator=(const RReadWriteLock& aLock);
       
  2545 
       
  2546 	TInt UnlockWriter();
       
  2547 	TInt UnlockAlternate();
       
  2548 	TInt UnlockReader();
       
  2549 
       
  2550 private:
       
  2551 	volatile TUint64 iValues; // Bits 0-15: readers; bit 16: writer; bits 32-47: readersPending; bits 48-63: writersPending
       
  2552 	TReadWriteLockPriority iPriority;
       
  2553 	RSemaphore iReaderSem;
       
  2554 	RSemaphore iWriterSem;
       
  2555 	TUint32 iSpare[4]; // Reserved for future development
       
  2556 	};
       
  2557 
       
  2558 
       
  2559 
       
  2560 
       
  2561 /**
       
  2562 @publishedAll
       
  2563 @released
       
  2564 
       
  2565 The user-side handle to a logical channel.
       
  2566 
       
  2567 The class provides functions that are used to open a channel
       
  2568 to a device driver, and to make requests. A device driver provides
       
  2569 a derived class to give the user-side a tailored interface to the driver.
       
  2570 */
       
  2571 class RBusLogicalChannel : public RHandleBase
       
  2572 	{
       
  2573 public:
       
  2574 	IMPORT_C TInt Open(RMessagePtr2 aMessage,TInt aParam,TOwnerType aType=EOwnerProcess);
       
  2575 	IMPORT_C TInt Open(TInt aArgumentIndex, TOwnerType aType=EOwnerProcess);
       
  2576 protected:
       
  2577 	inline TInt DoCreate(const TDesC& aDevice, const TVersion& aVer, TInt aUnit, const TDesC* aDriver, const TDesC8* anInfo, TOwnerType aType=EOwnerProcess, TBool aProtected=EFalse);
       
  2578 	IMPORT_C void DoCancel(TUint aReqMask);
       
  2579 	IMPORT_C void DoRequest(TInt aReqNo,TRequestStatus& aStatus);
       
  2580 	IMPORT_C void DoRequest(TInt aReqNo,TRequestStatus& aStatus,TAny* a1);
       
  2581 	IMPORT_C void DoRequest(TInt aReqNo,TRequestStatus& aStatus,TAny* a1,TAny* a2);
       
  2582 	IMPORT_C TInt DoControl(TInt aFunction);
       
  2583 	IMPORT_C TInt DoControl(TInt aFunction,TAny* a1);
       
  2584 	IMPORT_C TInt DoControl(TInt aFunction,TAny* a1,TAny* a2);
       
  2585 	inline TInt DoSvControl(TInt aFunction) { return DoControl(aFunction); }
       
  2586 	inline TInt DoSvControl(TInt aFunction,TAny* a1) { return DoControl(aFunction, a1); }
       
  2587 	inline TInt DoSvControl(TInt aFunction,TAny* a1,TAny* a2) { return DoControl(aFunction, a1, a2); }
       
  2588 private:
       
  2589 	IMPORT_C TInt DoCreate(const TDesC& aDevice, const TVersion& aVer, TInt aUnit, const TDesC* aDriver, const TDesC8* aInfo, TInt aType);
       
  2590 private:
       
  2591 	// Padding for Binary Compatibility purposes
       
  2592 	TInt iPadding1;
       
  2593 	TInt iPadding2;
       
  2594 	};
       
  2595 
       
  2596 
       
  2597 
       
  2598 
       
  2599 /**
       
  2600 @internalComponent
       
  2601 
       
  2602 Base class for memory allocators.
       
  2603 */
       
  2604 // Put pure virtual functions into a separate base class so that vptr is at same
       
  2605 // place in both GCC98r2 and EABI builds.
       
  2606 class MAllocator
       
  2607 	{
       
  2608 public:
       
  2609 	virtual TAny* Alloc(TInt aSize)=0;
       
  2610 	virtual void Free(TAny* aPtr)=0;
       
  2611 	virtual TAny* ReAlloc(TAny* aPtr, TInt aSize, TInt aMode=0)=0;
       
  2612 	virtual TInt AllocLen(const TAny* aCell) const =0;
       
  2613 	virtual TInt Compress()=0;
       
  2614 	virtual void Reset()=0;
       
  2615 	virtual TInt AllocSize(TInt& aTotalAllocSize) const =0;
       
  2616 	virtual TInt Available(TInt& aBiggestBlock) const =0;
       
  2617 	virtual TInt DebugFunction(TInt aFunc, TAny* a1=NULL, TAny* a2=NULL)=0;
       
  2618 	virtual TInt Extension_(TUint aExtensionId, TAny*& a0, TAny* a1)=0;
       
  2619 	};
       
  2620 
       
  2621 
       
  2622 
       
  2623 
       
  2624 /**
       
  2625 @publishedAll
       
  2626 @released
       
  2627 
       
  2628 Base class for heaps.
       
  2629 */
       
  2630 class RAllocator : public MAllocator
       
  2631 	{
       
  2632 public:
       
  2633 
       
  2634 
       
  2635     /**
       
  2636     A set of heap allocation failure flags.
       
  2637     
       
  2638     This enumeration indicates how to simulate heap allocation failure.
       
  2639 
       
  2640     @see RAllocator::__DbgSetAllocFail()
       
  2641     */
       
  2642 	enum TAllocFail {
       
  2643                     /**
       
  2644                     Attempts to allocate from this heap fail at a random rate;
       
  2645                     however, the interval pattern between failures is the same
       
  2646                     every time simulation is started.
       
  2647                     */
       
  2648 	                ERandom,
       
  2649 	                
       
  2650 	                
       
  2651                   	/**
       
  2652                   	Attempts to allocate from this heap fail at a random rate.
       
  2653                   	The interval pattern between failures may be different every
       
  2654                   	time the simulation is started.
       
  2655                   	*/
       
  2656 	                ETrueRandom,
       
  2657 	                
       
  2658 	                
       
  2659                     /**
       
  2660                     Attempts to allocate from this heap fail at a rate aRate;
       
  2661                     for example, if aRate is 3, allocation fails at every
       
  2662                     third attempt.
       
  2663                     */
       
  2664 	                EDeterministic,
       
  2665 
       
  2666 	                
       
  2667 	                /**
       
  2668 	                Cancels simulated heap allocation failure.
       
  2669 	                */
       
  2670 	                ENone,
       
  2671 	                
       
  2672 	                
       
  2673 	                /**
       
  2674 	                An allocation from this heap will fail after the next aRate - 1 
       
  2675 					allocation attempts. For example, if aRate = 1 then the next 
       
  2676 					attempt to allocate from this heap will fail.
       
  2677 	                */
       
  2678 	                EFailNext,
       
  2679 	                
       
  2680 	                /**
       
  2681 	                Cancels simulated heap allocation failure, and sets
       
  2682 	                the nesting level for all allocated cells to zero.
       
  2683 	                */
       
  2684 	                EReset,
       
  2685 
       
  2686                     /**
       
  2687                     aBurst allocations from this heap fail at a random rate;
       
  2688                     however, the interval pattern between failures is the same
       
  2689                     every time the simulation is started.
       
  2690                     */
       
  2691 	                EBurstRandom,
       
  2692 	                
       
  2693 	                
       
  2694                   	/**
       
  2695                   	aBurst allocations from this heap fail at a random rate.
       
  2696                   	The interval pattern between failures may be different every
       
  2697                   	time the simulation is started.
       
  2698                   	*/
       
  2699 	                EBurstTrueRandom,
       
  2700 	                
       
  2701 	                
       
  2702                     /**
       
  2703                     aBurst allocations from this heap fail at a rate aRate.
       
  2704                     For example, if aRate is 10 and aBurst is 2, then 2 allocations
       
  2705 					will fail at every tenth attempt.
       
  2706                     */
       
  2707 	                EBurstDeterministic,
       
  2708 
       
  2709 	                /**
       
  2710 	                aBurst allocations from this heap will fail after the next aRate - 1 
       
  2711 					allocation attempts have occurred. For example, if aRate = 1 and 
       
  2712 					aBurst = 3 then the next 3 attempts to allocate from this heap will fail.
       
  2713 	                */
       
  2714 	                EBurstFailNext,
       
  2715 
       
  2716 					/**
       
  2717 					Use this to determine how many times the current debug 
       
  2718 					failure mode has failed so far.
       
  2719 					@see RAllocator::__DbgCheckFailure()
       
  2720 					*/
       
  2721 					ECheckFailure,
       
  2722 	                };
       
  2723 	                
       
  2724 	                
       
  2725     /**
       
  2726     Heap debug checking type flag.
       
  2727     */
       
  2728 	enum TDbgHeapType {
       
  2729                       /**
       
  2730                       The heap is a user heap.
       
  2731                       */
       
  2732 	                  EUser,
       
  2733 	                  
       
  2734                       /**
       
  2735                       The heap is the Kernel heap.
       
  2736                       */	                  
       
  2737 	                  EKernel
       
  2738 	                  };
       
  2739 	                  
       
  2740 	                  
       
  2741 	enum TAllocDebugOp {ECount, EMarkStart, EMarkEnd, ECheck, ESetFail, ECopyDebugInfo, ESetBurstFail};
       
  2742 	
       
  2743 	
       
  2744 	/**
       
  2745 	Flags controlling reallocation.
       
  2746 	*/
       
  2747 	enum TReAllocMode {
       
  2748 	                  /**
       
  2749 	                  A reallocation of a cell must not change
       
  2750 	                  the start address of the cell.
       
  2751 	                  */
       
  2752 	                  ENeverMove=1,
       
  2753 	                  
       
  2754 	                  /**
       
  2755 	                  Allows the start address of the cell to change
       
  2756 	                  if the cell shrinks in size.
       
  2757 	                  */
       
  2758 	                  EAllowMoveOnShrink=2
       
  2759 	                  };
       
  2760 	                  
       
  2761 	                  
       
  2762 	enum TFlags {ESingleThreaded=1, EFixedSize=2, ETraceAllocs=4, EMonitorMemory=8,};
       
  2763 	struct SCheckInfo {TBool iAll; TInt iCount; const TDesC8* iFileName; TInt iLineNum;};
       
  2764 #ifndef SYMBIAN_ENABLE_SPLIT_HEADERS
       
  2765 	struct SRAllocatorBurstFail {TInt iBurst; TInt iRate; TInt iUnused[2];};
       
  2766 #endif
       
  2767 	enum {EMaxHandles=32};
       
  2768 
       
  2769 public:
       
  2770 	inline RAllocator();
       
  2771 #ifndef __KERNEL_MODE__
       
  2772 	IMPORT_C TInt Open();
       
  2773 	IMPORT_C void Close();
       
  2774 	IMPORT_C TAny* AllocZ(TInt aSize);
       
  2775 	IMPORT_C TAny* AllocZL(TInt aSize);
       
  2776 	IMPORT_C TAny* AllocL(TInt aSize);
       
  2777 	IMPORT_C TAny* AllocLC(TInt aSize);
       
  2778 	IMPORT_C void FreeZ(TAny*& aCell);
       
  2779 	IMPORT_C TAny* ReAllocL(TAny* aCell, TInt aSize, TInt aMode=0);
       
  2780 	IMPORT_C TInt Count() const;
       
  2781 	IMPORT_C TInt Count(TInt& aFreeCount) const;
       
  2782 #endif
       
  2783 	UIMPORT_C void Check() const;
       
  2784 	UIMPORT_C void __DbgMarkStart();
       
  2785 	UIMPORT_C TUint32 __DbgMarkEnd(TInt aCount);
       
  2786 	UIMPORT_C TInt __DbgMarkCheck(TBool aCountAll, TInt aCount, const TDesC8& aFileName, TInt aLineNum);
       
  2787 	inline void __DbgMarkCheck(TBool aCountAll, TInt aCount, const TUint8* aFileName, TInt aLineNum);
       
  2788 	UIMPORT_C void __DbgSetAllocFail(TAllocFail aType, TInt aRate);
       
  2789 	UIMPORT_C void __DbgSetBurstAllocFail(TAllocFail aType, TUint aRate, TUint aBurst);
       
  2790 	UIMPORT_C TUint __DbgCheckFailure();
       
  2791 protected:
       
  2792 	UIMPORT_C virtual TInt Extension_(TUint aExtensionId, TAny*& a0, TAny* a1);
       
  2793 #ifndef __KERNEL_MODE__
       
  2794 	IMPORT_C virtual void DoClose();
       
  2795 #endif
       
  2796 protected:
       
  2797 	TInt iAccessCount;
       
  2798 	TInt iHandleCount;
       
  2799 	TInt* iHandles;
       
  2800 	TUint32 iFlags;
       
  2801 	TInt iCellCount;
       
  2802 	TInt iTotalAllocSize;
       
  2803 	};
       
  2804 
       
  2805 
       
  2806 
       
  2807 
       
  2808 class UserHeap;
       
  2809 /**
       
  2810 @publishedAll
       
  2811 @released
       
  2812 
       
  2813 Represents the default implementation for a heap.
       
  2814 
       
  2815 The default implementation uses an address-ordered first fit type algorithm.
       
  2816 
       
  2817 The heap itself is contained in a chunk and may be the only occupant of the 
       
  2818 chunk or may share the chunk with the program stack.
       
  2819 
       
  2820 The class contains member functions for allocating, adjusting, freeing individual 
       
  2821 cells and generally managing the heap.
       
  2822 
       
  2823 The class is not a handle in the same sense that RChunk is a handle; i.e. 
       
  2824 there is no Kernel object which corresponds to the heap.
       
  2825 */
       
  2826 class RHeap : public RAllocator
       
  2827 	{
       
  2828 public:
       
  2829     /**
       
  2830     The structure of a heap cell header for a heap cell on the free list.
       
  2831     */
       
  2832 	struct SCell {
       
  2833 	             /**
       
  2834 	             The length of the cell, which includes the length of
       
  2835 	             this header.
       
  2836 	             */
       
  2837 	             TInt len; 
       
  2838 	             
       
  2839 	             
       
  2840 	             /**
       
  2841 	             A pointer to the next cell in the free list.
       
  2842 	             */
       
  2843 	             SCell* next;
       
  2844 	             };
       
  2845 
       
  2846 
       
  2847 	/**
       
  2848     The structure of a heap cell header for an allocated heap cell in a debug build.
       
  2849     */             
       
  2850 	struct SDebugCell {
       
  2851 	                  /**
       
  2852 	                  The length of the cell, which includes the length of
       
  2853                       this header.
       
  2854 	                  */
       
  2855 	                  TInt len;
       
  2856 	                  
       
  2857 	                  
       
  2858 	                  /**
       
  2859 	                  The nested level.
       
  2860 	                  */
       
  2861 	                  TInt nestingLevel;
       
  2862 	                  
       
  2863 	                  
       
  2864 	                  /**
       
  2865 	                  The cumulative number of allocated cells
       
  2866 	                  */
       
  2867 	                  TInt allocCount;
       
  2868 	                  };
       
  2869 
       
  2870 	/**
       
  2871     @internalComponent
       
  2872     */
       
  2873 	struct SHeapCellInfo { RHeap* iHeap; TInt iTotalAlloc;	TInt iTotalAllocSize; TInt iTotalFree; TInt iLevelAlloc; SDebugCell* iStranded; };
       
  2874 
       
  2875 	/**
       
  2876 	@internalComponent
       
  2877 	*/
       
  2878 	struct _s_align {char c; double d;};
       
  2879 
       
  2880 	/** 
       
  2881 	The default cell alignment.
       
  2882 	*/
       
  2883 	enum {ECellAlignment = sizeof(_s_align)-sizeof(double)};
       
  2884 	
       
  2885 	/**
       
  2886 	Size of a free cell header.
       
  2887 	*/
       
  2888 	enum {EFreeCellSize = sizeof(SCell)};
       
  2889 
       
  2890 
       
  2891 #ifdef _DEBUG
       
  2892     /**
       
  2893     Size of an allocated cell header in a debug build.
       
  2894     */
       
  2895 	enum {EAllocCellSize = sizeof(SDebugCell)};
       
  2896 #else
       
  2897     /**
       
  2898     Size of an allocated cell header in a release build.
       
  2899     */
       
  2900 	enum {EAllocCellSize = sizeof(SCell*)};
       
  2901 #endif
       
  2902 
       
  2903 
       
  2904     /**
       
  2905     @internalComponent
       
  2906     */
       
  2907 	enum TDebugOp {EWalk=128};
       
  2908 	
       
  2909 	
       
  2910     /**
       
  2911     @internalComponent
       
  2912     */
       
  2913 	enum TCellType
       
  2914 		{EGoodAllocatedCell, EGoodFreeCell, EBadAllocatedCellSize, EBadAllocatedCellAddress,
       
  2915 		EBadFreeCellAddress, EBadFreeCellSize};
       
  2916 
       
  2917 		
       
  2918     /**
       
  2919     @internalComponent
       
  2920     */
       
  2921 	enum TDebugHeapId {EUser=0, EKernel=1};
       
  2922     
       
  2923     /**
       
  2924     @internalComponent
       
  2925     */
       
  2926     enum TDefaultShrinkRatios {EShrinkRatio1=256, EShrinkRatioDflt=512};
       
  2927 
       
  2928 #ifndef SYMBIAN_ENABLE_SPLIT_HEADERS
       
  2929 	/**
       
  2930     @internalComponent
       
  2931     */
       
  2932 #else
       
  2933 private:
       
  2934 #endif
       
  2935     typedef void (*TWalkFunc)(TAny*, TCellType, TAny*, TInt);
       
  2936 
       
  2937 public:
       
  2938 	UIMPORT_C virtual TAny* Alloc(TInt aSize);
       
  2939 	UIMPORT_C virtual void Free(TAny* aPtr);
       
  2940 	UIMPORT_C virtual TAny* ReAlloc(TAny* aPtr, TInt aSize, TInt aMode=0);
       
  2941 	UIMPORT_C virtual TInt AllocLen(const TAny* aCell) const;
       
  2942 #ifndef __KERNEL_MODE__
       
  2943 	UIMPORT_C virtual TInt Compress();
       
  2944 	UIMPORT_C virtual void Reset();
       
  2945 	UIMPORT_C virtual TInt AllocSize(TInt& aTotalAllocSize) const;
       
  2946 	UIMPORT_C virtual TInt Available(TInt& aBiggestBlock) const;
       
  2947 #endif
       
  2948 	UIMPORT_C virtual TInt DebugFunction(TInt aFunc, TAny* a1=NULL, TAny* a2=NULL);
       
  2949 protected:
       
  2950 	UIMPORT_C virtual TInt Extension_(TUint aExtensionId, TAny*& a0, TAny* a1);
       
  2951 public:
       
  2952 	UIMPORT_C RHeap(TInt aMaxLength, TInt aAlign=0, TBool aSingleThread=ETrue);
       
  2953 	UIMPORT_C RHeap(TInt aChunkHandle, TInt aOffset, TInt aMinLength, TInt aMaxLength, TInt aGrowBy, TInt aAlign=0, TBool aSingleThread=EFalse);
       
  2954 	UIMPORT_C TAny* operator new(TUint aSize, TAny* aBase) __NO_THROW;
       
  2955 	inline void operator delete(TAny* aPtr, TAny* aBase);
       
  2956 	inline TUint8* Base() const;
       
  2957 	inline TInt Size() const;
       
  2958 	inline TInt MaxLength() const;
       
  2959 	inline TInt Align(TInt a) const;
       
  2960 	inline const TAny* Align(const TAny* a) const;
       
  2961 	inline TBool IsLastCell(const SCell* aCell) const;
       
  2962 	inline void Lock() const;
       
  2963 	inline void Unlock() const;
       
  2964 	inline TInt ChunkHandle() const;
       
  2965 protected:
       
  2966 	inline RHeap();
       
  2967 	void Initialise();
       
  2968 	SCell* DoAlloc(TInt aSize, SCell*& aLastFree);
       
  2969 	void DoFree(SCell* pC);
       
  2970 	TInt TryToGrowHeap(TInt aSize, SCell* aLastFree);
       
  2971 	inline void FindFollowingFreeCell(SCell* aCell, SCell*& pPrev, SCell*& aNext);
       
  2972 	TInt TryToGrowCell(SCell* pC, SCell* pP, SCell* pE, TInt aSize);
       
  2973 	TInt Reduce(SCell* aCell);
       
  2974 	UIMPORT_C SCell* GetAddress(const TAny* aCell) const;
       
  2975 	void CheckCell(const SCell* aCell) const;
       
  2976 	void Walk(TWalkFunc aFunc, TAny* aPtr);
       
  2977 	static void WalkCheckCell(TAny* aPtr, TCellType aType, TAny* aCell, TInt aLen);
       
  2978 	TInt DoCountAllocFree(TInt& aFree);
       
  2979 	TInt DoCheckHeap(SCheckInfo* aInfo);
       
  2980 	void DoMarkStart();
       
  2981 	TUint32 DoMarkEnd(TInt aExpected);
       
  2982 	void DoSetAllocFail(TAllocFail aType, TInt aRate);
       
  2983 	TBool CheckForSimulatedAllocFail();
       
  2984 	inline TInt SetBrk(TInt aBrk);
       
  2985 	inline TAny* ReAllocImpl(TAny* aPtr, TInt aSize, TInt aMode);
       
  2986 	void DoSetAllocFail(TAllocFail aType, TInt aRate, TUint aBurst);
       
  2987 protected:
       
  2988 	TInt iMinLength;
       
  2989 	TInt iMaxLength;
       
  2990 	TInt iOffset;
       
  2991 	TInt iGrowBy;
       
  2992 	TInt iChunkHandle;
       
  2993 	RFastLock iLock;
       
  2994 	TUint8* iBase;
       
  2995 	TUint8* iTop;
       
  2996 	TInt iAlign;
       
  2997 	TInt iMinCell;
       
  2998 	TInt iPageSize;
       
  2999 	SCell iFree;
       
  3000 protected:
       
  3001 	TInt iNestingLevel;
       
  3002 	TInt iAllocCount;
       
  3003 	TAllocFail iFailType;
       
  3004 	TInt iFailRate;
       
  3005 	TBool iFailed;
       
  3006 	TInt iFailAllocCount;
       
  3007 	TInt iRand;
       
  3008 	TAny* iTestData;
       
  3009 
       
  3010 	friend class UserHeap;
       
  3011 	};
       
  3012 
       
  3013 
       
  3014 
       
  3015 
       
  3016 
       
  3017 class OnlyCreateWithNull;
       
  3018 
       
  3019 /** @internalTechnology */
       
  3020 typedef void (OnlyCreateWithNull::* __NullPMF)();
       
  3021 
       
  3022 /** @internalTechnology */
       
  3023 class OnlyCreateWithNull
       
  3024 	{
       
  3025 public:
       
  3026 	inline OnlyCreateWithNull(__NullPMF /*aPointerToNull*/) {}
       
  3027 	};
       
  3028 
       
  3029 /**
       
  3030 @publishedAll
       
  3031 @released
       
  3032 
       
  3033 A handle to a message sent by the client to the server.
       
  3034 
       
  3035 A server's interaction with its clients is channelled through an RMessagePtr2
       
  3036 object, which acts as a handle to a message sent by the client.
       
  3037 The details of the original message are kept by the kernel allowing it enforce
       
  3038 correct usage of the member functions of this class.
       
  3039 
       
  3040 @see RMessage2
       
  3041 */
       
  3042 class RMessagePtr2
       
  3043 	{
       
  3044 public:
       
  3045 	inline RMessagePtr2();
       
  3046 	inline TBool IsNull() const;
       
  3047 	inline TInt Handle() const;
       
  3048 #ifndef __KERNEL_MODE__
       
  3049 	IMPORT_C void Complete(TInt aReason) const;
       
  3050 	IMPORT_C void Complete(RHandleBase aHandle) const;
       
  3051 	IMPORT_C TInt GetDesLength(TInt aParam) const;
       
  3052 	IMPORT_C TInt GetDesLengthL(TInt aParam) const;
       
  3053 	IMPORT_C TInt GetDesMaxLength(TInt aParam) const;
       
  3054 	IMPORT_C TInt GetDesMaxLengthL(TInt aParam) const;
       
  3055 	IMPORT_C void ReadL(TInt aParam,TDes8& aDes,TInt aOffset=0) const;
       
  3056 	IMPORT_C void ReadL(TInt aParam,TDes16 &aDes,TInt aOffset=0) const;
       
  3057 	IMPORT_C void WriteL(TInt aParam,const TDesC8& aDes,TInt aOffset=0) const;
       
  3058 	IMPORT_C void WriteL(TInt aParam,const TDesC16& aDes,TInt aOffset=0) const;
       
  3059 	IMPORT_C TInt Read(TInt aParam,TDes8& aDes,TInt aOffset=0) const;
       
  3060 	IMPORT_C TInt Read(TInt aParam,TDes16 &aDes,TInt aOffset=0) const;
       
  3061 	IMPORT_C TInt Write(TInt aParam,const TDesC8& aDes,TInt aOffset=0) const;
       
  3062 	IMPORT_C TInt Write(TInt aParam,const TDesC16& aDes,TInt aOffset=0) const;
       
  3063 	IMPORT_C void Panic(const TDesC& aCategory,TInt aReason) const;
       
  3064 	IMPORT_C void Kill(TInt aReason) const;
       
  3065 	IMPORT_C void Terminate(TInt aReason) const;
       
  3066 	IMPORT_C TInt SetProcessPriority(TProcessPriority aPriority) const;
       
  3067 	inline   void SetProcessPriorityL(TProcessPriority aPriority) const;
       
  3068 	IMPORT_C TInt Client(RThread& aClient, TOwnerType aOwnerType=EOwnerProcess) const;
       
  3069 	inline   void ClientL(RThread& aClient, TOwnerType aOwnerType=EOwnerProcess) const;
       
  3070 	IMPORT_C TUint ClientProcessFlags() const;
       
  3071 	IMPORT_C const TRequestStatus* ClientStatus() const;
       
  3072 	IMPORT_C TBool ClientIsRealtime() const;
       
  3073 	
       
  3074 	/**
       
  3075 	Return the Secure ID of the process which sent this message.
       
  3076 
       
  3077 	If an intended use of this method is to check that the Secure ID is
       
  3078 	a given value, then the use of a TSecurityPolicy object should be
       
  3079 	considered. E.g. Instead of something like:
       
  3080 
       
  3081 	@code
       
  3082 		RMessagePtr2& message;
       
  3083 		TInt error = message.SecureId()==KRequiredSecureId ? KErrNone : KErrPermissionDenied;
       
  3084 	@endcode
       
  3085 
       
  3086 	this could be used;
       
  3087 
       
  3088 	@code
       
  3089 		RMessagePtr2& message;
       
  3090 		static _LIT_SECURITY_POLICY_S0(mySidPolicy, KRequiredSecureId);
       
  3091 		TBool pass = mySidPolicy().CheckPolicy(message);
       
  3092 	@endcode
       
  3093 
       
  3094 	This has the benefit that the TSecurityPolicy::CheckPolicy methods are
       
  3095 	configured by the system wide Platform Security configuration. I.e. are
       
  3096 	capable of emitting diagnostic messages when a check fails and/or the
       
  3097 	check can be forced to always pass.
       
  3098 
       
  3099 	@see TSecurityPolicy::CheckPolicy(RMessagePtr2 aMsgPtr, const char* aDiagnostic) const
       
  3100 	@see _LIT_SECURITY_POLICY_S0
       
  3101 
       
  3102 	@return The Secure ID.
       
  3103 
       
  3104 	@publishedAll
       
  3105 	@released
       
  3106 	*/
       
  3107 	IMPORT_C TSecureId SecureId() const;
       
  3108 
       
  3109 	/**
       
  3110 	Return the Vendor ID of the process which sent this message.
       
  3111 
       
  3112 	If an intended use of this method is to check that the Vendor ID is
       
  3113 	a given value, then the use of a TSecurityPolicy object should be
       
  3114 	considered. E.g. Instead of something like:
       
  3115 
       
  3116 	@code
       
  3117 		RMessagePtr2& message;
       
  3118 		TInt error = message.VendorId()==KRequiredVendorId ? KErrNone : KErrPermissionDenied;
       
  3119 	@endcode
       
  3120 
       
  3121 	this could be used;
       
  3122 
       
  3123 	@code
       
  3124 		RMessagePtr2& message;
       
  3125 		static _LIT_SECURITY_POLICY_V0(myVidPolicy, KRequiredVendorId);
       
  3126 		TBool pass = myVidPolicy().CheckPolicy(message);
       
  3127 	@endcode
       
  3128 
       
  3129 	This has the benefit that the TSecurityPolicy::CheckPolicy methods are
       
  3130 	configured by the system wide Platform Security configuration. I.e. are
       
  3131 	capable of emitting diagnostic messages when a check fails and/or the
       
  3132 	check can be forced to always pass.
       
  3133 
       
  3134 	@see TSecurityPolicy::CheckPolicy(RMessagePtr2 aMsgPtr, const char* aDiagnostic) const
       
  3135 	@see _LIT_SECURITY_POLICY_V0
       
  3136 
       
  3137 	@return The Vendor ID.
       
  3138 	@publishedAll
       
  3139 	@released
       
  3140 	*/
       
  3141 	IMPORT_C TVendorId VendorId() const;
       
  3142 
       
  3143 	/**
       
  3144 	Check if the process which sent this message has a given capability.
       
  3145 
       
  3146 	When a check fails the action taken is determined by the system wide Platform Security
       
  3147 	configuration. If PlatSecDiagnostics is ON, then a diagnostic message is emitted.
       
  3148 	If PlatSecEnforcement is OFF, then this function will return ETrue even though the
       
  3149 	check failed.
       
  3150 
       
  3151 	@param aCapability The capability to test.
       
  3152 	@param aDiagnostic A string that will be emitted along with any diagnostic message
       
  3153 								that may be issued if the test finds the capability is not present.
       
  3154 								This string must be enclosed in the __PLATSEC_DIAGNOSTIC_STRING macro
       
  3155 								which enables it to be easily removed from the system.
       
  3156 	@return ETrue if process which sent this message has the capability, EFalse otherwise.
       
  3157 	@publishedAll
       
  3158 	@released
       
  3159 	*/
       
  3160 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3161 	inline TBool HasCapability(TCapability aCapability, const char* aDiagnostic=0) const;
       
  3162 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3163 	// Only available to NULL arguments
       
  3164 	inline TBool HasCapability(TCapability aCapability, OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3165 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
       
  3166 	// For things using KSuppressPlatSecDiagnostic
       
  3167 	inline TBool HasCapability(TCapability aCapability, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3168 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
       
  3169 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3170 
       
  3171  	/**
       
  3172 	Check if the process which sent this message has a given capability.
       
  3173 
       
  3174 	When a check fails the action taken is determined by the system wide Platform Security
       
  3175 	configuration. If PlatSecDiagnostics is ON, then a diagnostic message is emitted.
       
  3176 	If PlatSecEnforcement is OFF, then this function will not leave even though the
       
  3177 	check failed.
       
  3178 
       
  3179  	@param aCapability The capability to test.
       
  3180  	@param aDiagnosticMessage A string that will be emitted along with any diagnostic message
       
  3181  								that may be issued if the test finds the capability is not present.
       
  3182  								This string must be enclosed in the __PLATSEC_DIAGNOSTIC_STRING macro
       
  3183  								which enables it to be easily removed from the system.
       
  3184  	@leave KErrPermissionDenied, if the process does not have the capability.
       
  3185  	@publishedAll
       
  3186  	@released
       
  3187  	*/
       
  3188 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3189  	inline void HasCapabilityL(TCapability aCapability, const char* aDiagnosticMessage=0) const;
       
  3190 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3191 	// Only available to NULL arguments
       
  3192  	inline void HasCapabilityL(TCapability aCapability, OnlyCreateWithNull aDiagnosticMessage=NULL) const;
       
  3193 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
       
  3194 	// For things using KSuppressPlatSecDiagnostic
       
  3195 	inline void HasCapabilityL(TCapability aCapability, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3196 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
       
  3197 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3198 
       
  3199 	/**
       
  3200 	Check if the process which sent this message has both of the given capabilities.
       
  3201 
       
  3202 	When a check fails the action taken is determined by the system wide Platform Security
       
  3203 	configuration. If PlatSecDiagnostics is ON, then a diagnostic message is emitted.
       
  3204 	If PlatSecEnforcement is OFF, then this function will return ETrue even though the
       
  3205 	check failed.
       
  3206 
       
  3207 	@param aCapability1 The first capability to test.
       
  3208 	@param aCapability2 The second capability to test.
       
  3209 	@param aDiagnostic A string that will be emitted along with any diagnostic message
       
  3210 								that may be issued if the test finds a capability is not present.
       
  3211 								This string should be enclosed in the __PLATSEC_DIAGNOSTIC_STRING macro
       
  3212 								which enables it to be easily removed from the system.
       
  3213 	@return ETrue if the process which sent this message has both the capabilities, EFalse otherwise.
       
  3214 	@publishedAll
       
  3215 	@released
       
  3216 	*/
       
  3217 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3218 	inline TBool HasCapability(TCapability aCapability1, TCapability aCapability2, const char* aDiagnostic=0) const;
       
  3219 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3220 	// Only available to NULL arguments
       
  3221 	inline TBool HasCapability(TCapability aCapability1, TCapability aCapability2, OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3222 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
       
  3223 	// For things using KSuppressPlatSecDiagnostic
       
  3224 	inline TBool HasCapability(TCapability aCapability1, TCapability aCapability2, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3225 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
       
  3226 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3227 
       
  3228  	/**
       
  3229 	Check if the process which sent this message has both of the given capabilities.
       
  3230 
       
  3231 	When a check fails the action taken is determined by the system wide Platform Security
       
  3232 	configuration. If PlatSecDiagnostics is ON, then a diagnostic message is emitted.
       
  3233 	If PlatSecEnforcement is OFF, then this function will not leave even though the
       
  3234 	check failed.
       
  3235 
       
  3236  	@param aCapability1 The first capability to test.
       
  3237  	@param aCapability2 The second capability to test.
       
  3238  	@param aDiagnosticMessage A string that will be emitted along with any diagnostic message
       
  3239  								that may be issued if the test finds a capability is not present.
       
  3240  								This string should be enclosed in the __PLATSEC_DIAGNOSTIC_STRING macro
       
  3241  								which enables it to be easily removed from the system.
       
  3242  	@leave KErrPermissionDenied, if the process does not have the capabilities.
       
  3243  	@publishedAll
       
  3244  	@released
       
  3245  	*/
       
  3246 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3247 	inline void HasCapabilityL(TCapability aCapability1, TCapability aCapability2, const char* aDiagnosticMessage=0) const;
       
  3248 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3249 	// Only available to NULL arguments
       
  3250 	inline void HasCapabilityL(TCapability aCapability1, TCapability aCapability2, OnlyCreateWithNull aDiagnosticMessage=NULL) const;
       
  3251 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
       
  3252 	// For things using KSuppressPlatSecDiagnostic
       
  3253 	inline void HasCapabilityL(TCapability aCapability1, TCapability aCapability2, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3254 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
       
  3255 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3256 
       
  3257 	/**
       
  3258 	@deprecated Use SecureId()
       
  3259 	*/
       
  3260 	inline TUid Identity() const { return SecureId(); }
       
  3261 #endif
       
  3262 
       
  3263 private:
       
  3264 	// Implementations of functions with diagnostics
       
  3265 	IMPORT_C TBool DoHasCapability(TCapability aCapability, const char* aDiagnostic) const;
       
  3266 	IMPORT_C TBool DoHasCapability(TCapability aCapability) const;
       
  3267 	IMPORT_C TBool DoHasCapability(TCapability aCapability, TCapability aCapability2, const char* aDiagnostic) const;
       
  3268 	IMPORT_C TBool DoHasCapability(TCapability aCapability, TCapability aCapability2) const;
       
  3269 
       
  3270 protected:
       
  3271 	TInt iHandle;
       
  3272 	};
       
  3273 inline TBool operator==(RMessagePtr2 aLeft,RMessagePtr2 aRight);
       
  3274 inline TBool operator!=(RMessagePtr2 aLeft,RMessagePtr2 aRight);
       
  3275 
       
  3276 class CSession2;
       
  3277 
       
  3278 #define __IPC_V2_PRESENT__
       
  3279 
       
  3280 /**
       
  3281 @publishedAll
       
  3282 @released
       
  3283 
       
  3284 An object that encapsulates the details of a client request.
       
  3285 */
       
  3286 class RMessage2 : public RMessagePtr2
       
  3287 	{
       
  3288 	friend class CServer2;
       
  3289 public:
       
  3290 
       
  3291     /**
       
  3292     Defines internal message types.
       
  3293     */
       
  3294 	enum TSessionMessages {
       
  3295 	                      /**
       
  3296 	                      A message type used internally that means connect.
       
  3297 	                      */
       
  3298 	                      EConnect=-1,
       
  3299 	                      
       
  3300 	                      /**
       
  3301                           A message type used internally that means disconnect.
       
  3302 	                      */
       
  3303 	                      EDisConnect=-2
       
  3304 	                      };
       
  3305 public:
       
  3306 	inline RMessage2();
       
  3307 #ifndef __KERNEL_MODE__
       
  3308 	IMPORT_C explicit RMessage2(const RMessagePtr2& aPtr);
       
  3309 	void SetAuthorised() const; 
       
  3310 	void ClearAuthorised() const;
       
  3311 	TBool Authorised() const;
       
  3312 #endif
       
  3313 	inline TInt Function() const;
       
  3314 	inline TInt Int0() const;
       
  3315 	inline TInt Int1() const;
       
  3316 	inline TInt Int2() const;
       
  3317 	inline TInt Int3() const;
       
  3318 	inline const TAny* Ptr0() const;
       
  3319 	inline const TAny* Ptr1() const;
       
  3320 	inline const TAny* Ptr2() const;
       
  3321 	inline const TAny* Ptr3() const;
       
  3322 	inline CSession2* Session() const;
       
  3323 protected:
       
  3324     
       
  3325     /**
       
  3326     The request type.
       
  3327     */
       
  3328 	TInt iFunction;
       
  3329 	
       
  3330 	/**
       
  3331 	A copy of the message arguments.
       
  3332 	*/
       
  3333 	TInt iArgs[KMaxMessageArguments];
       
  3334 private:
       
  3335 	TInt iSpare1;
       
  3336 protected:
       
  3337     /**
       
  3338     @internalComponent
       
  3339     */
       
  3340 	const TAny* iSessionPtr;
       
  3341 private:
       
  3342 	mutable TInt iFlags;// Currently only used for *Authorised above
       
  3343 	TInt iSpare3;		// Reserved for future use
       
  3344 
       
  3345 	friend class RMessage;
       
  3346 	};
       
  3347 
       
  3348 
       
  3349 
       
  3350 
       
  3351 /**
       
  3352 @publishedAll
       
  3353 @released
       
  3354 
       
  3355 Defines an 8-bit modifiable buffer descriptor to contain passwords when dealing
       
  3356 with password security support in a file server session.
       
  3357 
       
  3358 The descriptor takes a maximum length of KMaxMediaPassword.
       
  3359 
       
  3360 @see KMaxMediaPassword
       
  3361 */
       
  3362 typedef TBuf8<KMaxMediaPassword> TMediaPassword;	// 128 bit
       
  3363 
       
  3364 
       
  3365 
       
  3366 /**
       
  3367 @publishedPartner
       
  3368 @prototype
       
  3369 A configuration flag for the shared chunk buffer configuration class (used by the multimedia device drivers). This being
       
  3370 set signifies that a buffer offset list follows the buffer configuration class. This list holds the offset of each buffer.
       
  3371 */
       
  3372 const TUint KScFlagBufOffsetListInUse=0x00000001;
       
  3373 
       
  3374 /**
       
  3375 @publishedPartner
       
  3376 @prototype
       
  3377 A configuration flag for the shared chunk buffer configuration class (used by the multimedia device drivers). This being
       
  3378 set is a suggestion that the shared chunk should be configured leaving guard pages around each buffers.
       
  3379 */
       
  3380 const TUint KScFlagUseGuardPages=0x00000002;
       
  3381 
       
  3382 /**
       
  3383 @publishedPartner
       
  3384 @prototype
       
  3385 The shared chunk buffer configuration class (used by the multimedia device drivers). This is used to hold information
       
  3386 on the current buffer configuration within a shared chunk.
       
  3387 */
       
  3388 class TSharedChunkBufConfigBase
       
  3389 	{
       
  3390 public:	
       
  3391 	inline TSharedChunkBufConfigBase();
       
  3392 public:
       
  3393 	/** The number of buffers. */
       
  3394 	TInt iNumBuffers;
       
  3395 	/** The size of each buffer in bytes. */
       
  3396 	TInt iBufferSizeInBytes;
       
  3397 	/** Reserved field. */
       
  3398 	TInt iReserved1;
       
  3399 	/** Shared chunk buffer flag settings. */
       
  3400 	TUint iFlags;
       
  3401 	};
       
  3402 
       
  3403 
       
  3404 /** Maximum size of capability set
       
  3405 
       
  3406 @internalTechnology
       
  3407 */
       
  3408 const TInt KCapabilitySetMaxSize = (((TInt)ECapability_HardLimit + 7)>>3);
       
  3409 
       
  3410 /** Maximum size of any future extension to TSecurityPolicy
       
  3411 
       
  3412 @internalTechnology
       
  3413 */
       
  3414 const TInt KMaxSecurityPolicySize = KCapabilitySetMaxSize + 3*sizeof(TUint32);
       
  3415 
       
  3416 
       
  3417 /** Class representing an arbitrary set of capabilities.
       
  3418 
       
  3419 This class can only contain capabilities supported by the current OS version.
       
  3420 
       
  3421 @publishedAll
       
  3422 @released
       
  3423 */
       
  3424 class TCapabilitySet
       
  3425 	{
       
  3426 public:
       
  3427 	inline TCapabilitySet();
       
  3428 	inline TCapabilitySet(TCapability aCapability);
       
  3429 	IMPORT_C TCapabilitySet(TCapability aCapability1, TCapability aCapability2);
       
  3430 	IMPORT_C void SetEmpty();
       
  3431 	inline void Set(TCapability aCapability);
       
  3432 	inline void Set(TCapability aCapability1, TCapability aCapability2);
       
  3433 	IMPORT_C void SetAllSupported();
       
  3434 	IMPORT_C void AddCapability(TCapability aCapability);
       
  3435 	IMPORT_C void RemoveCapability(TCapability aCapability);
       
  3436 	IMPORT_C void Union(const TCapabilitySet&  aCapabilities);
       
  3437 	IMPORT_C void Intersection(const TCapabilitySet& aCapabilities);
       
  3438 	IMPORT_C void Remove(const TCapabilitySet& aCapabilities);
       
  3439 	IMPORT_C TBool HasCapability(TCapability aCapability) const;
       
  3440 	IMPORT_C TBool HasCapabilities(const TCapabilitySet& aCapabilities) const;
       
  3441 
       
  3442 	/**
       
  3443 	Make this set consist of the capabilities which are disabled on this platform.
       
  3444 	@internalTechnology
       
  3445 	*/
       
  3446 	IMPORT_C void SetDisabled();
       
  3447 	/**
       
  3448 	@internalComponent
       
  3449 	*/
       
  3450 	TBool NotEmpty() const;
       
  3451 
       
  3452 private:
       
  3453 	TUint32 iCaps[KCapabilitySetMaxSize / sizeof(TUint32)];
       
  3454 	};
       
  3455 
       
  3456 #ifndef __SECURITY_INFO_DEFINED__
       
  3457 #define __SECURITY_INFO_DEFINED__
       
  3458 /**
       
  3459 @internalTechnology
       
  3460  */
       
  3461 struct SCapabilitySet
       
  3462 	{
       
  3463 	enum {ENCapW=2};
       
  3464 
       
  3465 	inline void AddCapability(TCapability aCap1) {((TCapabilitySet*)this)->AddCapability(aCap1);}
       
  3466 	inline void Remove(const SCapabilitySet& aCaps) {((TCapabilitySet*)this)->Remove(*((TCapabilitySet*)&aCaps));}
       
  3467 	inline TBool NotEmpty() const {return ((TCapabilitySet*)this)->NotEmpty();}
       
  3468 
       
  3469 	inline const TUint32& operator[] (TInt aIndex) const { return iCaps[aIndex]; }
       
  3470 	inline TUint32& operator[] (TInt aIndex) { return iCaps[aIndex]; }
       
  3471 
       
  3472 	TUint32 iCaps[ENCapW];
       
  3473 	};
       
  3474 
       
  3475 /**
       
  3476 @internalTechnology
       
  3477  */
       
  3478 struct SSecurityInfo
       
  3479 	{
       
  3480 	TUint32	iSecureId;
       
  3481 	TUint32	iVendorId;
       
  3482 	SCapabilitySet iCaps;	// Capabilities re. platform security
       
  3483 	};
       
  3484 
       
  3485 #endif
       
  3486 
       
  3487 /** Define this macro to reference the set of all capabilities.
       
  3488 	@internalTechnology
       
  3489 */
       
  3490 #ifdef __REFERENCE_ALL_SUPPORTED_CAPABILITIES__
       
  3491 
       
  3492 extern const SCapabilitySet AllSupportedCapabilities;
       
  3493 
       
  3494 #endif	//__REFERENCE_ALL_SUPPORTED_CAPABILITIES__
       
  3495 
       
  3496 /** Define this macro to include the set of all capabilities.
       
  3497 	@internalTechnology
       
  3498 */
       
  3499 #ifdef __INCLUDE_ALL_SUPPORTED_CAPABILITIES__
       
  3500 
       
  3501 /** The set of all capabilities.
       
  3502 	@internalTechnology
       
  3503 */
       
  3504 const SCapabilitySet AllSupportedCapabilities = {
       
  3505 		{
       
  3506 		ECapability_Limit<32  ? (TUint32)((1u<<(ECapability_Limit&31))-1u) : 0xffffffffu
       
  3507 		,
       
  3508 		ECapability_Limit>=32 ? (TUint32)((1u<<(ECapability_Limit&31))-1u) : 0u
       
  3509 		}
       
  3510 	};
       
  3511 
       
  3512 #endif	// __INCLUDE_ALL_SUPPORTED_CAPABILITIES__
       
  3513 
       
  3514 #ifndef __KERNEL_MODE__
       
  3515 class RProcess;
       
  3516 class RThread;
       
  3517 class RMessagePtr2;
       
  3518 class RSessionBase;
       
  3519 #else
       
  3520 class DProcess;
       
  3521 class DThread;
       
  3522 #endif
       
  3523 
       
  3524 /** Class representing all security attributes of a process or DLL.
       
  3525 	These comprise a set of capabilities, a Secure ID and a Vendor ID.
       
  3526 
       
  3527 @publishedAll
       
  3528 @released
       
  3529 */
       
  3530 class TSecurityInfo
       
  3531 	{
       
  3532 public:
       
  3533 	inline TSecurityInfo();
       
  3534 #ifdef __KERNEL_MODE__
       
  3535 	IMPORT_C TSecurityInfo(DProcess* aProcess);
       
  3536 	IMPORT_C TSecurityInfo(DThread* aThread);
       
  3537 #else
       
  3538 	IMPORT_C TSecurityInfo(RProcess aProcess);
       
  3539 	IMPORT_C TSecurityInfo(RThread aThread);
       
  3540 	IMPORT_C TSecurityInfo(RMessagePtr2 aMesPtr);
       
  3541 	inline void Set(RProcess aProcess);
       
  3542 	inline void Set(RThread aThread);
       
  3543 	inline void Set(RMessagePtr2 aMsgPtr);
       
  3544 	TInt Set(RSessionBase aSession); /**< @internalComponent */
       
  3545 	inline void SetToCurrentInfo();
       
  3546 	IMPORT_C void SetToCreatorInfo();
       
  3547 #endif //__KERNEL_MODE__
       
  3548 public:
       
  3549 	TSecureId		iSecureId;	/**< Secure ID */
       
  3550 	TVendorId		iVendorId;	/**< Vendor ID */
       
  3551 	TCapabilitySet	iCaps;		/**< Capability Set */
       
  3552 	};
       
  3553 
       
  3554 
       
  3555 /** Class representing a generic security policy
       
  3556 
       
  3557 This class can specify a security policy consisting of either:
       
  3558 
       
  3559 -#	A check for between 0 and 7 capabilities
       
  3560 -#	A check for a given Secure ID along with 0-3 capabilities
       
  3561 -#	A check for a given Vendor ID along with 0-3 capabilities
       
  3562 
       
  3563 If multiple capabilities are specified, all of them must be present for the
       
  3564 security check to succeed ('AND' relation).
       
  3565 
       
  3566 The envisaged use case for this class is to specify access rights to an object
       
  3567 managed either by the kernel or by a server but in principle owned by a client
       
  3568 and usable in a limited way by other clients. For example
       
  3569 - Publish and Subscribe properties
       
  3570 - DBMS databases
       
  3571 
       
  3572 In these cases the owning client would pass one (or more) of these objects to
       
  3573 the server to specify which security checks should be done on other clients
       
  3574 before allowing access to the object.
       
  3575 
       
  3576 To pass a TSecurityPolicy object via IPC, a client should obtain a descriptor
       
  3577 for the object using Package() and send this. When a server receives this descriptor
       
  3578 it should read the descriptor contents into a TSecurityPolicyBuf and then
       
  3579 Set() should be used to create a policy object from this.
       
  3580 
       
  3581 Because this class has non-default constructors, compilers will not initialise
       
  3582 this object at compile time, instead code will be generated to construct the object
       
  3583 at run-time. This is wasteful - and Symbian OS DLLs are not permitted to have
       
  3584 such uninitialised data. To overcome these problems a set of macros are provided to
       
  3585 construct a const object which behaves like a TSecurityPolicy. These are:
       
  3586 
       
  3587 _LIT_SECURITY_POLICY_C1 through _LIT_SECURITY_POLICY_C7,
       
  3588 _LIT_SECURITY_POLICY_S0 through _LIT_SECURITY_POLICY_S3 and
       
  3589 _LIT_SECURITY_POLICY_V0 through _LIT_SECURITY_POLICY_V3.
       
  3590 
       
  3591 Also, the macros _LIT_SECURITY_POLICY_PASS and _LIT_SECURITY_POLICY_FAIL are provided
       
  3592 in order to allow easy construction of a const object which can be used as a
       
  3593 TSecuityPolicy which always passes or always fails, respectively.
       
  3594 
       
  3595 If a security policy object is needed to be embedded in another class then the
       
  3596 TStaticSecurityPolicy structure can be used. This behaves in the same way as a
       
  3597 TSecurityPolicy object but may be initialised at compile time.
       
  3598 
       
  3599 @see TStaticSecurityPolicy
       
  3600 @see TSecurityPolicyBuf
       
  3601 @see _LIT_SECURITY_POLICY_PASS
       
  3602 @see _LIT_SECURITY_POLICY_FAIL
       
  3603 @see _LIT_SECURITY_POLICY_C1
       
  3604 @see _LIT_SECURITY_POLICY_C2 
       
  3605 @see _LIT_SECURITY_POLICY_C3 
       
  3606 @see _LIT_SECURITY_POLICY_C4 
       
  3607 @see _LIT_SECURITY_POLICY_C5 
       
  3608 @see _LIT_SECURITY_POLICY_C6 
       
  3609 @see _LIT_SECURITY_POLICY_C7 
       
  3610 @see _LIT_SECURITY_POLICY_S0 
       
  3611 @see _LIT_SECURITY_POLICY_S1 
       
  3612 @see _LIT_SECURITY_POLICY_S2 
       
  3613 @see _LIT_SECURITY_POLICY_S3 
       
  3614 @see _LIT_SECURITY_POLICY_V0 
       
  3615 @see _LIT_SECURITY_POLICY_V1 
       
  3616 @see _LIT_SECURITY_POLICY_V2 
       
  3617 @see _LIT_SECURITY_POLICY_V3 
       
  3618 
       
  3619 @publishedAll
       
  3620 @released
       
  3621 */
       
  3622 class TSecurityPolicy
       
  3623 	{
       
  3624 public:
       
  3625 	enum TSecPolicyType 
       
  3626 		{
       
  3627 		EAlwaysFail=0,
       
  3628 		EAlwaysPass=1,
       
  3629 		};
       
  3630 		
       
  3631 public:
       
  3632 	inline TSecurityPolicy();
       
  3633 	IMPORT_C TSecurityPolicy(TSecPolicyType aType);
       
  3634 	IMPORT_C TSecurityPolicy(TCapability aCap1, TCapability aCap2 = ECapability_None, TCapability aCap3 = ECapability_None);
       
  3635 	IMPORT_C TSecurityPolicy(TCapability aCap1, TCapability aCap2, TCapability aCap3, TCapability aCap4, TCapability aCap5 = ECapability_None, TCapability aCap6 = ECapability_None, TCapability aCap7 = ECapability_None);
       
  3636 	IMPORT_C TSecurityPolicy(TSecureId aSecureId, TCapability aCap1 = ECapability_None, TCapability aCap2 = ECapability_None, TCapability aCap3 = ECapability_None);
       
  3637 	IMPORT_C TSecurityPolicy(TVendorId aVendorId, TCapability aCap1 = ECapability_None, TCapability aCap2 = ECapability_None, TCapability aCap3 = ECapability_None);
       
  3638 	IMPORT_C TInt Set(const TDesC8& aDes);
       
  3639 	IMPORT_C TPtrC8 Package() const;
       
  3640 
       
  3641 #ifdef __KERNEL_MODE__
       
  3642 
       
  3643 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3644 	inline TBool CheckPolicy(DProcess* aProcess, const char* aDiagnostic=0) const;
       
  3645 	inline TBool CheckPolicy(DThread* aThread, const char* aDiagnostic=0) const;
       
  3646 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3647 	// Only available to NULL arguments
       
  3648 	inline TBool CheckPolicy(DProcess* aProcess, OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3649 	inline TBool CheckPolicy(DThread* aThread, OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3650 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3651 
       
  3652 #else // !__KERNEL_MODE__
       
  3653 
       
  3654 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3655 	inline TBool CheckPolicy(RProcess aProcess, const char* aDiagnostic=0) const;
       
  3656 	inline TBool CheckPolicy(RThread aThread, const char* aDiagnostic=0) const;
       
  3657 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, const char* aDiagnostic=0) const;
       
  3658 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, const char* aDiagnostic=0) const;
       
  3659 	inline TBool CheckPolicyCreator(const char* aDiagnostic=0) const;
       
  3660 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3661 	// Only available to NULL arguments
       
  3662 	inline TBool CheckPolicy(RProcess aProcess, OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3663 	inline TBool CheckPolicy(RThread aThread, OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3664 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3665 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3666 	inline TBool CheckPolicyCreator(OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3667 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
       
  3668 	// For things using KSuppressPlatSecDiagnostic
       
  3669 	inline TBool CheckPolicy(RProcess aProcess, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3670 	inline TBool CheckPolicy(RThread aThread, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3671 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3672 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3673 	inline TBool CheckPolicyCreator(OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3674 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
       
  3675 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3676 	TInt CheckPolicy(RSessionBase aSession) const; /**< @internalComponent */
       
  3677 
       
  3678 #endif //__KERNEL_MODE__
       
  3679 
       
  3680 	TBool Validate() const;
       
  3681 
       
  3682 private:
       
  3683 #ifdef __KERNEL_MODE__
       
  3684 	IMPORT_C TBool DoCheckPolicy(DProcess* aProcess, const char* aDiagnostic) const;
       
  3685 	IMPORT_C TBool DoCheckPolicy(DProcess* aProcess) const;
       
  3686 	IMPORT_C TBool DoCheckPolicy(DThread* aThread, const char* aDiagnostic) const;
       
  3687 	IMPORT_C TBool DoCheckPolicy(DThread* aThread) const;
       
  3688 #else // !__KERNEL_MODE__
       
  3689 	IMPORT_C TBool DoCheckPolicy(RProcess aProcess, const char* aDiagnostic) const;
       
  3690 	IMPORT_C TBool DoCheckPolicy(RProcess aProcess) const;
       
  3691 	IMPORT_C TBool DoCheckPolicy(RThread aThread, const char* aDiagnostic) const;
       
  3692 	IMPORT_C TBool DoCheckPolicy(RThread aThread) const;
       
  3693 	IMPORT_C TBool DoCheckPolicy(RMessagePtr2 aMsgPtr, const char* aDiagnostic) const;
       
  3694 	IMPORT_C TBool DoCheckPolicy(RMessagePtr2 aMsgPtr) const;
       
  3695 	IMPORT_C TBool DoCheckPolicyCreator(const char* aDiagnostic) const;
       
  3696 	IMPORT_C TBool DoCheckPolicyCreator() const;
       
  3697 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
       
  3698 	TBool DoCheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, const char* aDiagnostic) const;
       
  3699 #endif //__REMOVE_PLATSEC_DIAGNOSTICS__
       
  3700 	TBool DoCheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing) const;
       
  3701 #endif //__KERNEL_MODE__
       
  3702 
       
  3703 public:
       
  3704 	/** Constants to specify the type of TSecurityPolicy objects.
       
  3705 	*/
       
  3706 	enum TType
       
  3707 		{
       
  3708 		ETypeFail=0,	/**< Always fail*/
       
  3709 		ETypePass=1,	/**< Always pass*/
       
  3710 		ETypeC3=2,		/**< Up to 3 capabilities*/
       
  3711 		ETypeC7=3,		/**< Up to 7 capabilities*/
       
  3712 		ETypeS3=4,		/**< Secure ID and up to 3 capabilities*/
       
  3713 		ETypeV3=5,		/**< Vendor ID and up to 3 capabilities*/
       
  3714 
       
  3715 		/** The number of possible TSecurityPolicy types
       
  3716 		This is intended for internal Symbian use only.
       
  3717 		@internalTechnology
       
  3718 		*/
       
  3719 		ETypeLimit
       
  3720 
       
  3721 		// other values may be added to indicate expanded policy objects (future extensions)
       
  3722 		};
       
  3723 protected:
       
  3724 	TBool CheckPolicy(const SSecurityInfo& aSecInfo, SSecurityInfo& aMissing) const;
       
  3725 private:
       
  3726 	void ConstructAndCheck3(TCapability aCap1, TCapability aCap2, TCapability aCap3);
       
  3727 private:
       
  3728 	TUint8 iType;
       
  3729 	TUint8 iCaps[3];				// missing capabilities are set to 0xff
       
  3730 	union
       
  3731 		{
       
  3732 		TUint32 iSecureId;
       
  3733 		TUint32 iVendorId;
       
  3734 		TUint8 iExtraCaps[4];		// missing capabilities are set to 0xff
       
  3735 		};
       
  3736 	friend class TCompiledSecurityPolicy;
       
  3737 	};
       
  3738 
       
  3739 /** Provides a TPkcgBuf wrapper for a descriptorised TSecurityPolicy.  This a
       
  3740 suitable container for passing a security policy across IPC.
       
  3741 @publishedAll
       
  3742 @released
       
  3743 */
       
  3744 typedef TPckgBuf<TSecurityPolicy> TSecurityPolicyBuf;
       
  3745 
       
  3746 
       
  3747 /** Structure for compile-time initialisation of a security policy.
       
  3748 
       
  3749 This structure behaves in the same way as a TSecurityPolicy object but has
       
  3750 the advantage that it may be initialised at compile time. E.g.
       
  3751 the following line defines a security policy 'KSecurityPolictReadUserData'
       
  3752 which checks ReadUserData capability.
       
  3753 
       
  3754 @code
       
  3755 _LIT_SECURITY_POLICY_C1(KSecurityPolictReadUserData,ECapabilityReadUserData)
       
  3756 @endcode
       
  3757 
       
  3758 Or, an array of security policies may be created like this:
       
  3759 @code
       
  3760 static const TStaticSecurityPolicy MyPolicies[] = 
       
  3761 	{
       
  3762 	_INIT_SECURITY_POLICY_C1(ECapabilityReadUserData),
       
  3763 	_INIT_SECURITY_POLICY_PASS(),
       
  3764 	_INIT_SECURITY_POLICY_S0(0x1234567)
       
  3765 	}
       
  3766 @endcode
       
  3767 
       
  3768 This class should not be initialised directly, instead one of the following
       
  3769 macros should be used:
       
  3770 
       
  3771 -	_INIT_SECURITY_POLICY_PASS
       
  3772 -	_INIT_SECURITY_POLICY_FAIL
       
  3773 -	_INIT_SECURITY_POLICY_C1
       
  3774 -	_INIT_SECURITY_POLICY_C2
       
  3775 -	_INIT_SECURITY_POLICY_C3
       
  3776 -	_INIT_SECURITY_POLICY_C4
       
  3777 -	_INIT_SECURITY_POLICY_C5
       
  3778 -	_INIT_SECURITY_POLICY_C6
       
  3779 -	_INIT_SECURITY_POLICY_C7
       
  3780 -	_INIT_SECURITY_POLICY_S0
       
  3781 -	_INIT_SECURITY_POLICY_S1
       
  3782 -	_INIT_SECURITY_POLICY_S2
       
  3783 -	_INIT_SECURITY_POLICY_S3
       
  3784 -	_INIT_SECURITY_POLICY_V0
       
  3785 -	_INIT_SECURITY_POLICY_V1
       
  3786 -	_INIT_SECURITY_POLICY_V2
       
  3787 -	_INIT_SECURITY_POLICY_V3
       
  3788 -	_LIT_SECURITY_POLICY_PASS
       
  3789 -	_LIT_SECURITY_POLICY_FAIL
       
  3790 -	_LIT_SECURITY_POLICY_C1
       
  3791 -	_LIT_SECURITY_POLICY_C2
       
  3792 -	_LIT_SECURITY_POLICY_C3
       
  3793 -	_LIT_SECURITY_POLICY_C4
       
  3794 -	_LIT_SECURITY_POLICY_C5
       
  3795 -	_LIT_SECURITY_POLICY_C6
       
  3796 -	_LIT_SECURITY_POLICY_C7
       
  3797 -	_LIT_SECURITY_POLICY_S0
       
  3798 -	_LIT_SECURITY_POLICY_S1
       
  3799 -	_LIT_SECURITY_POLICY_S2
       
  3800 -	_LIT_SECURITY_POLICY_S3
       
  3801 -	_LIT_SECURITY_POLICY_V0
       
  3802 -	_LIT_SECURITY_POLICY_V1
       
  3803 -	_LIT_SECURITY_POLICY_V2
       
  3804 -	_LIT_SECURITY_POLICY_V3
       
  3805 
       
  3806 @see TSecurityPolicy
       
  3807 @publishedAll
       
  3808 @released
       
  3809 */
       
  3810 struct TStaticSecurityPolicy
       
  3811 	{
       
  3812 	inline const TSecurityPolicy* operator&() const;
       
  3813 	inline operator const TSecurityPolicy&() const;
       
  3814 	inline const TSecurityPolicy& operator()() const;
       
  3815 
       
  3816 #ifndef __KERNEL_MODE__
       
  3817 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3818 	inline TBool CheckPolicy(RProcess aProcess, const char* aDiagnostic=0) const;
       
  3819 	inline TBool CheckPolicy(RThread aThread, const char* aDiagnostic=0) const;
       
  3820 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, const char* aDiagnostic=0) const;
       
  3821 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, const char* aDiagnostic=0) const;
       
  3822 	inline TBool CheckPolicyCreator(const char* aDiagnostic=0) const;
       
  3823 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3824 	// Only available to NULL arguments
       
  3825 	inline TBool CheckPolicy(RProcess aProcess, OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3826 	inline TBool CheckPolicy(RThread aThread, OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3827 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3828 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3829 	inline TBool CheckPolicyCreator(OnlyCreateWithNull aDiagnostic=NULL) const;
       
  3830 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
       
  3831 	// For things using KSuppressPlatSecDiagnostic
       
  3832 	inline TBool CheckPolicy(RProcess aProcess, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3833 	inline TBool CheckPolicy(RThread aThread, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3834 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3835 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3836 	inline TBool CheckPolicyCreator(OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
       
  3837 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
       
  3838 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
       
  3839 #endif // !__KERNEL_MODE__
       
  3840 
       
  3841 	TUint32 iA;	/**< @internalComponent */
       
  3842 	TUint32 iB;	/**< @internalComponent */
       
  3843 	};
       
  3844 
       
  3845 	
       
  3846 /**
       
  3847 A dummy enum for use by the CAPABILITY_AS_TUINT8 macro
       
  3848 @internalComponent
       
  3849 */
       
  3850 enum __invalid_capability_value {};
       
  3851 
       
  3852 /**
       
  3853 A macro to cast a TCapability to a TUint8.
       
  3854 
       
  3855 If an invlid capability value is specified then, dependant on the compiler,
       
  3856 a compile time error or warning will be produced which includes the label
       
  3857 "__invalid_capability_value"
       
  3858 
       
  3859 @param cap The capability value
       
  3860 @internalComponent
       
  3861 */
       
  3862 #define CAPABILITY_AS_TUINT8(cap)											\
       
  3863 	((TUint8)(int)(															\
       
  3864 		(cap)==ECapability_None												\
       
  3865 		? (__invalid_capability_value(*)[1])(ECapability_None)								\
       
  3866 		: (__invalid_capability_value(*)[((TUint)(cap+1)<=(TUint)ECapability_Limit)?1:2])(cap)	\
       
  3867 	))
       
  3868 
       
  3869 
       
  3870 /**
       
  3871 A macro to construct a TUint32 from four TUint8s.  The TUint32 is in BigEndian
       
  3872 ordering useful for class layout rather than number generation.
       
  3873 
       
  3874 @param i1 The first TUint8
       
  3875 @param i2 The second TUint8
       
  3876 @param i3 The third TUint8
       
  3877 @param i4 The fourth TUint8
       
  3878 @internalComponent
       
  3879 */
       
  3880 #define FOUR_TUINT8(i1,i2,i3,i4) \
       
  3881 	(TUint32)(				\
       
  3882 		(TUint8)i1 		 | 	\
       
  3883 		(TUint8)i2 << 8  | 	\
       
  3884 		(TUint8)i3 << 16 | 	\
       
  3885 		(TUint8)i4 << 24	\
       
  3886 	)
       
  3887 
       
  3888 
       
  3889 /** Macro for compile-time initialisation of a security policy object that
       
  3890 always fails.  That is, checks against this policy will always fail,
       
  3891 irrespective of the security attributes of the item being checked.
       
  3892 
       
  3893 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  3894 Taking the address of the object will return a const TSecurityPolicy*.
       
  3895 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  3896 function call operator n().
       
  3897 @publishedAll
       
  3898 @released
       
  3899 */
       
  3900 #define _INIT_SECURITY_POLICY_FAIL \
       
  3901 	{ 																		\
       
  3902 	FOUR_TUINT8(															\
       
  3903 		(TUint8)TSecurityPolicy::ETypeFail,									\
       
  3904 		(TUint8)0xff,														\
       
  3905 		(TUint8)0xff,														\
       
  3906 		(TUint8)0xff														\
       
  3907 	),																		\
       
  3908 	(TUint32)0xffffffff														\
       
  3909 	}
       
  3910 
       
  3911 
       
  3912 /** Macro for compile-time definition of a security policy object that always
       
  3913 fails.  That is, checks against this policy will always fail, irrespective of
       
  3914 the security attributes of the item being checked.
       
  3915 
       
  3916 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  3917 Taking the address of the object will return a const TSecurityPolicy*.
       
  3918 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  3919 function call operator n().
       
  3920 @param	n	Name to use for policy object
       
  3921 @publishedAll
       
  3922 @released
       
  3923 */
       
  3924 #define	_LIT_SECURITY_POLICY_FAIL(n) const TStaticSecurityPolicy n = _INIT_SECURITY_POLICY_FAIL
       
  3925 
       
  3926 
       
  3927 /** Macro for compile-time initialisation of a security policy object that 
       
  3928 always passes.  That is, checks against this policy will always pass,
       
  3929 irrespective of the security attributes of the item being checked.
       
  3930 
       
  3931 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  3932 Taking the address of the object will return a const TSecurityPolicy*.
       
  3933 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  3934 function call operator n().
       
  3935 @publishedAll
       
  3936 @released
       
  3937 */
       
  3938 #define _INIT_SECURITY_POLICY_PASS \
       
  3939 	{ 																		\
       
  3940 	FOUR_TUINT8(															\
       
  3941 		(TUint8)TSecurityPolicy::ETypePass,									\
       
  3942 		(TUint8)0xff,														\
       
  3943 		(TUint8)0xff,														\
       
  3944 		(TUint8)0xff														\
       
  3945 	),																		\
       
  3946 	(TUint32)0xffffffff														\
       
  3947 	}
       
  3948 
       
  3949 
       
  3950 /** Macro for compile-time definition of a security policy object that always
       
  3951 passes.  That is, checks against this policy will always pass, irrespective of
       
  3952 the security attributes of the item being checked.
       
  3953 
       
  3954 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  3955 Taking the address of the object will return a const TSecurityPolicy*.
       
  3956 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  3957 function call operator n().
       
  3958 @param	n	Name to use for policy object
       
  3959 @publishedAll
       
  3960 @released
       
  3961 */
       
  3962 #define	_LIT_SECURITY_POLICY_PASS(n) const TStaticSecurityPolicy n = _INIT_SECURITY_POLICY_PASS
       
  3963 
       
  3964 
       
  3965 /** Macro for compile-time initialisation of a security policy object
       
  3966 The policy will check for seven capabilities.
       
  3967 
       
  3968 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  3969 Taking the address of the object will return a const TSecurityPolicy*.
       
  3970 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  3971 function call operator n().
       
  3972 
       
  3973 If an invlid capability value is specified then, dependant on the compiler,
       
  3974 a compile time error or warning will be produced which includes the label
       
  3975 "__invalid_capability_value"
       
  3976 
       
  3977 @param	c1	The first capability to check (enumerator of TCapability)
       
  3978 @param	c2	The second capability to check (enumerator of TCapability)
       
  3979 @param	c3	The third capability to check (enumerator of TCapability)
       
  3980 @param	c4	The fourth capability to check (enumerator of TCapability)
       
  3981 @param	c5	The fifth capability to check (enumerator of TCapability)
       
  3982 @param	c6	The sixth capability to check (enumerator of TCapability)
       
  3983 @param	c7	The seventh capability to check (enumerator of TCapability)
       
  3984 
       
  3985 @publishedAll
       
  3986 @released
       
  3987 */
       
  3988 #define _INIT_SECURITY_POLICY_C7(c1,c2,c3,c4,c5,c6,c7) \
       
  3989 	{ 																		\
       
  3990 	FOUR_TUINT8(															\
       
  3991 		(TUint8)TSecurityPolicy::ETypeC7,									\
       
  3992 		CAPABILITY_AS_TUINT8(c1),											\
       
  3993 		CAPABILITY_AS_TUINT8(c2),											\
       
  3994 		CAPABILITY_AS_TUINT8(c3)											\
       
  3995 	),																		\
       
  3996 	FOUR_TUINT8(															\
       
  3997 		CAPABILITY_AS_TUINT8(c4),											\
       
  3998 		CAPABILITY_AS_TUINT8(c5),											\
       
  3999 		CAPABILITY_AS_TUINT8(c6),											\
       
  4000 		CAPABILITY_AS_TUINT8(c7)											\
       
  4001 	)																		\
       
  4002 	}
       
  4003 
       
  4004 
       
  4005 /** Macro for compile-time definition of a security policy object
       
  4006 The policy will check for seven capabilities.
       
  4007 
       
  4008 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4009 Taking the address of the object will return a const TSecurityPolicy*.
       
  4010 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4011 function call operator n().
       
  4012 
       
  4013 If an invlid capability value is specified then, dependant on the compiler,
       
  4014 a compile time error or warning will be produced which includes the label
       
  4015 "__invalid_capability_value"
       
  4016 
       
  4017 @param	n	Name to use for policy object
       
  4018 @param	c1	The first capability to check (enumerator of TCapability)
       
  4019 @param	c2	The second capability to check (enumerator of TCapability)
       
  4020 @param	c3	The third capability to check (enumerator of TCapability)
       
  4021 @param	c4	The fourth capability to check (enumerator of TCapability)
       
  4022 @param	c5	The fifth capability to check (enumerator of TCapability)
       
  4023 @param	c6	The sixth capability to check (enumerator of TCapability)
       
  4024 @param	c7	The seventh capability to check (enumerator of TCapability)
       
  4025 
       
  4026 @publishedAll
       
  4027 @released
       
  4028 */
       
  4029 #define	_LIT_SECURITY_POLICY_C7(n,c1,c2,c3,c4,c5,c6,c7)						\
       
  4030 	const TStaticSecurityPolicy n = _INIT_SECURITY_POLICY_C7(c1,c2,c3,c4,c5,c6,c7)
       
  4031 
       
  4032 
       
  4033 /** Macro for compile-time initialisation of a security policy object
       
  4034 The policy will check for six capabilities.
       
  4035 
       
  4036 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4037 Taking the address of the object will return a const TSecurityPolicy*.
       
  4038 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4039 function call operator n().
       
  4040 
       
  4041 If an invlid capability value is specified then, dependant on the compiler,
       
  4042 a compile time error or warning will be produced which includes the label
       
  4043 "__invalid_capability_value"
       
  4044 
       
  4045 @param	c1	The first capability to check (enumerator of TCapability)
       
  4046 @param	c2	The second capability to check (enumerator of TCapability)
       
  4047 @param	c3	The third capability to check (enumerator of TCapability)
       
  4048 @param	c4	The fourth capability to check (enumerator of TCapability)
       
  4049 @param	c5	The fifth capability to check (enumerator of TCapability)
       
  4050 @param	c6	The sixth capability to check (enumerator of TCapability)
       
  4051 
       
  4052 @publishedAll
       
  4053 @released
       
  4054 */
       
  4055 #define _INIT_SECURITY_POLICY_C6(c1,c2,c3,c4,c5,c6)  \
       
  4056 	_INIT_SECURITY_POLICY_C7(c1,c2,c3,c4,c5,c6,ECapability_None)
       
  4057 
       
  4058 
       
  4059 /** Macro for compile-time definition of a security policy object
       
  4060 The policy will check for six capabilities.
       
  4061 
       
  4062 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4063 Taking the address of the object will return a const TSecurityPolicy*.
       
  4064 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4065 function call operator n().
       
  4066 
       
  4067 If an invlid capability value is specified then, dependant on the compiler,
       
  4068 a compile time error or warning will be produced which includes the label
       
  4069 "__invalid_capability_value"
       
  4070 
       
  4071 @param	n	Name to use for policy object
       
  4072 @param	c1	The first capability to check (enumerator of TCapability)
       
  4073 @param	c2	The second capability to check (enumerator of TCapability)
       
  4074 @param	c3	The third capability to check (enumerator of TCapability)
       
  4075 @param	c4	The fourth capability to check (enumerator of TCapability)
       
  4076 @param	c5	The fifth capability to check (enumerator of TCapability)
       
  4077 @param	c6	The sixth capability to check (enumerator of TCapability)
       
  4078 
       
  4079 @publishedAll
       
  4080 @released
       
  4081 */
       
  4082 #define	_LIT_SECURITY_POLICY_C6(n,c1,c2,c3,c4,c5,c6)  \
       
  4083 	_LIT_SECURITY_POLICY_C7(n,c1,c2,c3,c4,c5,c6,ECapability_None)
       
  4084 
       
  4085 
       
  4086 /** Macro for compile-time initialisation of a security policy object
       
  4087 The policy will check for five capabilities.
       
  4088 
       
  4089 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4090 Taking the address of the object will return a const TSecurityPolicy*.
       
  4091 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4092 function call operator n().
       
  4093 
       
  4094 If an invlid capability value is specified then, dependant on the compiler,
       
  4095 a compile time error or warning will be produced which includes the label
       
  4096 "__invalid_capability_value"
       
  4097 
       
  4098 @param	c1	The first capability to check (enumerator of TCapability)
       
  4099 @param	c2	The second capability to check (enumerator of TCapability)
       
  4100 @param	c3	The third capability to check (enumerator of TCapability)
       
  4101 @param	c4	The fourth capability to check (enumerator of TCapability)
       
  4102 @param	c5	The fifth capability to check (enumerator of TCapability)
       
  4103 
       
  4104 @publishedAll
       
  4105 @released
       
  4106 */
       
  4107 #define _INIT_SECURITY_POLICY_C5(c1,c2,c3,c4,c5)  \
       
  4108 	_INIT_SECURITY_POLICY_C7(c1,c2,c3,c4,c5,ECapability_None,ECapability_None)
       
  4109 
       
  4110 
       
  4111 /** Macro for compile-time definition of a security policy object
       
  4112 The policy will check for five capabilities.
       
  4113 
       
  4114 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4115 Taking the address of the object will return a const TSecurityPolicy*.
       
  4116 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4117 function call operator n().
       
  4118 
       
  4119 If an invlid capability value is specified then, dependant on the compiler,
       
  4120 a compile time error or warning will be produced which includes the label
       
  4121 "__invalid_capability_value"
       
  4122 
       
  4123 @param	n	Name to use for policy object
       
  4124 @param	c1	The first capability to check (enumerator of TCapability)
       
  4125 @param	c2	The second capability to check (enumerator of TCapability)
       
  4126 @param	c3	The third capability to check (enumerator of TCapability)
       
  4127 @param	c4	The fourth capability to check (enumerator of TCapability)
       
  4128 @param	c5	The fifth capability to check (enumerator of TCapability)
       
  4129 
       
  4130 @publishedAll
       
  4131 @released
       
  4132 */
       
  4133 #define	_LIT_SECURITY_POLICY_C5(n,c1,c2,c3,c4,c5)  \
       
  4134 	_LIT_SECURITY_POLICY_C7(n,c1,c2,c3,c4,c5,ECapability_None,ECapability_None)
       
  4135 
       
  4136 
       
  4137 /** Macro for compile-time initialisation of a security policy object
       
  4138 The policy will check for four capabilities.
       
  4139 
       
  4140 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4141 Taking the address of the object will return a const TSecurityPolicy*.
       
  4142 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4143 function call operator n().
       
  4144 
       
  4145 If an invlid capability value is specified then, dependant on the compiler,
       
  4146 a compile time error or warning will be produced which includes the label
       
  4147 "__invalid_capability_value"
       
  4148 
       
  4149 @param	c1	The first capability to check (enumerator of TCapability)
       
  4150 @param	c2	The second capability to check (enumerator of TCapability)
       
  4151 @param	c3	The third capability to check (enumerator of TCapability)
       
  4152 @param	c4	The fourth capability to check (enumerator of TCapability)
       
  4153 
       
  4154 @publishedAll
       
  4155 @released
       
  4156 */
       
  4157 #define _INIT_SECURITY_POLICY_C4(c1,c2,c3,c4)  \
       
  4158 	_INIT_SECURITY_POLICY_C7(c1,c2,c3,c4,ECapability_None,ECapability_None,ECapability_None)
       
  4159 
       
  4160 
       
  4161 /** Macro for compile-time definition of a security policy object
       
  4162 The policy will check for four capabilities.
       
  4163 
       
  4164 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4165 Taking the address of the object will return a const TSecurityPolicy*.
       
  4166 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4167 function call operator n().
       
  4168 
       
  4169 If an invlid capability value is specified then, dependant on the compiler,
       
  4170 a compile time error or warning will be produced which includes the label
       
  4171 "__invalid_capability_value"
       
  4172 
       
  4173 @param	n	Name to use for policy object
       
  4174 @param	c1	The first capability to check (enumerator of TCapability)
       
  4175 @param	c2	The second capability to check (enumerator of TCapability)
       
  4176 @param	c3	The third capability to check (enumerator of TCapability)
       
  4177 @param	c4	The fourth capability to check (enumerator of TCapability)
       
  4178 
       
  4179 @publishedAll
       
  4180 @released
       
  4181 */
       
  4182 #define	_LIT_SECURITY_POLICY_C4(n,c1,c2,c3,c4)  \
       
  4183 	_LIT_SECURITY_POLICY_C7(n,c1,c2,c3,c4,ECapability_None,ECapability_None,ECapability_None)
       
  4184 
       
  4185 
       
  4186 /** Macro for compile-time initialisation of a security policy object
       
  4187 The policy will check for three capabilities.
       
  4188 
       
  4189 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4190 Taking the address of the object will return a const TSecurityPolicy*.
       
  4191 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4192 function call operator n().
       
  4193 
       
  4194 If an invlid capability value is specified then, dependant on the compiler,
       
  4195 a compile time error or warning will be produced which includes the label
       
  4196 "__invalid_capability_value"
       
  4197 
       
  4198 @param	c1	The first capability to check (enumerator of TCapability)
       
  4199 @param	c2	The second capability to check (enumerator of TCapability)
       
  4200 @param	c3	The third capability to check (enumerator of TCapability)
       
  4201 
       
  4202 @publishedAll
       
  4203 @released
       
  4204 */
       
  4205 #define _INIT_SECURITY_POLICY_C3(c1,c2,c3)									\
       
  4206 	{ 																		\
       
  4207 	FOUR_TUINT8(															\
       
  4208 		(TUint8)TSecurityPolicy::ETypeC3,									\
       
  4209 		CAPABILITY_AS_TUINT8(c1),											\
       
  4210 		CAPABILITY_AS_TUINT8(c2),											\
       
  4211 		CAPABILITY_AS_TUINT8(c3)											\
       
  4212 	),																		\
       
  4213 	(TUint32)0xffffffff														\
       
  4214 	}
       
  4215 
       
  4216 
       
  4217 /** Macro for compile-time definition of a security policy object
       
  4218 The policy will check for three capabilities.
       
  4219 
       
  4220 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4221 Taking the address of the object will return a const TSecurityPolicy*.
       
  4222 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4223 function call operator n().
       
  4224 
       
  4225 If an invlid capability value is specified then, dependant on the compiler,
       
  4226 a compile time error or warning will be produced which includes the label
       
  4227 "__invalid_capability_value"
       
  4228 
       
  4229 @param	n	Name to use for policy object
       
  4230 @param	c1	The first capability to check (enumerator of TCapability)
       
  4231 @param	c2	The second capability to check (enumerator of TCapability)
       
  4232 @param	c3	The third capability to check (enumerator of TCapability)
       
  4233 
       
  4234 @publishedAll
       
  4235 @released
       
  4236 */
       
  4237 #define	_LIT_SECURITY_POLICY_C3(n,c1,c2,c3)									\
       
  4238 	const TStaticSecurityPolicy n = _INIT_SECURITY_POLICY_C3(c1,c2,c3)
       
  4239 
       
  4240 
       
  4241 /** Macro for compile-time initialisation of a security policy object
       
  4242 The policy will check for two capabilities.
       
  4243 
       
  4244 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4245 Taking the address of the object will return a const TSecurityPolicy*.
       
  4246 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4247 function call operator n().
       
  4248 
       
  4249 If an invlid capability value is specified then, dependant on the compiler,
       
  4250 a compile time error or warning will be produced which includes the label
       
  4251 "__invalid_capability_value"
       
  4252 
       
  4253 @param	c1	The first capability to check (enumerator of TCapability)
       
  4254 @param	c2	The second capability to check (enumerator of TCapability)
       
  4255 
       
  4256 @publishedAll
       
  4257 @released
       
  4258 */
       
  4259 #define _INIT_SECURITY_POLICY_C2(c1,c2)  \
       
  4260 	_INIT_SECURITY_POLICY_C3(c1,c2,ECapability_None)
       
  4261 
       
  4262 
       
  4263 /** Macro for compile-time definition of a security policy object
       
  4264 The policy will check for two capabilities.
       
  4265 
       
  4266 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4267 Taking the address of the object will return a const TSecurityPolicy*.
       
  4268 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4269 function call operator n().
       
  4270 
       
  4271 If an invlid capability value is specified then, dependant on the compiler,
       
  4272 a compile time error or warning will be produced which includes the label
       
  4273 "__invalid_capability_value"
       
  4274 
       
  4275 @param	n	Name to use for policy object
       
  4276 @param	c1	The first capability to check (enumerator of TCapability)
       
  4277 @param	c2	The second capability to check (enumerator of TCapability)
       
  4278 
       
  4279 @publishedAll
       
  4280 @released
       
  4281 */
       
  4282 #define	_LIT_SECURITY_POLICY_C2(n,c1,c2)  \
       
  4283 	_LIT_SECURITY_POLICY_C3(n,c1,c2,ECapability_None)
       
  4284 
       
  4285 
       
  4286 /** Macro for compile-time initialisation of a security policy object
       
  4287 The policy will check for one capability.
       
  4288 
       
  4289 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4290 Taking the address of the object will return a const TSecurityPolicy*.
       
  4291 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4292 function call operator n().
       
  4293 
       
  4294 If an invlid capability value is specified then, dependant on the compiler,
       
  4295 a compile time error or warning will be produced which includes the label
       
  4296 "__invalid_capability_value"
       
  4297 
       
  4298 @param	c1	The first capability to check (enumerator of TCapability)
       
  4299 
       
  4300 
       
  4301 @publishedAll
       
  4302 @released
       
  4303 */
       
  4304 #define _INIT_SECURITY_POLICY_C1(c1)  \
       
  4305 	_INIT_SECURITY_POLICY_C3(c1,ECapability_None,ECapability_None)
       
  4306 
       
  4307 
       
  4308 /** Macro for compile-time definition of a security policy object
       
  4309 The policy will check for one capability.
       
  4310 
       
  4311 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4312 Taking the address of the object will return a const TSecurityPolicy*.
       
  4313 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4314 function call operator n().
       
  4315 
       
  4316 If an invlid capability value is specified then, dependant on the compiler,
       
  4317 a compile time error or warning will be produced which includes the label
       
  4318 "__invalid_capability_value"
       
  4319 
       
  4320 @param	n	Name to use for policy object
       
  4321 @param	c1	The first capability to check (enumerator of TCapability)
       
  4322 
       
  4323 @publishedAll
       
  4324 @released
       
  4325 */
       
  4326 #define	_LIT_SECURITY_POLICY_C1(n,c1)  \
       
  4327 	_LIT_SECURITY_POLICY_C3(n,c1,ECapability_None,ECapability_None)
       
  4328 
       
  4329 
       
  4330 /** Macro for compile-time initialisation of a security policy object
       
  4331 The policy will check for a secure ID and three capabilities.
       
  4332 
       
  4333 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4334 Taking the address of the object will return a const TSecurityPolicy*.
       
  4335 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4336 function call operator n().
       
  4337 
       
  4338 If an invlid capability value is specified then, dependant on the compiler,
       
  4339 a compile time error or warning be produced which includes the label
       
  4340 "__invalid_capability_value"
       
  4341 
       
  4342 @param	sid	The SID value to check for
       
  4343 @param	c1	The first capability to check (enumerator of TCapability)
       
  4344 @param	c2	The second capability to check (enumerator of TCapability)
       
  4345 @param	c3	The third capability to check (enumerator of TCapability)
       
  4346 
       
  4347 @publishedAll
       
  4348 @released
       
  4349 */
       
  4350 #define _INIT_SECURITY_POLICY_S3(sid,c1,c2,c3)								\
       
  4351 	{																		\
       
  4352 	FOUR_TUINT8(															\
       
  4353 		(TUint8)TSecurityPolicy::ETypeS3,									\
       
  4354 		CAPABILITY_AS_TUINT8(c1),											\
       
  4355 		CAPABILITY_AS_TUINT8(c2),											\
       
  4356 		CAPABILITY_AS_TUINT8(c3)											\
       
  4357 	),																		\
       
  4358 	(TUint32)(sid)															\
       
  4359 	}
       
  4360 
       
  4361 
       
  4362 /** Macro for compile-time definition of a security policy object
       
  4363 The policy will check for a secure ID and three capabilities.
       
  4364 
       
  4365 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4366 Taking the address of the object will return a const TSecurityPolicy*.
       
  4367 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4368 function call operator n().
       
  4369 
       
  4370 If an invlid capability value is specified then, dependant on the compiler,
       
  4371 a compile time error or warning be produced which includes the label
       
  4372 "__invalid_capability_value"
       
  4373 
       
  4374 @param	n	Name to use for policy object
       
  4375 @param	sid	The SID value to check for
       
  4376 @param	c1	The first capability to check (enumerator of TCapability)
       
  4377 @param	c2	The second capability to check (enumerator of TCapability)
       
  4378 @param	c3	The third capability to check (enumerator of TCapability)
       
  4379 
       
  4380 @publishedAll
       
  4381 @released
       
  4382 */
       
  4383 #define	_LIT_SECURITY_POLICY_S3(n,sid,c1,c2,c3)								\
       
  4384 	const TStaticSecurityPolicy n = _INIT_SECURITY_POLICY_S3(sid,c1,c2,c3)
       
  4385 
       
  4386 
       
  4387 /** Macro for compile-time initialisation of a security policy object
       
  4388 The policy will check for a secure ID and two capabilities.
       
  4389 
       
  4390 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4391 Taking the address of the object will return a const TSecurityPolicy*.
       
  4392 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4393 function call operator n().
       
  4394 
       
  4395 If an invlid capability value is specified then, dependant on the compiler,
       
  4396 a compile time error or warning be produced which includes the label
       
  4397 "__invalid_capability_value"
       
  4398 
       
  4399 @param	sid	The SID value to check for
       
  4400 @param	c1	The first capability to check (enumerator of TCapability)
       
  4401 @param	c2	The second capability to check (enumerator of TCapability)
       
  4402 
       
  4403 @publishedAll
       
  4404 @released
       
  4405 */
       
  4406 #define _INIT_SECURITY_POLICY_S2(sid,c1,c2)  \
       
  4407 	_INIT_SECURITY_POLICY_S3(sid,c1,c2,ECapability_None)
       
  4408 
       
  4409 
       
  4410 /** Macro for compile-time definition of a security policy object
       
  4411 The policy will check for a secure ID and two capabilities.
       
  4412 
       
  4413 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4414 Taking the address of the object will return a const TSecurityPolicy*.
       
  4415 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4416 function call operator n().
       
  4417 
       
  4418 If an invlid capability value is specified then, dependant on the compiler,
       
  4419 a compile time error or warning be produced which includes the label
       
  4420 "__invalid_capability_value"
       
  4421 
       
  4422 @param	n	Name to use for policy object
       
  4423 @param	sid	The SID value to check for
       
  4424 @param	c1	The first capability to check (enumerator of TCapability)
       
  4425 @param	c2	The second capability to check (enumerator of TCapability)
       
  4426 
       
  4427 @publishedAll
       
  4428 @released
       
  4429 */
       
  4430 #define	_LIT_SECURITY_POLICY_S2(n,sid,c1,c2)  \
       
  4431 	_LIT_SECURITY_POLICY_S3(n,sid,c1,c2,ECapability_None)
       
  4432 
       
  4433 
       
  4434 /** Macro for compile-time initialisation of a security policy object
       
  4435 The policy will check for a secure ID and one capability.
       
  4436 
       
  4437 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4438 Taking the address of the object will return a const TSecurityPolicy*.
       
  4439 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4440 function call operator n().
       
  4441 
       
  4442 If an invlid capability value is specified then, dependant on the compiler,
       
  4443 a compile time error or warning be produced which includes the label
       
  4444 "__invalid_capability_value"
       
  4445 
       
  4446 @param	sid	The SID value to check for
       
  4447 @param	c1	The first capability to check (enumerator of TCapability)
       
  4448 
       
  4449 @publishedAll
       
  4450 @released
       
  4451 */
       
  4452 #define _INIT_SECURITY_POLICY_S1(sid,c1)  \
       
  4453 	_INIT_SECURITY_POLICY_S3(sid,c1,ECapability_None,ECapability_None)
       
  4454 
       
  4455 
       
  4456 /** Macro for compile-time definition of a security policy object
       
  4457 The policy will check for a secure ID and one capability.
       
  4458 
       
  4459 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4460 Taking the address of the object will return a const TSecurityPolicy*.
       
  4461 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4462 function call operator n().
       
  4463 
       
  4464 If an invlid capability value is specified then, dependant on the compiler,
       
  4465 a compile time error or warning be produced which includes the label
       
  4466 "__invalid_capability_value"
       
  4467 
       
  4468 @param	n	Name to use for policy object
       
  4469 @param	sid	The SID value to check for
       
  4470 @param	c1	The first capability to check (enumerator of TCapability)
       
  4471 
       
  4472 @publishedAll
       
  4473 @released
       
  4474 */
       
  4475 #define	_LIT_SECURITY_POLICY_S1(n,sid,c1)  \
       
  4476 	_LIT_SECURITY_POLICY_S3(n,sid,c1,ECapability_None,ECapability_None)
       
  4477 
       
  4478 
       
  4479 /** Macro for compile-time initialisation of a security policy object
       
  4480 The policy will check for a secure ID.
       
  4481 
       
  4482 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4483 Taking the address of the object will return a const TSecurityPolicy*.
       
  4484 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4485 function call operator n().
       
  4486 
       
  4487 @param	sid	The SID value to check for
       
  4488 
       
  4489 @publishedAll
       
  4490 @released
       
  4491 */
       
  4492 #define _INIT_SECURITY_POLICY_S0(sid)  \
       
  4493 	_INIT_SECURITY_POLICY_S3(sid,ECapability_None,ECapability_None,ECapability_None)
       
  4494 
       
  4495 
       
  4496 /** Macro for compile-time definition of a security policy object
       
  4497 The policy will check for a secure ID.
       
  4498 
       
  4499 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4500 Taking the address of the object will return a const TSecurityPolicy*.
       
  4501 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4502 function call operator n().
       
  4503 
       
  4504 @param	n	Name to use for policy object
       
  4505 @param	sid	The SID value to check for
       
  4506 
       
  4507 @publishedAll
       
  4508 @released
       
  4509 */
       
  4510 #define	_LIT_SECURITY_POLICY_S0(n,sid)  \
       
  4511 	_LIT_SECURITY_POLICY_S3(n,sid,ECapability_None,ECapability_None,ECapability_None)
       
  4512 
       
  4513 
       
  4514 /** Macro for compile-time initialisation of a security policy object
       
  4515 The policy will check for a vendor ID and three capabilities.
       
  4516 
       
  4517 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4518 Taking the address of the object will return a const TSecurityPolicy*.
       
  4519 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4520 function call operator n().
       
  4521 
       
  4522 If an invlid capability value is specified then, dependant on the compiler,
       
  4523 a compile time error or warning be produced which includes the label
       
  4524 "__invalid_capability_value"
       
  4525 
       
  4526 @param	vid	The VID value to check for
       
  4527 @param	c1	The first capability to check (enumerator of TCapability)
       
  4528 @param	c2	The second capability to check (enumerator of TCapability)
       
  4529 @param	c3	The third capability to check (enumerator of TCapability)
       
  4530 
       
  4531 @publishedAll
       
  4532 @released
       
  4533 */
       
  4534 #define _INIT_SECURITY_POLICY_V3(vid,c1,c2,c3)								\
       
  4535 	{																		\
       
  4536 	FOUR_TUINT8(															\
       
  4537 		(TUint8)TSecurityPolicy::ETypeV3,									\
       
  4538 		CAPABILITY_AS_TUINT8(c1),											\
       
  4539 		CAPABILITY_AS_TUINT8(c2),											\
       
  4540 		CAPABILITY_AS_TUINT8(c3)											\
       
  4541 	),																		\
       
  4542 	(TUint32)(vid)															\
       
  4543 	}
       
  4544 
       
  4545 
       
  4546 /** Macro for compile-time definition of a security policy object
       
  4547 The policy will check for a vendor ID and three capabilities.
       
  4548 
       
  4549 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4550 Taking the address of the object will return a const TSecurityPolicy*.
       
  4551 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4552 function call operator n().
       
  4553 
       
  4554 If an invlid capability value is specified then, dependant on the compiler,
       
  4555 a compile time error or warning be produced which includes the label
       
  4556 "__invalid_capability_value"
       
  4557 
       
  4558 @param	n	Name to use for policy object
       
  4559 @param	vid	The VID value to check for
       
  4560 @param	c1	The first capability to check (enumerator of TCapability)
       
  4561 @param	c2	The second capability to check (enumerator of TCapability)
       
  4562 @param	c3	The third capability to check (enumerator of TCapability)
       
  4563 
       
  4564 @publishedAll
       
  4565 @released
       
  4566 */
       
  4567 #define	_LIT_SECURITY_POLICY_V3(n,vid,c1,c2,c3)								\
       
  4568 	const TStaticSecurityPolicy n = _INIT_SECURITY_POLICY_V3(vid,c1,c2,c3)
       
  4569 
       
  4570 
       
  4571 /** Macro for compile-time initialisation of a security policy object
       
  4572 The policy will check for a vendor ID and two capabilities.
       
  4573 
       
  4574 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4575 Taking the address of the object will return a const TSecurityPolicy*.
       
  4576 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4577 function call operator n().
       
  4578 
       
  4579 If an invlid capability value is specified then, dependant on the compiler,
       
  4580 a compile time error or warning be produced which includes the label
       
  4581 "__invalid_capability_value"
       
  4582 
       
  4583 @param	vid	The VID value to check for
       
  4584 @param	c1	The first capability to check (enumerator of TCapability)
       
  4585 @param	c2	The second capability to check (enumerator of TCapability)
       
  4586 
       
  4587 @publishedAll
       
  4588 @released
       
  4589 */
       
  4590 #define _INIT_SECURITY_POLICY_V2(vid,c1,c2)  \
       
  4591 	_INIT_SECURITY_POLICY_V3(vid,c1,c2,ECapability_None)
       
  4592 
       
  4593 
       
  4594 /** Macro for compile-time definition of a security policy object
       
  4595 The policy will check for a vendor ID and two capabilities.
       
  4596 
       
  4597 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4598 Taking the address of the object will return a const TSecurityPolicy*.
       
  4599 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4600 function call operator n().
       
  4601 
       
  4602 If an invlid capability value is specified then, dependant on the compiler,
       
  4603 a compile time error or warning be produced which includes the label
       
  4604 "__invalid_capability_value"
       
  4605 
       
  4606 @param	n	Name to use for policy object
       
  4607 @param	vid	The VID value to check for
       
  4608 @param	c1	The first capability to check (enumerator of TCapability)
       
  4609 @param	c2	The second capability to check (enumerator of TCapability)
       
  4610 
       
  4611 @publishedAll
       
  4612 @released
       
  4613 */
       
  4614 #define	_LIT_SECURITY_POLICY_V2(n,vid,c1,c2)  \
       
  4615 	_LIT_SECURITY_POLICY_V3(n,vid,c1,c2,ECapability_None)
       
  4616 
       
  4617 
       
  4618 /** Macro for compile-time initialisation of a security policy object
       
  4619 The policy will check for a vendor ID and one capability.
       
  4620 
       
  4621 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4622 Taking the address of the object will return a const TSecurityPolicy*.
       
  4623 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4624 function call operator n().
       
  4625 
       
  4626 If an invlid capability value is specified then, dependant on the compiler,
       
  4627 a compile time error or warning be produced which includes the label
       
  4628 "__invalid_capability_value"
       
  4629 
       
  4630 @param	vid	The VID value to check for
       
  4631 @param	c1	The first capability to check (enumerator of TCapability)
       
  4632 
       
  4633 @publishedAll
       
  4634 @released
       
  4635 */
       
  4636 #define _INIT_SECURITY_POLICY_V1(vid,c1)  \
       
  4637 	_INIT_SECURITY_POLICY_V3(vid,c1,ECapability_None,ECapability_None)
       
  4638 
       
  4639 
       
  4640 /** Macro for compile-time definition of a security policy object
       
  4641 The policy will check for a vendor ID and one capability.
       
  4642 
       
  4643 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4644 Taking the address of the object will return a const TSecurityPolicy*.
       
  4645 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4646 function call operator n().
       
  4647 
       
  4648 If an invlid capability value is specified then, dependant on the compiler,
       
  4649 a compile time error or warning be produced which includes the label
       
  4650 "__invalid_capability_value"
       
  4651 
       
  4652 @param	n	Name to use for policy object
       
  4653 @param	vid	The VID value to check for
       
  4654 @param	c1	The first capability to check (enumerator of TCapability)
       
  4655 
       
  4656 @publishedAll
       
  4657 @released
       
  4658 */
       
  4659 #define	_LIT_SECURITY_POLICY_V1(n,vid,c1)  \
       
  4660 	_LIT_SECURITY_POLICY_V3(n,vid,c1,ECapability_None,ECapability_None)
       
  4661 
       
  4662 
       
  4663 /** Macro for compile-time initialisation of a security policy object
       
  4664 The policy will check for a vendor ID.
       
  4665 
       
  4666 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4667 Taking the address of the object will return a const TSecurityPolicy*.
       
  4668 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4669 function call operator n().
       
  4670 
       
  4671 @param	vid	The VID value to check for
       
  4672 
       
  4673 @publishedAll
       
  4674 @released
       
  4675 */
       
  4676 #define _INIT_SECURITY_POLICY_V0(vid)  \
       
  4677 	_INIT_SECURITY_POLICY_V3(vid,ECapability_None,ECapability_None,ECapability_None)
       
  4678 
       
  4679 
       
  4680 /** Macro for compile-time definition of a security policy object
       
  4681 The policy will check for a vendor ID.
       
  4682 
       
  4683 The object declared has an implicit conversion to const TSecurityPolicy&.
       
  4684 Taking the address of the object will return a const TSecurityPolicy*.
       
  4685 Explicit conversion to const TSecurityPolicy& may be effected by using the
       
  4686 function call operator n().
       
  4687 
       
  4688 @param	n	Name to use for policy object
       
  4689 @param	vid	The VID value to check for
       
  4690 
       
  4691 @publishedAll
       
  4692 @released
       
  4693 */
       
  4694 #define	_LIT_SECURITY_POLICY_V0(n,vid)  \
       
  4695 	_LIT_SECURITY_POLICY_V3(n,vid,ECapability_None,ECapability_None,ECapability_None)
       
  4696 
       
  4697 
       
  4698 
       
  4699 #ifdef __KERNEL_MODE__
       
  4700 class DThread;
       
  4701 class RMessageK;
       
  4702 #endif
       
  4703 class TPlatSecDiagnostic;
       
  4704 
       
  4705 /**
       
  4706 Class containing Platform Security related methods
       
  4707 @internalTechnology
       
  4708 */
       
  4709 class PlatSec
       
  4710 	{
       
  4711 #ifndef __KERNEL_MODE__
       
  4712 public:
       
  4713 	/**
       
  4714 	Tests whether a given Platform Security capability is enforced by the system.
       
  4715 
       
  4716 	Capabilities may not be enforced for several reasons:
       
  4717 	-#	The capability has been explicitly disabled on this system
       
  4718 		by use of the PlatSecDisabledCaps configuration parameter
       
  4719 	-#	Platform Security checks have been globally disabled
       
  4720 		by use of the EPlatSecEnforcement configuration parameter	     
       
  4721 	-#	The capability value is unknown. I.e. Is not part of the set of supported
       
  4722 		capabilities. See TCapabilitySet::SetAllSupported().
       
  4723 
       
  4724 	@param aCapability The capability to test
       
  4725 	@return A non-zero value if the capability is enforced, zero if it is not.
       
  4726 
       
  4727 	@publishedAll
       
  4728 	@released
       
  4729 	*/
       
  4730 	IMPORT_C static TBool IsCapabilityEnforced(TCapability aCapability);
       
  4731 
       
  4732 	/**
       
  4733 	An enumeration used with PlatSecSetting()
       
  4734 	@see PlatSecSetting()
       
  4735 	@publishedAll
       
  4736 	@test
       
  4737 	*/
       
  4738 	enum TConfigSetting
       
  4739 		{
       
  4740 		EPlatSecEnforcement, /**< Used to request the value of the PlatSecEnforcement setting */
       
  4741 		EPlatSecDiagnotics,  /**< Used to request the value of the PlatSecDiagnotics setting */
       
  4742 		EPlatSecProcessIsolation,  /**< Used to request the value of the PlatSecProcessIsolation setting */
       
  4743 		EPlatSecEnforceSysBin,  /**< Used to request the value of the PlatSecEnforceSysBin setting */
       
  4744 		EPlatSecLocked,  /**< Used to request the value of the PlatSecLocked setting */
       
  4745 		};
       
  4746 
       
  4747 	/**
       
  4748 	A test function to return the state of a given Platform Security configuration setting.
       
  4749 	@param aSetting An enumerated value representing the required setting
       
  4750 	@return A value representing the setting. 0 represents 'OFF', 1 represents 'ON'
       
  4751 			Other values may be returned for some settings, these exceptions are documented
       
  4752 			in the description for individual enumerations of TConfigSetting.
       
  4753 	@see TConfigSetting
       
  4754 	@publishedAll
       
  4755 	@test
       
  4756 	*/
       
  4757 	IMPORT_C static TInt ConfigSetting(TConfigSetting aSetting);
       
  4758 
       
  4759 #endif // Not __KERNEL_MODE__
       
  4760 
       
  4761 	//
       
  4762 	// All methods below here are internalTechnology
       
  4763 	//
       
  4764 
       
  4765 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
       
  4766 public:
       
  4767 	/** @internalTechnology */
       
  4768 	static inline TInt LoaderCapabilityViolation(const TDesC8& aImporterName, const TDesC8& aFileName, const SCapabilitySet& aMissingCaps);
       
  4769 #ifdef __KERNEL_MODE__
       
  4770 	/** @internalTechnology */
       
  4771 	static inline TInt CapabilityCheckFail(const DProcess* aViolatingProcess, TCapability aCapability, const char* aContextText);
       
  4772 	/** @internalTechnology */
       
  4773 	static inline TInt CapabilityCheckFail(const DThread* aViolatingThread, TCapability aCapability, const char* aContextText);
       
  4774 	/** @internalTechnology */
       
  4775 	static inline TInt SecureIdCheckFail(const DProcess* aViolatingProcess, TSecureId aSid, const char* aContextText);
       
  4776 	/** @internalTechnology */
       
  4777 	static inline TInt PolicyCheckFail(const DProcess* aProcess, const SSecurityInfo& aMissing, const char* aContextText);
       
  4778 	/** @internalTechnology */
       
  4779 	static inline TInt PolicyCheckFail(const DThread* aProcess, const SSecurityInfo& aMissing, const char* aContextText);
       
  4780 	/** @internalTechnology */
       
  4781 	static inline TInt ProcessIsolationFail(const char* aContextText);
       
  4782 	/** @internalTechnology */
       
  4783 	static inline TInt ProcessIsolationIPCFail(RMessageK* aMessage, const char* aContextText);
       
  4784 #else // !__KERNEL_MODE__
       
  4785 	/** @internalTechnology */
       
  4786 	static inline TInt LoaderCapabilityViolation(RProcess aLoadingProcess, const TDesC8& aFileName, const SCapabilitySet& aMissingCaps);
       
  4787 	/** @internalTechnology */
       
  4788 	static inline TInt CreatorCapabilityCheckFail(TCapability aCapability, const char* aContextText);
       
  4789 	/** @internalTechnology */
       
  4790 	static inline TInt CreatorCapabilityCheckFail(const TCapabilitySet& aMissingCaps, const char* aContextText);
       
  4791 	/** @internalTechnology */
       
  4792 	static inline TInt CapabilityCheckFail(TInt aHandle, TCapability aCapability, const char* aContextText);
       
  4793 	/** @internalTechnology */
       
  4794 	static inline TInt CapabilityCheckFail(TInt aHandle, const TCapabilitySet& aMissingCaps, const char* aContextText);
       
  4795 	/** @internalTechnology */
       
  4796 	static inline TInt PolicyCheckFail(TInt aHandle, const SSecurityInfo& aMissing, const char* aContextText);
       
  4797 	/** @internalTechnology */
       
  4798 	static inline TInt CapabilityCheckFail(RMessagePtr2 aMessage, TCapability aCapability, const char* aContextText);
       
  4799 	/** @internalTechnology */
       
  4800 	static inline TInt CapabilityCheckFail(RMessagePtr2 aMessage, const TCapabilitySet& aMissingCaps, const char* aContextText);
       
  4801 	/** @internalTechnology */
       
  4802 	static inline TInt PolicyCheckFail(RMessagePtr2 aMessage, const SSecurityInfo& aMissingCaps, const char* aContextText);
       
  4803 	/** @internalTechnology */
       
  4804 	static inline TInt PolicyCheckFail(RSessionBase aSession, const SSecurityInfo& aMissingCaps, const char* aContextText);
       
  4805 	/** @internalTechnology */
       
  4806 	static inline TInt CreatorPolicyCheckFail(const SSecurityInfo& aMissingCaps, const char* aContextText);
       
  4807 	/** @internalTechnology */
       
  4808 	static inline TInt CreatorCapabilityCheckFail(TCapability aCapability);
       
  4809 	/** @internalTechnology */
       
  4810 	static inline TInt CreatorCapabilityCheckFail(const TCapabilitySet& aMissingCaps);
       
  4811 	/** @internalTechnology */
       
  4812 	static inline TInt CapabilityCheckFail(TInt aHandle, TCapability aCapability);
       
  4813 	/** @internalTechnology */
       
  4814 	static inline TInt CapabilityCheckFail(TInt aHandle, const TCapabilitySet& aMissingCaps);
       
  4815 	/** @internalTechnology */
       
  4816 	static inline TInt PolicyCheckFail(TInt aHandle, const SSecurityInfo& aMissing);
       
  4817 	/** @internalTechnology */
       
  4818 	static inline TInt CapabilityCheckFail(RMessagePtr2 aMessage, TCapability aCapability);
       
  4819 	/** @internalTechnology */
       
  4820 	static inline TInt CapabilityCheckFail(RMessagePtr2 aMessage, const TCapabilitySet& aMissingCaps);
       
  4821 	/** @internalTechnology */
       
  4822 	static inline TInt PolicyCheckFail(RMessagePtr2 aMessage, const SSecurityInfo& aMissingCaps);
       
  4823 	/** @internalTechnology */
       
  4824 	static inline TInt CreatorPolicyCheckFail(const SSecurityInfo& aMissingCaps);
       
  4825 #endif //__KERNEL_MODE__
       
  4826 
       
  4827 private:
       
  4828 	UIMPORT_C static TInt EmitDiagnostic(TPlatSecDiagnostic& aDiagnostic, const char* aContextText);
       
  4829 #else //__REMOVE_PLATSEC_DIAGNOSTICS__
       
  4830 #ifndef __KERNEL_MODE__
       
  4831 private:
       
  4832 	IMPORT_C static TInt EmitDiagnostic(TPlatSecDiagnostic& aDiagnostic, const char* aContextText);
       
  4833 #endif // !__KERNEL_MODE__
       
  4834 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
       
  4835 
       
  4836 public:
       
  4837 	/** @internalTechnology */
       
  4838 	UIMPORT_C static TInt EmitDiagnostic();
       
  4839 	};
       
  4840 
       
  4841 
       
  4842 
       
  4843 /**
       
  4844 @publishedAll
       
  4845 @released
       
  4846 
       
  4847 Contains information about the code and data sections belonging to a process.
       
  4848 
       
  4849 @see RProcess::GetMemoryInfo
       
  4850 */
       
  4851 class TProcessMemoryInfo
       
  4852 	{
       
  4853 public:
       
  4854     /**
       
  4855     The code base address (.text).
       
  4856     */
       
  4857 	TUint32 iCodeBase;
       
  4858 
       
  4859 	
       
  4860     /**
       
  4861     The size of the code section (.text).
       
  4862     */
       
  4863 	TUint32 iCodeSize;
       
  4864 	
       
  4865 	
       
  4866     /**
       
  4867     The base address of the constant data section (.radata).
       
  4868     */
       
  4869 	TUint32 iConstDataBase;
       
  4870 	
       
  4871 	
       
  4872     /**
       
  4873     The size of the constant data section (.radata).
       
  4874     */
       
  4875 
       
  4876 	TUint32 iConstDataSize;
       
  4877 	
       
  4878 	
       
  4879     /**
       
  4880     The base address of the initialised data section (.data).
       
  4881     */
       
  4882 	TUint32 iInitialisedDataBase;
       
  4883 	
       
  4884 	
       
  4885     /**
       
  4886     The size of the initialised data section (.data).
       
  4887     */
       
  4888 	TUint32 iInitialisedDataSize;
       
  4889 
       
  4890 	
       
  4891     /**
       
  4892     The base address of the uninitialised data section (.bss).
       
  4893     */
       
  4894 	TUint32 iUninitialisedDataBase;
       
  4895 
       
  4896 	
       
  4897     /**
       
  4898     The size of the uninitialised data section (.bss).
       
  4899     */
       
  4900 	TUint32 iUninitialisedDataSize;
       
  4901 	};
       
  4902 
       
  4903 
       
  4904 
       
  4905 
       
  4906 /**
       
  4907 @publishedAll
       
  4908 @released
       
  4909 
       
  4910 Defines a more useful synonym for TProcessMemoryInfo.
       
  4911 */
       
  4912 typedef TProcessMemoryInfo TModuleMemoryInfo;	// more accurate name - remove old one later
       
  4913 
       
  4914 
       
  4915 
       
  4916 
       
  4917 #ifndef __KERNEL_MODE__
       
  4918 class CBase;
       
  4919 /**
       
  4920 @publishedAll
       
  4921 @released
       
  4922 
       
  4923 Generic array.
       
  4924 
       
  4925 This class defines a generic array which can be constructed by any of the
       
  4926 following templated concrete arrays:
       
  4927 
       
  4928 1. CArrayFixFlat<class T>
       
  4929 
       
  4930 2. CArrayFixSeg<class T>
       
  4931 
       
  4932 3. CArrayVarFlat<class T>
       
  4933 
       
  4934 4. CArrayVarSeg<class T>
       
  4935 
       
  4936 5. CArrayPakFlat<class T>
       
  4937 
       
  4938 6. RArray<class T>
       
  4939 
       
  4940 7. RPointerArray<class T>
       
  4941 
       
  4942 and also by the following template specialisation classes:
       
  4943 
       
  4944 1. RArray<TInt>
       
  4945 
       
  4946 2. RArray<TUint>
       
  4947 
       
  4948 It allows a degree of polymorphism amongst the array classes. It permits the 
       
  4949 operator[] and the Count() member functions of an array to be invoked without 
       
  4950 knowing which array class has been used to construct that array.
       
  4951 
       
  4952 TArray allows access to elements of an array but does not permit changes to 
       
  4953 those elements. 
       
  4954 
       
  4955 Use the Array() member function of an array to construct and return
       
  4956 a TArray<class T> object for that array.
       
  4957 
       
  4958 A TArray<class T> type object is not intended to be constructed explicitly 
       
  4959 by user code.
       
  4960 
       
  4961 @see CArrayFixFlat
       
  4962 @see CArrayFixSeg
       
  4963 @see CArrayVarFlat
       
  4964 @see CArrayVarSeg
       
  4965 @see CArrayPakFlat
       
  4966 @see RArray
       
  4967 @see RPointerArray
       
  4968 @see RArray<TInt>
       
  4969 @see RArray<TUint>
       
  4970 */
       
  4971 template <class T>
       
  4972 class TArray
       
  4973 	{
       
  4974 public:
       
  4975 	inline TArray(TInt (*aCount)(const CBase* aPtr),const TAny*(*anAt)(const CBase* aPtr,TInt anIndex),const CBase* aPtr);
       
  4976 	inline TInt Count() const;
       
  4977 	inline const T& operator[](TInt anIndex) const;
       
  4978 private:
       
  4979 	const CBase* iPtr;
       
  4980 	TInt (*iCount)(const CBase* aPtr);
       
  4981 	const TAny*(*iAt)(const CBase* aPtr,TInt anIndex);
       
  4982 	};
       
  4983 #endif
       
  4984 
       
  4985 
       
  4986 
       
  4987 
       
  4988 /**
       
  4989 @publishedAll
       
  4990 @released
       
  4991 
       
  4992 Defines a function type used by a TIdentityRelation object. 
       
  4993 
       
  4994 A function of this type implements an algorithm for determining whether
       
  4995 two objects match.
       
  4996 
       
  4997 @see TIdentityRelation
       
  4998 */
       
  4999 typedef TBool (*TGeneralIdentityRelation)(const TAny*, const TAny*);
       
  5000 
       
  5001 
       
  5002 
       
  5003 
       
  5004 /**
       
  5005 @publishedAll
       
  5006 @released
       
  5007 
       
  5008 Defines a function type used by a TLinearOrder object
       
  5009 
       
  5010 A function of this type implements an algorithm that determines
       
  5011 the order of two objects.
       
  5012 
       
  5013 @see TLinearOrder
       
  5014 */
       
  5015 typedef TInt (*TGeneralLinearOrder)(const TAny*, const TAny*);
       
  5016 
       
  5017 
       
  5018 
       
  5019 
       
  5020 /**
       
  5021 @publishedAll
       
  5022 @released
       
  5023 
       
  5024 A templated class which packages a function that determines whether two
       
  5025 objects of a given class type match. During linear search operations the search
       
  5026 term is always passed as the first argument and the second argument is an
       
  5027 element of the array being searched.
       
  5028 
       
  5029 A TIdentityRelation<T> object is constructed and passed as a parameter to 
       
  5030 member functions of the array classes RArray<T> and RPointerArray<T>.
       
  5031 
       
  5032 @see RArray
       
  5033 @see RPointerArray
       
  5034 */
       
  5035 template <class T>
       
  5036 class TIdentityRelation
       
  5037 	{
       
  5038 public:
       
  5039 	inline TIdentityRelation();
       
  5040 	inline TIdentityRelation( TBool (*anIdentity)(const T&, const T&) );
       
  5041 	inline operator TGeneralIdentityRelation() const;
       
  5042 private:
       
  5043 	inline static TBool EqualityOperatorCompare(const T& aLeft, const T& aRight);
       
  5044 private:
       
  5045 	TGeneralIdentityRelation iIdentity;
       
  5046 	};
       
  5047 
       
  5048 
       
  5049 
       
  5050 /**
       
  5051 @publishedAll
       
  5052 @released
       
  5053 
       
  5054 A set of common identity relations for frequently occurring types.
       
  5055 
       
  5056 @see RArray
       
  5057 @see RPointerArray
       
  5058 @see RHashSet
       
  5059 @see RPtrHashSet
       
  5060 @see RHashMap
       
  5061 @see RPtrHashMap
       
  5062 */
       
  5063 class DefaultIdentity
       
  5064 	{
       
  5065 public:
       
  5066 	IMPORT_C static TBool Integer(const TInt&, const TInt&);
       
  5067 	IMPORT_C static TBool Des8(const TDesC8&, const TDesC8&);
       
  5068 	IMPORT_C static TBool Des16(const TDesC16&, const TDesC16&);
       
  5069 	IMPORT_C static TBool IntegerPtr(TInt* const&, TInt* const&);
       
  5070 	IMPORT_C static TBool Des8Ptr(TDesC8* const&, TDesC8* const&);
       
  5071 	IMPORT_C static TBool Des16Ptr(TDesC16* const&, TDesC16* const&);
       
  5072 	};
       
  5073 
       
  5074 
       
  5075 
       
  5076 
       
  5077 /**
       
  5078 @publishedAll
       
  5079 @released
       
  5080 
       
  5081 A templated class which packages a function that determines the order of two 
       
  5082 objects of a given class type. During binary search operations the search term
       
  5083 is always passed as the first argument and the second argument is an element
       
  5084 of the array being searched.
       
  5085 
       
  5086 A TLinearOrder<T> object is constructed and passed as a parameter to member 
       
  5087 functions of the array classes RArray<T> and RPointerArray<T>.
       
  5088 
       
  5089 @see RArray
       
  5090 @see RPointerArray
       
  5091 */
       
  5092 template <class T>
       
  5093 class TLinearOrder
       
  5094 	{
       
  5095 public:
       
  5096 	inline TLinearOrder( TInt(*anOrder)(const T&, const T&) );
       
  5097 	inline operator TGeneralLinearOrder() const;
       
  5098 private:
       
  5099 	TGeneralLinearOrder iOrder;
       
  5100 	};
       
  5101 
       
  5102 
       
  5103 /*
       
  5104 @publishedAll
       
  5105 @released
       
  5106 
       
  5107 A set of values that tell array search functions which array element is to be
       
  5108 returned when there are duplicate elements in the array.
       
  5109 
       
  5110 These values are used by RArray, RPointerArray, RArray<TInt>,
       
  5111 and RArray<TUint> search functions. 
       
  5112 
       
  5113 Examples of functions that take
       
  5114 these enum values are: RPointerArray::SpecificFindInOrderL(),
       
  5115 and RArray::SpecificFindInSignedKeyOrder().
       
  5116 
       
  5117 @see RArray
       
  5118 @see RPointerArray
       
  5119 @see RArray<TInt>
       
  5120 @see RArray<TUint>
       
  5121 */
       
  5122 enum TArrayFindMode
       
  5123 	{
       
  5124 	/**
       
  5125 	Indicates that any element in a block of duplicate elements can be
       
  5126 	returned by a search function.
       
  5127 	
       
  5128 	Note that using this mode, there can be no guarantee that the element
       
  5129 	returned by the search functions will be the same if the size of the array
       
  5130 	changes between successive calls to those functions.
       
  5131 	*/
       
  5132 	EArrayFindMode_Any = 0,
       
  5133 	
       
  5134 	/**
       
  5135 	Indicates that the first element in a block of duplicate elements
       
  5136 	is returned.
       
  5137 	*/
       
  5138 	EArrayFindMode_First = 1,
       
  5139 
       
  5140 	/**
       
  5141 	Indicates that the first element after the last element in a block
       
  5142 	of duplicate elements is returned.
       
  5143 	*/
       
  5144 	EArrayFindMode_Last = 2,
       
  5145     
       
  5146     /**
       
  5147     @internalTechnology
       
  5148     */
       
  5149 	EArrayFindMode_Limit = 3
       
  5150 	};
       
  5151 
       
  5152 
       
  5153 /**
       
  5154 @internalComponent
       
  5155 
       
  5156 Base class used in the derivation of RPointerArray, RArray<TInt>,
       
  5157 and RArray<TUint>. 
       
  5158 
       
  5159 The base class is inherited privately.
       
  5160 
       
  5161 The class is internal and is not intended for use.
       
  5162 */
       
  5163 class RPointerArrayBase
       
  5164 	{
       
  5165 protected:
       
  5166 	IMPORT_C RPointerArrayBase();
       
  5167 	IMPORT_C RPointerArrayBase(TInt aGranularity);
       
  5168 	IMPORT_C RPointerArrayBase(TInt aMinGrowBy, TInt aFactor);
       
  5169 	IMPORT_C void Close();
       
  5170 	IMPORT_C TInt Count() const;
       
  5171 	inline void ZeroCount() {iCount=0;}
       
  5172 	inline TAny** Entries() {return iEntries;}
       
  5173 	IMPORT_C TAny*& At(TInt anIndex) const;
       
  5174 	IMPORT_C TInt Append(const TAny* anEntry);
       
  5175 	IMPORT_C TInt Insert(const TAny* anEntry, TInt aPos);
       
  5176 	IMPORT_C void Remove(TInt anIndex);
       
  5177 	IMPORT_C void Compress();
       
  5178 	IMPORT_C void Reset();
       
  5179 	IMPORT_C TInt Find(const TAny* anEntry) const;
       
  5180 	IMPORT_C TInt Find(const TAny* anEntry, TGeneralIdentityRelation anIdentity) const;
       
  5181 	IMPORT_C TInt FindReverse(const TAny* aEntry) const;
       
  5182 	IMPORT_C TInt FindReverse(const TAny* aEntry, TGeneralIdentityRelation aIdentity) const;
       
  5183 	IMPORT_C TInt FindIsqSigned(TInt anEntry) const;
       
  5184 	IMPORT_C TInt FindIsqUnsigned(TUint anEntry) const;
       
  5185 	IMPORT_C TInt FindIsq(const TAny* anEntry, TGeneralLinearOrder anOrder) const;
       
  5186 	IMPORT_C TInt FindIsqSigned(TInt anEntry, TInt aMode) const;
       
  5187 	IMPORT_C TInt FindIsqUnsigned(TUint anEntry, TInt aMode) const;
       
  5188 	IMPORT_C TInt FindIsq(const TAny* anEntry, TGeneralLinearOrder anOrder, TInt aMode) const;
       
  5189 	IMPORT_C TInt InsertIsqSigned(TInt anEntry, TBool aAllowRepeats);
       
  5190 	IMPORT_C TInt InsertIsqUnsigned(TUint anEntry, TBool aAllowRepeats);
       
  5191 	IMPORT_C TInt InsertIsq(const TAny* anEntry, TGeneralLinearOrder anOrder, TBool aAllowRepeats);
       
  5192 	IMPORT_C TInt BinarySearchSigned(TInt anEntry, TInt& anIndex) const;
       
  5193 	IMPORT_C TInt BinarySearchUnsigned(TUint anEntry, TInt& anIndex) const;
       
  5194 	IMPORT_C TInt BinarySearch(const TAny* anEntry, TInt& anIndex, TGeneralLinearOrder anOrder) const;
       
  5195 	IMPORT_C TInt BinarySearchSigned(TInt anEntry, TInt& anIndex, TInt aMode) const;
       
  5196 	IMPORT_C TInt BinarySearchUnsigned(TUint anEntry, TInt& anIndex, TInt aMode) const;
       
  5197 	IMPORT_C TInt BinarySearch(const TAny* anEntry, TInt& anIndex, TGeneralLinearOrder anOrder, TInt aMode) const;
       
  5198 #ifndef __KERNEL_MODE__
       
  5199 	IMPORT_C RPointerArrayBase(TAny** aEntries, TInt aCount);
       
  5200 	IMPORT_C void GranularCompress();
       
  5201 	IMPORT_C TInt DoReserve(TInt aCount);
       
  5202 	IMPORT_C void HeapSortSigned();
       
  5203 	IMPORT_C void HeapSortUnsigned();
       
  5204 	IMPORT_C void HeapSort(TGeneralLinearOrder anOrder);
       
  5205 	IMPORT_C static TInt GetCount(const CBase* aPtr);
       
  5206 	IMPORT_C static const TAny* GetElementPtr(const CBase* aPtr, TInt aIndex);
       
  5207 #endif
       
  5208 private:
       
  5209 	TInt Grow();
       
  5210 private:
       
  5211 	TInt iCount;
       
  5212 	TAny** iEntries;
       
  5213 	TInt iAllocated;
       
  5214 	TInt iGranularity;	// positive means linear, negative means exponential growth
       
  5215 	TInt iSpare1;
       
  5216 	TInt iSpare2;
       
  5217 	};
       
  5218 
       
  5219 
       
  5220 
       
  5221 
       
  5222 /**
       
  5223 @publishedAll
       
  5224 @released
       
  5225 
       
  5226 A simple and efficient array of pointers to objects.
       
  5227 
       
  5228 The elements of the array are pointers to instances of a class; this class
       
  5229 is specified as the template parameter T.
       
  5230 
       
  5231 The class offers standard array behaviour which includes insertion, appending 
       
  5232 and sorting of pointers.
       
  5233 
       
  5234 Derivation from RPointerArrayBase is private.
       
  5235 */
       
  5236 template <class T>
       
  5237 class RPointerArray : private RPointerArrayBase
       
  5238 	{
       
  5239 public:
       
  5240 	inline RPointerArray();
       
  5241 	inline explicit RPointerArray(TInt aGranularity);
       
  5242 	inline RPointerArray(TInt aMinGrowBy, TInt aFactor);
       
  5243 	inline void Close();
       
  5244 	inline TInt Count() const;
       
  5245 	inline T* const& operator[](TInt anIndex) const;
       
  5246 	inline T*& operator[](TInt anIndex);
       
  5247 	inline TInt Append(const T* anEntry);
       
  5248 	inline TInt Insert(const T* anEntry, TInt aPos);
       
  5249 	inline void Remove(TInt anIndex);
       
  5250 	inline void Compress();
       
  5251 	inline void Reset();
       
  5252 	void ResetAndDestroy();
       
  5253 	inline TInt Find(const T* anEntry) const;
       
  5254 	inline TInt Find(const T* anEntry, TIdentityRelation<T> anIdentity) const;
       
  5255 	template <class K>
       
  5256 	inline TInt Find(const K& aKey, TBool (*apfnCompare)(const K* k, const T& t)) const
       
  5257 	/**
       
  5258 	Finds the first object pointer in the array which matches aKey using
       
  5259 	the comparison algorithm provided by apfnCompare.
       
  5260 	
       
  5261 	The find operation always starts at the low index end of the array. There 
       
  5262 	is no assumption about the order of objects in the array.
       
  5263 
       
  5264 	@param aKey The key of type K to be compared with the elements of the array using apfnCompare.
       
  5265 	@param apfnCompare A function defining the identity relation between the
       
  5266 			object pointers in the array, and their keys of type K.  The
       
  5267 			function returns true if k and t match based on this relationship.
       
  5268 	
       
  5269 	@return The index of the first matching object pointer within the array.
       
  5270 			KErrNotFound, if no suitable object pointer can be found.
       
  5271 	*/
       
  5272 		{ return RPointerArrayBase::Find((T*)&aKey,*(TIdentityRelation<T>*)&apfnCompare); }		
       
  5273 	inline TInt FindReverse(const T* anEntry) const;
       
  5274 	inline TInt FindReverse(const T* anEntry, TIdentityRelation<T> anIdentity) const;
       
  5275 	template <class K>
       
  5276 	inline TInt FindReverse(const K& aKey, TInt (*apfnMatch)(const K* k, const T& t)) const
       
  5277 	/**
       
  5278 	Finds the first object pointer in the array which matches aKey using
       
  5279 	the comparison algorithm provided by apfnCompare.
       
  5280 	
       
  5281 	The find operation always starts at the high index end of the array. There 
       
  5282 	is no assumption about the order of objects in the array.
       
  5283 
       
  5284 	@param aKey The key of type K to be compared with the elements of the array using apfnMatch.
       
  5285 	@param apfnMatch A function defining the identity relation between the
       
  5286 			object pointers in the array, and their keys of type K.  The
       
  5287 			function returns true if k and t match based on this relationship.
       
  5288 	
       
  5289 	@return The index of the first matching object pointer within the array.
       
  5290 			KErrNotFound, if no suitable object pointer can be found.
       
  5291 	*/
       
  5292 
       
  5293 		{ return RPointerArrayBase::FindReverse((T*)&aKey,*(TIdentityRelation<T>*)&apfnMatch); } 				
       
  5294 	inline TInt FindInAddressOrder(const T* anEntry) const;
       
  5295 	inline TInt FindInOrder(const T* anEntry, TLinearOrder<T> anOrder) const;
       
  5296 	inline TInt FindInAddressOrder(const T* anEntry, TInt& anIndex) const;
       
  5297 	inline TInt FindInOrder(const T* anEntry, TInt& anIndex, TLinearOrder<T> anOrder) const;
       
  5298 	template <class K>
       
  5299 	inline TInt FindInOrder(const K& aKey, TInt (*apfnCompare)(const K* k, const T& t)) const
       
  5300 	/**
       
  5301 	Finds the object pointer in the array whose object matches the specified
       
  5302 	key, (Using the relationship defined within apfnCompare) using a binary search
       
  5303 	technique and an ordering algorithm.
       
  5304 
       
  5305 	The function assumes that existing object pointers in the array are ordered 
       
  5306 	so that the objects themselves are in object order as determined by an algorithm 
       
  5307 	supplied by the caller and packaged as a TLinearOrder<T>.
       
  5308 
       
  5309 	@param aKey The key of type K to be compared with the elements of the array using apfnCompare.
       
  5310 	@param apfnCompare A function which defines the order that the array was sorted,
       
  5311 		 where in it aKey (via the defined relationship) should fit, and if the key is present. 
       
  5312 	
       
  5313 	@return The index of the matching object pointer within the array.
       
  5314 			KErrNotFound, if no suitable object pointer can be found.
       
  5315 	*/	
       
  5316 		{ return RPointerArrayBase::FindIsq((T*)&aKey,*(TLinearOrder<T>*)&apfnCompare); }
       
  5317 	inline TInt SpecificFindInAddressOrder(const T* anEntry, TInt aMode) const;
       
  5318 	inline TInt SpecificFindInOrder(const T* anEntry, TLinearOrder<T> anOrder, TInt aMode) const;
       
  5319 	inline TInt SpecificFindInAddressOrder(const T* anEntry, TInt& anIndex, TInt aMode) const;
       
  5320 	inline TInt SpecificFindInOrder(const T* anEntry, TInt& anIndex, TLinearOrder<T> anOrder, TInt aMode) const;
       
  5321 	inline TInt InsertInAddressOrder(const T* anEntry);
       
  5322 	inline TInt InsertInOrder(const T* anEntry, TLinearOrder<T> anOrder);
       
  5323 	inline TInt InsertInAddressOrderAllowRepeats(const T* anEntry);
       
  5324 	inline TInt InsertInOrderAllowRepeats(const T* anEntry, TLinearOrder<T> anOrder);
       
  5325 #ifndef __KERNEL_MODE__
       
  5326 	inline void AppendL(const T* anEntry);
       
  5327 	inline void InsertL(const T* anEntry, TInt aPos);
       
  5328 	inline TInt FindL(const T* anEntry) const;
       
  5329 	inline TInt FindL(const T* anEntry, TIdentityRelation<T> anIdentity) const;
       
  5330 	inline TInt FindReverseL(const T* anEntry) const;
       
  5331 	inline TInt FindReverseL(const T* anEntry, TIdentityRelation<T> anIdentity) const;
       
  5332 	inline TInt FindInAddressOrderL(const T* anEntry) const;
       
  5333 	inline TInt FindInOrderL(const T* anEntry, TLinearOrder<T> anOrder) const;
       
  5334 	inline void FindInAddressOrderL(const T* anEntry, TInt& anIndex) const;
       
  5335 	inline void FindInOrderL(const T* anEntry, TInt& anIndex, TLinearOrder<T> anOrder) const;
       
  5336 	inline TInt SpecificFindInAddressOrderL(const T* anEntry, TInt aMode) const;
       
  5337 	inline TInt SpecificFindInOrderL(const T* anEntry, TLinearOrder<T> anOrder, TInt aMode) const;
       
  5338 	inline void SpecificFindInAddressOrderL(const T* anEntry, TInt& anIndex, TInt aMode) const;
       
  5339 	inline void SpecificFindInOrderL(const T* anEntry, TInt& anIndex, TLinearOrder<T> anOrder, TInt aMode) const;
       
  5340 	inline void InsertInAddressOrderL(const T* anEntry);
       
  5341 	inline void InsertInOrderL(const T* anEntry, TLinearOrder<T> anOrder);
       
  5342 	inline void InsertInAddressOrderAllowRepeatsL(const T* anEntry);
       
  5343 	inline void InsertInOrderAllowRepeatsL(const T* anEntry, TLinearOrder<T> anOrder);
       
  5344 
       
  5345 	inline RPointerArray(T** aEntries, TInt aCount);
       
  5346 	inline void GranularCompress();
       
  5347 	inline TInt Reserve(TInt aCount);
       
  5348 	inline void ReserveL(TInt aCount);
       
  5349 	inline void SortIntoAddressOrder();
       
  5350 	inline void Sort(TLinearOrder<T> anOrder);
       
  5351 	inline TArray<T*> Array() const;
       
  5352 #endif
       
  5353 	};
       
  5354 
       
  5355 
       
  5356 
       
  5357 /**
       
  5358 @publishedAll
       
  5359 @released
       
  5360 
       
  5361 Array of raw pointers.
       
  5362 
       
  5363 The array is a simple and efficient specialized array of TAny pointers offering
       
  5364 standard array behaviour.
       
  5365 
       
  5366 The derivation from RPointerArrayBase is private.
       
  5367 */
       
  5368 TEMPLATE_SPECIALIZATION class RPointerArray<TAny> : private RPointerArrayBase
       
  5369 	{
       
  5370 public:
       
  5371 	inline RPointerArray();
       
  5372 	inline explicit RPointerArray(TInt aGranularity);
       
  5373 	inline RPointerArray(TInt aMinGrowBy, TInt aFactor);
       
  5374 	inline void Close();
       
  5375 	inline TInt Count() const;
       
  5376 	inline TAny* const& operator[](TInt anIndex) const;
       
  5377 	inline TAny*& operator[](TInt anIndex);
       
  5378 	inline TInt Append(const TAny* anEntry);
       
  5379 	inline TInt Insert(const TAny* anEntry, TInt aPos);
       
  5380 	inline void Remove(TInt anIndex);
       
  5381 	inline void Compress();
       
  5382 	inline void Reset();
       
  5383 	inline TInt Find(const TAny* anEntry) const;
       
  5384 	inline TInt FindReverse(const TAny* anEntry) const;
       
  5385 	inline TInt FindInAddressOrder(const TAny* anEntry) const;
       
  5386 	inline TInt FindInAddressOrder(const TAny* anEntry, TInt& anIndex) const;
       
  5387 	inline TInt SpecificFindInAddressOrder(const TAny* anEntry, TInt aMode) const;
       
  5388 	inline TInt SpecificFindInAddressOrder(const TAny* anEntry, TInt& anIndex, TInt aMode) const;
       
  5389 	inline TInt InsertInAddressOrder(const TAny* anEntry);
       
  5390 	inline TInt InsertInAddressOrderAllowRepeats(const TAny* anEntry);
       
  5391 #ifndef __KERNEL_MODE__
       
  5392 	inline void AppendL(const TAny* anEntry);
       
  5393 	inline void InsertL(const TAny* anEntry, TInt aPos);
       
  5394 	inline TInt FindL(const TAny* anEntry) const;
       
  5395 	inline TInt FindReverseL(const TAny* anEntry) const;
       
  5396 	inline TInt FindInAddressOrderL(const TAny* anEntry) const;
       
  5397 	inline void FindInAddressOrderL(const TAny* anEntry, TInt& anIndex) const;
       
  5398 	inline TInt SpecificFindInAddressOrderL(const TAny* anEntry, TInt aMode) const;
       
  5399 	inline void SpecificFindInAddressOrderL(const TAny* anEntry, TInt& anIndex, TInt aMode) const;
       
  5400 	inline void InsertInAddressOrderL(const TAny* anEntry);
       
  5401 	inline void InsertInAddressOrderAllowRepeatsL(const TAny* anEntry);
       
  5402 
       
  5403 	inline RPointerArray(TAny** aEntries, TInt aCount);
       
  5404 	inline void GranularCompress();
       
  5405 	inline void SortIntoAddressOrder();
       
  5406 	inline TArray<TAny*> Array() const;
       
  5407 #endif
       
  5408 	};
       
  5409 
       
  5410 
       
  5411 
       
  5412 /**
       
  5413 @internalComponent
       
  5414 
       
  5415 Base class used in the derivation of RArray.
       
  5416 
       
  5417 The base class is inherited privately.
       
  5418 
       
  5419 The class is internal and is not intended for use.
       
  5420 */
       
  5421 class RArrayBase
       
  5422 	{
       
  5423 protected:
       
  5424 	IMPORT_C RArrayBase(TInt anEntrySize);
       
  5425 	IMPORT_C RArrayBase(TInt anEntrySize, TInt aGranularity);
       
  5426 	IMPORT_C RArrayBase(TInt anEntrySize, TInt aGranularity, TInt aKeyOffset);
       
  5427 	IMPORT_C RArrayBase(TInt anEntrySize, TInt aMinGrowBy, TInt aKeyOffset, TInt aFactor);
       
  5428 	IMPORT_C RArrayBase(TInt aEntrySize,TAny* aEntries, TInt aCount);
       
  5429 	IMPORT_C void Close();
       
  5430 	IMPORT_C TInt Count() const;
       
  5431 	IMPORT_C TAny* At(TInt anIndex) const;
       
  5432 	IMPORT_C TInt Append(const TAny* anEntry);
       
  5433 	IMPORT_C TInt Insert(const TAny* anEntry, TInt aPos);
       
  5434 	IMPORT_C void Remove(TInt anIndex);
       
  5435 	IMPORT_C void Compress();
       
  5436 	IMPORT_C void Reset();
       
  5437 	IMPORT_C TInt Find(const TAny* anEntry) const;
       
  5438 	IMPORT_C TInt Find(const TAny* anEntry, TGeneralIdentityRelation anIdentity) const;
       
  5439 	IMPORT_C TInt FindReverse(const TAny* aEntry) const;
       
  5440 	IMPORT_C TInt FindReverse(const TAny* aEntry, TGeneralIdentityRelation aIdentity) const;
       
  5441 	IMPORT_C TInt FindIsqSigned(const TAny* anEntry) const;
       
  5442 	IMPORT_C TInt FindIsqUnsigned(const TAny* anEntry) const;
       
  5443 	IMPORT_C TInt FindIsq(const TAny* anEntry, TGeneralLinearOrder anOrder) const;
       
  5444 	IMPORT_C TInt FindIsqSigned(const TAny* anEntry, TInt aMode) const;
       
  5445 	IMPORT_C TInt FindIsqUnsigned(const TAny* anEntry, TInt aMode) const;
       
  5446 	IMPORT_C TInt FindIsq(const TAny* anEntry, TGeneralLinearOrder anOrder, TInt aMode) const;
       
  5447 	IMPORT_C TInt InsertIsqSigned(const TAny* anEntry, TBool aAllowRepeats);
       
  5448 	IMPORT_C TInt InsertIsqUnsigned(const TAny* anEntry, TBool aAllowRepeats);
       
  5449 	IMPORT_C TInt InsertIsq(const TAny* anEntry, TGeneralLinearOrder anOrder, TBool aAllowRepeats);
       
  5450 	IMPORT_C TInt BinarySearchSigned(const TAny* anEntry, TInt& anIndex) const;
       
  5451 	IMPORT_C TInt BinarySearchUnsigned(const TAny* anEntry, TInt& anIndex) const;
       
  5452 	IMPORT_C TInt BinarySearch(const TAny* anEntry, TInt& anIndex, TGeneralLinearOrder anOrder) const;
       
  5453 	IMPORT_C TInt BinarySearchSigned(const TAny* anEntry, TInt& anIndex, TInt aMode) const;
       
  5454 	IMPORT_C TInt BinarySearchUnsigned(const TAny* anEntry, TInt& anIndex, TInt aMode) const;
       
  5455 	IMPORT_C TInt BinarySearch(const TAny* anEntry, TInt& anIndex, TGeneralLinearOrder anOrder, TInt aMode) const;
       
  5456 #ifndef __KERNEL_MODE__
       
  5457 	IMPORT_C void GranularCompress();
       
  5458 	IMPORT_C TInt DoReserve(TInt aCount);
       
  5459 	IMPORT_C void HeapSortSigned();
       
  5460 	IMPORT_C void HeapSortUnsigned();
       
  5461 	IMPORT_C void HeapSort(TGeneralLinearOrder anOrder);
       
  5462 	IMPORT_C static TInt GetCount(const CBase* aPtr);
       
  5463 	IMPORT_C static const TAny* GetElementPtr(const CBase* aPtr, TInt aIndex);
       
  5464 #endif
       
  5465 private:
       
  5466 	TInt Grow();
       
  5467 private:
       
  5468 	TInt iCount;
       
  5469 	TAny* iEntries;
       
  5470 	TInt iEntrySize;
       
  5471 	TInt iKeyOffset;
       
  5472 	TInt iAllocated;
       
  5473 	TInt iGranularity;	// positive means linear, negative means exponential growth
       
  5474 	TInt iSpare1;
       
  5475 	TInt iSpare2;
       
  5476 	};
       
  5477 
       
  5478 
       
  5479 
       
  5480 
       
  5481 /**
       
  5482 @publishedAll
       
  5483 @released
       
  5484 
       
  5485 A simple and efficient array of fixed length objects.
       
  5486 
       
  5487 The elements of the array are instances of a class; this class is specified
       
  5488 as the template parameter T.
       
  5489 
       
  5490 The array offers standard array behaviour which includes insertion, appending 
       
  5491 and sorting of elements.
       
  5492 
       
  5493 Note:
       
  5494 
       
  5495 1. where possible, this class should be used in preference to
       
  5496    CArrayFixFlat<classT>.
       
  5497 
       
  5498 2. the derivation from RArrayBase is private.
       
  5499 
       
  5500 3. for performance reasons, RArray stores objects in the array as
       
  5501    word (4 byte) aligned quantities. This means that some member functions
       
  5502    do not work when RArray is instantiated for classes of less than 4 bytes
       
  5503    in size, or when the class's alignment requirement is not 4.
       
  5504    Be aware that it is possible to get an unhandled exception on hardware
       
  5505    that enforces strict alignment.
       
  5506    
       
  5507    The affected functions are:
       
  5508    
       
  5509    3.1 the constructor: RArray(TInt, T*, TInt)
       
  5510    
       
  5511    3.2 Append(const T&)
       
  5512    
       
  5513    3.3 Insert(const T&, TInt)
       
  5514    
       
  5515    3.4 the [] operator, and then using the pointer to iterate through
       
  5516        the array as you would with a C array.
       
  5517 */
       
  5518 template <class T>
       
  5519 class RArray : private RArrayBase
       
  5520 	{
       
  5521 public:
       
  5522 	inline RArray();
       
  5523 	inline explicit RArray(TInt aGranularity);
       
  5524 	inline RArray(TInt aGranularity, TInt aKeyOffset);
       
  5525 	inline RArray(TInt aMinGrowBy, TInt aKeyOffset, TInt aFactor);
       
  5526 	inline RArray(TInt aEntrySize,T* aEntries, TInt aCount);
       
  5527 	inline void Close();
       
  5528 	inline TInt Count() const;
       
  5529 	inline const T& operator[](TInt anIndex) const;
       
  5530 	inline T& operator[](TInt anIndex);
       
  5531 	inline TInt Append(const T& anEntry);
       
  5532 	inline TInt Insert(const T& anEntry, TInt aPos);
       
  5533 	inline void Remove(TInt anIndex);
       
  5534 	inline void Compress();
       
  5535 	inline void Reset();
       
  5536 	inline TInt Find(const T& anEntry) const;
       
  5537 	inline TInt Find(const T& anEntry, TIdentityRelation<T> anIdentity) const;
       
  5538 	template <class K>
       
  5539 	inline TInt Find(const K& aKey, TBool (*apfnCompare)(const K* k, const T& t)) const
       
  5540 	/**
       
  5541 	Finds the first object in the array which matches aKey using
       
  5542 	the comparison algorithm provided by apfnCompare.
       
  5543 	
       
  5544 	The find operation always starts at the low index end of the array. There 
       
  5545 	is no assumption about the order of objects in the array.
       
  5546 
       
  5547 	@param aKey The key of type K to be compared with the elements of the array using apfnCompare.
       
  5548 	@param apfnCompare A function defining the identity relation between the
       
  5549 			object in the array, and their keys of type K.  The function
       
  5550 			returns true if k and t match based on this relationship.
       
  5551 	
       
  5552 	@return The index of the first matching object within the array.
       
  5553 			KErrNotFound, if no suitable object can be found.
       
  5554 	*/
       
  5555 		{ return RArrayBase::Find((T*)&aKey,*(TIdentityRelation<T>*)&apfnCompare); }
       
  5556 	inline TInt FindReverse(const T& anEntry) const;
       
  5557 	inline TInt FindReverse(const T& anEntry, TIdentityRelation<T> anIdentity) const;
       
  5558 	template <class K>
       
  5559 	inline TInt FindReverse(const K& aKey, TInt (*apfnMatch)(const K* k, const T& t)) const 
       
  5560 	/**
       
  5561 	Finds the first object in the array which matches aKey using the comparison
       
  5562 	algorithm provided by apfnCompare.
       
  5563 	
       
  5564 	The find operation always starts at the high index end of the array. There 
       
  5565 	is no assumption about the order of objects in the array.
       
  5566 
       
  5567 	@param aKey The key of type K to be compared with the elements of the array using apfnMatch.
       
  5568 	@param apfnMatch A function defining the identity relation between the
       
  5569 			object in the array, and their keys of type K.  The	function
       
  5570 			returns true if k and t match based on this relationship.
       
  5571 	
       
  5572 	@return The index of the first matching object within the array.
       
  5573 			KErrNotFound, if no suitable object can be found.
       
  5574 	*/	
       
  5575 		{ return RArrayBase::FindReverse((T*)&aKey,*(TIdentityRelation<T>*)&apfnMatch); }		
       
  5576 	inline TInt FindInSignedKeyOrder(const T& anEntry) const;
       
  5577 	inline TInt FindInUnsignedKeyOrder(const T& anEntry) const;
       
  5578 	inline TInt FindInOrder(const T& anEntry, TLinearOrder<T> anOrder) const;
       
  5579 	inline TInt FindInSignedKeyOrder(const T& anEntry, TInt& anIndex) const;
       
  5580 	inline TInt FindInUnsignedKeyOrder(const T& anEntry, TInt& anIndex) const;
       
  5581 	inline TInt FindInOrder(const T& anEntry, TInt& anIndex, TLinearOrder<T> anOrder) const;
       
  5582 	template <class K>
       
  5583 	inline TInt FindInOrder(const K& aKey, TInt (*apfnCompare)(const K* k, const T& t)) const
       
  5584 	/**
       
  5585 	Finds the object in the array whose object matches the specified
       
  5586 	key, (Using the relationship defined within apfnCompare) using a binary search
       
  5587 	technique and an ordering algorithm.
       
  5588 
       
  5589 	The function assumes that existing objects in the array are ordered so
       
  5590 	that the objects themselves are in object order as determined by an algorithm 
       
  5591 	supplied by the caller and packaged as a TLinearOrder<T>.
       
  5592 
       
  5593 	@param aKey The key of type K to be compared with the elements of the array using apfnCompare.
       
  5594 	@param apfnCompare A function which defines the order that the array was sorted,
       
  5595 		 where in it aKey (via the defined relationship) should fit, and if the key is present. 
       
  5596 	
       
  5597 	@return The index of the matching object within the array.
       
  5598 			KErrNotFound, if no suitable object can be found.
       
  5599 	*/	
       
  5600 
       
  5601 		{ return RArrayBase::FindIsq((T*)&aKey,*(TLinearOrder<T>*)&apfnCompare); }
       
  5602 	inline TInt SpecificFindInSignedKeyOrder(const T& anEntry, TInt aMode) const;
       
  5603 	inline TInt SpecificFindInUnsignedKeyOrder(const T& anEntry, TInt aMode) const;
       
  5604 	inline TInt SpecificFindInOrder(const T& anEntry, TLinearOrder<T> anOrder, TInt aMode) const;
       
  5605 	inline TInt SpecificFindInSignedKeyOrder(const T& anEntry, TInt& anIndex, TInt aMode) const;
       
  5606 	inline TInt SpecificFindInUnsignedKeyOrder(const T& anEntry, TInt& anIndex, TInt aMode) const;
       
  5607 	inline TInt SpecificFindInOrder(const T& anEntry, TInt& anIndex, TLinearOrder<T> anOrder, TInt aMode) const;
       
  5608 	inline TInt InsertInSignedKeyOrder(const T& anEntry);
       
  5609 	inline TInt InsertInUnsignedKeyOrder(const T& anEntry);
       
  5610 	inline TInt InsertInOrder(const T& anEntry, TLinearOrder<T> anOrder);
       
  5611 	inline TInt InsertInSignedKeyOrderAllowRepeats(const T& anEntry);
       
  5612 	inline TInt InsertInUnsignedKeyOrderAllowRepeats(const T& anEntry);
       
  5613 	inline TInt InsertInOrderAllowRepeats(const T& anEntry, TLinearOrder<T> anOrder);
       
  5614 #ifndef __KERNEL_MODE__
       
  5615 	inline void AppendL(const T& anEntry);
       
  5616 	inline void InsertL(const T& anEntry, TInt aPos);
       
  5617 	inline TInt FindL(const T& anEntry) const;
       
  5618 	inline TInt FindL(const T& anEntry, TIdentityRelation<T> anIdentity) const;
       
  5619 	inline TInt FindReverseL(const T& anEntry) const;
       
  5620 	inline TInt FindReverseL(const T& anEntry, TIdentityRelation<T> anIdentity) const;
       
  5621 	inline TInt FindInSignedKeyOrderL(const T& anEntry) const;
       
  5622 	inline TInt FindInUnsignedKeyOrderL(const T& anEntry) const;
       
  5623 	inline TInt FindInOrderL(const T& anEntry, TLinearOrder<T> anOrder) const;
       
  5624 	inline void FindInSignedKeyOrderL(const T& anEntry, TInt& anIndex) const;
       
  5625 	inline void FindInUnsignedKeyOrderL(const T& anEntry, TInt& anIndex) const;
       
  5626 	inline void FindInOrderL(const T& anEntry, TInt& anIndex, TLinearOrder<T> anOrder) const;
       
  5627 	inline TInt SpecificFindInSignedKeyOrderL(const T& anEntry, TInt aMode) const;
       
  5628 	inline TInt SpecificFindInUnsignedKeyOrderL(const T& anEntry, TInt aMode) const;
       
  5629 	inline TInt SpecificFindInOrderL(const T& anEntry, TLinearOrder<T> anOrder, TInt aMode) const;
       
  5630 	inline void SpecificFindInSignedKeyOrderL(const T& anEntry, TInt& anIndex, TInt aMode) const;
       
  5631 	inline void SpecificFindInUnsignedKeyOrderL(const T& anEntry, TInt& anIndex, TInt aMode) const;
       
  5632 	inline void SpecificFindInOrderL(const T& anEntry, TInt& anIndex, TLinearOrder<T> anOrder, TInt aMode) const;
       
  5633 	inline void InsertInSignedKeyOrderL(const T& anEntry);
       
  5634 	inline void InsertInUnsignedKeyOrderL(const T& anEntry);
       
  5635 	inline void InsertInOrderL(const T& anEntry, TLinearOrder<T> anOrder);
       
  5636 	inline void InsertInSignedKeyOrderAllowRepeatsL(const T& anEntry);
       
  5637 	inline void InsertInUnsignedKeyOrderAllowRepeatsL(const T& anEntry);
       
  5638 	inline void InsertInOrderAllowRepeatsL(const T& anEntry, TLinearOrder<T> anOrder);
       
  5639 
       
  5640 	inline void GranularCompress();
       
  5641 	inline TInt Reserve(TInt aCount);
       
  5642 	inline void ReserveL(TInt aCount);
       
  5643 	inline void SortSigned();
       
  5644 	inline void SortUnsigned();
       
  5645 	inline void Sort(TLinearOrder<T> anOrder);
       
  5646 	inline TArray<T> Array() const;
       
  5647 #endif
       
  5648 	};
       
  5649 
       
  5650 
       
  5651 
       
  5652 
       
  5653 /**
       
  5654 @publishedAll
       
  5655 @released
       
  5656 
       
  5657 A simple and efficient specialized array of signed integers offering standard 
       
  5658 array behaviour.
       
  5659 
       
  5660 Note that derivation from RPointerArrayBase is private.
       
  5661 */
       
  5662 TEMPLATE_SPECIALIZATION class RArray<TInt> : private RPointerArrayBase
       
  5663 	{
       
  5664 public:
       
  5665 	inline RArray();
       
  5666 	inline explicit RArray(TInt aGranularity);
       
  5667 	inline RArray(TInt aMinGrowBy, TInt aFactor);
       
  5668 	inline void Close();
       
  5669 	inline TInt Count() const;
       
  5670 	inline const TInt& operator[](TInt anIndex) const;
       
  5671 	inline TInt& operator[](TInt anIndex);
       
  5672 	inline TInt Append(TInt anEntry);
       
  5673 	inline TInt Insert(TInt anEntry, TInt aPos);
       
  5674 	inline void Remove(TInt anIndex);
       
  5675 	inline void Compress();
       
  5676 	inline void Reset();
       
  5677 	inline TInt Find(TInt anEntry) const;
       
  5678 	inline TInt FindReverse(TInt anEntry) const;
       
  5679 	inline TInt FindInOrder(TInt anEntry) const;
       
  5680 	inline TInt FindInOrder(TInt anEntry, TInt& anIndex) const;
       
  5681 	inline TInt SpecificFindInOrder(TInt anEntry, TInt aMode) const;
       
  5682 	inline TInt SpecificFindInOrder(TInt anEntry, TInt& anIndex, TInt aMode) const;
       
  5683 	inline TInt InsertInOrder(TInt anEntry);
       
  5684 	inline TInt InsertInOrderAllowRepeats(TInt anEntry);
       
  5685 #ifndef __KERNEL_MODE__
       
  5686 	inline void AppendL(TInt anEntry);
       
  5687 	inline void InsertL(TInt anEntry, TInt aPos);
       
  5688 	inline TInt FindL(TInt anEntry) const;
       
  5689 	inline TInt FindReverseL(TInt anEntry) const;
       
  5690 	inline TInt FindInOrderL(TInt anEntry) const;
       
  5691 	inline void FindInOrderL(TInt anEntry, TInt& anIndex) const;
       
  5692 	inline TInt SpecificFindInOrderL(TInt anEntry, TInt aMode) const;
       
  5693 	inline void SpecificFindInOrderL(TInt anEntry, TInt& anIndex, TInt aMode) const;
       
  5694 	inline void InsertInOrderL(TInt anEntry);
       
  5695 	inline void InsertInOrderAllowRepeatsL(TInt anEntry);
       
  5696 
       
  5697 	inline RArray(TInt* aEntries, TInt aCount);
       
  5698 	inline void GranularCompress();
       
  5699 	inline TInt Reserve(TInt aCount);
       
  5700 	inline void ReserveL(TInt aCount);
       
  5701 	inline void Sort();
       
  5702 	inline TArray<TInt> Array() const;
       
  5703 #endif
       
  5704 	};
       
  5705 
       
  5706 
       
  5707 
       
  5708 
       
  5709 /**
       
  5710 @publishedAll
       
  5711 @released
       
  5712 
       
  5713 Array of unsigned integers.
       
  5714 
       
  5715 The array is a simple and efficient specialized array of unsigned integers 
       
  5716 offering standard array behaviour.
       
  5717 
       
  5718 The derivation from RPointerArrayBase is private.
       
  5719 */
       
  5720 TEMPLATE_SPECIALIZATION class RArray<TUint> : private RPointerArrayBase
       
  5721 	{
       
  5722 public:
       
  5723 	inline RArray();
       
  5724 	inline explicit RArray(TInt aGranularity);
       
  5725 	inline RArray(TInt aMinGrowBy, TInt aFactor);
       
  5726 	inline void Close();
       
  5727 	inline TInt Count() const;
       
  5728 	inline const TUint& operator[](TInt anIndex) const;
       
  5729 	inline TUint& operator[](TInt anIndex);
       
  5730 	inline TInt Append(TUint anEntry);
       
  5731 	inline TInt Insert(TUint anEntry, TInt aPos);
       
  5732 	inline void Remove(TInt anIndex);
       
  5733 	inline void Compress();
       
  5734 	inline void Reset();
       
  5735 	inline TInt Find(TUint anEntry) const;
       
  5736 	inline TInt FindReverse(TUint anEntry) const;
       
  5737 	inline TInt FindInOrder(TUint anEntry) const;
       
  5738 	inline TInt FindInOrder(TUint anEntry, TInt& anIndex) const;
       
  5739 	inline TInt SpecificFindInOrder(TUint anEntry, TInt aMode) const;
       
  5740 	inline TInt SpecificFindInOrder(TUint anEntry, TInt& anIndex, TInt aMode) const;
       
  5741 	inline TInt InsertInOrder(TUint anEntry);
       
  5742 	inline TInt InsertInOrderAllowRepeats(TUint anEntry);
       
  5743 #ifndef __KERNEL_MODE__
       
  5744 	inline void AppendL(TUint anEntry);
       
  5745 	inline void InsertL(TUint anEntry, TInt aPos);
       
  5746 	inline TInt FindL(TUint anEntry) const;
       
  5747 	inline TInt FindReverseL(TUint anEntry) const;
       
  5748 	inline TInt FindInOrderL(TUint anEntry) const;
       
  5749 	inline void FindInOrderL(TUint anEntry, TInt& anIndex) const;
       
  5750 	inline TInt SpecificFindInOrderL(TUint anEntry, TInt aMode) const;
       
  5751 	inline void SpecificFindInOrderL(TUint anEntry, TInt& anIndex, TInt aMode) const;
       
  5752 	inline void InsertInOrderL(TUint anEntry);
       
  5753 	inline void InsertInOrderAllowRepeatsL(TUint anEntry);
       
  5754 
       
  5755 	inline RArray(TUint* aEntries, TInt aCount);
       
  5756 	inline void GranularCompress();
       
  5757 	inline TInt Reserve(TInt aCount);
       
  5758 	inline void ReserveL(TInt aCount);
       
  5759 	inline void Sort();
       
  5760 	inline TArray<TUint> Array() const;
       
  5761 #endif
       
  5762 	};
       
  5763 
       
  5764 #ifndef __LEAVE_EQUALS_THROW__
       
  5765 
       
  5766 class TTrapHandler;
       
  5767 
       
  5768 /**
       
  5769 @internalComponent
       
  5770 */
       
  5771 class TTrap
       
  5772 	{
       
  5773 public:
       
  5774 #ifndef __KERNEL_MODE__
       
  5775 	IMPORT_C TInt Trap(TInt& aResult);
       
  5776 	IMPORT_C static void UnTrap();
       
  5777 #endif
       
  5778 public:
       
  5779 	enum {EMaxState=0x10};
       
  5780 public:
       
  5781 	TInt iState[EMaxState];
       
  5782 	TTrap* iNext;
       
  5783 	TInt* iResult;
       
  5784 	TTrapHandler* iHandler;
       
  5785 	};
       
  5786 
       
  5787 
       
  5788 
       
  5789 /**
       
  5790 @publishedAll
       
  5791 @released
       
  5792 
       
  5793 Executes the set of C++ statements _s under a trap harness.
       
  5794 
       
  5795 Use this macro as a C++ statement.
       
  5796 
       
  5797 _r must be a TInt which has already been declared; if any of the
       
  5798 C++ statements _s leaves, then the leave code is returned in _r,
       
  5799 otherwise _r is set to KErrNone.
       
  5800 
       
  5801 _s can consist of multiple C++ statements; in theory, _s can consist
       
  5802 of any legal C++ code but in practice, such statements consist of simple
       
  5803 function calls, e.g. Foo() or an assignment of some value to the result of
       
  5804 a function call, e.g. functionValue=GetFoo().
       
  5805 
       
  5806 A cleanup stack is constructed for the set of C++ statements _s.
       
  5807 If any function in _s leaves, objects pushed to the cleanup stack are
       
  5808 cleaned-up. In addition, if any of the C++ statements in _s leaves,
       
  5809 then remaining C++ code in _s is not executed and any variables which
       
  5810 are assigned within that remaining code are not defined.
       
  5811 
       
  5812 @param _r An lvalue, convertible to TInt&, which will receive the result of
       
  5813           any User::Leave() executed within _s or, if no leave occurred,
       
  5814           it will be set to KErrNone. The value of _r on entry is not used.
       
  5815 
       
  5816 @param _s C++ statements which will be executed under a trap harness.
       
  5817 
       
  5818 @see TRAPD
       
  5819 */
       
  5820 #define TRAP(_r,_s) {TTrap __t;if (__t.Trap(_r)==0){_s;TTrap::UnTrap();}}
       
  5821 
       
  5822 /**
       
  5823 @publishedAll
       
  5824 @released
       
  5825 
       
  5826 Executes the set of C++ statements _s under a trap harness.
       
  5827 
       
  5828 Use this macro in the same way as you would TRAP, except that the
       
  5829 variable _r is defined as part of the macro (and is therefore valid for the
       
  5830 rest of the block in which the macro occurs). Often, this saves a line of code.
       
  5831 
       
  5832 @param _r A name, which will be declared as a TInt, and will receive the result
       
  5833           of any User::Leave() executed within _s or, if no leave occurred, it
       
  5834           will be set to KErrNone. After the macro, _r remains in scope until
       
  5835           the end of its enclosing block.
       
  5836 
       
  5837 @param _s C++ statements which will be executed under a trap harness.
       
  5838 
       
  5839 @see TRAP
       
  5840 */
       
  5841 #define TRAPD(_r,_s) TInt _r;{TTrap __t;if (__t.Trap(_r)==0){_s;TTrap::UnTrap();}}
       
  5842 
       
  5843 /**
       
  5844 @publishedAll
       
  5845 @released
       
  5846 
       
  5847 Executes the set of C++ statements _s under a trap harness.
       
  5848 Any leave code generated is ignored.
       
  5849 
       
  5850 Use this macro as a C++ statement.
       
  5851 
       
  5852 This macro is functionally equivalent to:
       
  5853 @code
       
  5854 	TInt x;
       
  5855 	TRAP(x,_s)
       
  5856 @endcode
       
  5857 or
       
  5858 @code
       
  5859 	TRAPD(x,_s)
       
  5860 @endcode
       
  5861 where the value in 'x' is not used by any subsequent code.
       
  5862 
       
  5863 _s can consist of multiple C++ statements; in theory, _s can consist
       
  5864 of any legal C++ code but in practice, such statements consist of simple
       
  5865 function calls, e.g. Foo() or an assignment of some value to the result of
       
  5866 a function call, e.g. functionValue=GetFoo().
       
  5867 
       
  5868 A cleanup stack is constructed for the set of C++ statements _s.
       
  5869 If any function in _s leaves, objects pushed to the cleanup stack are
       
  5870 cleaned-up. In addition, if any of the C++ statements in _s leaves,
       
  5871 then remaining C++ code in _s is not executed and any variables which
       
  5872 are assigned within that remaining code are not defined.
       
  5873 
       
  5874 @param _s C++ statements which will be executed under a trap harness.
       
  5875 
       
  5876 @see TRAPD
       
  5877 @see TRAP
       
  5878 */
       
  5879 #define TRAP_IGNORE(_s) {TInt _ignore;TTrap __t;if (__t.Trap(_ignore)==0){_s;TTrap::UnTrap();}}
       
  5880 
       
  5881 
       
  5882 #else //__LEAVE_EQUALS_THROW__
       
  5883 
       
  5884 #ifdef __WINS__
       
  5885 /** @internalComponent */
       
  5886 #define __WIN32SEHTRAP		TWin32SEHTrap __trap; __trap.Trap();
       
  5887 /** @internalComponent */
       
  5888 #define __WIN32SEHUNTRAP	__trap.UnTrap();
       
  5889 IMPORT_C void EmptyFunction();
       
  5890 #define __CALL_EMPTY_FUNCTION	EmptyFunction();   
       
  5891 #else // !__WINS__
       
  5892 #define __WIN32SEHTRAP
       
  5893 #define __WIN32SEHUNTRAP
       
  5894 #define __CALL_EMPTY_FUNCTION
       
  5895 #endif //__WINS__
       
  5896 
       
  5897 /** 
       
  5898 This macro is used by the TRAP and TRAPD macros and provides a means
       
  5899 of inserting code into uses of these.
       
  5900 
       
  5901 This macro is invoked before any 'trapped' code is called, and it should be
       
  5902 redefined to do whatever task is required. E.g. this code:
       
  5903 
       
  5904 @code
       
  5905     #undef TRAP_INSTRUMENTATION_START
       
  5906     #define TRAP_INSTRUMENTATION_START DoMyLoging(__LINE__)
       
  5907 @endcode
       
  5908 
       
  5909 Will cause all subsequent uses of the TRAP macros to behave in an
       
  5910 equivalent way to:
       
  5911 
       
  5912 @code
       
  5913     DoMyLoging(__LINE__)
       
  5914     TRAP(r,SomeCodeL());
       
  5915 @endcode
       
  5916 
       
  5917 
       
  5918 @publishedPartner
       
  5919 @released
       
  5920 
       
  5921 @see TRAP
       
  5922 @see TRAPD
       
  5923 */
       
  5924 #define TRAP_INSTRUMENTATION_START
       
  5925 
       
  5926 
       
  5927 
       
  5928 /** 
       
  5929 This macro is used by the TRAP and TRAPD macros and provides a means
       
  5930 of inserting code into uses of these.
       
  5931 
       
  5932 This macro is invoked if the 'trapped' code did not Leave.
       
  5933 E.g. this code:
       
  5934 
       
  5935 @code
       
  5936     #undef TRAP_INSTRUMENTATION_NOLEAVE
       
  5937     #define TRAP_INSTRUMENTATION_NOLEAVE DoMyLoging(__LINE__)
       
  5938 @endcode
       
  5939 
       
  5940 Will cause all subsequent uses of the TRAP macros to behave in an
       
  5941 equivalent way to:
       
  5942 
       
  5943 @code
       
  5944     TRAP(r,SomeCodeL());
       
  5945     if(r==KErrNone) DoMyLoging(__LINE__);
       
  5946 @endcode
       
  5947 
       
  5948 
       
  5949 @param aLine The line number in the C++ source file where the TRAP or TRAPD
       
  5950              macro was used.
       
  5951 
       
  5952 @publishedPartner
       
  5953 @released
       
  5954 
       
  5955 @see TRAP
       
  5956 @see TRAPD
       
  5957 */
       
  5958 #define TRAP_INSTRUMENTATION_NOLEAVE
       
  5959 
       
  5960 
       
  5961 /** 
       
  5962 This macro is used by the TRAP and TRAPD macros and provides a means
       
  5963 of inserting code into uses of these.
       
  5964 
       
  5965 This macro is invoked if the 'trapped' code did Leave. E.g. this code:
       
  5966 
       
  5967 @code
       
  5968     #undef TRAP_INSTRUMENTATION_LEAVE
       
  5969     #define TRAP_INSTRUMENTATION_LEAVE(aResult) DoMyLoging(aResult,__LINE__)
       
  5970 @endcode
       
  5971 
       
  5972 Will cause all subsequent uses of the TRAP macros to behave in an
       
  5973 equivalent way to:
       
  5974 
       
  5975 @code
       
  5976     TRAP(r,SomeCodeL());
       
  5977     if(r!=KErrNone) DoMyLoging(r,__LINE__);
       
  5978 @endcode
       
  5979 
       
  5980 
       
  5981 @param aResult  A reference to the result value used in the TRAP macro.
       
  5982 
       
  5983 
       
  5984 @publishedPartner
       
  5985 @released
       
  5986 
       
  5987 @see TRAP
       
  5988 @see TRAPD
       
  5989 */
       
  5990 #define TRAP_INSTRUMENTATION_LEAVE(aResult)
       
  5991 
       
  5992 
       
  5993 
       
  5994 /** 
       
  5995 This macro is used by the TRAP and TRAPD macros and provides a means
       
  5996 of inserting code into uses of these.
       
  5997 
       
  5998 This macro is invoked after the 'trapped' code is called, regardless of whether
       
  5999 or not it did Leave.  It should be redefined to do whatever task is
       
  6000 required. E.g. this code:
       
  6001 
       
  6002 @code
       
  6003     #undef TRAP_INSTRUMENTATION_END
       
  6004     #define TRAP_INSTRUMENTATION_END DoMyLoging(__LINE__)
       
  6005 @endcode
       
  6006 
       
  6007 Will cause all subsequent uses of the TRAP macros to behave in an
       
  6008 equivalent way to:
       
  6009 
       
  6010 @code
       
  6011     TRAP(r,SomeCodeL());
       
  6012     DoMyLoging(__LINE__)
       
  6013 @endcode
       
  6014 
       
  6015 
       
  6016 @publishedPartner
       
  6017 @released
       
  6018 
       
  6019 @see TRAP
       
  6020 @see TRAPD
       
  6021 */
       
  6022 #define TRAP_INSTRUMENTATION_END
       
  6023 
       
  6024 
       
  6025 
       
  6026 /**
       
  6027 @publishedAll
       
  6028 @released
       
  6029 
       
  6030 Executes the set of C++ statements _s under a trap harness.
       
  6031 
       
  6032 Use this macro as a C++ statement.
       
  6033 
       
  6034 _r must be a TInt which has already been declared; if any of the
       
  6035 C++ statements _s leaves, then the leave code is returned in _r,
       
  6036 otherwise _r is set to KErrNone.
       
  6037 
       
  6038 _s can consist of multiple C++ statements; in theory, _s can consist
       
  6039 of any legal C++ code but in practice, such statements consist of simple
       
  6040 function calls, e.g. Foo() or an assignment of some value to the result of
       
  6041 a function call, e.g. functionValue=GetFoo().
       
  6042 
       
  6043 A cleanup stack is constructed for the set of C++ statements _s.
       
  6044 If any function in _s leaves, objects pushed to the cleanup stack are
       
  6045 cleaned-up. In addition, if any of the C++ statements in _s leaves,
       
  6046 then remaining C++ code in _s is not executed and any variables which
       
  6047 are assigned within that remaining code are not defined.
       
  6048 
       
  6049 @param _r An lvalue, convertible to TInt&, which will receive the result of
       
  6050           any User::Leave() executed within _s or, if no leave occurred,
       
  6051           it will be set to KErrNone. The value of _r on entry is not used.
       
  6052 
       
  6053 @param _s C++ statements which will be executed under a trap harness.
       
  6054 
       
  6055 @see TRAPD
       
  6056 */
       
  6057 
       
  6058 /*__CALL_EMPTY_FUNCTION(call to a function with an empty body) was added as a 
       
  6059 workaround to a compiler bug (mwccsym2 - winscw ) which caused an incorrect 
       
  6060 trap handler to be invoked when multiple nested TRAP's were present and 
       
  6061 User::Leave(..) was called. */
       
  6062 
       
  6063 #define TRAP(_r, _s)										\
       
  6064 	{														\
       
  6065 	TInt& __rref = _r;										\
       
  6066 	__rref = 0;												\
       
  6067 	{ TRAP_INSTRUMENTATION_START; }							\
       
  6068 	try	{													\
       
  6069 		__WIN32SEHTRAP										\
       
  6070 		TTrapHandler* ____t = User::MarkCleanupStack();		\
       
  6071 		_s;													\
       
  6072 		User::UnMarkCleanupStack(____t);					\
       
  6073 		{ TRAP_INSTRUMENTATION_NOLEAVE; }					\
       
  6074 		__WIN32SEHUNTRAP									\
       
  6075 		}													\
       
  6076 	catch (XLeaveException& l)								\
       
  6077 		{													\
       
  6078 		__rref = l.GetReason();								\
       
  6079 		{ TRAP_INSTRUMENTATION_LEAVE(__rref); }				\
       
  6080 		}													\
       
  6081 	catch (...)												\
       
  6082 		{													\
       
  6083 		User::Invariant();									\
       
  6084 		}													\
       
  6085 	__CALL_EMPTY_FUNCTION									\
       
  6086 	{ TRAP_INSTRUMENTATION_END; }							\
       
  6087 	}
       
  6088 
       
  6089 
       
  6090 /**
       
  6091 @publishedAll
       
  6092 @released
       
  6093 
       
  6094 Executes the set of C++ statements _s under a trap harness.
       
  6095 
       
  6096 Use this macro in the same way as you would TRAP, except that the
       
  6097 variable _r is defined as part of the macro (and is therefore valid for the
       
  6098 rest of the block in which the macro occurs). Often, this saves a line of code.
       
  6099 
       
  6100 @param _r A name, which will be declared as a TInt, and will receive the result
       
  6101           of any User::Leave() executed within _s or, if no leave occurred, it
       
  6102           will be set to KErrNone. After the macro, _r remains in scope until
       
  6103           the end of its enclosing block.
       
  6104 
       
  6105 @param _s C++ statements which will be executed under a trap harness.
       
  6106 
       
  6107 @see TRAP
       
  6108 */
       
  6109 
       
  6110 /*__CALL_EMPTY_FUNCTION(call to a function with an empty body) was added as a 
       
  6111 workaround to a compiler bug (mwccsym2 - winscw ) which caused an incorrect 
       
  6112 trap handler to be invoked when multiple nested TRAP's were present and 
       
  6113 User::Leave(..) was called. */
       
  6114 
       
  6115 
       
  6116 #define TRAPD(_r, _s)										\
       
  6117 	TInt _r;												\
       
  6118 	{														\
       
  6119 	_r = 0;													\
       
  6120 	{ TRAP_INSTRUMENTATION_START; }							\
       
  6121 	try	{													\
       
  6122 		__WIN32SEHTRAP										\
       
  6123 		TTrapHandler* ____t = User::MarkCleanupStack();		\
       
  6124 		_s;													\
       
  6125 		User::UnMarkCleanupStack(____t);					\
       
  6126 		{ TRAP_INSTRUMENTATION_NOLEAVE; }					\
       
  6127 		__WIN32SEHUNTRAP									\
       
  6128 		}													\
       
  6129 	catch (XLeaveException& l)								\
       
  6130 		{													\
       
  6131 		_r = l.GetReason();									\
       
  6132 		{ TRAP_INSTRUMENTATION_LEAVE(_r); }					\
       
  6133 		}													\
       
  6134 	catch (...)												\
       
  6135 		{													\
       
  6136 		User::Invariant();									\
       
  6137 		}													\
       
  6138 	__CALL_EMPTY_FUNCTION									\
       
  6139 	{ TRAP_INSTRUMENTATION_END; }							\
       
  6140 	}
       
  6141 
       
  6142 /**
       
  6143 @publishedAll
       
  6144 @released
       
  6145 
       
  6146 Executes the set of C++ statements _s under a trap harness.
       
  6147 Any leave code generated is ignored.
       
  6148 
       
  6149 Use this macro as a C++ statement.
       
  6150 
       
  6151 This macro is functionally equivalent to:
       
  6152 @code
       
  6153 	TInt x;
       
  6154 	TRAP(x,_s)
       
  6155 @endcode
       
  6156 or
       
  6157 @code
       
  6158 	TRAPD(x,_s)
       
  6159 @endcode
       
  6160 where the value in 'x' is not used by any subsequent code.
       
  6161 
       
  6162 Use this macro as a C++ statement.
       
  6163 
       
  6164 _s can consist of multiple C++ statements; in theory, _s can consist
       
  6165 of any legal C++ code but in practice, such statements consist of simple
       
  6166 function calls, e.g. Foo() or an assignment of some value to the result of
       
  6167 a function call, e.g. functionValue=GetFoo().
       
  6168 
       
  6169 A cleanup stack is constructed for the set of C++ statements _s.
       
  6170 If any function in _s leaves, objects pushed to the cleanup stack are
       
  6171 cleaned-up. In addition, if any of the C++ statements in _s leaves,
       
  6172 then remaining C++ code in _s is not executed and any variables which
       
  6173 are assigned within that remaining code are not defined.
       
  6174 
       
  6175 @param _s C++ statements which will be executed under a trap harness.
       
  6176 
       
  6177 @see TRAPD
       
  6178 @see TRAP
       
  6179 */
       
  6180 
       
  6181 /*__CALL_EMPTY_FUNCTION(call to a function with an empty body) was added as a 
       
  6182 workaround to a compiler bug (mwccsym2 - winscw ) which caused an incorrect 
       
  6183 trap handler to be invoked when multiple nested TRAP's were present and 
       
  6184 User::Leave(..) was called. */
       
  6185 
       
  6186 #define TRAP_IGNORE(_s)										\
       
  6187 	{														\
       
  6188 	{ TRAP_INSTRUMENTATION_START; }							\
       
  6189 	try	{													\
       
  6190 		__WIN32SEHTRAP										\
       
  6191 		TTrapHandler* ____t = User::MarkCleanupStack();		\
       
  6192 		_s;													\
       
  6193 		User::UnMarkCleanupStack(____t);					\
       
  6194 		{ TRAP_INSTRUMENTATION_NOLEAVE; }					\
       
  6195 		__WIN32SEHUNTRAP									\
       
  6196 		}													\
       
  6197 	catch (XLeaveException& l)								\
       
  6198 		{													\
       
  6199 		l.GetReason();										\
       
  6200 		{ TRAP_INSTRUMENTATION_LEAVE(l.Reason()); }			\
       
  6201 		}													\
       
  6202 	catch (...)												\
       
  6203 		{													\
       
  6204 		User::Invariant();									\
       
  6205 		}													\
       
  6206 	__CALL_EMPTY_FUNCTION									\
       
  6207 	{ TRAP_INSTRUMENTATION_END; }							\
       
  6208 	}
       
  6209 
       
  6210 
       
  6211 #endif //__LEAVE_EQUALS_THROW__
       
  6212 
       
  6213 /* The macro __SYMBIAN_STDCPP_SUPPORT__ is defined when building a StdC++ target.
       
  6214  * In this case, operator new and operator delete below should not be declared
       
  6215  * to avoid clashing with StdC++ declarations.
       
  6216  */ 
       
  6217 
       
  6218 #ifndef __SYMBIAN_STDCPP_SUPPORT__
       
  6219 
       
  6220 #ifndef __OPERATOR_NEW_DECLARED__
       
  6221 
       
  6222 /* Some operator new and operator delete overloads may be declared in compiler
       
  6223  * pre-include files.
       
  6224  *
       
  6225  * __OPERATOR_NEW_DECLARED__ is #defined if they are, so that we can avoid
       
  6226  * re-declaring them here.
       
  6227  */
       
  6228 
       
  6229 #define __OPERATOR_NEW_DECLARED__
       
  6230 
       
  6231 /**
       
  6232 @publishedAll
       
  6233 @released
       
  6234 */
       
  6235 GLREF_C TAny* operator new(TUint aSize) __NO_THROW;
       
  6236 
       
  6237 /**
       
  6238 @publishedAll
       
  6239 @released
       
  6240 */
       
  6241 GLREF_C TAny* operator new(TUint aSize,TUint anExtraSize) __NO_THROW;
       
  6242 
       
  6243 /**
       
  6244 @publishedAll
       
  6245 @released
       
  6246 */
       
  6247 GLREF_C void operator delete(TAny* aPtr) __NO_THROW;
       
  6248 
       
  6249 #ifndef __OMIT_VEC_OPERATOR_NEW_DECL__
       
  6250 /**
       
  6251 @publishedAll
       
  6252 @released
       
  6253 */
       
  6254 GLREF_C TAny* operator new[](TUint aSize) __NO_THROW;
       
  6255 
       
  6256 /**
       
  6257 @publishedAll
       
  6258 @released
       
  6259 */
       
  6260 GLREF_C void operator delete[](TAny* aPtr) __NO_THROW;
       
  6261 #endif // !__OMIT_VEC_OPERATOR_NEW_DECL__
       
  6262 
       
  6263 #endif // !__OPERATOR_NEW_DECLARED__
       
  6264 
       
  6265 #endif // !__SYMBIAN_STDCPP_SUPPORT__
       
  6266 
       
  6267 /**
       
  6268 @publishedAll
       
  6269 @released
       
  6270 */
       
  6271 inline TAny* operator new(TUint aSize, TAny* aBase) __NO_THROW;
       
  6272 
       
  6273 /**
       
  6274 @publishedAll
       
  6275 @released
       
  6276 */
       
  6277 inline void operator delete(TAny* aPtr, TAny* aBase) __NO_THROW;
       
  6278 
       
  6279 #ifndef __PLACEMENT_VEC_NEW_INLINE
       
  6280 /**
       
  6281 @publishedAll
       
  6282 @released
       
  6283 */
       
  6284 inline TAny* operator new[](TUint aSize, TAny* aBase) __NO_THROW;
       
  6285 
       
  6286 /**
       
  6287 @publishedAll
       
  6288 @released
       
  6289 */
       
  6290 inline void operator delete[](TAny* aPtr, TAny* aBase) __NO_THROW;
       
  6291 
       
  6292 #endif // !__PLACEMENT_VEC_NEW_INLINE
       
  6293 
       
  6294 #if !defined(__BOOL_NO_TRUE_TRAP__)
       
  6295 
       
  6296 /**
       
  6297 @publishedAll
       
  6298 @released
       
  6299 */
       
  6300 TBool operator==(TTrue,volatile const TBool);
       
  6301 
       
  6302 /**
       
  6303 @publishedAll
       
  6304 @released
       
  6305 */
       
  6306 TBool operator==(volatile const TBool,TTrue);
       
  6307 
       
  6308 /**
       
  6309 @publishedAll
       
  6310 @released
       
  6311 */
       
  6312 TBool operator!=(TTrue,volatile const TBool);
       
  6313 
       
  6314 /**
       
  6315 @publishedAll
       
  6316 @released
       
  6317 */
       
  6318 TBool operator!=(volatile const TBool,TTrue);
       
  6319 #endif
       
  6320 
       
  6321 
       
  6322 
       
  6323 
       
  6324 /**
       
  6325 @publishedAll
       
  6326 @released
       
  6327 
       
  6328 A Version 2 client/server class that clients use to package 
       
  6329 the arguments to be sent to a server.
       
  6330 
       
  6331 The object can package up to 4 arguments together with information about each
       
  6332 argument's type, width and accessibility; it is also possible for
       
  6333 the package to contain zero arguments. In addition to the default constructor,
       
  6334 the class has four templated constructors, allowing an object of this type to
       
  6335 be constructed for 0, 1, 2, 3 or 4 arguments.
       
  6336 
       
  6337 Internally, the arguments are stored in a simple TInt array.
       
  6338 Consecutive arguments in a constructor's parameter list are put into
       
  6339 consecutive slots in the array. The Set() overloaded functions can be used
       
  6340 to set argument values into specific slots within this array.
       
  6341 */
       
  6342 class TIpcArgs
       
  6343 	{
       
  6344 public:
       
  6345     /**
       
  6346     @internalComponent
       
  6347     
       
  6348     Argument types; some of these may be ORed together to specify
       
  6349 	type, accessibility, and width.
       
  6350     */
       
  6351 	enum TArgType
       
  6352 		{
       
  6353 		EUnspecified = 0,                         /**< Type not specified.*/
       
  6354 		EHandle = 1,                              /**< Handle type.*/
       
  6355 		EFlagDes = 4,                             /**< Descriptor type.*/
       
  6356 		EFlagConst = 2,                           /**< Read only type.*/
       
  6357 		EFlag16Bit = 1,                           /**< 16 bit rather than 8 bit.*/
       
  6358 		EDes8 = EFlagDes,                         /**< 8 bit read/write descriptor.*/
       
  6359 		EDes16 = EFlagDes|EFlag16Bit,             /**< 16 bit read/write descriptor.*/
       
  6360 		EDesC8 = EFlagDes|EFlagConst,             /**< 8 bit read only descriptor.*/
       
  6361 		EDesC16 = EFlagDes|EFlagConst|EFlag16Bit, /**< 16 bit read only descriptor.*/
       
  6362 		};
       
  6363 
       
  6364 
       
  6365     /**
       
  6366     @internalComponent
       
  6367 	*/
       
  6368 	enum 
       
  6369 		{
       
  6370 		KBitsPerType	= 3, 		/**< Number of bits of type information used for each of the 4 arguments.*/
       
  6371 		KPinArgShift	= KBitsPerType*KMaxMessageArguments,	/**< Bit number of the start of the pin flags. */
       
  6372 		KPinArg0		= 1<<(KPinArgShift+0),	/**< Set to pin argument at index 0.*/
       
  6373 		KPinArg1		= 1<<(KPinArgShift+1),	/**< Set to pin argument at index 1.*/
       
  6374 		KPinArg2		= 1<<(KPinArgShift+2),	/**< Set to pin argument at index 2.*/
       
  6375 		KPinArg3		= 1<<(KPinArgShift+3),	/**< Set to pin argument at index 3.*/
       
  6376 		KPinMask 		= 0xf<<KPinArgShift,	/**< The bits used for the pinning attributes of each argument.*/
       
  6377 		};
       
  6378 	
       
  6379 	
       
  6380 	/**
       
  6381 	Indicates a Null argument.
       
  6382 	*/
       
  6383 	enum TNothing {
       
  6384 	              /**
       
  6385 	              An enum value that can be used to indicate an empty or
       
  6386 	              unused argument to a server. For example:
       
  6387 	
       
  6388                   @code
       
  6389                   TIpcArgs args(arg1, TIpcArgs::ENothing, arg2);
       
  6390                   @endcode
       
  6391     
       
  6392                   This argument will have an undefined value when the server
       
  6393                   receives the message.
       
  6394 	              */
       
  6395 	              ENothing
       
  6396 	              };
       
  6397 public:
       
  6398     /**
       
  6399     Default constructor.
       
  6400     
       
  6401     An argument package constructed using this constructor has no arguments;
       
  6402     however, arguments can subsequently be set into this argument package object
       
  6403     using the Set() member functions.
       
  6404     */
       
  6405 	inline TIpcArgs()
       
  6406 		:iFlags(0)
       
  6407 		{}
       
  6408 		
       
  6409 		
       
  6410     /**
       
  6411     A templated constructor that constructs the argument package; it takes
       
  6412     1 argument.
       
  6413     
       
  6414     @param a0 An argument of general class type T0 to be contained by
       
  6415               this object.
       
  6416     */		
       
  6417 	template <class T0>
       
  6418 	inline explicit TIpcArgs(T0 a0)
       
  6419 		{
       
  6420 		Assign(iArgs[0],a0);
       
  6421 		iFlags=(Type(a0)<<(0*KBitsPerType));
       
  6422 		}
       
  6423 		
       
  6424 		
       
  6425     /**
       
  6426     A templated constructor that constructs the argument package; it takes
       
  6427     2 arguments.
       
  6428     
       
  6429     @param a0 An argument of general class type T0 to be contained by
       
  6430               this object.
       
  6431     @param a1 An argument of general class type T1 to be contained by
       
  6432               this object.
       
  6433     */		
       
  6434 	template <class T0,class T1>
       
  6435 	inline TIpcArgs(T0 a0,T1 a1)
       
  6436 		{
       
  6437 		Assign(iArgs[0],a0);
       
  6438 		Assign(iArgs[1],a1);
       
  6439 		iFlags=(Type(a0)<<(0*KBitsPerType))|(Type(a1)<<(1*KBitsPerType));
       
  6440 		}
       
  6441 				
       
  6442 		
       
  6443     /**
       
  6444     A templated constructor that constructs the argument package; it takes
       
  6445     3 arguments.
       
  6446     
       
  6447     @param a0 An argument of general class type T0 to be contained by
       
  6448               this object.
       
  6449     @param a1 An argument of general class type T1 to be contained by
       
  6450               this object.
       
  6451     @param a2 An argument of general class type T2 to be contained by
       
  6452               this object.
       
  6453     */		
       
  6454 	template <class T0,class T1,class T2>
       
  6455 	inline TIpcArgs(T0 a0,T1 a1,T2 a2)
       
  6456 		{
       
  6457 		Assign(iArgs[0],a0);
       
  6458 		Assign(iArgs[1],a1);
       
  6459 		Assign(iArgs[2],a2);
       
  6460 		iFlags=(Type(a0)<<(0*KBitsPerType))|(Type(a1)<<(1*KBitsPerType))|(Type(a2)<<(2*KBitsPerType));
       
  6461 		}
       
  6462 
       
  6463 
       
  6464     /**
       
  6465     A templated constructor that constructs the argument package; it takes
       
  6466     4 arguments.
       
  6467     
       
  6468     @param a0 An argument of general class type T0 to be contained by
       
  6469               this object.
       
  6470     @param a1 An argument of general class type T1 to be contained by
       
  6471               this object.
       
  6472     @param a2 An argument of general class type T2 to be contained by
       
  6473               this object.
       
  6474     @param a3 An argument of general class type T3 to be contained by
       
  6475               this object.
       
  6476     */		
       
  6477 	template <class T0,class T1,class T2,class T3>
       
  6478 	inline TIpcArgs(T0 a0,T1 a1,T2 a2,T3 a3)
       
  6479 		{
       
  6480 		Assign(iArgs[0],a0);
       
  6481 		Assign(iArgs[1],a1);
       
  6482 		Assign(iArgs[2],a2);
       
  6483 		Assign(iArgs[3],a3);
       
  6484 		iFlags=(Type(a0)<<(0*KBitsPerType))|(Type(a1)<<(1*KBitsPerType))|(Type(a2)<<(2*KBitsPerType))|(Type(a3)<<(3*KBitsPerType));
       
  6485 		}
       
  6486 	//
       
  6487 	inline void Set(TInt aIndex,TNothing);
       
  6488 	inline void Set(TInt aIndex,TInt aValue);
       
  6489 	inline void Set(TInt aIndex,const TAny* aValue);
       
  6490 	inline void Set(TInt aIndex,RHandleBase aValue);
       
  6491 	inline void Set(TInt aIndex,const TDesC8* aValue);
       
  6492 #ifndef __KERNEL_MODE__
       
  6493 	inline void Set(TInt aIndex,const TDesC16* aValue);
       
  6494 #endif
       
  6495 	inline void Set(TInt aIndex,TDes8* aValue);
       
  6496 #ifndef __KERNEL_MODE__
       
  6497 	inline void Set(TInt aIndex,TDes16* aValue);
       
  6498 #endif
       
  6499 
       
  6500 	inline TIpcArgs& PinArgs(TBool aPinArg0=ETrue, TBool aPinArg1=ETrue, TBool aPinArg2=ETrue, TBool aPinArg3=ETrue);
       
  6501 private:
       
  6502 	inline static TArgType Type(TNothing);
       
  6503 	inline static TArgType Type(TInt);
       
  6504 	inline static TArgType Type(const TAny*);
       
  6505 	inline static TArgType Type(RHandleBase aValue);
       
  6506 	inline static TArgType Type(const TDesC8*);
       
  6507 #ifndef __KERNEL_MODE__
       
  6508 	inline static TArgType Type(const TDesC16*);
       
  6509 #endif
       
  6510 	inline static TArgType Type(TDes8*);
       
  6511 #ifndef __KERNEL_MODE__
       
  6512 	inline static TArgType Type(TDes16*);
       
  6513 #endif
       
  6514 	//
       
  6515 	inline static void Assign(TInt&,TNothing);
       
  6516 	inline static void Assign(TInt& aArg,TInt aValue);
       
  6517 	inline static void Assign(TInt& aArg,const TAny* aValue);
       
  6518 	inline static void Assign(TInt& aArg,RHandleBase aValue);
       
  6519 	inline static void Assign(TInt& aArg,const TDesC8* aValue);
       
  6520 #ifndef __KERNEL_MODE__
       
  6521 	inline static void Assign(TInt& aArg,const TDesC16* aValue);
       
  6522 #endif
       
  6523 	inline static void Assign(TInt& aArg,TDes8* aValue);
       
  6524 #ifndef __KERNEL_MODE__
       
  6525 	inline static void Assign(TInt& aArg,TDes16* aValue);
       
  6526 #endif
       
  6527 public:
       
  6528     
       
  6529     /**
       
  6530     The location where the message arguments are stored.
       
  6531     
       
  6532     There is no reason to access this data member directly and it should be
       
  6533     considered as internal.
       
  6534     */
       
  6535 	TInt iArgs[KMaxMessageArguments];
       
  6536 	
       
  6537 	/**
       
  6538 	The location where the flag bits describing the argument types are stored.
       
  6539 	
       
  6540 	The symbolic values describing the argument types are internal to Symbian,
       
  6541 	and there is therefore no reason to access this data member directly.
       
  6542 	It should be considered as internal.
       
  6543 	*/
       
  6544 	TInt iFlags;
       
  6545 	};
       
  6546 
       
  6547 // Structures for passing 64 bit integers and doubles across GCC/EABI boundaries
       
  6548 
       
  6549 /**
       
  6550 @internalComponent
       
  6551 */
       
  6552 struct SInt64
       
  6553 	{
       
  6554 public:
       
  6555 	inline SInt64();
       
  6556 	inline SInt64(Int64 a);
       
  6557 	inline SInt64& operator=(Int64 a);
       
  6558 	inline operator Int64() const;
       
  6559 public:
       
  6560 	TUint32 iData[2];	// little endian
       
  6561 	};
       
  6562 
       
  6563 /**
       
  6564 @internalComponent
       
  6565 */
       
  6566 struct SUint64
       
  6567 	{
       
  6568 public:
       
  6569 	inline SUint64();
       
  6570 	inline SUint64(Uint64 a);
       
  6571 	inline SUint64& operator=(Uint64 a);
       
  6572 	inline operator Uint64() const;
       
  6573 public:
       
  6574 	TUint32 iData[2];	// little endian
       
  6575 	};
       
  6576 
       
  6577 /**
       
  6578 @internalComponent
       
  6579 */
       
  6580 struct SDouble
       
  6581 	{
       
  6582 public:
       
  6583 	inline SDouble();
       
  6584 	inline SDouble(TReal a);
       
  6585 	inline SDouble& operator=(TReal a);
       
  6586 	inline operator TReal() const;
       
  6587 public:
       
  6588 	TUint32 iData[2];	// always little endian
       
  6589 	};
       
  6590 
       
  6591 /**
       
  6592 @publishedAll
       
  6593 @released
       
  6594 
       
  6595 Stores information about a thread's stack.
       
  6596 
       
  6597 Note, on the emulator, the memory between iLimit and the thread's current stack pointer
       
  6598 may not actually be committed.
       
  6599 
       
  6600 @see RThread::StackInfo()
       
  6601 */
       
  6602 class TThreadStackInfo
       
  6603 	{
       
  6604 public:
       
  6605     /**
       
  6606     The address which the stack pointer would contain if the stack were empty.
       
  6607     */
       
  6608 	TLinAddr iBase;
       
  6609 	
       
  6610 	/**
       
  6611 	The address which the stack pointer would contain if the stack were full,
       
  6612     (The lowest valid address).
       
  6613 	*/
       
  6614 	TLinAddr iLimit;
       
  6615 	
       
  6616 	/**
       
  6617 	The limit value for the stack if it were expanded to its maximum size.
       
  6618     
       
  6619     Currently expanding stacks is not supported so iExpandLimit==iLimit
       
  6620 	*/
       
  6621 	TLinAddr iExpandLimit;
       
  6622 	};
       
  6623 
       
  6624 
       
  6625 
       
  6626 
       
  6627 #ifdef __SUPPORT_CPP_EXCEPTIONS__
       
  6628 /**
       
  6629 @internalComponent
       
  6630 @released
       
  6631 
       
  6632 The class used to implement User::Leave in term of throw and TRAP in terms of catch.
       
  6633 
       
  6634 */
       
  6635 class XLeaveException
       
  6636 	{
       
  6637 public:
       
  6638 	inline XLeaveException() {}
       
  6639 	inline XLeaveException(TInt aReason) {iR = aReason;}
       
  6640 	inline TInt Reason() const {return iR;}
       
  6641 	IMPORT_C TInt GetReason() const;
       
  6642 private:
       
  6643 #if __ARMCC_VERSION >= 220000
       
  6644 	// From rvct 2.2 onwards we want the class impedimenta to be shared, so create a key function.
       
  6645 	// Unfortunately we can't make this the key function the dtor since this would make it impossible for existing 2.1 
       
  6646 	// derived binaries to be 'BC' with 2.2 binaries (in the general case (which I wont attempt to describe coz its
       
  6647 	// too complex) so its best to be safe). As a clue: if 2.1 is used to compile with a key function its not possible 
       
  6648 	// for catch handlers to work :-( (see the old code).
       
  6649 	virtual void ForceKeyFunction();	
       
  6650 #endif
       
  6651 private:
       
  6652 #if __ARMCC_VERSION < 220000
       
  6653 	TAny* iVtable;							// reserve space for vtable
       
  6654 #endif	
       
  6655 	TInt iR;
       
  6656 	};
       
  6657 
       
  6658 // The standard header file <exception> defines the following guard macro for EDG and CW, VC++, GCC respectively.
       
  6659 // The guard below is ugly. It will surely come back and bite us unless we resolve the whole issue of standard headers
       
  6660 // when we move to supporting Standard C++.
       
  6661 
       
  6662 // The macro __SYMBIAN_STDCPP_SUPPORT__ is defined when building a StdC++ target.
       
  6663 // In this case, we include the StdC++ specification <exception> rather than declaring uncaught_exception.
       
  6664  
       
  6665 #ifdef __SYMBIAN_STDCPP_SUPPORT__
       
  6666 	#include <stdapis/stlportv5/exception>
       
  6667 #elif !defined(_EXCEPTION) && !defined(_EXCEPTION_) && !defined(__EXCEPTION__)
       
  6668 // Declare standard C++ functions relating to exceptions here
       
  6669 namespace std {
       
  6670 #if defined(__VC32__) || defined(__CW32__)
       
  6671   bool uncaught_exception();
       
  6672 #else
       
  6673   IMPORT_C bool uncaught_exception();
       
  6674 #endif
       
  6675   void terminate(void);
       
  6676   void unexpected(void);
       
  6677   typedef void (*terminate_handler)();
       
  6678   terminate_handler set_terminate(terminate_handler h) throw();
       
  6679   typedef void (*unexpected_handler)();
       
  6680   unexpected_handler set_unexpected(unexpected_handler h) throw();
       
  6681 }
       
  6682 
       
  6683 #endif
       
  6684 #endif //__SUPPORT_CPP_EXCEPTIONS__
       
  6685 
       
  6686 #ifdef __WINS__
       
  6687 
       
  6688 #ifndef __WIN32_SEH_TYPES_KNOWN__
       
  6689 class __UnknownWindowsType1;
       
  6690 class __UnknownWindowsType2;
       
  6691 #endif
       
  6692 
       
  6693 class TWin32SEHTrap;
       
  6694 
       
  6695 /**
       
  6696  * Typedef for the SEH handler function
       
  6697  * @internalComponent
       
  6698  */
       
  6699 typedef TUint32 (TWin32SEHExceptionHandler)(__UnknownWindowsType1* aExceptionRecord, TWin32SEHTrap* aRegistrationRecord, __UnknownWindowsType2* aContext);
       
  6700 
       
  6701 /**
       
  6702  * @internalComponent
       
  6703  */
       
  6704 class TWin32SEHTrap
       
  6705 	{
       
  6706 private:
       
  6707 	// Prevent copy/assign
       
  6708     TWin32SEHTrap(TWin32SEHTrap const &);
       
  6709     TWin32SEHTrap& operator=(TWin32SEHTrap const &);
       
  6710 
       
  6711 #ifdef __KERNEL_MODE__
       
  6712 //
       
  6713 // Kernel-side functions for nkern exception handler
       
  6714 //
       
  6715 public:
       
  6716 	/** Find final exception handler in SEH chain */
       
  6717 	static TWin32SEHTrap* IterateForFinal();
       
  6718 
       
  6719 	/** Access exception handler */
       
  6720 	TWin32SEHExceptionHandler* ExceptionHandler();
       
  6721 
       
  6722 private:
       
  6723 
       
  6724 #else // !__KERNEL_MODE__
       
  6725 //
       
  6726 // User-side functions for use in TRAP(...)
       
  6727 //
       
  6728 public:
       
  6729 	UIMPORT_C TWin32SEHTrap();
       
  6730 
       
  6731 public:
       
  6732 	/** Add object to SEH chain */
       
  6733 	UIMPORT_C void Trap();
       
  6734 
       
  6735 	/** Remove object from SEH chain */
       
  6736 	UIMPORT_C void UnTrap();
       
  6737 
       
  6738 #ifndef __IN_SEH_CPP__
       
  6739 private:
       
  6740 #endif
       
  6741 	/** Handle Win32 exceptions */
       
  6742 	static TUint32 ExceptionHandler(__UnknownWindowsType1* aException, TWin32SEHTrap* aRegistrationRecord, __UnknownWindowsType2* aContext);
       
  6743 
       
  6744 #endif //__KERNEL_MODE__
       
  6745 
       
  6746 	//
       
  6747 	// NB: This is really an _EXCEPTION_REGISTRATION_RECORD
       
  6748 	//
       
  6749     TWin32SEHTrap*					iPrevExceptionRegistrationRecord;	/** Link to previous SEH record */
       
  6750 	TWin32SEHExceptionHandler*		iExceptionHandler;					/** SEH handler function */
       
  6751 
       
  6752 private:
       
  6753 	TUint32 iPadding[254];	// discourage the compiler from putting this in reused function parameter space
       
  6754 	};
       
  6755 
       
  6756 #else // !__WINS__
       
  6757 
       
  6758 #ifdef __X86__
       
  6759 /**
       
  6760  * @internalComponent
       
  6761  */
       
  6762 class TWin32SEHTrap
       
  6763 	{
       
  6764 public:
       
  6765 	UIMPORT_C TWin32SEHTrap();
       
  6766 	UIMPORT_C void Trap();
       
  6767 	UIMPORT_C void UnTrap();
       
  6768 	};
       
  6769 #endif //__X86__
       
  6770 #endif //__WINS__
       
  6771 
       
  6772 /**
       
  6773 @internalTechnology
       
  6774  */
       
  6775 struct TEmulatorImageHeader
       
  6776 	{
       
  6777 	TUid iUids[KMaxCheckedUid];
       
  6778 	TProcessPriority iPriority;
       
  6779 	SSecurityInfo iS;
       
  6780 	TUint32 iSpare1;
       
  6781 	TUint32 iSpare2;
       
  6782 	TUint32 iModuleVersion;
       
  6783 	TUint32 iFlags;
       
  6784 	};
       
  6785 
       
  6786 // forward declaration of shareable data buffers pool infomation
       
  6787 class TShPoolInfo;
       
  6788 
       
  6789 #include <e32cmn.inl>
       
  6790 
       
  6791 #ifndef SYMBIAN_ENABLE_SPLIT_HEADERS
       
  6792 #include <e32cmn_private.h>
       
  6793 #endif
       
  6794 
       
  6795 #endif //__E32CMN_H__
       
  6796