|
1 // Copyright (c) 2005-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of the License "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // e32\nkernsmp\nkern.cpp |
|
15 // |
|
16 // |
|
17 |
|
18 // NThreadBase member data |
|
19 #define __INCLUDE_NTHREADBASE_DEFINES__ |
|
20 |
|
21 #include "nk_priv.h" |
|
22 |
|
23 /****************************************************************************** |
|
24 * Fast mutex |
|
25 ******************************************************************************/ |
|
26 |
|
27 /** Acquires the fast mutex. |
|
28 |
|
29 This will block until the mutex is available, and causes |
|
30 the thread to enter an implicit critical section until the mutex is released. |
|
31 |
|
32 Generally threads would use NKern::FMWait() which manipulates the kernel lock |
|
33 for you. |
|
34 |
|
35 @pre Kernel must be locked, with lock count 1. |
|
36 @pre The calling thread holds no fast mutexes. |
|
37 |
|
38 @post Kernel is locked, with lock count 1. |
|
39 @post The calling thread holds the mutex. |
|
40 |
|
41 @see NFastMutex::Signal() |
|
42 @see NKern::FMWait() |
|
43 */ |
|
44 EXPORT_C void NFastMutex::Wait() |
|
45 { |
|
46 NThreadBase* pC = NCurrentThreadL(); |
|
47 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED_ONCE|MASK_NO_FAST_MUTEX,"NFastMutex::Wait"); |
|
48 |
|
49 pC->iHeldFastMutex = this; // to handle kill/suspend between here and setting iHeldFastMutex |
|
50 DoWaitL(); |
|
51 } |
|
52 |
|
53 void NFastMutex::DoWaitL() |
|
54 { |
|
55 NThreadBase* pC = NCurrentThreadL(); |
|
56 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T FMWait %M",pC,this)); |
|
57 TBool waited = FALSE; // set if we actually had to wait |
|
58 iMutexLock.LockOnly(); // acquire mutex spin lock |
|
59 __e32_atomic_ior_rlx_ptr(&iHoldingThread, 1); // set contention flag to make sure any other thread must acquire the mutex spin lock |
|
60 pC->AcqSLock(); |
|
61 FOREVER |
|
62 { |
|
63 if (pC->iFastMutexDefer == 1) |
|
64 --pC->iParent->iFreezeCpu; |
|
65 pC->iFastMutexDefer = 0; |
|
66 NThreadBase* pH = (NThreadBase*)(TLinAddr(iHoldingThread) &~ 1); |
|
67 if (!pH) |
|
68 { |
|
69 // mutex is free |
|
70 TInt wp = iWaitQ.HighestPriority(); // -1 if no other thread wants the mutex |
|
71 |
|
72 // don't grab mutex if we have been suspended/killed/migrated by the previous holding thread |
|
73 if (!pC->iSuspended && pC->iCsFunction!=NThreadBase::ECSDivertPending && (!pC->iParent->iCpuChange || pC->iParent->iFreezeCpu)) |
|
74 { |
|
75 TInt p = pC->iPriority; |
|
76 if (p>wp || (p==wp && waited)) |
|
77 { |
|
78 // if we are highest priority waiting thread or equal and we have waited then grab the mutex |
|
79 // don't just grab it if we are equal priority and someone else was already waiting |
|
80 // set contention flag if other threads waiting or if current thread has a round robin outstanding |
|
81 pC->iMutexPri = (TUint8)(wp>=0 ? wp : 0); // pC's actual priority doesn't change since p>=wp |
|
82 iHoldingThread = (wp>=0 || TUint32(pC->iTime)==0x80000000u) ? (NThreadBase*)(TLinAddr(pC)|1) : pC; |
|
83 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T got mutex %M CF=%d WP=%d",TLinAddr(iHoldingThread)&~1,this,TLinAddr(iHoldingThread)&1,wp)); |
|
84 pC->RelSLock(); |
|
85 iMutexLock.UnlockOnly(); |
|
86 #ifdef BTRACE_FAST_MUTEX |
|
87 BTraceContext4(BTrace::EFastMutex, BTrace::EFastMutexWait, this); |
|
88 #endif |
|
89 return; |
|
90 } |
|
91 } |
|
92 } |
|
93 pC->iFastMutexDefer = 2; // signal to scheduler to allow ctxsw without incrementing iParent->iFreezeCpu |
|
94 if (!pC->iSuspended && pC->iCsFunction!=NThreadBase::ECSDivertPending && (!pC->iParent->iCpuChange || pC->iParent->iFreezeCpu)) |
|
95 { |
|
96 // this forces priority changes to wait for the mutex lock |
|
97 pC->iLinkedObjType = NThreadBase::EWaitFastMutex; |
|
98 pC->iLinkedObj = this; |
|
99 pC->iWaitState.SetUpWait(NThreadBase::EWaitFastMutex, NThreadWaitState::EWtStObstructed, this); |
|
100 pC->iWaitLink.iPriority = pC->iPriority; |
|
101 iWaitQ.Add(&pC->iWaitLink); |
|
102 pC->RelSLock(); |
|
103 if (pH) |
|
104 pH->SetMutexPriority(this); |
|
105 do_pause: |
|
106 iMutexLock.UnlockOnly(); |
|
107 RescheduleNeeded(); |
|
108 #ifdef BTRACE_FAST_MUTEX |
|
109 BTraceContext4(BTrace::EFastMutex, BTrace::EFastMutexBlock, this); |
|
110 #endif |
|
111 NKern::PreemptionPoint(); // we block here until the mutex is released and we are 'nominated' for it or we are suspended/killed |
|
112 iMutexLock.LockOnly(); |
|
113 pC->AcqSLock(); |
|
114 if (pC->iPauseCount || pC->iSuspended || pC->iCsFunction==NThreadBase::ECSDivertPending || (pC->iParent->iCpuChange && !pC->iParent->iFreezeCpu)) |
|
115 { |
|
116 pC->RelSLock(); |
|
117 goto do_pause; // let pause/suspend/kill take effect |
|
118 } |
|
119 // if thread was suspended it will have been removed from the wait queue |
|
120 if (!pC->iLinkedObj) |
|
121 goto thread_suspended; |
|
122 iWaitQ.Remove(&pC->iWaitLink); // take ourselves off the wait/contend queue while we try to grab the mutex |
|
123 pC->iWaitLink.iNext = 0; |
|
124 pC->iLinkedObj = 0; |
|
125 pC->iLinkedObjType = NThreadBase::EWaitNone; |
|
126 waited = TRUE; |
|
127 // if we are suspended or killed, we loop round again and do the 'else' clause next time |
|
128 } |
|
129 else |
|
130 { |
|
131 pC->RelSLock(); |
|
132 if (pC->iSuspended || pC->iCsFunction==NThreadBase::ECSDivertPending) |
|
133 { |
|
134 // wake up next thread to take this one's place |
|
135 if (!pH && !iWaitQ.IsEmpty()) |
|
136 { |
|
137 NThreadBase* pT = _LOFF(iWaitQ.First(), NThreadBase, iWaitLink); |
|
138 pT->AcqSLock(); |
|
139 // if thread is still blocked on this fast mutex, release it but leave it on the wait queue |
|
140 // NOTE: it can't be suspended |
|
141 pT->iWaitState.UnBlockT(NThreadBase::EWaitFastMutex, this, KErrNone); |
|
142 pT->RelSLock(); |
|
143 } |
|
144 } |
|
145 iMutexLock.UnlockOnly(); |
|
146 NKern::PreemptionPoint(); // thread suspends/dies/migrates here |
|
147 iMutexLock.LockOnly(); |
|
148 pC->AcqSLock(); |
|
149 thread_suspended: |
|
150 waited = FALSE; |
|
151 // set contention flag to make sure any other thread must acquire the mutex spin lock |
|
152 // need to do it again since mutex may have been released while thread was suspended |
|
153 __e32_atomic_ior_rlx_ptr(&iHoldingThread, 1); |
|
154 } |
|
155 } |
|
156 } |
|
157 |
|
158 |
|
159 #ifndef __FAST_MUTEX_MACHINE_CODED__ |
|
160 /** Releases a previously acquired fast mutex. |
|
161 |
|
162 Generally, threads would use NKern::FMSignal() which manipulates the kernel lock |
|
163 for you. |
|
164 |
|
165 @pre The calling thread holds the mutex. |
|
166 @pre Kernel must be locked. |
|
167 |
|
168 @post Kernel is locked. |
|
169 |
|
170 @see NFastMutex::Wait() |
|
171 @see NKern::FMSignal() |
|
172 */ |
|
173 EXPORT_C void NFastMutex::Signal() |
|
174 { |
|
175 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED,"NFastMutex::Signal"); |
|
176 #ifdef BTRACE_FAST_MUTEX |
|
177 BTraceContext4(BTrace::EFastMutex, BTrace::EFastMutexSignal, this); |
|
178 #endif |
|
179 NThreadBase* pC = NCurrentThreadL(); |
|
180 ((volatile TUint32&)pC->iHeldFastMutex) |= 1; // flag to indicate about to release mutex |
|
181 |
|
182 if (__e32_atomic_cas_rel_ptr(&iHoldingThread, &pC, 0)) |
|
183 { |
|
184 // tricky if suspend/kill here |
|
185 // suspend/kill should check flag set above and aMutex->iHoldingThread |
|
186 // if bit 0 of iHeldFastMutex set and iHoldingThread==pC then set iHeldFastMutex=0 and proceed |
|
187 |
|
188 // no-one else was waiting for the mutex - simple |
|
189 pC->iHeldFastMutex = 0; |
|
190 return; |
|
191 } |
|
192 |
|
193 // there was contention so do it the hard way |
|
194 DoSignalL(); |
|
195 } |
|
196 #endif |
|
197 |
|
198 void NFastMutex::DoSignalL() |
|
199 { |
|
200 NThreadBase* pC = NCurrentThreadL(); |
|
201 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T FMSignal %M",pC,this)); |
|
202 __ASSERT_WITH_MESSAGE_DEBUG(HeldByCurrentThread(),"The calling thread holds the mutex","NFastMutex::Signal"); |
|
203 |
|
204 iMutexLock.LockOnly(); |
|
205 if (!iWaitQ.IsEmpty()) |
|
206 { |
|
207 NThreadBase* pT = _LOFF(iWaitQ.First(), NThreadBase, iWaitLink); |
|
208 pT->AcqSLock(); |
|
209 |
|
210 // if thread is still blocked on this fast mutex, release it but leave it on the wait queue |
|
211 // NOTE: it can't be suspended |
|
212 pT->iWaitState.UnBlockT(NThreadBase::EWaitFastMutex, this, KErrNone); |
|
213 pT->RelSLock(); |
|
214 iHoldingThread = (NThreadBase*)1; // mark mutex as released but contended |
|
215 } |
|
216 else |
|
217 iHoldingThread = 0; // mark mutex as released and uncontended |
|
218 __KTRACE_OPT(KNKERN,DEBUGPRINT("SiHT=%d",iHoldingThread)); |
|
219 pC->AcqSLock(); |
|
220 pC->iHeldFastMutex = 0; |
|
221 iMutexLock.UnlockOnly(); |
|
222 pC->iMutexPri = 0; |
|
223 if (pC->iPriority != pC->iBasePri) |
|
224 { |
|
225 // lose any inherited priority |
|
226 pC->LoseInheritedPriorityT(); |
|
227 } |
|
228 if (TUint32(pC->iTime)==0x80000000u) |
|
229 { |
|
230 pC->iTime = 0; |
|
231 RescheduleNeeded(); // handle deferred timeslicing |
|
232 __KTRACE_OPT(KNKERN,DEBUGPRINT("DTS %T",pC)); |
|
233 } |
|
234 if (pC->iFastMutexDefer) |
|
235 { |
|
236 pC->iFastMutexDefer = 0; |
|
237 --pC->iParent->iFreezeCpu; |
|
238 } |
|
239 if (pC->iParent->iCpuChange && !pC->iParent->iFreezeCpu) |
|
240 RescheduleNeeded(); // need to migrate to another CPU |
|
241 if (!pC->iCsCount && pC->iCsFunction) |
|
242 pC->DoCsFunctionT(); |
|
243 pC->RelSLock(); |
|
244 } |
|
245 |
|
246 |
|
247 /** Checks if the current thread holds this fast mutex |
|
248 |
|
249 @return TRUE if the current thread holds this fast mutex |
|
250 @return FALSE if not |
|
251 @pre Call in thread context. |
|
252 */ |
|
253 EXPORT_C TBool NFastMutex::HeldByCurrentThread() |
|
254 { |
|
255 return (TLinAddr(iHoldingThread)&~1) == (TLinAddr)NKern::CurrentThread(); |
|
256 } |
|
257 |
|
258 |
|
259 /** Returns the fast mutex held by the calling thread, if any. |
|
260 |
|
261 @return If the calling thread currently holds a fast mutex, this function |
|
262 returns a pointer to it; otherwise it returns NULL. |
|
263 @pre Call in thread context. |
|
264 */ |
|
265 EXPORT_C NFastMutex* NKern::HeldFastMutex() |
|
266 { |
|
267 NThreadBase* t = NKern::CurrentThread(); |
|
268 NFastMutex* m = (NFastMutex*)(TLinAddr(t->iHeldFastMutex)&~3); |
|
269 return (m && m->HeldByCurrentThread()) ? m : 0; |
|
270 } |
|
271 |
|
272 |
|
273 #ifndef __FAST_MUTEX_MACHINE_CODED__ |
|
274 /** Acquires a fast mutex. |
|
275 |
|
276 This will block until the mutex is available, and causes |
|
277 the thread to enter an implicit critical section until the mutex is released. |
|
278 |
|
279 @param aMutex The fast mutex to acquire. |
|
280 |
|
281 @post The calling thread holds the mutex. |
|
282 |
|
283 @see NFastMutex::Wait() |
|
284 @see NKern::FMSignal() |
|
285 |
|
286 @pre No fast mutex can be held. |
|
287 @pre Call in a thread context. |
|
288 @pre Kernel must be unlocked |
|
289 @pre interrupts enabled |
|
290 |
|
291 */ |
|
292 EXPORT_C void NKern::FMWait(NFastMutex* aMutex) |
|
293 { |
|
294 __KTRACE_OPT(KNKERN,DEBUGPRINT("NFMW %M", aMutex)); |
|
295 CHECK_PRECONDITIONS(MASK_THREAD_STANDARD,"NKern::FMWait"); |
|
296 NThreadBase* pC = NKern::CurrentThread(); |
|
297 |
|
298 // If the reschedule IPI from an external suspend or kill occurs after this |
|
299 // point the initiating CPU must observe the write to iHeldFastMutex before |
|
300 // the cas operation. |
|
301 pC->iHeldFastMutex = aMutex; // kill/suspend after this point should set mutex contention flag |
|
302 NThreadBase* expect = 0; |
|
303 if (__e32_atomic_cas_acq_ptr(&aMutex->iHoldingThread, &expect, pC)) |
|
304 { |
|
305 // mutex was free and we have just claimed it - simple |
|
306 #ifdef BTRACE_FAST_MUTEX |
|
307 BTraceContext4(BTrace::EFastMutex, BTrace::EFastMutexWait, aMutex); |
|
308 #endif |
|
309 return; |
|
310 } |
|
311 |
|
312 // care required if suspend/kill here |
|
313 |
|
314 // there is contention so do it the hard way |
|
315 NKern::Lock(); |
|
316 aMutex->DoWaitL(); |
|
317 NKern::Unlock(); |
|
318 } |
|
319 |
|
320 |
|
321 /** Releases a previously acquired fast mutex. |
|
322 |
|
323 @param aMutex The fast mutex to release. |
|
324 |
|
325 @pre The calling thread holds the mutex. |
|
326 |
|
327 @see NFastMutex::Signal() |
|
328 @see NKern::FMWait() |
|
329 */ |
|
330 EXPORT_C void NKern::FMSignal(NFastMutex* aMutex) |
|
331 { |
|
332 NThreadBase* pC = NKern::CurrentThread(); |
|
333 __KTRACE_OPT(KNKERN,DEBUGPRINT("NFMS %M", aMutex)); |
|
334 #ifdef BTRACE_FAST_MUTEX |
|
335 BTraceContext4(BTrace::EFastMutex, BTrace::EFastMutexSignal, aMutex); |
|
336 #endif |
|
337 ((volatile TUint32&)pC->iHeldFastMutex) |= 1; // flag to indicate about to release mutex |
|
338 |
|
339 if (__e32_atomic_cas_rel_ptr(&aMutex->iHoldingThread, &pC, 0)) |
|
340 { |
|
341 // no-one else was waiting for the mutex and we have just released it |
|
342 |
|
343 // tricky if suspend/kill here |
|
344 // suspend/kill should check flag set above and aMutex->iHoldingThread |
|
345 // if bit 0 of iHeldFastMutex set and iHoldingThread==pC then set iHeldFastMutex=0 and proceed |
|
346 |
|
347 // If the reschedule IPI from an external suspend or kill occurs after this |
|
348 // point the initiating CPU must observe the write to iHeldFastMutex after |
|
349 // the cas operation. |
|
350 pC->iHeldFastMutex = 0; |
|
351 return; |
|
352 } |
|
353 |
|
354 // there was contention so do it the hard way |
|
355 NKern::Lock(); |
|
356 aMutex->DoSignalL(); |
|
357 NKern::Unlock(); |
|
358 } |
|
359 |
|
360 /** Acquires the System Lock. |
|
361 |
|
362 This will block until the mutex is available, and causes |
|
363 the thread to enter an implicit critical section until the mutex is released. |
|
364 |
|
365 @post System lock is held. |
|
366 |
|
367 @see NKern::UnlockSystem() |
|
368 @see NKern::FMWait() |
|
369 |
|
370 @pre No fast mutex can be held. |
|
371 @pre Call in a thread context. |
|
372 @pre Kernel must be unlocked |
|
373 @pre interrupts enabled |
|
374 |
|
375 */ |
|
376 EXPORT_C void NKern::LockSystem() |
|
377 { |
|
378 NKern::FMWait(&TheScheduler.iLock); |
|
379 } |
|
380 |
|
381 |
|
382 /** Releases the System Lock. |
|
383 |
|
384 @pre System lock must be held. |
|
385 |
|
386 @see NKern::LockSystem() |
|
387 @see NKern::FMSignal() |
|
388 */ |
|
389 EXPORT_C void NKern::UnlockSystem() |
|
390 { |
|
391 NKern::FMSignal(&TheScheduler.iLock); |
|
392 } |
|
393 |
|
394 |
|
395 /** Temporarily releases a fast mutex if there is contention. |
|
396 |
|
397 If there is another thread attempting to acquire the mutex, the calling |
|
398 thread releases the mutex and then acquires it again. |
|
399 |
|
400 This is more efficient than the equivalent code: |
|
401 |
|
402 @code |
|
403 NKern::FMSignal(); |
|
404 NKern::FMWait(); |
|
405 @endcode |
|
406 |
|
407 @return TRUE if the mutex was relinquished, FALSE if not. |
|
408 |
|
409 @pre The mutex must be held. |
|
410 |
|
411 @post The mutex is held. |
|
412 */ |
|
413 EXPORT_C TBool NKern::FMFlash(NFastMutex* aM) |
|
414 { |
|
415 NThreadBase* pC = NKern::CurrentThread(); |
|
416 __ASSERT_WITH_MESSAGE_DEBUG(aM->HeldByCurrentThread(),"The calling thread holds the mutex","NKern::FMFlash"); |
|
417 TBool w = (pC->iMutexPri >= pC->iBasePri); // a thread of greater or equal priority is waiting |
|
418 if (w) |
|
419 { |
|
420 NKern::Lock(); |
|
421 aM->Signal(); |
|
422 NKern::PreemptionPoint(); |
|
423 aM->Wait(); |
|
424 NKern::Unlock(); |
|
425 } |
|
426 #ifdef BTRACE_FAST_MUTEX |
|
427 else |
|
428 { |
|
429 BTraceContext4(BTrace::EFastMutex, BTrace::EFastMutexFlash, aM); |
|
430 } |
|
431 #endif |
|
432 return w; |
|
433 } |
|
434 |
|
435 |
|
436 /** Temporarily releases the System Lock if there is contention. |
|
437 |
|
438 If there |
|
439 is another thread attempting to acquire the System lock, the calling |
|
440 thread releases the mutex and then acquires it again. |
|
441 |
|
442 This is more efficient than the equivalent code: |
|
443 |
|
444 @code |
|
445 NKern::UnlockSystem(); |
|
446 NKern::LockSystem(); |
|
447 @endcode |
|
448 |
|
449 Note that this can only allow higher priority threads to use the System |
|
450 lock as lower priority cannot cause contention on a fast mutex. |
|
451 |
|
452 @return TRUE if the system lock was relinquished, FALSE if not. |
|
453 |
|
454 @pre System lock must be held. |
|
455 |
|
456 @post System lock is held. |
|
457 |
|
458 @see NKern::LockSystem() |
|
459 @see NKern::UnlockSystem() |
|
460 */ |
|
461 EXPORT_C TBool NKern::FlashSystem() |
|
462 { |
|
463 CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"NKern::FlashSystem"); |
|
464 return NKern::FMFlash(&TheScheduler.iLock); |
|
465 } |
|
466 #endif |
|
467 |
|
468 /****************************************************************************** |
|
469 * Fast semaphore |
|
470 ******************************************************************************/ |
|
471 |
|
472 /** Sets the owner of a fast semaphore. |
|
473 |
|
474 @param aThread The thread to own this semaphore. If aThread==0, then the |
|
475 owner is set to the current thread. |
|
476 |
|
477 @pre Kernel must be locked. |
|
478 @pre If changing ownership form one thread to another, the there must be no |
|
479 pending signals or waits. |
|
480 @pre Call either in a thread or an IDFC context. |
|
481 |
|
482 @post Kernel is locked. |
|
483 */ |
|
484 EXPORT_C void NFastSemaphore::SetOwner(NThreadBase* aThread) |
|
485 { |
|
486 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED|MASK_NOT_ISR,"NFastSemaphore::SetOwner"); |
|
487 if (!aThread) |
|
488 aThread = NCurrentThreadL(); |
|
489 if (iOwningThread && iOwningThread!=aThread) |
|
490 { |
|
491 __NK_ASSERT_ALWAYS(!iCount); // Can't change owner if iCount!=0 |
|
492 } |
|
493 iOwningThread = aThread; |
|
494 } |
|
495 |
|
496 |
|
497 #ifndef __FAST_SEM_MACHINE_CODED__ |
|
498 /** Waits on a fast semaphore. |
|
499 |
|
500 Decrements the signal count for the semaphore and |
|
501 removes the calling thread from the ready-list if the semaphore becomes |
|
502 unsignalled. Only the thread that owns a fast semaphore can wait on it. |
|
503 |
|
504 Note that this function does not block, it merely updates the NThread state, |
|
505 rescheduling will only occur when the kernel is unlocked. Generally threads |
|
506 would use NKern::FSWait() which manipulates the kernel lock for you. |
|
507 |
|
508 @pre The calling thread must own the semaphore. |
|
509 @pre No fast mutex can be held. |
|
510 @pre Kernel must be locked. |
|
511 |
|
512 @post Kernel is locked. |
|
513 |
|
514 @see NFastSemaphore::Signal() |
|
515 @see NKern::FSWait() |
|
516 @see NKern::Unlock() |
|
517 */ |
|
518 EXPORT_C void NFastSemaphore::Wait() |
|
519 { |
|
520 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED|MASK_NO_FAST_MUTEX,"NFastSemaphore::Wait"); |
|
521 NThreadBase* pC = NCurrentThreadL(); |
|
522 __ASSERT_WITH_MESSAGE_ALWAYS(pC==iOwningThread,"The calling thread must own the semaphore","NFastSemaphore::Wait"); |
|
523 pC->iWaitState.SetUpWait(NThreadBase::EWaitFastSemaphore, 0, this); |
|
524 if (Dec(pC)) // full barrier |
|
525 pC->iWaitState.CancelWait(); // don't have to wait |
|
526 else |
|
527 RescheduleNeeded(); // have to wait |
|
528 } |
|
529 |
|
530 |
|
531 /** Signals a fast semaphore. |
|
532 |
|
533 Increments the signal count of a fast semaphore by |
|
534 one and releases any waiting thread if the semphore becomes signalled. |
|
535 |
|
536 Note that a reschedule will not occur before this function returns, this will |
|
537 only take place when the kernel is unlocked. Generally threads |
|
538 would use NKern::FSSignal() which manipulates the kernel lock for you. |
|
539 |
|
540 @pre Kernel must be locked. |
|
541 @pre Call either in a thread or an IDFC context. |
|
542 |
|
543 @post Kernel is locked. |
|
544 |
|
545 @see NFastSemaphore::Wait() |
|
546 @see NKern::FSSignal() |
|
547 @see NKern::Unlock() |
|
548 */ |
|
549 EXPORT_C void NFastSemaphore::Signal() |
|
550 { |
|
551 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED|MASK_NOT_ISR,"NFastSemaphore::Signal"); |
|
552 NThreadBase* t = Inc(1); // release semantics |
|
553 if (t) |
|
554 { |
|
555 t->AcqSLock(); |
|
556 t->iWaitState.UnBlockT(NThreadBase::EWaitFastSemaphore, this, KErrNone); |
|
557 t->RelSLock(); |
|
558 } |
|
559 } |
|
560 |
|
561 |
|
562 /** Signals a fast semaphore multiple times. |
|
563 |
|
564 @pre Kernel must be locked. |
|
565 @pre Call either in a thread or an IDFC context. |
|
566 |
|
567 @post Kernel is locked. |
|
568 |
|
569 @internalComponent |
|
570 */ |
|
571 EXPORT_C void NFastSemaphore::SignalN(TInt aCount) |
|
572 { |
|
573 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED|MASK_NOT_ISR,"NFastSemaphore::SignalN"); |
|
574 __NK_ASSERT_DEBUG(aCount>=0); |
|
575 if (aCount > 0) |
|
576 { |
|
577 NThreadBase* t = Inc(aCount); |
|
578 if (t) |
|
579 { |
|
580 t->AcqSLock(); |
|
581 t->iWaitState.UnBlockT(NThreadBase::EWaitFastSemaphore, this, KErrNone); |
|
582 t->RelSLock(); |
|
583 } |
|
584 } |
|
585 } |
|
586 |
|
587 |
|
588 /** Cancels a wait on a fast semaphore. |
|
589 |
|
590 @pre Kernel must be locked. |
|
591 @pre Call either in a thread or an IDFC context. |
|
592 |
|
593 @post Kernel is locked. |
|
594 |
|
595 @internalComponent |
|
596 */ |
|
597 void NFastSemaphore::WaitCancel() |
|
598 { |
|
599 Inc(1); |
|
600 } |
|
601 |
|
602 |
|
603 /** Waits for a signal on the current thread's I/O semaphore. |
|
604 |
|
605 @pre No fast mutex can be held. |
|
606 @pre Call in a thread context. |
|
607 @pre Kernel must be unlocked |
|
608 @pre interrupts enabled |
|
609 */ |
|
610 EXPORT_C void NKern::WaitForAnyRequest() |
|
611 { |
|
612 CHECK_PRECONDITIONS(MASK_THREAD_STANDARD,"NKern::WaitForAnyRequest"); |
|
613 __KTRACE_OPT(KNKERN,DEBUGPRINT("WfAR")); |
|
614 NThreadBase* t = NKern::LockC(); |
|
615 NFastSemaphore* s = &t->iRequestSemaphore; |
|
616 t->iWaitState.SetUpWait(NThreadBase::EWaitFastSemaphore, 0, s); |
|
617 if (s->Dec(t)) // fully ordered semantics |
|
618 t->iWaitState.CancelWait(); // don't have to wait |
|
619 else |
|
620 RescheduleNeeded(); // have to wait |
|
621 NKern::Unlock(); |
|
622 } |
|
623 #endif |
|
624 |
|
625 |
|
626 /** Resets a fast semaphore. |
|
627 |
|
628 @pre Kernel must be locked. |
|
629 @pre Call either in a thread or an IDFC context. |
|
630 |
|
631 @post Kernel is locked. |
|
632 |
|
633 @internalComponent |
|
634 */ |
|
635 EXPORT_C void NFastSemaphore::Reset() |
|
636 { |
|
637 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED|MASK_NOT_ISR,"NFastSemaphore::Reset"); |
|
638 NThreadBase* t = DoReset(); |
|
639 if (t) |
|
640 { |
|
641 t->AcqSLock(); |
|
642 t->iWaitState.UnBlockT(NThreadBase::EWaitFastSemaphore, this, KErrNone); |
|
643 t->RelSLock(); |
|
644 } |
|
645 } |
|
646 |
|
647 |
|
648 /** Sets the owner of a fast semaphore. |
|
649 |
|
650 @param aSem The semaphore to change ownership off. |
|
651 @param aThread The thread to own this semaphore. If aThread==0, then the |
|
652 owner is set to the current thread. |
|
653 |
|
654 @pre If changing ownership form one thread to another, the there must be no |
|
655 pending signals or waits. |
|
656 */ |
|
657 EXPORT_C void NKern::FSSetOwner(NFastSemaphore* aSem,NThreadBase* aThread) |
|
658 { |
|
659 __KTRACE_OPT(KNKERN,DEBUGPRINT("NKern::FSSetOwner %m %T",aSem,aThread)); |
|
660 NKern::Lock(); |
|
661 aSem->SetOwner(aThread); |
|
662 NKern::Unlock(); |
|
663 } |
|
664 |
|
665 #ifndef __FAST_SEM_MACHINE_CODED__ |
|
666 /** Waits on a fast semaphore. |
|
667 |
|
668 Decrements the signal count for the semaphore |
|
669 and waits for a signal if the semaphore becomes unsignalled. Only the |
|
670 thread that owns a fast semaphore can wait on it. |
|
671 |
|
672 @param aSem The semaphore to wait on. |
|
673 |
|
674 @pre The calling thread must own the semaphore. |
|
675 @pre No fast mutex can be held. |
|
676 |
|
677 @see NFastSemaphore::Wait() |
|
678 */ |
|
679 EXPORT_C void NKern::FSWait(NFastSemaphore* aSem) |
|
680 { |
|
681 __KTRACE_OPT(KNKERN,DEBUGPRINT("NFSW %m",aSem)); |
|
682 NKern::Lock(); |
|
683 aSem->Wait(); |
|
684 NKern::Unlock(); |
|
685 } |
|
686 |
|
687 |
|
688 /** Signals a fast semaphore. |
|
689 |
|
690 Increments the signal count of a fast semaphore |
|
691 by one and releases any waiting thread if the semaphore becomes signalled. |
|
692 |
|
693 @param aSem The semaphore to signal. |
|
694 |
|
695 @see NKern::FSWait() |
|
696 |
|
697 @pre Interrupts must be enabled. |
|
698 @pre Do not call from an ISR |
|
699 */ |
|
700 EXPORT_C void NKern::FSSignal(NFastSemaphore* aSem) |
|
701 { |
|
702 CHECK_PRECONDITIONS(MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR,"NKern::FSSignal(NFastSemaphore*)"); |
|
703 __KTRACE_OPT(KNKERN,DEBUGPRINT("NFSS %m",aSem)); |
|
704 NKern::Lock(); |
|
705 aSem->Signal(); |
|
706 NKern::Unlock(); |
|
707 } |
|
708 |
|
709 |
|
710 /** Signals a fast semaphore multiple times. |
|
711 |
|
712 Increments the signal count of a |
|
713 fast semaphore by aCount and releases any waiting thread if the semphore |
|
714 becomes signalled. |
|
715 |
|
716 @param aSem The semaphore to signal. |
|
717 @param aCount The number of times to signal the semaphore. |
|
718 |
|
719 @see NKern::FSWait() |
|
720 |
|
721 @pre Interrupts must be enabled. |
|
722 @pre Do not call from an ISR |
|
723 */ |
|
724 EXPORT_C void NKern::FSSignalN(NFastSemaphore* aSem, TInt aCount) |
|
725 { |
|
726 CHECK_PRECONDITIONS(MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR,"NKern::FSSignalN(NFastSemaphore*, TInt)"); |
|
727 __KTRACE_OPT(KNKERN,DEBUGPRINT("NFSSN %m %d",aSem,aCount)); |
|
728 __NK_ASSERT_DEBUG(aCount>=0); |
|
729 if (aCount == 0) |
|
730 return; |
|
731 NKern::Lock(); |
|
732 aSem->SignalN(aCount); |
|
733 NKern::Unlock(); |
|
734 } |
|
735 |
|
736 |
|
737 /** Signals the request semaphore of a nanothread. |
|
738 |
|
739 This function is intended to be used by the EPOC layer and personality |
|
740 layers. Device drivers should use Kern::RequestComplete instead. |
|
741 |
|
742 @param aThread Nanothread to signal. Must be non NULL. |
|
743 |
|
744 @see Kern::RequestComplete() |
|
745 |
|
746 @pre Interrupts must be enabled. |
|
747 @pre Do not call from an ISR |
|
748 */ |
|
749 EXPORT_C void NKern::ThreadRequestSignal(NThread* aThread) |
|
750 { |
|
751 NKern::FSSignal(&aThread->iRequestSemaphore); |
|
752 } |
|
753 |
|
754 |
|
755 /** Signals the request semaphore of a nanothread several times. |
|
756 |
|
757 This function is intended to be used by the EPOC layer and personality |
|
758 layers. Device drivers should use Kern::RequestComplete instead. |
|
759 |
|
760 @param aThread Nanothread to signal. If NULL, the current thread is signaled. |
|
761 @param aCount Number of times the request semaphore must be signaled. |
|
762 |
|
763 @pre aCount >= 0 |
|
764 |
|
765 @see Kern::RequestComplete() |
|
766 */ |
|
767 EXPORT_C void NKern::ThreadRequestSignal(NThread* aThread, TInt aCount) |
|
768 { |
|
769 __ASSERT_WITH_MESSAGE_DEBUG(aCount >= 0,"aCount >= 0","NKern::ThreadRequestSignal"); |
|
770 if (!aThread) |
|
771 aThread = (NThread*)NKern::CurrentThread(); |
|
772 NKern::FSSignalN(&aThread->iRequestSemaphore, aCount); |
|
773 } |
|
774 #endif |
|
775 |
|
776 |
|
777 |
|
778 /** Atomically signals a fast semaphore and releases a fast mutex. |
|
779 |
|
780 Rescheduling only occurs after both synchronisation operations are complete. |
|
781 |
|
782 @param aSem The semaphore to signal. |
|
783 @param aMutex The mutex to release. If NULL, the System Lock is released |
|
784 |
|
785 @pre The calling thread must hold the mutex. |
|
786 |
|
787 @see NKern::FMSignal() |
|
788 */ |
|
789 EXPORT_C void NKern::FSSignal(NFastSemaphore* aSem, NFastMutex* aMutex) |
|
790 { |
|
791 if (!aMutex) |
|
792 aMutex=&TheScheduler.iLock; |
|
793 __KTRACE_OPT(KNKERN,DEBUGPRINT("NFSS %m +FM %M",aSem,aMutex)); |
|
794 NKern::Lock(); |
|
795 aSem->Signal(); |
|
796 aMutex->Signal(); |
|
797 NKern::Unlock(); |
|
798 } |
|
799 |
|
800 |
|
801 /** Atomically signals a fast semaphore multiple times and releases a fast mutex. |
|
802 |
|
803 Rescheduling only occurs after both synchronisation operations are complete. |
|
804 |
|
805 @param aSem The semaphore to signal. |
|
806 @param aCount The number of times to signal the semaphore. |
|
807 @param aMutex The mutex to release. If NULL, the System Lock is released. |
|
808 |
|
809 @pre The calling thread must hold the mutex. |
|
810 |
|
811 @see NKern::FMSignal() |
|
812 */ |
|
813 EXPORT_C void NKern::FSSignalN(NFastSemaphore* aSem, TInt aCount, NFastMutex* aMutex) |
|
814 { |
|
815 if (!aMutex) |
|
816 aMutex=&TheScheduler.iLock; |
|
817 __KTRACE_OPT(KNKERN,DEBUGPRINT("NFSSN %m %d + FM %M",aSem,aCount,aMutex)); |
|
818 NKern::Lock(); |
|
819 aSem->SignalN(aCount); |
|
820 aMutex->Signal(); |
|
821 NKern::Unlock(); |
|
822 } |
|
823 |
|
824 |
|
825 /****************************************************************************** |
|
826 * Thread |
|
827 ******************************************************************************/ |
|
828 |
|
829 void NThreadBase::DoCsFunctionT() |
|
830 { |
|
831 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T nDoCsFuncT %d",this,iCsFunction)); |
|
832 TInt f=iCsFunction; |
|
833 if (f==0) |
|
834 return; |
|
835 if (f>0) |
|
836 { |
|
837 // suspend this thread f times |
|
838 iCsFunction = 0; |
|
839 iSuspendCount += f; |
|
840 iSuspended = 1; |
|
841 RescheduleNeeded(); |
|
842 return; |
|
843 } |
|
844 if (f==ECSExitPending || f==ECSDivertPending) |
|
845 { |
|
846 // We need to exit now |
|
847 RelSLock(); |
|
848 Exit(); // this won't return |
|
849 } |
|
850 // UnknownState(ELeaveCS,f); // call into RTOS personality |
|
851 __NK_ASSERT_ALWAYS(0); |
|
852 } |
|
853 |
|
854 TBool NThreadBase::DoSuspendOrKillT(TInt aCount, TSubScheduler* aS) |
|
855 { |
|
856 TBool result = TRUE; |
|
857 if (aCount>=0) |
|
858 { |
|
859 if (iSuspended) |
|
860 result = FALSE; |
|
861 iSuspendCount+=aCount; |
|
862 iSuspended = 1; |
|
863 if (!iCurrent) |
|
864 { |
|
865 if (aS) |
|
866 UnReadyT(); |
|
867 else if (iReady) |
|
868 { |
|
869 NThreadGroup* g = (NThreadGroup*)iParent; |
|
870 g->iNThreadList.Remove(this); |
|
871 } |
|
872 } |
|
873 if (this == NCurrentThreadL()) |
|
874 RescheduleNeeded(); |
|
875 if (aS) |
|
876 aS->iReadyListLock.UnlockOnly(); |
|
877 } |
|
878 else |
|
879 { |
|
880 iCsFunction = ECSDivertPending; |
|
881 iSuspendCount = 0; |
|
882 iSuspended = 0; |
|
883 if (aS) |
|
884 aS->iReadyListLock.UnlockOnly(); |
|
885 DoReleaseT(KErrDied,0); |
|
886 if (!iReady && !iPauseCount) |
|
887 ReadyT(0); |
|
888 } |
|
889 return result; |
|
890 } |
|
891 |
|
892 // If aCount>=0 suspend the thread aCount times |
|
893 // If aCount<0 kill the thread |
|
894 TBool NThreadBase::SuspendOrKill(TInt aCount) |
|
895 { |
|
896 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T nSuspendOrKill %d", this, aCount)); |
|
897 if (aCount==0) |
|
898 return FALSE; |
|
899 TBool result = FALSE; |
|
900 TBool concurrent = FALSE; |
|
901 TSubScheduler* ss = 0; |
|
902 AcqSLock(); |
|
903 NFastMutex* wfm = 0; |
|
904 if (iLinkedObj && iLinkedObjType==EWaitFastMutex) |
|
905 wfm = (NFastMutex*)iLinkedObj; |
|
906 if (iCsFunction<0) |
|
907 goto done2; // if already exiting ignore suspend or kill |
|
908 if (wfm) |
|
909 { |
|
910 // if thread is waiting on a fast mutex, need to acquire mutex lock |
|
911 ++iPauseCount; |
|
912 RelSLock(); |
|
913 wfm->iMutexLock.LockOnly(); |
|
914 AcqSLock(); |
|
915 UnPauseT(); |
|
916 } |
|
917 if (iReady && iParent->iReady) |
|
918 { |
|
919 ss = TheSubSchedulers + (iParent->iReady & EReadyCpuMask); |
|
920 ss->iReadyListLock.LockOnly(); |
|
921 } |
|
922 concurrent = (iCurrent && this!=NCurrentThreadL()); |
|
923 if (iWaitState.ThreadIsDead()) // already dead so suspension/kill is a no-op |
|
924 goto done; |
|
925 if (concurrent) |
|
926 { |
|
927 // thread is actually running on another CPU |
|
928 // interrupt that CPU and wait for it to enter interrupt mode |
|
929 // this allows a snapshot of the thread state to be observed |
|
930 // in this state, the thread cannot enter or leave a critical section |
|
931 send_resched_ipi_and_wait(iLastCpu); |
|
932 } |
|
933 if (iCsCount) |
|
934 { |
|
935 suspend_or_kill_in_cs: |
|
936 __KTRACE_OPT(KNKERN,DEBUGPRINT("n Suspend %T (CSF %d) %d",this,iCsFunction,aCount)); |
|
937 if (aCount>0) // -ve means thread is about to exit |
|
938 iCsFunction+=aCount; // so thread will suspend itself when it leaves the critical section |
|
939 else |
|
940 iCsFunction = ECSExitPending; |
|
941 goto done; |
|
942 } |
|
943 // iCsCount==0 and it can't become nonzero until we release the thread spin lock |
|
944 // (since threads may not set iCsCount to a nonzero value with the kernel lock held) |
|
945 // Make sure the thread isn't actually about to exit by itself |
|
946 if (iCsFunction<0) |
|
947 goto done; // if already exiting ignore suspend or kill |
|
948 if (wfm) |
|
949 { |
|
950 wfm->iWaitQ.Remove(&iWaitLink); // take thread off the wait/contend queue |
|
951 iWaitLink.iNext = 0; |
|
952 iLinkedObj = 0; |
|
953 iLinkedObjType = EWaitNone; |
|
954 result = DoSuspendOrKillT(aCount, ss); |
|
955 if (aCount>0) |
|
956 DoReleaseT(KErrGeneral, 0); // thread isn't blocked any more, just suspended |
|
957 RelSLock(); |
|
958 |
|
959 // May need to adjust holding thread's inherited priority. |
|
960 // May need to wake up next thread to take this one's place. |
|
961 NThreadBase* pH = (NThreadBase*)(TLinAddr(wfm->iHoldingThread) &~ 1); |
|
962 if (pH) |
|
963 pH->SetMutexPriority(wfm); |
|
964 else if (!pH && !wfm->iWaitQ.IsEmpty()) |
|
965 { |
|
966 NThreadBase* pT = _LOFF(wfm->iWaitQ.First(), NThreadBase, iWaitLink); |
|
967 pT->AcqSLock(); |
|
968 pT->iWaitState.UnBlockT(NThreadBase::EWaitFastMutex, wfm, KErrNone); |
|
969 pT->RelSLock(); |
|
970 } |
|
971 wfm->iMutexLock.UnlockOnly(); |
|
972 return result; |
|
973 } |
|
974 if (CheckFastMutexDefer()) |
|
975 goto suspend_or_kill_in_cs; |
|
976 |
|
977 // thread not in critical section, so suspend it |
|
978 result = DoSuspendOrKillT(aCount, ss); |
|
979 goto done2; |
|
980 |
|
981 done: |
|
982 if (wfm) |
|
983 wfm->iMutexLock.UnlockOnly(); |
|
984 if (ss) |
|
985 ss->iReadyListLock.UnlockOnly(); |
|
986 done2: |
|
987 RelSLock(); |
|
988 |
|
989 return result; |
|
990 } |
|
991 |
|
992 |
|
993 /** Suspends a nanothread the specified number of times. |
|
994 |
|
995 For use by RTOS personality layers. |
|
996 Do not use this function directly on a Symbian OS thread. |
|
997 Since the kernel is locked on entry, any reschedule will be deferred until |
|
998 it is unlocked. |
|
999 The suspension will be deferred if the target thread is currently in a |
|
1000 critical section; in this case the suspension will take effect when it exits |
|
1001 the critical section. |
|
1002 The thread's unknown state handler will be invoked with function ESuspend and |
|
1003 parameter aCount if the current NState is not recognised and it is not in a |
|
1004 critical section. |
|
1005 |
|
1006 @param aCount = the number of times to suspend. |
|
1007 @return TRUE, if the suspension has taken immediate effect; |
|
1008 FALSE, if the thread is in a critical section or is already suspended. |
|
1009 |
|
1010 @pre Kernel must be locked. |
|
1011 @pre Call in a thread context. |
|
1012 |
|
1013 @post Kernel is locked. |
|
1014 */ |
|
1015 EXPORT_C TBool NThreadBase::Suspend(TInt aCount) |
|
1016 { |
|
1017 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED|MASK_NOT_ISR|MASK_NOT_IDFC,"NThreadBase::Suspend"); |
|
1018 __NK_ASSERT_ALWAYS(aCount>=0); |
|
1019 |
|
1020 // If thread is executing a critical section, we must defer the suspend |
|
1021 |
|
1022 return SuspendOrKill(aCount); |
|
1023 } |
|
1024 |
|
1025 |
|
1026 TBool NThreadBase::Resume(TBool aForce) |
|
1027 { |
|
1028 TBool result = FALSE; |
|
1029 AcqSLock(); |
|
1030 if (iWaitState.ThreadIsDead() || iCsFunction<0) // already dead or dying so resume is a no-op |
|
1031 goto done; |
|
1032 |
|
1033 if (iCsFunction>0) |
|
1034 { |
|
1035 if (aForce) |
|
1036 iCsFunction = 0; |
|
1037 else |
|
1038 --iCsFunction; |
|
1039 } |
|
1040 else if (iSuspendCount) |
|
1041 { |
|
1042 if (aForce) |
|
1043 iSuspendCount = 0; |
|
1044 else |
|
1045 --iSuspendCount; |
|
1046 if (!iSuspendCount) |
|
1047 { |
|
1048 result = TRUE; |
|
1049 iSuspended = 0; |
|
1050 if (!iPauseCount && !iReady && !iWaitState.iWtC.iWtStFlags) |
|
1051 ReadyT(0); |
|
1052 } |
|
1053 } |
|
1054 |
|
1055 done: |
|
1056 RelSLock(); |
|
1057 return result; |
|
1058 } |
|
1059 |
|
1060 /** Resumes a nanothread, cancelling one suspension. |
|
1061 |
|
1062 For use by RTOS personality layers. |
|
1063 Do not use this function directly on a Symbian OS thread. |
|
1064 Since the kernel is locked on entry, any reschedule will be deferred until |
|
1065 it is unlocked. |
|
1066 If the target thread is currently in a critical section this will simply |
|
1067 cancel one deferred suspension. |
|
1068 The thread's unknown state handler will be invoked with function EResume if |
|
1069 the current NState is not recognised and it is not in a critical section. |
|
1070 |
|
1071 @return TRUE, if the resumption has taken immediate effect; |
|
1072 FALSE, if the thread is in a critical section or is still suspended. |
|
1073 |
|
1074 @pre Kernel must be locked. |
|
1075 @pre Call either in a thread or an IDFC context. |
|
1076 |
|
1077 @post Kernel must be locked. |
|
1078 */ |
|
1079 EXPORT_C TBool NThreadBase::Resume() |
|
1080 { |
|
1081 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED|MASK_NOT_ISR|MASK_NOT_IDFC,"NThreadBase::Resume"); |
|
1082 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T nRsm",this)); |
|
1083 |
|
1084 return Resume(FALSE); |
|
1085 } |
|
1086 |
|
1087 |
|
1088 /** Resumes a nanothread, cancelling all outstanding suspensions. |
|
1089 |
|
1090 For use by RTOS personality layers. |
|
1091 Do not use this function directly on a Symbian OS thread. |
|
1092 Since the kernel is locked on entry, any reschedule will be deferred until |
|
1093 it is unlocked. |
|
1094 If the target thread is currently in a critical section this will simply |
|
1095 cancel all deferred suspensions. |
|
1096 The thread's unknown state handler will be invoked with function EForceResume |
|
1097 if the current NState is not recognised and it is not in a critical section. |
|
1098 |
|
1099 @return TRUE, if the resumption has taken immediate effect; |
|
1100 FALSE, if the thread is in a critical section. |
|
1101 |
|
1102 @pre Kernel must be locked. |
|
1103 @pre Call either in a thread or an IDFC context. |
|
1104 |
|
1105 @post Kernel is locked. |
|
1106 */ |
|
1107 EXPORT_C TBool NThreadBase::ForceResume() |
|
1108 { |
|
1109 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED|MASK_NOT_ISR,"NThreadBase::ForceResume"); |
|
1110 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T nFRsm",this)); |
|
1111 |
|
1112 return Resume(TRUE); |
|
1113 } |
|
1114 |
|
1115 |
|
1116 void NThreadBase::DoReleaseT(TInt aReturnCode, TUint aMode) |
|
1117 { |
|
1118 TAny* wobj = 0; |
|
1119 TUint32 b = iWaitState.ReleaseT(wobj, aReturnCode); // cancels timer if necessary |
|
1120 |
|
1121 // if wait pending or no wait, done |
|
1122 // if wait in effect and nothing else stopping it, make thread ready |
|
1123 // cancel any outstanding wait on fast semaphore if abnormal release |
|
1124 // FIXME: Potential problems with abnormal release of generic wait objects |
|
1125 if (aReturnCode<0 && ((b>>8)&0xff)==NThreadBase::EWaitFastSemaphore && wobj) |
|
1126 ((NFastSemaphore*)wobj)->WaitCancel(); |
|
1127 |
|
1128 if ((b & NThreadWaitState::EWtStWaitActive) && !iPauseCount && !iSuspended) |
|
1129 ReadyT(aMode); |
|
1130 } |
|
1131 |
|
1132 /** Releases a waiting nanokernel thread. |
|
1133 |
|
1134 For use by RTOS personality layers. |
|
1135 Do not use this function directly on a Symbian OS thread. |
|
1136 This function should make the thread ready (provided it is not explicitly |
|
1137 suspended) and cancel any wait timeout. It should also remove it from any |
|
1138 wait queues. |
|
1139 If aReturnCode is nonnegative it indicates normal completion of the wait. |
|
1140 If aReturnCode is negative it indicates early/abnormal completion of the |
|
1141 wait and so any wait object should be reverted as if the wait had never |
|
1142 occurred (eg semaphore count should be incremented as this thread has not |
|
1143 actually acquired the semaphore). |
|
1144 The thread's unknown state handler will be invoked with function ERelease |
|
1145 and parameter aReturnCode if the current NState is not recognised. |
|
1146 |
|
1147 @param aReturnCode The reason code for release. |
|
1148 |
|
1149 @pre Kernel must be locked. |
|
1150 @pre Call either in a thread or an IDFC context. |
|
1151 |
|
1152 @post Kernel is locked. |
|
1153 */ |
|
1154 EXPORT_C void NThreadBase::Release(TInt aReturnCode, TUint aMode) |
|
1155 { |
|
1156 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED|MASK_NOT_ISR,"NThreadBase::Release"); |
|
1157 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T nRel %d",this,aReturnCode)); |
|
1158 AcqSLock(); |
|
1159 DoReleaseT(aReturnCode, aMode); |
|
1160 RelSLock(); |
|
1161 } |
|
1162 |
|
1163 |
|
1164 /** Signals a nanokernel thread's request semaphore. |
|
1165 |
|
1166 This can also be used on Symbian OS threads. |
|
1167 |
|
1168 @pre Kernel must be locked. |
|
1169 @pre Call either in a thread or an IDFC context. |
|
1170 |
|
1171 @post Kernel is locked. |
|
1172 */ |
|
1173 EXPORT_C void NThreadBase::RequestSignal() |
|
1174 { |
|
1175 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED|MASK_NOT_ISR,"NThreadBase::RequestSignal"); |
|
1176 iRequestSemaphore.Signal(); |
|
1177 } |
|
1178 |
|
1179 |
|
1180 void exit_sync_fn(TAny* aDfc) |
|
1181 { |
|
1182 ((TDfc*)aDfc)->Enque(); |
|
1183 } |
|
1184 |
|
1185 void NThreadBase::Exit() |
|
1186 { |
|
1187 // The current thread is exiting |
|
1188 // Enter with kernel locked, don't return |
|
1189 __NK_ASSERT_DEBUG(this==NCurrentThreadL()); |
|
1190 |
|
1191 OnExit(); |
|
1192 |
|
1193 TInt threadCS = iCsCount; |
|
1194 TInt kernCS = SubScheduler().iKernLockCount; |
|
1195 iCsCount = 1; |
|
1196 AcqSLock(); |
|
1197 iCsFunction = ECSExitInProgress; |
|
1198 NFastMutex* m = NKern::HeldFastMutex(); |
|
1199 iHeldFastMutex = 0; |
|
1200 RelSLock(); |
|
1201 NKern::Unlock(); |
|
1202 __KTRACE_OPT(KSCHED,DEBUGPRINT("Exit %T %u",this,NTickCount())); |
|
1203 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T nExit, CSC %d HeldFM %M KernCS %d",this,threadCS,iHeldFastMutex,kernCS)); |
|
1204 if (kernCS!=1) |
|
1205 FAULT(); |
|
1206 if (m) |
|
1207 FAULT(); |
|
1208 if (threadCS) |
|
1209 FAULT(); |
|
1210 TDfc* pD = NULL; |
|
1211 NThreadExitHandler xh = iHandlers->iExitHandler; |
|
1212 if (xh) |
|
1213 pD = (*xh)((NThread*)this); // call exit handler |
|
1214 |
|
1215 // detach any tied events |
|
1216 DetachTiedEvents(); |
|
1217 |
|
1218 NKern::LeaveGroup(); // detach from group if exit handler didn't do it |
|
1219 |
|
1220 NKern::Lock(); |
|
1221 #ifdef BTRACE_THREAD_IDENTIFICATION |
|
1222 BTrace4(BTrace::EThreadIdentification,BTrace::ENanoThreadDestroy,this); |
|
1223 #endif |
|
1224 __NK_ASSERT_ALWAYS(iCsFunction == ECSExitInProgress); |
|
1225 iWaitState.SetDead(pD); // doesn't return |
|
1226 FAULT(); |
|
1227 } |
|
1228 |
|
1229 /** Kills a nanokernel thread. |
|
1230 |
|
1231 For use by RTOS personality layers. |
|
1232 Do not use this function directly on a Symbian OS thread. |
|
1233 |
|
1234 When acting on the calling thread, causes the calling thread to exit. |
|
1235 |
|
1236 When acting on another thread, causes that thread to exit unless it is |
|
1237 currently in a critical section. In this case the thread is marked as |
|
1238 "exit pending" and will exit as soon as it leaves the critical section. |
|
1239 |
|
1240 In either case the exiting thread first invokes its exit handler (if it |
|
1241 exists). The handler runs with preemption enabled and with the thread in a |
|
1242 critical section so that it may not be suspended or killed again. The |
|
1243 handler may return a pointer to a TDfc, which will be enqueued just before |
|
1244 the thread finally terminates (after the kernel has been relocked). This DFC |
|
1245 will therefore execute once the NThread has been safely removed from the |
|
1246 scheduler and is intended to be used to cleanup the NThread object and any |
|
1247 associated personality layer resources. |
|
1248 |
|
1249 @pre Kernel must be locked. |
|
1250 @pre Call in a thread context. |
|
1251 @pre If acting on calling thread, calling thread must not be in a |
|
1252 critical section; if it is the kernel will fault. Also, the kernel |
|
1253 must be locked exactly once (iKernCSLocked = 1). |
|
1254 |
|
1255 @post Kernel is locked, if not acting on calling thread. |
|
1256 @post Does not return if it acts on the calling thread. |
|
1257 */ |
|
1258 EXPORT_C void NThreadBase::Kill() |
|
1259 { |
|
1260 // Kill a thread |
|
1261 // Enter with kernel locked |
|
1262 // Exit with kernel locked if not current thread, otherwise does not return |
|
1263 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED_ONCE|MASK_NOT_IDFC|MASK_NOT_ISR,"NThreadBase::Kill"); |
|
1264 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T nKill",this)); |
|
1265 OnKill(); // platform-specific hook |
|
1266 NThreadBase* pC = NCurrentThreadL(); |
|
1267 if (this==pC) |
|
1268 { |
|
1269 if (iCsFunction==ECSExitInProgress) |
|
1270 FAULT(); |
|
1271 Exit(); // this will not return |
|
1272 } |
|
1273 SuspendOrKill(-1); |
|
1274 } |
|
1275 |
|
1276 |
|
1277 /** Change the CPU affinity of a thread |
|
1278 |
|
1279 @pre Kernel must be locked. |
|
1280 @pre Call in a thread context. |
|
1281 |
|
1282 @param The number of the CPU to which this thread should be locked, or |
|
1283 KCpuAny if it should be able to run on any CPU. |
|
1284 @return The previous affinity mask. |
|
1285 */ |
|
1286 TUint32 NThreadBase::SetCpuAffinity(TUint32 aAffinity) |
|
1287 { |
|
1288 // check aAffinity is valid |
|
1289 AcqSLock(); |
|
1290 TUint32 old_aff = iParent->iCpuAffinity; |
|
1291 TBool migrate = FALSE; |
|
1292 TBool make_ready = FALSE; |
|
1293 TSubScheduler* ss0 = &SubScheduler(); |
|
1294 TSubScheduler* ss = 0; |
|
1295 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T nSetCpu %08x->%08x, F:%d R:%02x PR:%02x",this,iParent->iCpuAffinity,aAffinity,iParent->iFreezeCpu,iReady,iParent->iReady)); |
|
1296 if (i_NThread_Initial) |
|
1297 goto done; // can't change affinity of initial thread |
|
1298 iParent->iCpuAffinity = aAffinity; // set new affinity, might not take effect yet |
|
1299 if (!iParent->iReady) |
|
1300 goto done; // thread/group not currently on a ready list so can just change affinity |
|
1301 migrate = !CheckCpuAgainstAffinity(iParent->iReady & EReadyCpuMask, aAffinity); // TRUE if thread's current CPU is incompatible with the new affinity |
|
1302 if (!migrate) |
|
1303 goto done; // don't need to move thread, so just change affinity |
|
1304 ss = TheSubSchedulers + (iParent->iReady & EReadyCpuMask); |
|
1305 ss->iReadyListLock.LockOnly(); |
|
1306 if (iParent->iCurrent) |
|
1307 { |
|
1308 iParent->iCpuChange = TRUE; // mark CPU change pending |
|
1309 if (ss == ss0) |
|
1310 RescheduleNeeded(); |
|
1311 else |
|
1312 // kick other CPU now so migration happens before acquisition of fast mutex |
|
1313 send_resched_ipi_and_wait(iParent->iReady & EReadyCpuMask); |
|
1314 } |
|
1315 else |
|
1316 { |
|
1317 // Note: Need to know here if any thread in group would return TRUE from CheckFastMutexDefer() |
|
1318 // This is handled by the scheduler - when a thread belonging to a group is context switched |
|
1319 // out while holding a fast mutex its iFastMutexDefer is set to 1 and the group's iFreezeCpu |
|
1320 // is incremented. |
|
1321 if (iParent->iFreezeCpu || (iParent==this && CheckFastMutexDefer())) |
|
1322 iParent->iCpuChange = TRUE; // CPU frozen or fast mutex held so just mark deferred CPU migration |
|
1323 else |
|
1324 { |
|
1325 ss->Remove(iParent); |
|
1326 iParent->iReady = 0; |
|
1327 make_ready = TRUE; |
|
1328 } |
|
1329 } |
|
1330 ss->iReadyListLock.UnlockOnly(); |
|
1331 if (make_ready) |
|
1332 iParent->ReadyT(0); |
|
1333 done: |
|
1334 RelSLock(); |
|
1335 return old_aff; |
|
1336 } |
|
1337 |
|
1338 |
|
1339 /****************************************************************************** |
|
1340 * Thread wait state |
|
1341 ******************************************************************************/ |
|
1342 #ifndef __NTHREAD_WAITSTATE_MACHINE_CODED__ |
|
1343 void NThreadWaitState::SetUpWait(TUint aType, TUint aFlags, TAny* aWaitObj) |
|
1344 { |
|
1345 SetUpWait(aType, aFlags, aWaitObj, 0); |
|
1346 } |
|
1347 |
|
1348 void NThreadWaitState::SetUpWait(TUint aType, TUint aFlags, TAny* aWaitObj, TUint32 aTimeout) |
|
1349 { |
|
1350 aFlags &= EWtStObstructed; |
|
1351 aFlags |= EWtStWaitPending; |
|
1352 aType &= 0xff; |
|
1353 TUint64 ws64 = (TUint32)aWaitObj; |
|
1354 ws64 <<= 32; |
|
1355 ws64 |= ((aType<<8)|aFlags); |
|
1356 TUint64 oldws64 = __e32_atomic_swp_rlx64(&iWtSt64, ws64); |
|
1357 if (I64LOW(oldws64)!=0) |
|
1358 __crash(); // ??we were already waiting for something else?? |
|
1359 iTimer.iTriggerTime = aTimeout; |
|
1360 } |
|
1361 |
|
1362 void NThreadWaitState::CancelWait() |
|
1363 { |
|
1364 TUint64 oldws64 = __e32_atomic_swp_rlx64(&iWtSt64, 0); |
|
1365 if (oldws64 & (EWtStDead|EWtStWaitActive)) |
|
1366 __crash(); |
|
1367 } |
|
1368 |
|
1369 TInt NThreadWaitState::DoWait() |
|
1370 { |
|
1371 TUint64 oldws64 = iWtSt64; |
|
1372 TUint64 ws64; |
|
1373 TUint32 timeout = iTimer.iTriggerTime; |
|
1374 TUint32 set = timeout ? (EWtStWaitActive|EWtStTimeout) : EWtStWaitActive; |
|
1375 do { |
|
1376 TUint32 ws32 = I64LOW(oldws64); |
|
1377 if (ws32 & EWtStDead) |
|
1378 return KErrDied; |
|
1379 if (!(ws32 & EWtStWaitPending)) |
|
1380 return KErrGeneral; |
|
1381 ws64 = oldws64; |
|
1382 ws64 &= ~TUint64(EWtStWaitPending); |
|
1383 ws64 |= TUint64(set); |
|
1384 } while(!__e32_atomic_cas_rlx64(&iWtSt64, &oldws64, ws64)); |
|
1385 if (timeout) |
|
1386 { |
|
1387 if (iTimer.OneShot(timeout, TRUE)!=KErrNone) |
|
1388 __crash(); |
|
1389 ++iTimer.iNTimerSpare1; |
|
1390 } |
|
1391 return TUint32(oldws64)>>8; |
|
1392 } |
|
1393 |
|
1394 TInt NThreadWaitState::UnBlockT(TUint aType, TAny* aWaitObj, TInt aReturnValue) |
|
1395 { |
|
1396 TUint64 exp = TUint32(aWaitObj); |
|
1397 exp <<= 32; |
|
1398 exp |= (aType<<8); |
|
1399 TUint64 oldws64 = iWtSt64; |
|
1400 TUint64 ws64; |
|
1401 do { |
|
1402 if ((oldws64 ^ exp) < TUint64(EWtStDead)) |
|
1403 ws64 = TUint64(TUint32(aReturnValue))<<32; |
|
1404 else |
|
1405 ws64 = oldws64; |
|
1406 } while(!__e32_atomic_cas_rel64(&iWtSt64, &oldws64, ws64)); |
|
1407 if ((oldws64 ^ exp) >= TUint64(EWtStDead)) |
|
1408 return KErrGeneral; // not unblocked - no matching wait |
|
1409 if (oldws64 & EWtStTimeout) |
|
1410 CancelTimerT(); |
|
1411 if (oldws64 & EWtStWaitActive) |
|
1412 { |
|
1413 NThreadBase* t = Thread(); |
|
1414 if (!t->iPauseCount && !t->iSuspended) |
|
1415 t->ReadyT(0); |
|
1416 } |
|
1417 return KErrNone; |
|
1418 } |
|
1419 |
|
1420 TUint32 NThreadWaitState::ReleaseT(TAny*& aWaitObj, TInt aReturnValue) |
|
1421 { |
|
1422 TUint64 leave = EWtStDead; |
|
1423 TUint64 set = TUint64(TUint32(aReturnValue))<<32; |
|
1424 TUint64 ws64 = __e32_atomic_axo_ord64(&iWtSt64, leave, set); |
|
1425 aWaitObj = (TAny*)I64HIGH(ws64); |
|
1426 TUint32 ws32 = I64LOW(ws64); |
|
1427 if (ws32 & EWtStTimeout) |
|
1428 CancelTimerT(); |
|
1429 return ws32; |
|
1430 } |
|
1431 #endif |
|
1432 |
|
1433 void NThreadWaitState::SetDead(TDfc* aKillDfc) |
|
1434 { |
|
1435 TDfc syncDfc(&exit_sync_fn, aKillDfc, TheTimerQ.iDfc.iDfcQ, 0); |
|
1436 NThreadBase* t = Thread(); |
|
1437 t->AcqSLock(); |
|
1438 iWtC.iWtStFlags = NThreadWaitState::EWtStDead; |
|
1439 iWtC.iWtObjType = NThreadBase::EWaitNone; |
|
1440 CancelTimerT(); |
|
1441 if (aKillDfc && iTimer.iNTimerSpare1) |
|
1442 { |
|
1443 // There is an outstanding timer expiry handler still running |
|
1444 // so we must synchronise with DfcThread1. |
|
1445 // Add a priority 0 DFC to DfcThread1 so this thread's exit DFC can |
|
1446 // only run after the timer expiry handler has completed. |
|
1447 aKillDfc = &syncDfc; |
|
1448 } |
|
1449 iWtC.iKillDfc = aKillDfc; |
|
1450 RescheduleNeeded(); |
|
1451 t->RelSLock(); |
|
1452 NKern::Unlock(); // this won't return |
|
1453 } |
|
1454 |
|
1455 void NThreadWaitState::CancelTimerT() |
|
1456 { |
|
1457 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T nCancelTimerT ",Thread())); |
|
1458 if (iTimer.Cancel()) |
|
1459 --iTimer.iNTimerSpare1; |
|
1460 else |
|
1461 { |
|
1462 // Potential race condition - timer must have completed but expiry |
|
1463 // handler has not yet run. Signal to the handler that it should do |
|
1464 // nothing by flipping the bottom bit of iTimer.iPtr |
|
1465 // This condition cannot possibly recur until the expiry handler has |
|
1466 // run since all expiry handlers run in DfcThread1. |
|
1467 volatile TLinAddr& x = *(volatile TLinAddr*)&iTimer.iPtr; |
|
1468 x ^= 1; |
|
1469 } |
|
1470 } |
|
1471 |
|
1472 // Timeout handler, called in DfcThread1 |
|
1473 // NOTE: aPtr is sampled with the timer queue locked, so if Cancel() on the timer fails |
|
1474 // and iTimer.iPtr is then changed, aPtr here will differ from iTimer.iPtr. |
|
1475 // This fact is used here to detect expiry of cancelled timers. |
|
1476 void NThreadWaitState::TimerExpired(TAny* aPtr) |
|
1477 { |
|
1478 TLinAddr cookie = (TLinAddr)aPtr; |
|
1479 NThreadWaitState* pW = (NThreadWaitState*)(cookie &~ 3); |
|
1480 NThread* pT = (NThread*)pW->Thread(); |
|
1481 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T nTmExp",pT)); |
|
1482 NThreadTimeoutHandler th = pT->iHandlers->iTimeoutHandler; |
|
1483 pT->LAcqSLock(); |
|
1484 TUint flags = pW->iWtSt32[0]; |
|
1485 if (!(flags & EWtStWaitActive) || ((flags>>8)&0xff)!=NThreadBase::EWaitBlocked) |
|
1486 th = 0; |
|
1487 if (th) |
|
1488 { |
|
1489 // Use higher level timeout handler |
|
1490 pT->RelSLockU(); |
|
1491 (*th)(pT, NThreadBase::ETimeoutPreamble); |
|
1492 TInt param = NThreadBase::ETimeoutPostamble; |
|
1493 pT->LAcqSLock(); |
|
1494 TLinAddr current_cookie = *(volatile TLinAddr*)&pW->iTimer.iPtr; |
|
1495 if ((cookie ^ current_cookie) & 1) |
|
1496 { |
|
1497 // The timer was cancelled just after expiring but before this function |
|
1498 // managed to acquire the thread spin lock, so it's spurious |
|
1499 param = NThreadBase::ETimeoutSpurious; |
|
1500 } |
|
1501 pT->RelSLockU(); |
|
1502 (*th)(pT, param); |
|
1503 pT->LAcqSLock(); |
|
1504 --pW->iTimer.iNTimerSpare1; // note timer has expired |
|
1505 pT->RelSLockU(); |
|
1506 return; |
|
1507 } |
|
1508 TLinAddr current_cookie = *(volatile TLinAddr*)&pW->iTimer.iPtr; |
|
1509 if ((cookie ^ current_cookie) & 1) |
|
1510 // The timer was cancelled just after expiring but before this function |
|
1511 // managed to acquire the thread spin lock, so just return without doing anything. |
|
1512 goto done; |
|
1513 pT->DoReleaseT(KErrTimedOut,0); |
|
1514 done: |
|
1515 pT->RelSLockU(); |
|
1516 } |
|
1517 |
|
1518 |
|
1519 |
|
1520 /****************************************************************************** |
|
1521 * NKern:: static functions |
|
1522 ******************************************************************************/ |
|
1523 |
|
1524 /** Suspends the execution of a thread. |
|
1525 |
|
1526 This function is intended to be used by the EPOC layer and personality layers. |
|
1527 Do not use this function directly on a Symbian OS thread - use Kern::ThreadSuspend(). |
|
1528 |
|
1529 If the thread is in a critical section or holds a fast mutex, the suspension will |
|
1530 be deferred until the thread leaves the critical section or signals the fast mutex. |
|
1531 Otherwise the thread will be suspended with immediate effect. If the thread it's |
|
1532 running, the execution of the thread will be suspended and a reschedule will occur. |
|
1533 |
|
1534 @param aThread Thread to be suspended. |
|
1535 @param aCount Number of times to suspend this thread. |
|
1536 |
|
1537 @return TRUE, if the thread had changed the state from non-suspended to suspended; |
|
1538 FALSE, otherwise. |
|
1539 |
|
1540 @see Kern::ThreadSuspend() |
|
1541 */ |
|
1542 EXPORT_C TBool NKern::ThreadSuspend(NThread* aThread, TInt aCount) |
|
1543 { |
|
1544 NKern::Lock(); |
|
1545 TBool r=aThread->Suspend(aCount); |
|
1546 NKern::Unlock(); |
|
1547 return r; |
|
1548 } |
|
1549 |
|
1550 |
|
1551 /** Resumes the execution of a thread. |
|
1552 |
|
1553 This function is intended to be used by the EPOC layer and personality layers. |
|
1554 Do not use this function directly on a Symbian OS thread - use Kern::ThreadResume(). |
|
1555 |
|
1556 This function resumes the thread once. If the thread was suspended more than once |
|
1557 the thread will remain suspended. |
|
1558 If the thread is in a critical section, this function will decrease the number of |
|
1559 deferred suspensions. |
|
1560 |
|
1561 @param aThread Thread to be resumed. |
|
1562 |
|
1563 @return TRUE, if the thread had changed the state from suspended to non-suspended; |
|
1564 FALSE, otherwise. |
|
1565 |
|
1566 @see Kern::ThreadResume() |
|
1567 */ |
|
1568 EXPORT_C TBool NKern::ThreadResume(NThread* aThread) |
|
1569 { |
|
1570 NKern::Lock(); |
|
1571 TBool r=aThread->Resume(); |
|
1572 NKern::Unlock(); |
|
1573 return r; |
|
1574 } |
|
1575 |
|
1576 |
|
1577 /** Resumes the execution of a thread and signals a mutex. |
|
1578 |
|
1579 This function is intended to be used by the EPOC layer and personality layers. |
|
1580 Do not use this function directly on a Symbian OS thread - use Kern::ThreadResume(). |
|
1581 |
|
1582 This function resumes the thread once. If the thread was suspended more than once |
|
1583 the thread will remain suspended. |
|
1584 If the thread is in a critical section, this function will decrease the number of |
|
1585 deferred suspensions. |
|
1586 |
|
1587 @param aThread Thread to be resumed. |
|
1588 @param aMutex Mutex to be signalled. If NULL, the scheduler's mutex will be signalled. |
|
1589 |
|
1590 @return TRUE, if the thread had changed the state from suspended to non-suspended; |
|
1591 FALSE, otherwise. |
|
1592 |
|
1593 @see Kern::ThreadResume() |
|
1594 */ |
|
1595 EXPORT_C TBool NKern::ThreadResume(NThread* aThread, NFastMutex* aMutex) |
|
1596 { |
|
1597 if (!aMutex) |
|
1598 aMutex=&TheScheduler.iLock; |
|
1599 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T NRsm + FM %M",aThread,aMutex)); |
|
1600 NKern::Lock(); |
|
1601 TBool r=aThread->Resume(); |
|
1602 aMutex->Signal(); |
|
1603 NKern::Unlock(); |
|
1604 return r; |
|
1605 } |
|
1606 |
|
1607 |
|
1608 /** Forces the execution of a thread to be resumed. |
|
1609 |
|
1610 This function is intended to be used by the EPOC layer and personality layers. |
|
1611 Do not use this function directly on a Symbian OS thread - use Kern::ThreadResume(). |
|
1612 |
|
1613 This function cancels all suspensions on a thread. |
|
1614 |
|
1615 @param aThread Thread to be resumed. |
|
1616 |
|
1617 @return TRUE, if the thread had changed the state from suspended to non-suspended; |
|
1618 FALSE, otherwise. |
|
1619 |
|
1620 @see Kern::ThreadResume() |
|
1621 */ |
|
1622 EXPORT_C TBool NKern::ThreadForceResume(NThread* aThread) |
|
1623 { |
|
1624 NKern::Lock(); |
|
1625 TBool r=aThread->ForceResume(); |
|
1626 NKern::Unlock(); |
|
1627 return r; |
|
1628 } |
|
1629 |
|
1630 |
|
1631 /** Forces the execution of a thread to be resumed and signals a mutex. |
|
1632 |
|
1633 This function is intended to be used by the EPOC layer and personality layers. |
|
1634 Do not use this function directly on a Symbian OS thread - use Kern::ThreadResume(). |
|
1635 |
|
1636 This function cancels all suspensions on a thread. |
|
1637 |
|
1638 @param aThread Thread to be resumed. |
|
1639 @param aMutex Mutex to be signalled. If NULL, the scheduler's mutex will be signalled. |
|
1640 |
|
1641 @return TRUE, if the thread had changed the state from suspended to non-suspended; |
|
1642 FALSE, otherwise. |
|
1643 |
|
1644 @see Kern::ThreadResume() |
|
1645 */ |
|
1646 EXPORT_C TBool NKern::ThreadForceResume(NThread* aThread, NFastMutex* aMutex) |
|
1647 { |
|
1648 if (!aMutex) |
|
1649 aMutex=&TheScheduler.iLock; |
|
1650 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T NFRsm + FM %M",aThread,aMutex)); |
|
1651 NKern::Lock(); |
|
1652 TBool r=aThread->ForceResume(); |
|
1653 aMutex->Signal(); |
|
1654 NKern::Unlock(); |
|
1655 return r; |
|
1656 } |
|
1657 |
|
1658 |
|
1659 /** Awakens a nanothread. |
|
1660 |
|
1661 This function is used to implement synchronisation primitives in the EPOC |
|
1662 kernel (e.g. DMutex and DSemaphore) and in personality layers. It is not |
|
1663 intended to be used directly by device drivers. |
|
1664 |
|
1665 If the nanothread is waiting on a fast semaphore, waiting for a DFC, or is |
|
1666 blocked in a call to NKern::Block, it is awakened and put back on the ready |
|
1667 list. Otherwise, the thread state is unchanged. In particular, nothing |
|
1668 happens if the nanothread has been explicitly suspended. |
|
1669 |
|
1670 @param aThread Thread to release. |
|
1671 @param aReturnValue Value returned by NKern::Block if the thread was blocked. |
|
1672 |
|
1673 @see NKern::Block() |
|
1674 |
|
1675 @pre Interrupts must be enabled. |
|
1676 @pre Do not call from an ISR |
|
1677 */ |
|
1678 EXPORT_C void NKern::ThreadRelease(NThread* aThread, TInt aReturnValue) |
|
1679 { |
|
1680 CHECK_PRECONDITIONS(MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR,"NKern::ThreadRelease(NThread*, TInt)"); |
|
1681 NKern::Lock(); |
|
1682 aThread->Release(aReturnValue,0); |
|
1683 NKern::Unlock(); |
|
1684 } |
|
1685 |
|
1686 |
|
1687 /** Atomically awakens a nanothread and signals a fast mutex. |
|
1688 |
|
1689 This function is used to implement synchronisation primitives in the EPOC |
|
1690 kernel (e.g. DMutex and DSemaphore) and in personality layers. It is not |
|
1691 intended to be used directly by device drivers. |
|
1692 |
|
1693 @param aThread Thread to release. |
|
1694 @param aReturnValue Value returned by NKern::Block if the thread was blocked. |
|
1695 @param aMutex Fast mutex to signal. If NULL, the system lock is signalled. |
|
1696 |
|
1697 @see NKern::ThreadRelease(NThread*, TInt) |
|
1698 @see NKern::Block() |
|
1699 |
|
1700 @pre Call in a thread context. |
|
1701 @pre Interrupts must be enabled. |
|
1702 @pre Kernel must be unlocked. |
|
1703 @pre Specified mutex must be held |
|
1704 */ |
|
1705 EXPORT_C void NKern::ThreadRelease(NThread* aThread, TInt aReturnValue, NFastMutex* aMutex) |
|
1706 { |
|
1707 CHECK_PRECONDITIONS(MASK_KERNEL_UNLOCKED|MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::ThreadRelease(NThread*,TInt,NFastMutex*)"); |
|
1708 if (!aMutex) |
|
1709 aMutex=&TheScheduler.iLock; |
|
1710 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T NRel ret %d + FM %M",aThread,aReturnValue,aMutex)); |
|
1711 NKern::Lock(); |
|
1712 aThread->Release(aReturnValue,0); |
|
1713 aMutex->Signal(); |
|
1714 NKern::Unlock(); |
|
1715 } |
|
1716 |
|
1717 |
|
1718 /** Changes the priority of a thread. |
|
1719 |
|
1720 This function is intended to be used by the EPOC layer and personality layers. |
|
1721 Do not use this function directly on a Symbian OS thread - use Kern::ThreadSetPriority(). |
|
1722 |
|
1723 @param aThread Thread to receive the new priority. |
|
1724 @param aPriority New priority for aThread. |
|
1725 |
|
1726 @see Kern::SetThreadPriority() |
|
1727 */ |
|
1728 EXPORT_C void NKern::ThreadSetPriority(NThread* aThread, TInt aPriority) |
|
1729 { |
|
1730 NKern::Lock(); |
|
1731 aThread->SetPriority(aPriority); |
|
1732 NKern::Unlock(); |
|
1733 } |
|
1734 |
|
1735 |
|
1736 /** Changes the priority of a thread and signals a mutex. |
|
1737 |
|
1738 This function is intended to be used by the EPOC layer and personality layers. |
|
1739 Do not use this function directly on a Symbian OS thread - use Kern::ThreadSetPriority(). |
|
1740 |
|
1741 @param aThread Thread to receive the new priority. |
|
1742 @param aPriority New priority for aThread. |
|
1743 @param aMutex Mutex to be signalled. If NULL, the scheduler's mutex will be signalled. |
|
1744 |
|
1745 @see Kern::SetThreadPriority() |
|
1746 */ |
|
1747 EXPORT_C void NKern::ThreadSetPriority(NThread* aThread, TInt aPriority, NFastMutex* aMutex) |
|
1748 { |
|
1749 if (!aMutex) |
|
1750 aMutex=&TheScheduler.iLock; |
|
1751 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T NSPri->%d + FM %M",aThread,aPriority,aMutex)); |
|
1752 NKern::Lock(); |
|
1753 aThread->SetPriority(aPriority); |
|
1754 aMutex->Signal(); |
|
1755 NKern::Unlock(); |
|
1756 } |
|
1757 |
|
1758 |
|
1759 /** Atomically signals the request semaphore of a nanothread and a fast mutex. |
|
1760 |
|
1761 This function is intended to be used by the EPOC layer and personality |
|
1762 layers. Device drivers should use Kern::RequestComplete instead. |
|
1763 |
|
1764 @param aThread Nanothread to signal. Must be non NULL. |
|
1765 @param aMutex Fast mutex to signal. If NULL, the system lock is signaled. |
|
1766 |
|
1767 @see Kern::RequestComplete() |
|
1768 |
|
1769 @pre Call in a thread context. |
|
1770 @pre Interrupts must be enabled. |
|
1771 @pre Kernel must be unlocked. |
|
1772 @pre Specified mutex must be held |
|
1773 */ |
|
1774 EXPORT_C void NKern::ThreadRequestSignal(NThread* aThread, NFastMutex* aMutex) |
|
1775 { |
|
1776 CHECK_PRECONDITIONS(MASK_KERNEL_UNLOCKED|MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::ThreadRequestSignal(NThread*,NFastMutex*)"); |
|
1777 if (!aMutex) |
|
1778 aMutex = &TheScheduler.iLock; |
|
1779 NKern::Lock(); |
|
1780 aThread->iRequestSemaphore.Signal(); |
|
1781 aMutex->Signal(); |
|
1782 NKern::Unlock(); |
|
1783 } |
|
1784 |
|
1785 |
|
1786 /** Kills a nanothread. |
|
1787 |
|
1788 This function is intended to be used by the EPOC layer and personality layers. |
|
1789 Do not use this function directly on a Symbian OS thread - use Kern::ThreadKill(). |
|
1790 |
|
1791 This function does not return if the current thread is killed. |
|
1792 This function is asynchronous (i.e. the thread to kill may still be alive when the call returns). |
|
1793 |
|
1794 @param aThread Thread to kill. Must be non NULL. |
|
1795 |
|
1796 @pre If acting on calling thread, calling thread must not be in a |
|
1797 critical section |
|
1798 @pre Thread must not already be exiting. |
|
1799 |
|
1800 @see Kern::ThreadKill() |
|
1801 */ |
|
1802 EXPORT_C void NKern::ThreadKill(NThread* aThread) |
|
1803 { |
|
1804 NKern::Lock(); |
|
1805 aThread->Kill(); |
|
1806 NKern::Unlock(); |
|
1807 } |
|
1808 |
|
1809 |
|
1810 /** Atomically kills a nanothread and signals a fast mutex. |
|
1811 |
|
1812 This function is intended to be used by the EPOC layer and personality layers. |
|
1813 Do not use this function directly on a Symbian OS thread - use Kern::ThreadKill(). |
|
1814 |
|
1815 @param aThread Thread to kill. Must be non NULL. |
|
1816 @param aMutex Fast mutex to signal. If NULL, the system lock is signalled. |
|
1817 |
|
1818 @pre If acting on calling thread, calling thread must not be in a |
|
1819 critical section |
|
1820 @pre Thread must not already be exiting. |
|
1821 |
|
1822 @see NKern::ThreadKill(NThread*) |
|
1823 */ |
|
1824 EXPORT_C void NKern::ThreadKill(NThread* aThread, NFastMutex* aMutex) |
|
1825 { |
|
1826 if (!aMutex) |
|
1827 aMutex = &TheScheduler.iLock; |
|
1828 NThreadBase* pC = NKern::LockC(); |
|
1829 if (aThread==pC) |
|
1830 { |
|
1831 __NK_ASSERT_DEBUG(pC->iCsCount==0); // Make sure thread isn't in critical section |
|
1832 __NK_ASSERT_ALWAYS(aMutex->HeldByCurrentThread()); |
|
1833 pC->AcqSLock(); |
|
1834 aThread->iCsFunction = NThreadBase::ECSExitPending; |
|
1835 pC->RelSLock(); |
|
1836 aMutex->iHoldingThread = (NThreadBase*)(TLinAddr(aThread) | 1); |
|
1837 aMutex->Signal(); // this will make us exit |
|
1838 FAULT(); // should never get here |
|
1839 } |
|
1840 else |
|
1841 { |
|
1842 aThread->Kill(); |
|
1843 aMutex->Signal(); |
|
1844 } |
|
1845 NKern::Unlock(); |
|
1846 } |
|
1847 |
|
1848 |
|
1849 /** Enters thread critical section. |
|
1850 |
|
1851 This function can safely be used in device drivers. |
|
1852 |
|
1853 The current thread will enter its critical section. While in critical section |
|
1854 the thread cannot be suspended or killed. Any suspension or kill will be deferred |
|
1855 until the thread leaves the critical section. |
|
1856 Some API explicitly require threads to be in critical section before calling that |
|
1857 API. |
|
1858 Only User threads need to call this function as the concept of thread critical |
|
1859 section applies to User threads only. |
|
1860 |
|
1861 @pre Call in a thread context. |
|
1862 @pre Kernel must be unlocked. |
|
1863 */ |
|
1864 EXPORT_C void NKern::ThreadEnterCS() |
|
1865 { |
|
1866 CHECK_PRECONDITIONS(MASK_KERNEL_UNLOCKED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::ThreadEnterCS"); |
|
1867 NThreadBase* pC = NKern::CurrentThread(); |
|
1868 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T NEntCS",pC)); |
|
1869 __NK_ASSERT_DEBUG(pC->iCsCount>=0); |
|
1870 ++pC->iCsCount; |
|
1871 } |
|
1872 |
|
1873 NThread* NKern::_ThreadEnterCS() |
|
1874 { |
|
1875 NThreadBase* pC = NKern::CurrentThread(); |
|
1876 __NK_ASSERT_DEBUG(pC->iCsCount>=0); |
|
1877 ++pC->iCsCount; |
|
1878 return (NThread*)pC; |
|
1879 } |
|
1880 |
|
1881 |
|
1882 /** Leaves thread critical section. |
|
1883 |
|
1884 This function can safely be used in device drivers. |
|
1885 |
|
1886 The current thread will leave its critical section. If the thread was suspended/killed |
|
1887 while in critical section, the thread will be suspended/killed after leaving the |
|
1888 critical section by calling this function. |
|
1889 Only User threads need to call this function as the concept of thread critical |
|
1890 section applies to User threads only. |
|
1891 |
|
1892 @pre Call in a thread context. |
|
1893 @pre Kernel must be unlocked. |
|
1894 */ |
|
1895 EXPORT_C void NKern::ThreadLeaveCS() |
|
1896 { |
|
1897 CHECK_PRECONDITIONS(MASK_KERNEL_UNLOCKED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::ThreadLeaveCS"); |
|
1898 NThreadBase* pC = NKern::LockC(); |
|
1899 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T NLvCS",pC)); |
|
1900 pC->AcqSLock(); |
|
1901 __NK_ASSERT_DEBUG(pC->iCsCount>0); |
|
1902 if (--pC->iCsCount==0 && pC->iCsFunction!=0) |
|
1903 { |
|
1904 NFastMutex* m = HeldFastMutex(); |
|
1905 if (m) |
|
1906 m->iHoldingThread = (NThreadBase*)(TLinAddr(pC) | 1); |
|
1907 else |
|
1908 pC->DoCsFunctionT(); |
|
1909 } |
|
1910 pC->RelSLock(); |
|
1911 NKern::Unlock(); |
|
1912 } |
|
1913 |
|
1914 void NKern::_ThreadLeaveCS() |
|
1915 { |
|
1916 NThreadBase* pC = NKern::LockC(); |
|
1917 pC->AcqSLock(); |
|
1918 __NK_ASSERT_DEBUG(pC->iCsCount>0); |
|
1919 if (--pC->iCsCount==0 && pC->iCsFunction!=0) |
|
1920 { |
|
1921 NFastMutex* m = HeldFastMutex(); |
|
1922 if (m) |
|
1923 m->iHoldingThread = (NThreadBase*)(TLinAddr(pC) | 1); |
|
1924 else |
|
1925 pC->DoCsFunctionT(); |
|
1926 } |
|
1927 pC->RelSLock(); |
|
1928 NKern::Unlock(); |
|
1929 } |
|
1930 |
|
1931 /** Freeze the CPU of the current thread |
|
1932 |
|
1933 After this the current thread will not migrate to another processor |
|
1934 |
|
1935 @return A cookie to be passed to NKern::EndFreezeCpu() to allow nesting |
|
1936 */ |
|
1937 EXPORT_C TInt NKern::FreezeCpu() |
|
1938 { |
|
1939 CHECK_PRECONDITIONS(MASK_KERNEL_UNLOCKED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::FreezeCpu"); |
|
1940 NKern::Lock(); |
|
1941 TSubScheduler& ss = SubScheduler(); |
|
1942 NThreadBase* pC = ss.iCurrentThread; |
|
1943 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T NFrzCpu",pC)); |
|
1944 if (pC->iFreezeCpu) |
|
1945 { |
|
1946 NKern::Unlock(); |
|
1947 return 1; |
|
1948 } |
|
1949 pC->iFreezeCpu = 1; |
|
1950 if (pC->iParent != pC) |
|
1951 { |
|
1952 pC->AcqSLock(); |
|
1953 ++pC->iParent->iFreezeCpu; |
|
1954 pC->RelSLock(); |
|
1955 } |
|
1956 NKern::Unlock(); |
|
1957 return 0; |
|
1958 } |
|
1959 |
|
1960 |
|
1961 /** Unfreeze the current thread's CPU |
|
1962 |
|
1963 After this the current thread will again be eligible to migrate to another processor |
|
1964 |
|
1965 @param aCookie the value returned by NKern::FreezeCpu() |
|
1966 */ |
|
1967 EXPORT_C void NKern::EndFreezeCpu(TInt aCookie) |
|
1968 { |
|
1969 CHECK_PRECONDITIONS(MASK_KERNEL_UNLOCKED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::EndFreezeCpu"); |
|
1970 __KTRACE_OPT(KNKERN,DEBUGPRINT("%T NEndFrz %d",NKern::CurrentThread(),aCookie)); |
|
1971 if (aCookie) |
|
1972 return; |
|
1973 NKern::Lock(); |
|
1974 TSubScheduler& ss = SubScheduler(); |
|
1975 NThreadBase* pC = ss.iCurrentThread; |
|
1976 if (pC->iFreezeCpu) |
|
1977 { |
|
1978 pC->iFreezeCpu = 0; |
|
1979 mb(); |
|
1980 if (pC->iParent != pC) |
|
1981 { |
|
1982 pC->AcqSLock(); |
|
1983 if (!--pC->iParent->iFreezeCpu && pC->iParent->iCpuChange) |
|
1984 RescheduleNeeded(); |
|
1985 pC->RelSLock(); |
|
1986 } |
|
1987 else if (pC->iCpuChange) // deferred CPU change? |
|
1988 RescheduleNeeded(); |
|
1989 } |
|
1990 NKern::Unlock(); |
|
1991 } |
|
1992 |
|
1993 |
|
1994 /** Change the CPU affinity of a thread |
|
1995 |
|
1996 @pre Call in a thread context. |
|
1997 |
|
1998 @param The new CPU affinity mask |
|
1999 @return The old affinity mask |
|
2000 */ |
|
2001 EXPORT_C TUint32 NKern::ThreadSetCpuAffinity(NThread* aThread, TUint32 aAffinity) |
|
2002 { |
|
2003 NKern::Lock(); |
|
2004 TUint32 r = aThread->SetCpuAffinity(aAffinity); |
|
2005 NKern::Unlock(); |
|
2006 return r; |
|
2007 } |
|
2008 |
|
2009 |
|
2010 /** Modify a thread's timeslice |
|
2011 |
|
2012 @pre Call in a thread context. |
|
2013 |
|
2014 @param aTimeslice The new timeslice value |
|
2015 */ |
|
2016 EXPORT_C void NKern::ThreadSetTimeslice(NThread* aThread, TInt aTimeslice) |
|
2017 { |
|
2018 NKern::Lock(); |
|
2019 aThread->AcqSLock(); |
|
2020 if (aThread->iTimeslice == aThread->iTime || aTimeslice<0) |
|
2021 aThread->iTime = aTimeslice; |
|
2022 aThread->iTimeslice = aTimeslice; |
|
2023 aThread->RelSLock(); |
|
2024 NKern::Unlock(); |
|
2025 } |
|
2026 |
|
2027 |
|
2028 /** Blocks current nanothread. |
|
2029 |
|
2030 This function is used to implement synchronisation primitives in the EPOC |
|
2031 layer and in personality layers. It is not intended to be used directly by |
|
2032 device drivers. |
|
2033 |
|
2034 @param aTimeout If greater than 0, the nanothread will be blocked for at most |
|
2035 aTimeout microseconds. |
|
2036 @param aMode Bitmask whose possible values are documented in TBlockMode. |
|
2037 @param aMutex Fast mutex to operate on. If NULL, the system lock is used. |
|
2038 |
|
2039 @see NKern::ThreadRelease() |
|
2040 @see TBlockMode |
|
2041 |
|
2042 @pre Call in a thread context. |
|
2043 @pre Interrupts must be enabled. |
|
2044 @pre Kernel must be unlocked. |
|
2045 @pre Specified mutex must be held |
|
2046 */ |
|
2047 EXPORT_C TInt NKern::Block(TUint32 aTimeout, TUint aMode, NFastMutex* aMutex) |
|
2048 { |
|
2049 CHECK_PRECONDITIONS(MASK_KERNEL_UNLOCKED|MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::Block(TUint32,TUint,NFastMutex*)"); |
|
2050 if (!aMutex) |
|
2051 aMutex = &TheScheduler.iLock; |
|
2052 __KTRACE_OPT(KNKERN,DEBUGPRINT("NKern::Block time %d mode %d FM %M",aTimeout,aMode,aMutex)); |
|
2053 if (aMode & EEnterCS) |
|
2054 NKern::_ThreadEnterCS(); // NOTE: MUST DO THIS BEFORE CALLING NKern::Lock() |
|
2055 NThreadBase* pC = NKern::LockC(); |
|
2056 TUint flags = (aMode & NKern::EObstruct) ? NThreadWaitState::EWtStObstructed : 0; |
|
2057 pC->iWaitState.SetUpWait(NThreadBase::EWaitBlocked, flags, 0, aTimeout); |
|
2058 if (aMode & ERelease) |
|
2059 aMutex->Signal(); |
|
2060 RescheduleNeeded(); |
|
2061 NKern::Unlock(); // thread blocks here |
|
2062 TInt r = pC->iWaitState.iWtC.iRetVal; // sample here since it will be overwritten if we block on the fast mutex |
|
2063 if (aMode & EClaim) |
|
2064 FMWait(aMutex); |
|
2065 return r; |
|
2066 } |
|
2067 |
|
2068 |
|
2069 /** |
|
2070 @pre Call in a thread context. |
|
2071 @pre Interrupts must be enabled. |
|
2072 @pre Kernel must be unlocked. |
|
2073 @pre No fast mutex can be held |
|
2074 */ |
|
2075 /** @see NKern::Block(TUint32, TUint, NFastMutex*) */ |
|
2076 EXPORT_C TInt NKern::Block(TUint32 aTimeout, TUint aMode) |
|
2077 { |
|
2078 CHECK_PRECONDITIONS(MASK_THREAD_STANDARD,"NKern::Block(TUint32,TUint)"); |
|
2079 __KTRACE_OPT(KNKERN,DEBUGPRINT("NKern::Block time %d mode %d",aTimeout,aMode)); |
|
2080 if (aMode & EEnterCS) |
|
2081 NKern::_ThreadEnterCS(); // NOTE: MUST DO THIS BEFORE CALLING NKern::Lock() |
|
2082 NThreadBase* pC = NKern::LockC(); |
|
2083 TUint flags = (aMode & NKern::EObstruct) ? NThreadWaitState::EWtStObstructed : 0; |
|
2084 pC->iWaitState.SetUpWait(NThreadBase::EWaitBlocked, flags, 0, aTimeout); |
|
2085 RescheduleNeeded(); |
|
2086 NKern::Unlock(); // thread blocks here |
|
2087 return pC->iWaitState.iWtC.iRetVal; |
|
2088 } |
|
2089 |
|
2090 |
|
2091 |
|
2092 |
|
2093 /** |
|
2094 Places the current nanothread into a wait state on an externally |
|
2095 defined wait object. |
|
2096 |
|
2097 For use by RTOS personality layers. |
|
2098 Do not use this function directly on a Symbian OS thread. |
|
2099 |
|
2100 Since the kernel is locked on entry, any reschedule will be deferred until |
|
2101 it is unlocked. The thread should be added to any necessary wait queue after |
|
2102 a call to this function, since this function removes it from the ready list. |
|
2103 The thread's wait timer is started if aTimeout is nonzero. |
|
2104 The thread's NState and wait object are updated. |
|
2105 |
|
2106 Call NThreadBase::Release() when the wait condition is resolved. |
|
2107 |
|
2108 @param aTimeout The maximum time for which the thread should block, in nanokernel timer ticks. |
|
2109 A zero value means wait forever. |
|
2110 If the thread is still blocked when the timeout expires, |
|
2111 then the timeout state handler will be called. |
|
2112 @param aState The nanokernel thread state (N-State) value to be set. |
|
2113 This state corresponds to the externally defined wait object. |
|
2114 This value will be written into the member NThreadBase::iNState. |
|
2115 @param aWaitObj A pointer to an externally defined wait object. |
|
2116 This value will be written into the member NThreadBase::iWaitObj. |
|
2117 |
|
2118 @pre Kernel must be locked. |
|
2119 @pre Call in a thread context. |
|
2120 |
|
2121 @post Kernel is locked. |
|
2122 |
|
2123 @see NThreadBase::Release() |
|
2124 */ |
|
2125 EXPORT_C void NKern::NanoBlock(TUint32 aTimeout, TUint aState, TAny* aWaitObj) |
|
2126 { |
|
2127 CHECK_PRECONDITIONS(MASK_KERNEL_LOCKED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::NanoBlock"); |
|
2128 __KTRACE_OPT(KNKERN,DEBUGPRINT("NanoBlock time %d state %d obj %08x", aTimeout, aState, aWaitObj)); |
|
2129 NThreadBase* pC = NCurrentThreadL(); |
|
2130 pC->iWaitState.SetUpWait(aState, aState>>8, aWaitObj, aTimeout); |
|
2131 RescheduleNeeded(); |
|
2132 } |
|
2133 |
|
2134 |
|
2135 |
|
2136 |
|
2137 EXPORT_C void NKern::Sleep(TUint32 aTime) |
|
2138 /** |
|
2139 Puts the current nanothread to sleep for the specified duration. |
|
2140 |
|
2141 It can be called from Symbian OS threads. |
|
2142 |
|
2143 @param aTime sleep time in nanokernel timer ticks. |
|
2144 |
|
2145 @pre No fast mutex can be held. |
|
2146 @pre Kernel must be unlocked. |
|
2147 @pre Call in a thread context. |
|
2148 @pre Interrupts must be enabled. |
|
2149 */ |
|
2150 { |
|
2151 CHECK_PRECONDITIONS(MASK_THREAD_STANDARD,"NKern::Sleep"); |
|
2152 __KTRACE_OPT(KNKERN,DEBUGPRINT("NSlp %d",aTime)); |
|
2153 NThreadBase* pC = NKern::LockC(); |
|
2154 pC->iWaitState.SetUpWait(NThreadBase::EWaitSleep, 0, 0, aTime); |
|
2155 RescheduleNeeded(); |
|
2156 NKern::Unlock(); |
|
2157 } |
|
2158 |
|
2159 |
|
2160 /** Terminates the current nanothread. |
|
2161 |
|
2162 Calls to this function never return. |
|
2163 |
|
2164 For use by RTOS personality layers. |
|
2165 Do not use this function directly on a Symbian OS thread. |
|
2166 |
|
2167 @pre Call in a thread context. |
|
2168 @pre Interrupts must be enabled. |
|
2169 @pre Kernel must be unlocked. |
|
2170 */ |
|
2171 EXPORT_C void NKern::Exit() |
|
2172 { |
|
2173 CHECK_PRECONDITIONS(MASK_KERNEL_UNLOCKED|MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::Exit"); |
|
2174 __KTRACE_OPT(KNKERN,DEBUGPRINT("NExit")); |
|
2175 NKern::LockC()->Exit(); // this won't return |
|
2176 FAULT(); |
|
2177 } |
|
2178 |
|
2179 |
|
2180 /** Terminates the current nanothread at the next possible point. |
|
2181 |
|
2182 If the calling thread is not currently in a critical section and does not |
|
2183 currently hold a fast mutex, it exits immediately and this function does |
|
2184 not return. On the other hand if the thread is in a critical section or |
|
2185 holds a fast mutex the thread continues executing but it will exit as soon |
|
2186 as it leaves the critical section and/or releases the fast mutex. |
|
2187 |
|
2188 @pre Call in a thread context. |
|
2189 @pre Interrupts must be enabled. |
|
2190 @pre Kernel must be unlocked. |
|
2191 */ |
|
2192 EXPORT_C void NKern::DeferredExit() |
|
2193 { |
|
2194 CHECK_PRECONDITIONS(MASK_KERNEL_UNLOCKED|MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::DeferredExit"); |
|
2195 __KTRACE_OPT(KNKERN,DEBUGPRINT("NDefExit")); |
|
2196 NFastMutex* m = HeldFastMutex(); |
|
2197 NThreadBase* pC = NKern::LockC(); |
|
2198 if (!m && !pC->iCsCount) |
|
2199 pC->Exit(); // this won't return |
|
2200 pC->AcqSLock(); |
|
2201 if (pC->iCsFunction >= 0) // don't touch it if we are already exiting |
|
2202 pC->iCsFunction = NThreadBase::ECSExitPending; |
|
2203 pC->RelSLock(); |
|
2204 if (m && !pC->iCsCount) |
|
2205 m->iHoldingThread = (NThreadBase*)(TLinAddr(pC) | 1); |
|
2206 NKern::Unlock(); |
|
2207 } |
|
2208 |
|
2209 |
|
2210 /** Prematurely terminates the current thread's timeslice |
|
2211 |
|
2212 @pre Kernel must be unlocked. |
|
2213 @pre Call in a thread context. |
|
2214 |
|
2215 @post Kernel is unlocked. |
|
2216 */ |
|
2217 EXPORT_C void NKern::YieldTimeslice() |
|
2218 { |
|
2219 CHECK_PRECONDITIONS(MASK_KERNEL_UNLOCKED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::YieldTimeslice"); |
|
2220 __KTRACE_OPT(KNKERN,DEBUGPRINT("NKern::YieldTimeslice")); |
|
2221 NThreadBase* t = NKern::LockC(); |
|
2222 t->iTime = 0; |
|
2223 mb(); |
|
2224 if (t->iNext!=t || t->iParent->iNext!=t->iParent) |
|
2225 RescheduleNeeded(); |
|
2226 NKern::Unlock(); |
|
2227 } |
|
2228 |
|
2229 |
|
2230 /** Returns the number of CPUs available to Symbian OS |
|
2231 |
|
2232 @return the number of CPUs |
|
2233 |
|
2234 @pre Call in any context. |
|
2235 */ |
|
2236 EXPORT_C TInt NKern::NumberOfCpus() |
|
2237 { |
|
2238 return TheScheduler.iNumCpus; |
|
2239 } |
|
2240 |
|
2241 |
|
2242 /** Rotates the specified CPU ready list for threads at the specified priority. |
|
2243 |
|
2244 For use by RTOS personality layers to allow external control of round-robin |
|
2245 scheduling. Not intended for direct use by device drivers. |
|
2246 |
|
2247 @param aPriority = priority at which threads should be rotated. |
|
2248 -1 means use calling thread's priority. |
|
2249 @param aCpu CPU to act on |
|
2250 |
|
2251 @pre Kernel must be unlocked. |
|
2252 @pre Call in a thread context. |
|
2253 |
|
2254 @post Kernel is unlocked. |
|
2255 */ |
|
2256 |
|
2257 EXPORT_C void NKern::RotateReadyList(TInt aPriority, TInt aCpu) |
|
2258 { |
|
2259 // CHECK_PRECONDITIONS(MASK_KERNEL_UNLOCKED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::RotateReadyList"); |
|
2260 // __KTRACE_OPT(KNKERN,DEBUGPRINT("NKern::RotateReadyList %d",aPriority)); |
|
2261 // if (aPriority<0 || aPriority>=KNumPriorities) |
|
2262 // aPriority=NKern::CurrentThread()->iPriority; |
|
2263 // NKern::Lock(); |
|
2264 // TheScheduler.RotateReadyList(aPriority); |
|
2265 // NKern::Unlock(); |
|
2266 } |
|
2267 |
|
2268 |
|
2269 /** Rotates the ready list for threads at the specified priority. |
|
2270 |
|
2271 For use by RTOS personality layers to allow external control of round-robin |
|
2272 scheduling. Not intended for direct use by device drivers. |
|
2273 |
|
2274 @param aPriority = priority at which threads should be rotated. |
|
2275 -1 means use calling thread's priority. |
|
2276 |
|
2277 @pre Kernel must be unlocked. |
|
2278 @pre Call in a thread context. |
|
2279 |
|
2280 @post Kernel is unlocked. |
|
2281 */ |
|
2282 EXPORT_C void NKern::RotateReadyList(TInt aPriority) |
|
2283 { |
|
2284 RotateReadyList(aPriority, -1); |
|
2285 } |
|
2286 |
|
2287 |
|
2288 /** Returns a pointer to the thread group to which the current thread belongs, |
|
2289 if any. Returns NULL if current thread is a standalone thread. |
|
2290 |
|
2291 @pre Call in a thread context. |
|
2292 */ |
|
2293 EXPORT_C NThreadGroup* NKern::CurrentGroup() |
|
2294 { |
|
2295 NThreadBase* pC = NKern::CurrentThread(); |
|
2296 return (pC->iParent == pC) ? (NThreadGroup*)0 : (NThreadGroup*)pC->iParent; |
|
2297 } |
|
2298 |
|
2299 |
|
2300 /** Detaches the current thread from the group to which it currently belongs, |
|
2301 if any. Returns a pointer to the group (NULL if none). |
|
2302 |
|
2303 @pre Call in a thread context. |
|
2304 @pre Interrupts enabled |
|
2305 @pre Kernel unlocked |
|
2306 */ |
|
2307 EXPORT_C NThreadGroup* NKern::LeaveGroup() |
|
2308 { |
|
2309 CHECK_PRECONDITIONS(MASK_NOT_ISR|MASK_NOT_IDFC|MASK_INTERRUPTS_ENABLED|MASK_KERNEL_UNLOCKED, "NKern::LeaveGroup"); |
|
2310 NKern::Lock(); |
|
2311 TSubScheduler& ss = SubScheduler(); |
|
2312 NThreadBase* pC = ss.iCurrentThread; |
|
2313 pC->iNewParent = 0; // cancel any pending Join |
|
2314 NThreadGroup* g = (pC->iParent == pC) ? (NThreadGroup*)0 : (NThreadGroup*)pC->iParent; |
|
2315 TBool make_group_ready = FALSE; |
|
2316 __KTRACE_OPT(KNKERN,DEBUGPRINT("NLeaveGroup %T (%G)",pC,g)); |
|
2317 if (g) |
|
2318 { |
|
2319 while (!pC->TiedEventLeaveInterlock()) |
|
2320 { |
|
2321 TInt irq = NKern::DisableAllInterrupts(); |
|
2322 ss.QueueDfcs(); |
|
2323 NKern::RestoreInterrupts(irq); |
|
2324 } |
|
2325 pC->AcqSLock(); |
|
2326 ss.iReadyListLock.LockOnly(); |
|
2327 pC->UnReadyT(); |
|
2328 pC->iParent = pC; |
|
2329 g->iCurrent = 0; // since current thread is no longer in g |
|
2330 ss.AddHead(pC); |
|
2331 pC->iReady = TUint8(ss.iCpuNum | NSchedulable::EReadyOffset); |
|
2332 pC->iCpuAffinity = g->iCpuAffinity; // keep same CPU affinity |
|
2333 // if we're frozen, the group's freeze count was incremented |
|
2334 if (pC->iFreezeCpu) |
|
2335 --g->iFreezeCpu; |
|
2336 // if we've been marked as deferring, the group's freeze count was incremented |
|
2337 if (pC->iFastMutexDefer == 1) |
|
2338 { |
|
2339 --g->iFreezeCpu; |
|
2340 pC->iFastMutexDefer = 0; |
|
2341 } |
|
2342 // if the group was waiting to change cpu then this thread needs to change still |
|
2343 if (g->iCpuChange) |
|
2344 { |
|
2345 pC->iCpuChange = g->iCpuChange; |
|
2346 RescheduleNeeded(); |
|
2347 if (!g->iFreezeCpu) |
|
2348 { |
|
2349 // we were the last thread in the group stopping it from moving |
|
2350 // but there may be no other threads left after UnReadyT'ing this one |
|
2351 g->iCpuChange = FALSE; |
|
2352 if (g->iReady) |
|
2353 { |
|
2354 ss.Remove(g); |
|
2355 g->iReady = 0; |
|
2356 make_group_ready = TRUE; |
|
2357 } |
|
2358 } |
|
2359 } |
|
2360 ss.iReadyListLock.UnlockOnly(); |
|
2361 --g->iThreadCount; |
|
2362 if (make_group_ready) |
|
2363 g->ReadyT(0); |
|
2364 g->RelSLock(); // since pC is no longer attached to g |
|
2365 pC->RelSLock(); |
|
2366 } |
|
2367 NKern::Unlock(); |
|
2368 return g; |
|
2369 } |
|
2370 |
|
2371 |
|
2372 /** Adds the current thread to the specified group. |
|
2373 |
|
2374 @param aGroup = pointer to group to join |
|
2375 |
|
2376 @pre Call in a thread context, not in one of the idle threads. |
|
2377 @pre Interrupts enabled |
|
2378 @pre Kernel unlocked |
|
2379 @pre Thread does not hold a fast mutex |
|
2380 @pre Thread does not have a freeze on CPU migration |
|
2381 @pre Current thread is not already in a group |
|
2382 */ |
|
2383 EXPORT_C void NKern::JoinGroup(NThreadGroup* aGroup) |
|
2384 { |
|
2385 CHECK_PRECONDITIONS(MASK_THREAD_STANDARD, "NKern::JoinGroup"); |
|
2386 NKern::Lock(); |
|
2387 TSubScheduler& ss = SubScheduler(); |
|
2388 NThreadBase* pC = ss.iCurrentThread; |
|
2389 __ASSERT_WITH_MESSAGE_DEBUG(pC->iParent==pC, "Thread not already in a group", "NKern::JoinGroup"); |
|
2390 __ASSERT_WITH_MESSAGE_DEBUG(!pC->iFreezeCpu, "No interdiction on CPU migration", "NKern::JoinGroup"); |
|
2391 __ASSERT_WITH_MESSAGE_DEBUG(!pC->i_NThread_Initial, "Not idle thread", "NKern::JoinGroup"); |
|
2392 __NK_ASSERT_ALWAYS(pC->iParent==pC && !pC->iFreezeCpu); |
|
2393 __KTRACE_OPT(KNKERN,DEBUGPRINT("NJoinGroup %T->%G",pC,aGroup)); |
|
2394 pC->AcqSLock(); |
|
2395 aGroup->AcqSLock(); |
|
2396 TBool migrate = !CheckCpuAgainstAffinity(ss.iCpuNum, aGroup->iCpuAffinity); // TRUE if thread's current CPU is incompatible with the group's affinity |
|
2397 if (!aGroup->iReady || aGroup->iReady==pC->iReady) |
|
2398 { |
|
2399 // group not ready or ready on this CPU |
|
2400 if (!migrate) |
|
2401 { |
|
2402 ss.iReadyListLock.LockOnly(); |
|
2403 pC->UnReadyT(); |
|
2404 pC->iParent = aGroup; |
|
2405 aGroup->iNThreadList.AddHead(pC); |
|
2406 if (!aGroup->iReady) |
|
2407 { |
|
2408 aGroup->iPriority = pC->iPriority; |
|
2409 ss.AddHead(aGroup); |
|
2410 aGroup->iReady = TUint8(ss.iCpuNum | NSchedulable::EReadyOffset); |
|
2411 } |
|
2412 else if (pC->iPriority > aGroup->iPriority) |
|
2413 { |
|
2414 ss.ChangePriority(aGroup, pC->iPriority); |
|
2415 } |
|
2416 pC->iReady = NSchedulable::EReadyGroup; |
|
2417 aGroup->iCurrent = aGroup->iReady; |
|
2418 ss.iReadyListLock.UnlockOnly(); |
|
2419 ++aGroup->iThreadCount; |
|
2420 goto done; |
|
2421 } |
|
2422 } |
|
2423 // this thread needs to migrate to another CPU |
|
2424 pC->iNewParent = aGroup; |
|
2425 RescheduleNeeded(); |
|
2426 |
|
2427 // the following reschedule definitely joins the group even if the |
|
2428 // thread's CPU affinity is incompatible with that of the group |
|
2429 // (the thread's CPU affinity is subsequently determined by that of |
|
2430 // the group) |
|
2431 |
|
2432 done: |
|
2433 if (pC->iParent != aGroup) |
|
2434 aGroup->RelSLock(); |
|
2435 pC->RelSLock(); |
|
2436 while (!pC->TiedEventJoinInterlock()) |
|
2437 { |
|
2438 TInt irq = NKern::DisableAllInterrupts(); |
|
2439 ss.QueueDfcs(); |
|
2440 NKern::RestoreInterrupts(irq); |
|
2441 } |
|
2442 NKern::Unlock(); |
|
2443 } |
|
2444 |
|
2445 |
|
2446 /****************************************************************************** |
|
2447 * Priority Lists |
|
2448 ******************************************************************************/ |
|
2449 |
|
2450 #ifndef __PRI_LIST_MACHINE_CODED__ |
|
2451 /** Returns the priority of the highest priority item present on a priority list. |
|
2452 |
|
2453 @return The highest priority present or -1 if the list is empty. |
|
2454 */ |
|
2455 EXPORT_C TInt TPriListBase::HighestPriority() |
|
2456 { |
|
2457 // TUint64 present = MAKE_TUINT64(iPresent[1], iPresent[0]); |
|
2458 // return __e32_find_ms1_64(present); |
|
2459 return __e32_find_ms1_64(iPresent64); |
|
2460 } |
|
2461 |
|
2462 |
|
2463 /** Finds the highest priority item present on a priority list. |
|
2464 |
|
2465 If multiple items at the same priority are present, return the first to be |
|
2466 added in chronological order. |
|
2467 |
|
2468 @return A pointer to the item or NULL if the list is empty. |
|
2469 */ |
|
2470 EXPORT_C TPriListLink* TPriListBase::First() |
|
2471 { |
|
2472 TInt p = HighestPriority(); |
|
2473 return p >=0 ? static_cast<TPriListLink*>(iQueue[p]) : NULL; |
|
2474 } |
|
2475 |
|
2476 |
|
2477 /** Adds an item to a priority list at the tail of the queue for its priority. |
|
2478 |
|
2479 @param aLink A pointer to the item - must not be NULL. |
|
2480 */ |
|
2481 EXPORT_C void TPriListBase::Add(TPriListLink* aLink) |
|
2482 { |
|
2483 TInt p = aLink->iPriority; |
|
2484 SDblQueLink* head = iQueue[p]; |
|
2485 if (head) |
|
2486 { |
|
2487 // already some at this priority |
|
2488 aLink->InsertBefore(head); |
|
2489 } |
|
2490 else |
|
2491 { |
|
2492 // 'create' new list |
|
2493 iQueue[p] = aLink; |
|
2494 aLink->iNext = aLink->iPrev = aLink; |
|
2495 iPresent[p>>5] |= 1u << (p & 0x1f); |
|
2496 } |
|
2497 } |
|
2498 |
|
2499 |
|
2500 /** Removes an item from a priority list. |
|
2501 |
|
2502 @param aLink A pointer to the item - must not be NULL. |
|
2503 */ |
|
2504 EXPORT_C void TPriListBase::Remove(TPriListLink* aLink) |
|
2505 { |
|
2506 if (!aLink->Alone()) |
|
2507 { |
|
2508 // not the last on this list |
|
2509 TInt p = aLink->iPriority; |
|
2510 if (iQueue[p] == aLink) |
|
2511 iQueue[p] = aLink->iNext; |
|
2512 aLink->Deque(); |
|
2513 } |
|
2514 else |
|
2515 { |
|
2516 TInt p = aLink->iPriority; |
|
2517 iQueue[p] = 0; |
|
2518 iPresent[p>>5] &= ~(1u << (p & 0x1f)); |
|
2519 KILL_LINK(aLink); |
|
2520 } |
|
2521 } |
|
2522 |
|
2523 |
|
2524 /** Changes the priority of an item on a priority list. |
|
2525 |
|
2526 @param aLink A pointer to the item to act on - must not be NULL. |
|
2527 @param aNewPriority A new priority for the item. |
|
2528 */ |
|
2529 EXPORT_C void TPriListBase::ChangePriority(TPriListLink* aLink, TInt aNewPriority) |
|
2530 { |
|
2531 if (aLink->iPriority!=aNewPriority) |
|
2532 { |
|
2533 Remove(aLink); |
|
2534 aLink->iPriority=TUint8(aNewPriority); |
|
2535 Add(aLink); |
|
2536 } |
|
2537 } |
|
2538 #endif |
|
2539 |
|
2540 /** Adds an item to a priority list at the head of the queue for its priority. |
|
2541 |
|
2542 @param aLink A pointer to the item - must not be NULL. |
|
2543 */ |
|
2544 EXPORT_C void TPriListBase::AddHead(TPriListLink* aLink) |
|
2545 { |
|
2546 TInt p = aLink->iPriority; |
|
2547 SDblQueLink* head = iQueue[p]; |
|
2548 iQueue[p] = aLink; |
|
2549 if (head) |
|
2550 { |
|
2551 // already some at this priority |
|
2552 aLink->InsertBefore(head); |
|
2553 } |
|
2554 else |
|
2555 { |
|
2556 // 'create' new list |
|
2557 aLink->iNext = aLink->iPrev = aLink; |
|
2558 iPresent[p>>5] |= 1u << (p & 0x1f); |
|
2559 } |
|
2560 } |
|
2561 |
|
2562 |
|
2563 /****************************************************************************** |
|
2564 * Generic IPIs |
|
2565 ******************************************************************************/ |
|
2566 |
|
2567 TGenIPIList::TGenIPIList() |
|
2568 : iGenIPILock(TSpinLock::EOrderGenericIPIList) |
|
2569 { |
|
2570 } |
|
2571 |
|
2572 TGenIPIList GenIPIList; |
|
2573 |
|
2574 extern "C" { |
|
2575 extern void send_generic_ipis(TUint32); |
|
2576 |
|
2577 void generic_ipi_isr(TSubScheduler* aS) |
|
2578 { |
|
2579 TGenericIPI* ipi = aS->iNextIPI; |
|
2580 if (!ipi) |
|
2581 return; |
|
2582 TUint32 m = aS->iCpuMask; |
|
2583 SDblQueLink* anchor = &GenIPIList.iA; |
|
2584 while (ipi != anchor) |
|
2585 { |
|
2586 __e32_atomic_and_acq32(&ipi->iCpusIn, ~m); |
|
2587 (*ipi->iFunc)(ipi); |
|
2588 TInt irq = GenIPIList.iGenIPILock.LockIrqSave(); |
|
2589 TGenericIPI* n = (TGenericIPI*)ipi->iNext; |
|
2590 ipi->iCpusOut &= ~m; |
|
2591 if (ipi->iCpusOut == 0) |
|
2592 { |
|
2593 ipi->Deque(); |
|
2594 mb(); |
|
2595 ipi->iNext = 0; |
|
2596 } |
|
2597 ipi = n; |
|
2598 while (ipi!=anchor && !(ipi->iCpusIn & m)) |
|
2599 ipi = (TGenericIPI*)ipi->iNext; |
|
2600 if (ipi == anchor) |
|
2601 aS->iNextIPI = 0; |
|
2602 GenIPIList.iGenIPILock.UnlockIrqRestore(irq); |
|
2603 } |
|
2604 } |
|
2605 } |
|
2606 |
|
2607 void TGenericIPI::Queue(TGenericIPIFn aFunc, TUint32 aCpuMask) |
|
2608 { |
|
2609 __KTRACE_OPT(KSCHED2,DEBUGPRINT("GenIPI F=%08x M=%08x", aFunc, aCpuMask)); |
|
2610 iFunc = aFunc; |
|
2611 TScheduler& s = TheScheduler; |
|
2612 TInt i; |
|
2613 TUint32 ipis = 0; |
|
2614 TInt irq = GenIPIList.iGenIPILock.LockIrqSave(); |
|
2615 if (aCpuMask & 0x80000000u) |
|
2616 { |
|
2617 if (aCpuMask==0xffffffffu) |
|
2618 aCpuMask = s.iActiveCpus2; |
|
2619 else if (aCpuMask==0xfffffffeu) |
|
2620 aCpuMask = s.iActiveCpus2 &~ SubScheduler().iCpuMask; |
|
2621 else |
|
2622 aCpuMask = 0; |
|
2623 } |
|
2624 iCpusIn = aCpuMask; |
|
2625 iCpusOut = aCpuMask; |
|
2626 if (!aCpuMask) |
|
2627 { |
|
2628 GenIPIList.iGenIPILock.UnlockIrqRestore(irq); |
|
2629 iNext = 0; |
|
2630 return; |
|
2631 } |
|
2632 GenIPIList.Add(this); |
|
2633 for (i=0; i<s.iNumCpus; ++i) |
|
2634 { |
|
2635 if (!(aCpuMask & (1<<i))) |
|
2636 continue; |
|
2637 TSubScheduler& ss = *s.iSub[i]; |
|
2638 if (!ss.iNextIPI) |
|
2639 { |
|
2640 ss.iNextIPI = this; |
|
2641 ipis |= (1<<i); |
|
2642 } |
|
2643 } |
|
2644 send_generic_ipis(ipis); |
|
2645 GenIPIList.iGenIPILock.UnlockIrqRestore(irq); |
|
2646 __KTRACE_OPT(KSCHED2,DEBUGPRINT("GenIPI ipis=%08x", ipis)); |
|
2647 } |
|
2648 |
|
2649 void TGenericIPI::QueueAll(TGenericIPIFn aFunc) |
|
2650 { |
|
2651 Queue(aFunc, 0xffffffffu); |
|
2652 } |
|
2653 |
|
2654 void TGenericIPI::QueueAllOther(TGenericIPIFn aFunc) |
|
2655 { |
|
2656 Queue(aFunc, 0xfffffffeu); |
|
2657 } |
|
2658 |
|
2659 // Call from thread or IDFC with interrupts enabled |
|
2660 void TGenericIPI::WaitEntry() |
|
2661 { |
|
2662 CHECK_PRECONDITIONS(MASK_NOT_ISR|MASK_INTERRUPTS_ENABLED,"TGenericIPI::WaitEntry"); |
|
2663 while (iCpusIn) |
|
2664 { |
|
2665 __chill(); |
|
2666 } |
|
2667 mb(); |
|
2668 } |
|
2669 |
|
2670 // Call from thread or IDFC with interrupts enabled |
|
2671 void TGenericIPI::WaitCompletion() |
|
2672 { |
|
2673 CHECK_PRECONDITIONS(MASK_NOT_ISR|MASK_INTERRUPTS_ENABLED,"TGenericIPI::WaitCompletion"); |
|
2674 volatile TInt* p = (volatile TInt*)&iNext; |
|
2675 while (*p) |
|
2676 { |
|
2677 __chill(); |
|
2678 } |
|
2679 mb(); |
|
2680 } |
|
2681 |
|
2682 /** Stop all other CPUs |
|
2683 |
|
2684 Call with kernel locked |
|
2685 */ |
|
2686 void TStopIPI::StopCPUs() |
|
2687 { |
|
2688 iFlag = 0; |
|
2689 QueueAllOther(&Isr); // send IPIs to all other CPUs |
|
2690 WaitEntry(); // wait for other CPUs to reach the ISR |
|
2691 } |
|
2692 |
|
2693 void TStopIPI::ReleaseCPUs() |
|
2694 { |
|
2695 iFlag = 1; // allow other CPUs to proceed |
|
2696 WaitCompletion(); // wait for them to finish with this IPI |
|
2697 } |
|
2698 |
|
2699 void TStopIPI::Isr(TGenericIPI* a) |
|
2700 { |
|
2701 TStopIPI* s = (TStopIPI*)a; |
|
2702 while (!s->iFlag) |
|
2703 { |
|
2704 __chill(); |
|
2705 } |
|
2706 } |
|
2707 |
|
2708 |