kerneltest/e32test/misc/inflate.c
changeset 9 96e5fb8b040d
child 10 36bfc973b146
equal deleted inserted replaced
-1:000000000000 9:96e5fb8b040d
       
     1 /*
       
     2 * Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
       
     3 * All rights reserved.
       
     4 * This component and the accompanying materials are made available
       
     5 * under the terms of "Eclipse Public License v1.0"
       
     6 * which accompanies this distribution, and is available
       
     7 * at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     8 *
       
     9 * Initial Contributors:
       
    10 * Nokia Corporation - initial contribution.
       
    11 *
       
    12 * Contributors:
       
    13 *
       
    14 * Description: 
       
    15 *
       
    16 */
       
    17 /* inflate.c -- Not copyrighted 1992 by Mark Adler
       
    18    version c10p1, 10 January 1993 */
       
    19 
       
    20 /* You can do whatever you like with this source file, though I would
       
    21    prefer that if you modify it and redistribute it that you include
       
    22    comments to that effect with your name and the date.  Thank you.
       
    23    [The history has been moved to the file ChangeLog.]
       
    24  */
       
    25 
       
    26 /*
       
    27    Inflate deflated (PKZIP's method 8 compressed) data.  The compression
       
    28    method searches for as much of the current string of bytes (up to a
       
    29    length of 258) in the previous 32K bytes.  If it doesn't find any
       
    30    matches (of at least length 3), it codes the next byte.  Otherwise, it
       
    31    codes the length of the matched string and its distance backwards from
       
    32    the current position.  There is a single Huffman code that codes both
       
    33    single bytes (called "literals") and match lengths.  A second Huffman
       
    34    code codes the distance information, which follows a length code.  Each
       
    35    length or distance code actually represents a base value and a number
       
    36    of "extra" (sometimes zero) bits to get to add to the base value.  At
       
    37    the end of each deflated block is a special end-of-block (EOB) literal/
       
    38    length code.  The decoding process is basically: get a literal/length
       
    39    code; if EOB then done; if a literal, emit the decoded byte; if a
       
    40    length then get the distance and emit the referred-to bytes from the
       
    41    sliding window of previously emitted data.
       
    42 
       
    43    There are (currently) three kinds of inflate blocks: stored, fixed, and
       
    44    dynamic.  The compressor deals with some chunk of data at a time, and
       
    45    decides which method to use on a chunk-by-chunk basis.  A chunk might
       
    46    typically be 32K or 64K.  If the chunk is uncompressible, then the
       
    47    "stored" method is used.  In this case, the bytes are simply stored as
       
    48    is, eight bits per byte, with none of the above coding.  The bytes are
       
    49    preceded by a count, since there is no longer an EOB code.
       
    50 
       
    51    If the data is compressible, then either the fixed or dynamic methods
       
    52    are used.  In the dynamic method, the compressed data is preceded by
       
    53    an encoding of the literal/length and distance Huffman codes that are
       
    54    to be used to decode this block.  The representation is itself Huffman
       
    55    coded, and so is preceded by a description of that code.  These code
       
    56    descriptions take up a little space, and so for small blocks, there is
       
    57    a predefined set of codes, called the fixed codes.  The fixed method is
       
    58    used if the block codes up smaller that way (usually for quite small
       
    59    chunks), otherwise the dynamic method is used.  In the latter case, the
       
    60    codes are customized to the probabilities in the current block, and so
       
    61    can code it much better than the pre-determined fixed codes.
       
    62  
       
    63    The Huffman codes themselves are decoded using a mutli-level table
       
    64    lookup, in order to maximize the speed of decoding plus the speed of
       
    65    building the decoding tables.  See the comments below that precede the
       
    66    lbits and dbits tuning parameters.
       
    67  */
       
    68 
       
    69 
       
    70 /*
       
    71    Notes beyond the 1.93a appnote.txt:
       
    72 
       
    73    1. Distance pointers never point before the beginning of the output
       
    74       stream.
       
    75    2. Distance pointers can point back across blocks, up to 32k away.
       
    76    3. There is an implied maximum of 7 bits for the bit length table and
       
    77       15 bits for the actual data.
       
    78    4. If only one code exists, then it is encoded using one bit.  (Zero
       
    79       would be more efficient, but perhaps a little confusing.)  If two
       
    80       codes exist, they are coded using one bit each (0 and 1).
       
    81    5. There is no way of sending zero distance codes--a dummy must be
       
    82       sent if there are none.  (History: a pre 2.0 version of PKZIP would
       
    83       store blocks with no distance codes, but this was discovered to be
       
    84       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
       
    85       zero distance codes, which is sent as one code of zero bits in
       
    86       length.
       
    87    6. There are up to 286 literal/length codes.  Code 256 represents the
       
    88       end-of-block.  Note however that the static length tree defines
       
    89       288 codes just to fill out the Huffman codes.  Codes 286 and 287
       
    90       cannot be used though, since there is no length base or extra bits
       
    91       defined for them.  Similarly, there are up to 30 distance codes.
       
    92       However, static trees define 32 codes (all 5 bits) to fill out the
       
    93       Huffman codes, but the last two had better not show up in the data.
       
    94    7. Unzip can check dynamic Huffman blocks for complete code sets.
       
    95       The exception is that a single code would not be complete (see #4).
       
    96    8. The five bits following the block type is really the number of
       
    97       literal codes sent minus 257.
       
    98    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
       
    99       (1+6+6).  Therefore, to output three times the length, you output
       
   100       three codes (1+1+1), whereas to output four times the same length,
       
   101       you only need two codes (1+3).  Hmm.
       
   102   10. In the tree reconstruction algorithm, Code = Code + Increment
       
   103       only if BitLength(i) is not zero.  (Pretty obvious.)
       
   104   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
       
   105   12. Note: length code 284 can represent 227-258, but length code 285
       
   106       really is 258.  The last length deserves its own, short code
       
   107       since it gets used a lot in very redundant files.  The length
       
   108       258 is special since 258 - 3 (the min match length) is 255.
       
   109   13. The literal/length and distance code bit lengths are read as a
       
   110       single stream of lengths.  It is possible (and advantageous) for
       
   111       a repeat code (16, 17, or 18) to go across the boundary between
       
   112       the two sets of lengths.
       
   113  */
       
   114 
       
   115 #include "inflate.h"
       
   116 
       
   117 extern void* memcpy(void*, const void*, unsigned);
       
   118 extern void* memset(void*, int, unsigned);
       
   119 
       
   120 /* Huffman code lookup table entry--this entry is four bytes for machines
       
   121    that have 16-bit pointers (e.g. PC's in the small or medium model).
       
   122    Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
       
   123    means that v is a literal, 16 < e < 32 means that v is a pointer to
       
   124    the next table, which codes e - 16 bits, and lastly e == 99 indicates
       
   125    an unused code.  If a code with e == 99 is looked up, this implies an
       
   126    error in the data. */
       
   127 struct huft {
       
   128   uch e;                /* number of extra bits or operation */
       
   129   uch b;                /* number of bits in this code or subcode */
       
   130   union {
       
   131     ush n;              /* literal, length base, or distance base */
       
   132     struct huft *t;     /* pointer to next level of table */
       
   133   } v;
       
   134 };
       
   135 
       
   136 
       
   137 /* Function prototypes */
       
   138 int huft_build(unsigned *, unsigned, unsigned, const ush *, const ush *,
       
   139                    struct huft **, int *);
       
   140 int huft_free(struct huft *);
       
   141 int inflate_codes(struct huft *, struct huft *, int, int);
       
   142 int inflate_stored(void);
       
   143 int inflate_fixed(void);
       
   144 int inflate_dynamic(void);
       
   145 int inflate_block(int *);
       
   146 int inflate(void);
       
   147 
       
   148 
       
   149 /* The inflate algorithm uses a sliding 32K byte window on the uncompressed
       
   150    stream to find repeated byte strings.  This is implemented here as a
       
   151    circular buffer.  The index is updated simply by incrementing and then
       
   152    and'ing with 0x7fff (32K-1). */
       
   153 /* It is left to other modules to supply the 32K area.  It is assumed
       
   154    to be usable as if it were declared "uch slide[32768];" or as just
       
   155    "uch *slide;" and then malloc'ed in the latter case.  The definition
       
   156    must be in unzip.h, included above. */
       
   157 /* unsigned wp;             current position in slide */
       
   158 /*#define wp outcnt*/
       
   159 /*#define flush_output(w) (wp=(w),flush_window())*/
       
   160 
       
   161 /* Tables for deflate from PKZIP's appnote.txt. */
       
   162 static const unsigned border[] = {    /* Order of the bit length code lengths */
       
   163         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
       
   164 static const ush cplens[] = {         /* Copy lengths for literal codes 257..285 */
       
   165         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
       
   166         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
       
   167         /* note: see note #13 above about the 258 in this list. */
       
   168 static const ush cplext[] = {         /* Extra bits for literal codes 257..285 */
       
   169         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
       
   170         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
       
   171 static const ush cpdist[] = {         /* Copy offsets for distance codes 0..29 */
       
   172         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
       
   173         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
       
   174         8193, 12289, 16385, 24577};
       
   175 static const ush cpdext[] = {         /* Extra bits for distance codes */
       
   176         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
       
   177         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
       
   178         12, 12, 13, 13};
       
   179 
       
   180 
       
   181 
       
   182 /* Macros for inflate() bit peeking and grabbing.
       
   183    The usage is:
       
   184    
       
   185         NEEDBITS(j)
       
   186         x = b & mask_bits[j];
       
   187         DUMPBITS(j)
       
   188 
       
   189    where NEEDBITS makes sure that b has at least j bits in it, and
       
   190    DUMPBITS removes the bits from b.  The macros use the variable k
       
   191    for the number of bits in b.  Normally, b and k are register
       
   192    variables for speed, and are initialized at the beginning of a
       
   193    routine that uses these macros from a global bit buffer and count.
       
   194 
       
   195    If we assume that EOB will be the longest code, then we will never
       
   196    ask for bits with NEEDBITS that are beyond the end of the stream.
       
   197    So, NEEDBITS should not read any more bytes than are needed to
       
   198    meet the request.  Then no bytes need to be "returned" to the buffer
       
   199    at the end of the last block.
       
   200 
       
   201    However, this assumption is not true for fixed blocks--the EOB code
       
   202    is 7 bits, but the other literal/length codes can be 8 or 9 bits.
       
   203    (The EOB code is shorter than other codes because fixed blocks are
       
   204    generally short.  So, while a block always has an EOB, many other
       
   205    literal/length codes have a significantly lower probability of
       
   206    showing up at all.)  However, by making the first table have a
       
   207    lookup of seven bits, the EOB code will be found in that first
       
   208    lookup, and so will not require that too many bits be pulled from
       
   209    the stream.
       
   210  */
       
   211 
       
   212 ulg bb;                         /* bit buffer */
       
   213 unsigned bk;                    /* bits in bit buffer */
       
   214 
       
   215 static const ush mask_bits[] = {
       
   216     0x0000,
       
   217     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
       
   218     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
       
   219 };
       
   220 
       
   221 #define get_byte()  (inptr < inbuf_end ? *inptr++ : fill_inbuf())
       
   222 #define NEXTBYTE()  (uch)get_byte()
       
   223 #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
       
   224 #define DUMPBITS(n) {b>>=(n);k-=(n);}
       
   225 
       
   226 
       
   227 /*
       
   228    Huffman code decoding is performed using a multi-level table lookup.
       
   229    The fastest way to decode is to simply build a lookup table whose
       
   230    size is determined by the longest code.  However, the time it takes
       
   231    to build this table can also be a factor if the data being decoded
       
   232    is not very long.  The most common codes are necessarily the
       
   233    shortest codes, so those codes dominate the decoding time, and hence
       
   234    the speed.  The idea is you can have a shorter table that decodes the
       
   235    shorter, more probable codes, and then point to subsidiary tables for
       
   236    the longer codes.  The time it costs to decode the longer codes is
       
   237    then traded against the time it takes to make longer tables.
       
   238 
       
   239    This results of this trade are in the variables lbits and dbits
       
   240    below.  lbits is the number of bits the first level table for literal/
       
   241    length codes can decode in one step, and dbits is the same thing for
       
   242    the distance codes.  Subsequent tables are also less than or equal to
       
   243    those sizes.  These values may be adjusted either when all of the
       
   244    codes are shorter than that, in which case the longest code length in
       
   245    bits is used, or when the shortest code is *longer* than the requested
       
   246    table size, in which case the length of the shortest code in bits is
       
   247    used.
       
   248 
       
   249    There are two different values for the two tables, since they code a
       
   250    different number of possibilities each.  The literal/length table
       
   251    codes 286 possible values, or in a flat code, a little over eight
       
   252    bits.  The distance table codes 30 possible values, or a little less
       
   253    than five bits, flat.  The optimum values for speed end up being
       
   254    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
       
   255    The optimum values may differ though from machine to machine, and
       
   256    possibly even between compilers.  Your mileage may vary.
       
   257  */
       
   258 
       
   259 
       
   260 static const int lbits = 9;          /* bits in base literal/length lookup table */
       
   261 static const int dbits = 6;          /* bits in base distance lookup table */
       
   262 
       
   263 
       
   264 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
       
   265 #define BMAX 16         /* maximum bit length of any code (16 for explode) */
       
   266 #define N_MAX 288       /* maximum number of codes in any set */
       
   267 
       
   268 
       
   269 unsigned hufts;         /* track memory usage */
       
   270 
       
   271 
       
   272 int huft_build(
       
   273 unsigned *b,            /* code lengths in bits (all assumed <= BMAX) */
       
   274 unsigned n,             /* number of codes (assumed <= N_MAX) */
       
   275 unsigned s,             /* number of simple-valued codes (0..s-1) */
       
   276 const ush *d,                 /* list of base values for non-simple codes */
       
   277 const ush *e,                 /* list of extra bits for non-simple codes */
       
   278 struct huft **t,        /* result: starting table */
       
   279 int *m                 /* maximum lookup bits, returns actual */
       
   280 )
       
   281 /* Given a list of code lengths and a maximum table size, make a set of
       
   282    tables to decode that set of codes.  Return zero on success, one if
       
   283    the given code set is incomplete (the tables are still built in this
       
   284    case), two if the input is invalid (all zero length codes or an
       
   285    oversubscribed set of lengths), and three if not enough memory. */
       
   286 {
       
   287   unsigned a;                   /* counter for codes of length k */
       
   288   unsigned c[BMAX+1];           /* bit length count table */
       
   289   unsigned f;                   /* i repeats in table every f entries */
       
   290   int g;                        /* maximum code length */
       
   291   int h;                        /* table level */
       
   292   register unsigned i;          /* counter, current code */
       
   293   register unsigned j;          /* counter */
       
   294   register int k;               /* number of bits in current code */
       
   295   int l;                        /* bits per table (returned in m) */
       
   296   register unsigned *p;         /* pointer into c[], b[], or v[] */
       
   297   register struct huft *q;      /* points to current table */
       
   298   struct huft r;                /* table entry for structure assignment */
       
   299   struct huft *u[BMAX];         /* table stack */
       
   300   unsigned v[N_MAX];            /* values in order of bit length */
       
   301   register int w;               /* bits before this table == (l * h) */
       
   302   unsigned x[BMAX+1];           /* bit offsets, then code stack */
       
   303   unsigned *xp;                 /* pointer into x */
       
   304   int y;                        /* number of dummy codes added */
       
   305   unsigned z;                   /* number of entries in current table */
       
   306 
       
   307 
       
   308   /* Generate counts for each bit length */
       
   309   memset(c, 0, sizeof(c));
       
   310   p = b;  i = n;
       
   311   do {
       
   312 /*    Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), 
       
   313 	    n-i, *p));*/
       
   314     c[*p]++;                    /* assume all entries <= BMAX */
       
   315     p++;                      /* Can't combine with above line (Solaris bug) */
       
   316   } while (--i);
       
   317   if (c[0] == n)                /* null input--all zero length codes */
       
   318   {
       
   319     *t = (struct huft *)NULL;
       
   320     *m = 0;
       
   321     return 0;
       
   322   }
       
   323 
       
   324 
       
   325   /* Find minimum and maximum length, bound *m by those */
       
   326   l = *m;
       
   327   for (j = 1; j <= BMAX; j++)
       
   328     if (c[j])
       
   329       break;
       
   330   k = j;                        /* minimum code length */
       
   331   if ((unsigned)l < j)
       
   332     l = j;
       
   333   for (i = BMAX; i; i--)
       
   334     if (c[i])
       
   335       break;
       
   336   g = i;                        /* maximum code length */
       
   337   if ((unsigned)l > i)
       
   338     l = i;
       
   339   *m = l;
       
   340 
       
   341 
       
   342   /* Adjust last length count to fill out codes, if needed */
       
   343   for (y = 1 << j; j < i; j++, y <<= 1)
       
   344     if ((y -= c[j]) < 0)
       
   345       return 2;                 /* bad input: more codes than bits */
       
   346   if ((y -= c[i]) < 0)
       
   347     return 2;
       
   348   c[i] += y;
       
   349 
       
   350 
       
   351   /* Generate starting offsets into the value table for each length */
       
   352   x[1] = j = 0;
       
   353   p = c + 1;  xp = x + 2;
       
   354   while (--i) {                 /* note that i == g from above */
       
   355     *xp++ = (j += *p++);
       
   356   }
       
   357 
       
   358 
       
   359   /* Make a table of values in order of bit lengths */
       
   360   p = b;  i = 0;
       
   361   do {
       
   362     if ((j = *p++) != 0)
       
   363       v[x[j]++] = i;
       
   364   } while (++i < n);
       
   365 
       
   366 
       
   367   /* Generate the Huffman codes and for each, make the table entries */
       
   368   x[0] = i = 0;                 /* first Huffman code is zero */
       
   369   p = v;                        /* grab values in bit order */
       
   370   h = -1;                       /* no tables yet--level -1 */
       
   371   w = -l;                       /* bits decoded == (l * h) */
       
   372   u[0] = (struct huft *)NULL;   /* just to keep compilers happy */
       
   373   q = (struct huft *)NULL;      /* ditto */
       
   374   z = 0;                        /* ditto */
       
   375 
       
   376   /* go through the bit lengths (k already is bits in shortest code) */
       
   377   for (; k <= g; k++)
       
   378   {
       
   379     a = c[k];
       
   380     while (a--)
       
   381     {
       
   382       /* here i is the Huffman code of length k bits for value *p */
       
   383       /* make tables up to required level */
       
   384       while (k > w + l)
       
   385       {
       
   386         h++;
       
   387         w += l;                 /* previous table always l bits */
       
   388 
       
   389         /* compute minimum size table less than or equal to l bits */
       
   390         z = (z = g - w) > (unsigned)l ? l : z;  /* upper limit on table size */
       
   391         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
       
   392         {                       /* too few codes for k-w bit table */
       
   393           f -= a + 1;           /* deduct codes from patterns left */
       
   394           xp = c + k;
       
   395           while (++j < z)       /* try smaller tables up to z bits */
       
   396           {
       
   397             if ((f <<= 1) <= *++xp)
       
   398               break;            /* enough codes to use up j bits */
       
   399             f -= *xp;           /* else deduct codes from patterns */
       
   400           }
       
   401         }
       
   402         z = 1 << j;             /* table entries for j-bit table */
       
   403 
       
   404         /* allocate and link in new table */
       
   405         if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
       
   406             (struct huft *)NULL)
       
   407         {
       
   408           if (h)
       
   409             huft_free(u[0]);
       
   410           return 3;             /* not enough memory */
       
   411         }
       
   412         hufts += z + 1;         /* track memory usage */
       
   413         *t = q + 1;             /* link to list for huft_free() */
       
   414         *(t = &(q->v.t)) = (struct huft *)NULL;
       
   415         u[h] = ++q;             /* table starts after link */
       
   416 
       
   417         /* connect to last table, if there is one */
       
   418         if (h)
       
   419         {
       
   420           x[h] = i;             /* save pattern for backing up */
       
   421           r.b = (uch)l;         /* bits to dump before this table */
       
   422           r.e = (uch)(16 + j);  /* bits in this table */
       
   423           r.v.t = q;            /* pointer to this table */
       
   424           j = i >> (w - l);     /* (get around Turbo C bug) */
       
   425           u[h-1][j] = r;        /* connect to last table */
       
   426         }
       
   427       }
       
   428 
       
   429       /* set up table entry in r */
       
   430       r.b = (uch)(k - w);
       
   431       if (p >= v + n)
       
   432         r.e = 99;               /* out of values--invalid code */
       
   433       else if (*p < s)
       
   434       {
       
   435         r.e = (uch)(*p < 256 ? 16 : 15);    /* 256 is end-of-block code */
       
   436         r.v.n = (ush)(*p);             /* simple code is just the value */
       
   437 	p++;                           /* one compiler does not like *p++ */
       
   438       }
       
   439       else
       
   440       {
       
   441         r.e = (uch)e[*p - s];   /* non-simple--look up in lists */
       
   442         r.v.n = d[*p++ - s];
       
   443       }
       
   444 
       
   445       /* fill code-like entries with r */
       
   446       f = 1 << (k - w);
       
   447       for (j = i >> w; j < z; j += f)
       
   448         q[j] = r;
       
   449 
       
   450       /* backwards increment the k-bit code i */
       
   451       for (j = 1 << (k - 1); i & j; j >>= 1)
       
   452         i ^= j;
       
   453       i ^= j;
       
   454 
       
   455       /* backup over finished tables */
       
   456       while ((i & ((1 << w) - 1)) != x[h])
       
   457       {
       
   458         h--;                    /* don't need to update q */
       
   459         w -= l;
       
   460       }
       
   461     }
       
   462   }
       
   463 
       
   464 
       
   465   /* Return true (1) if we were given an incomplete table */
       
   466   return y != 0 && g != 1;
       
   467 }
       
   468 
       
   469 
       
   470 
       
   471 int huft_free(struct huft *t)
       
   472 /* Free the malloc'ed tables built by huft_build(), which makes a linked
       
   473    list of the tables it made, with the links in a dummy first entry of
       
   474    each table. */
       
   475 {
       
   476   register struct huft *p, *q;
       
   477 
       
   478 
       
   479   /* Go through linked list, freeing from the malloced (t[-1]) address. */
       
   480   p = t;
       
   481   while (p != (struct huft *)NULL)
       
   482   {
       
   483     q = (--p)->v.t;
       
   484     free((char*)p);
       
   485     p = q;
       
   486   } 
       
   487   return 0;
       
   488 }
       
   489 
       
   490 
       
   491 int inflate_codes(
       
   492 struct huft *tl,
       
   493 struct huft *td,   /* literal/length and distance decoder tables */
       
   494 int bl,
       
   495 int bd             /* number of bits decoded by tl[] and td[] */
       
   496 )
       
   497 /* inflate (decompress) the codes in a deflated (compressed) block.
       
   498    Return an error code or zero if it all goes ok. */
       
   499 {
       
   500   register unsigned e;  /* table entry flag/number of extra bits */
       
   501   unsigned n, d;        /* length and index for copy */
       
   502   struct huft *t;       /* pointer to table entry */
       
   503   unsigned ml, md;      /* masks for bl and bd bits */
       
   504   register ulg b=bb;       /* bit buffer */
       
   505   register unsigned k=bk;  /* number of bits in bit buffer */
       
   506   register uch* p=(uch*)outptr;
       
   507 
       
   508   /* inflate the coded data */
       
   509   ml = mask_bits[bl];           /* precompute masks for speed */
       
   510   md = mask_bits[bd];
       
   511   for (;;)                      /* do until end of block */
       
   512   {
       
   513     NEEDBITS((unsigned)bl)
       
   514     if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
       
   515       do {
       
   516         if (e == 99)
       
   517           return 1;
       
   518         DUMPBITS(t->b)
       
   519         e -= 16;
       
   520         NEEDBITS(e)
       
   521       } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
       
   522     DUMPBITS(t->b)
       
   523     if (e == 16)                /* then it's a literal */
       
   524     {
       
   525       *p++ = (uch)t->v.n;
       
   526     }
       
   527     else                        /* it's an EOB or a length */
       
   528     {
       
   529       /* exit if end of block */
       
   530       if (e == 15)
       
   531         break;
       
   532 
       
   533       /* get length of block to copy */
       
   534       NEEDBITS(e)
       
   535       n = t->v.n + ((unsigned)b & mask_bits[e]);
       
   536       DUMPBITS(e);
       
   537 
       
   538       /* decode distance of block to copy */
       
   539       NEEDBITS((unsigned)bd)
       
   540       if ((e = (t = td + ((unsigned)b & md))->e) > 16)
       
   541         do {
       
   542           if (e == 99)
       
   543             return 1;
       
   544           DUMPBITS(t->b)
       
   545           e -= 16;
       
   546           NEEDBITS(e)
       
   547         } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
       
   548       DUMPBITS(t->b)
       
   549       NEEDBITS(e)
       
   550       d = t->v.n + ((unsigned)b & mask_bits[e]);
       
   551 	  d &= ZIP_WINDOW_SIZE-1;
       
   552       DUMPBITS(e)
       
   553 
       
   554       /* do the copy */
       
   555 	  if (d>=n)
       
   556 		  {
       
   557 		  memcpy(p, p-d, n);
       
   558 		  p+=n;
       
   559 		  }
       
   560 	  else
       
   561 		  {
       
   562 		  uch* q=p-d;
       
   563 		  while(n--) *p++=*q++;
       
   564 		  }
       
   565     }
       
   566   }
       
   567 
       
   568 
       
   569   /* restore the globals from the locals */
       
   570   outptr=p;
       
   571   bb = b;                       /* restore global bit buffer */
       
   572   bk = k;
       
   573 
       
   574   /* done */
       
   575   return 0;
       
   576 }
       
   577 
       
   578 
       
   579 
       
   580 int inflate_stored()
       
   581 /* "decompress" an inflated type 0 (stored) block. */
       
   582 {
       
   583   unsigned n;           /* number of bytes in block */
       
   584   register ulg b;       /* bit buffer */
       
   585   register unsigned k;  /* number of bits in bit buffer */
       
   586 
       
   587   register uch* p=(uch*)outptr;
       
   588 
       
   589 
       
   590   /* make local copies of globals */
       
   591   b = bb;                       /* initialize bit buffer */
       
   592   k = bk;
       
   593 
       
   594 
       
   595   /* go to byte boundary */
       
   596   n = k & 7;
       
   597   DUMPBITS(n);
       
   598 
       
   599 
       
   600   /* get the length and its complement */
       
   601   NEEDBITS(16)
       
   602   n = ((unsigned)b & 0xffff);
       
   603   DUMPBITS(16)
       
   604   NEEDBITS(16)
       
   605   if (n != (unsigned)((~b) & 0xffff))
       
   606     return 1;                   /* error in compressed data */
       
   607   DUMPBITS(16)
       
   608 
       
   609 
       
   610   /* read and output the compressed data */
       
   611   while (n--)
       
   612   {
       
   613     NEEDBITS(8)
       
   614 	*p++=(uch)b;
       
   615     DUMPBITS(8)
       
   616   }
       
   617 
       
   618 
       
   619   /* restore the globals from the locals */
       
   620   outptr=p;
       
   621   bb = b;                       /* restore global bit buffer */
       
   622   bk = k;
       
   623   return 0;
       
   624 }
       
   625 
       
   626 
       
   627 
       
   628 int inflate_fixed()
       
   629 /* decompress an inflated type 1 (fixed Huffman codes) block.  We should
       
   630    either replace this with a custom decoder, or at least precompute the
       
   631    Huffman tables. */
       
   632 {
       
   633   int i;                /* temporary variable */
       
   634   struct huft *tl;      /* literal/length code table */
       
   635   struct huft *td;      /* distance code table */
       
   636   int bl;               /* lookup bits for tl */
       
   637   int bd;               /* lookup bits for td */
       
   638   unsigned l[288];      /* length list for huft_build */
       
   639 
       
   640 
       
   641   /* set up literal table */
       
   642   for (i = 0; i < 144; i++)
       
   643     l[i] = 8;
       
   644   for (; i < 256; i++)
       
   645     l[i] = 9;
       
   646   for (; i < 280; i++)
       
   647     l[i] = 7;
       
   648   for (; i < 288; i++)          /* make a complete, but wrong code set */
       
   649     l[i] = 8;
       
   650   bl = 7;
       
   651   if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
       
   652     return i;
       
   653 
       
   654 
       
   655   /* set up distance table */
       
   656   for (i = 0; i < 30; i++)      /* make an incomplete code set */
       
   657     l[i] = 5;
       
   658   bd = 5;
       
   659   if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
       
   660   {
       
   661     huft_free(tl);
       
   662     return i;
       
   663   }
       
   664 
       
   665 
       
   666   /* decompress until an end-of-block code */
       
   667   if (inflate_codes(tl, td, bl, bd))
       
   668     return 1;
       
   669 
       
   670 
       
   671   /* free the decoding tables, return */
       
   672   huft_free(tl);
       
   673   huft_free(td);
       
   674   return 0;
       
   675 }
       
   676 
       
   677 
       
   678 
       
   679 int inflate_dynamic()
       
   680 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
       
   681 {
       
   682   int i;                /* temporary variables */
       
   683   unsigned j;
       
   684   unsigned l;           /* last length */
       
   685   unsigned m;           /* mask for bit lengths table */
       
   686   unsigned n;           /* number of lengths to get */
       
   687   struct huft *tl;      /* literal/length code table */
       
   688   struct huft *td;      /* distance code table */
       
   689   int bl;               /* lookup bits for tl */
       
   690   int bd;               /* lookup bits for td */
       
   691   unsigned nb;          /* number of bit length codes */
       
   692   unsigned nl;          /* number of literal/length codes */
       
   693   unsigned nd;          /* number of distance codes */
       
   694 #ifdef PKZIP_BUG_WORKAROUND
       
   695   unsigned ll[288+32];  /* literal/length and distance code lengths */
       
   696 #else
       
   697   unsigned ll[286+30];  /* literal/length and distance code lengths */
       
   698 #endif
       
   699   register ulg b;       /* bit buffer */
       
   700   register unsigned k;  /* number of bits in bit buffer */
       
   701 
       
   702 
       
   703   /* make local bit buffer */
       
   704   b = bb;
       
   705   k = bk;
       
   706 
       
   707 
       
   708   /* read in table lengths */
       
   709   NEEDBITS(5)
       
   710   nl = 257 + ((unsigned)b & 0x1f);      /* number of literal/length codes */
       
   711   DUMPBITS(5)
       
   712   NEEDBITS(5)
       
   713   nd = 1 + ((unsigned)b & 0x1f);        /* number of distance codes */
       
   714   DUMPBITS(5)
       
   715   NEEDBITS(4)
       
   716   nb = 4 + ((unsigned)b & 0xf);         /* number of bit length codes */
       
   717   DUMPBITS(4)
       
   718 #ifdef PKZIP_BUG_WORKAROUND
       
   719   if (nl > 288 || nd > 32)
       
   720 #else
       
   721   if (nl > 286 || nd > 30)
       
   722 #endif
       
   723     return 1;                   /* bad lengths */
       
   724 
       
   725 
       
   726   /* read in bit-length-code lengths */
       
   727   for (j = 0; j < nb; j++)
       
   728   {
       
   729     NEEDBITS(3)
       
   730     ll[border[j]] = (unsigned)b & 7;
       
   731     DUMPBITS(3)
       
   732   }
       
   733   for (; j < 19; j++)
       
   734     ll[border[j]] = 0;
       
   735 
       
   736 
       
   737   /* build decoding table for trees--single level, 7 bit lookup */
       
   738   bl = 7;
       
   739   if ((i = huft_build(ll, 19, 19, (ush*)NULL, (ush*)NULL, &tl, &bl)) != 0)
       
   740   {
       
   741     if (i == 1)
       
   742       huft_free(tl);
       
   743     return i;                   /* incomplete code set */
       
   744   }
       
   745 
       
   746 
       
   747   /* read in literal and distance code lengths */
       
   748   n = nl + nd;
       
   749   m = mask_bits[bl];
       
   750   i = l = 0;
       
   751   while ((unsigned)i < n)
       
   752   {
       
   753     NEEDBITS((unsigned)bl)
       
   754     j = (td = tl + ((unsigned)b & m))->b;
       
   755     DUMPBITS(j)
       
   756     j = td->v.n;
       
   757     if (j < 16)                 /* length of code in bits (0..15) */
       
   758       ll[i++] = l = j;          /* save last length in l */
       
   759     else if (j == 16)           /* repeat last length 3 to 6 times */
       
   760     {
       
   761       NEEDBITS(2)
       
   762       j = 3 + ((unsigned)b & 3);
       
   763       DUMPBITS(2)
       
   764       if ((unsigned)i + j > n)
       
   765         return 1;
       
   766       while (j--)
       
   767         ll[i++] = l;
       
   768     }
       
   769     else if (j == 17)           /* 3 to 10 zero length codes */
       
   770     {
       
   771       NEEDBITS(3)
       
   772       j = 3 + ((unsigned)b & 7);
       
   773       DUMPBITS(3)
       
   774       if ((unsigned)i + j > n)
       
   775         return 1;
       
   776       while (j--)
       
   777         ll[i++] = 0;
       
   778       l = 0;
       
   779     }
       
   780     else                        /* j == 18: 11 to 138 zero length codes */
       
   781     {
       
   782       NEEDBITS(7)
       
   783       j = 11 + ((unsigned)b & 0x7f);
       
   784       DUMPBITS(7)
       
   785       if ((unsigned)i + j > n)
       
   786         return 1;
       
   787       while (j--)
       
   788         ll[i++] = 0;
       
   789       l = 0;
       
   790     }
       
   791   }
       
   792 
       
   793 
       
   794   /* free decoding table for trees */
       
   795   huft_free(tl);
       
   796 
       
   797 
       
   798   /* restore the global bit buffer */
       
   799   bb = b;
       
   800   bk = k;
       
   801 
       
   802 
       
   803   /* build the decoding tables for literal/length and distance codes */
       
   804   bl = lbits;
       
   805   if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
       
   806   {
       
   807     if (i == 1) {
       
   808 /*      fprintf(stderr, " incomplete literal tree\n");*/
       
   809       huft_free(tl);
       
   810     }
       
   811     return i;                   /* incomplete code set */
       
   812   }
       
   813   bd = dbits;
       
   814   if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
       
   815   {
       
   816     if (i == 1) {
       
   817 /*      fprintf(stderr, " incomplete distance tree\n");*/
       
   818 #ifdef PKZIP_BUG_WORKAROUND
       
   819       i = 0;
       
   820     }
       
   821 #else
       
   822       huft_free(td);
       
   823     }
       
   824     huft_free(tl);
       
   825     return i;                   /* incomplete code set */
       
   826 #endif
       
   827   }
       
   828 
       
   829 
       
   830   /* decompress until an end-of-block code */
       
   831   if (inflate_codes(tl, td, bl, bd))
       
   832     return 1;
       
   833 
       
   834 
       
   835   /* free the decoding tables, return */
       
   836   huft_free(tl);
       
   837   huft_free(td);
       
   838   return 0;
       
   839 }
       
   840 
       
   841 
       
   842 
       
   843 int inflate_block(int* e)
       
   844 /* decompress an inflated block */
       
   845 {
       
   846   unsigned t;           /* block type */
       
   847   register ulg b;       /* bit buffer */
       
   848   register unsigned k;  /* number of bits in bit buffer */
       
   849 
       
   850 
       
   851   /* make local bit buffer */
       
   852   b = bb;
       
   853   k = bk;
       
   854 
       
   855 
       
   856   /* read in last block bit */
       
   857   NEEDBITS(1)
       
   858   *e = (int)b & 1;
       
   859   DUMPBITS(1)
       
   860 
       
   861 
       
   862   /* read in block type */
       
   863   NEEDBITS(2)
       
   864   t = (unsigned)b & 3;
       
   865   DUMPBITS(2)
       
   866 
       
   867 
       
   868   /* restore the global bit buffer */
       
   869   bb = b;
       
   870   bk = k;
       
   871 
       
   872 
       
   873   /* inflate that block type */
       
   874   if (t == 2)
       
   875     return inflate_dynamic();
       
   876   if (t == 0)
       
   877     return inflate_stored();
       
   878   if (t == 1)
       
   879     return inflate_fixed();
       
   880 
       
   881 
       
   882   /* bad block type */
       
   883   return 2;
       
   884 }
       
   885 
       
   886 
       
   887 
       
   888 int inflate()
       
   889 /* decompress an inflated entry */
       
   890 {
       
   891   int e;                /* last block flag */
       
   892   int r;                /* result code */
       
   893   unsigned h;           /* maximum struct huft's malloc'ed */
       
   894 
       
   895 
       
   896   /* initialize window, bit buffer */
       
   897 /*  wp = 0;*/
       
   898   bk = 0;
       
   899   bb = 0;
       
   900 
       
   901 
       
   902   /* decompress until the last block */
       
   903   h = 0;
       
   904   do {
       
   905     hufts = 0;
       
   906 	r=inflate_block(&e);
       
   907 	process_block(r);
       
   908 	if (r!=0)
       
   909 		return r;
       
   910     if (hufts > h)
       
   911       h = hufts;
       
   912   } while (!e);
       
   913 
       
   914   /* Undo too much lookahead. The next read will be byte aligned so we
       
   915    * can discard unused bits in the last meaningful byte.
       
   916    */
       
   917 /*  while (bk >= 8) {
       
   918     bk -= 8;
       
   919     inptr--;
       
   920   }*/
       
   921 
       
   922   /* flush out slide */
       
   923 /*  flush_output(wp);*/
       
   924 
       
   925 
       
   926   /* return success */
       
   927 #ifdef DEBUG
       
   928 /*  fprintf(stderr, "<%u> ", h);*/
       
   929 #endif /* DEBUG */
       
   930 
       
   931   return 0;
       
   932 }