|
1 // Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of the License "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // e32test\lffs\t_lfsdrv2.cpp |
|
15 // Test the LFFS Flash media driver |
|
16 // |
|
17 // |
|
18 |
|
19 #include <e32test.h> |
|
20 #include <e32svr.h> |
|
21 #include <e32hal.h> |
|
22 #include <e32uid.h> |
|
23 #include <hal.h> |
|
24 #include "u32std.h" |
|
25 #include "..\misc\prbs.h" |
|
26 |
|
27 _LIT(KTestName,"T_LFSDRV"); |
|
28 _LIT(KMediaDriverName,"MEDLFS"); |
|
29 _LIT(KDot,"."); |
|
30 _LIT(KSemiColon,";"); |
|
31 |
|
32 RTest test(KTestName); |
|
33 TBusLocalDrive Drive; |
|
34 TInt DriveNumber; |
|
35 TLocalDriveCapsV7 DriveCaps; // Required for M18 devices |
|
36 TBool ChangedFlag; |
|
37 TUint32 EbSz; |
|
38 TUint32 Size; |
|
39 |
|
40 const TInt KBufferSize=4096; |
|
41 const TInt KBigBufferSize=4096*4; |
|
42 TUint8 Buffer[KBigBufferSize]; |
|
43 |
|
44 #ifdef _DEBUG |
|
45 /*************************************************** |
|
46 * ControlIO command types - for debug builds, only |
|
47 ***************************************************/ |
|
48 enum TCtrlIoTypes |
|
49 { |
|
50 ECtrlIoRww=0, |
|
51 ECtrlIoTimeout=1 |
|
52 }; |
|
53 // Used only for the ControlIO tests |
|
54 #define TYAX_PARTITION_SIZE 0x00200000 // Partition size for TYAX is 1MB; 2 devices in parallel |
|
55 #endif |
|
56 |
|
57 |
|
58 /****************************************************************************** |
|
59 * Extra thread for background erase |
|
60 ******************************************************************************/ |
|
61 struct SEraseInfo |
|
62 { |
|
63 TInt iFirstBlock; |
|
64 TInt iNumBlocks; |
|
65 }; |
|
66 |
|
67 volatile TInt Block; |
|
68 TInt EraseThreadFn(TAny* aPtr) |
|
69 { |
|
70 SEraseInfo& e=*(SEraseInfo*)aPtr; |
|
71 TInt r=KErrNone; |
|
72 for (Block=e.iFirstBlock; Block<e.iFirstBlock+e.iNumBlocks; ++Block) |
|
73 { |
|
74 TInt64 pos64 = MAKE_TINT64(0, Block*EbSz); |
|
75 r=Drive.Format(pos64,EbSz); |
|
76 if (r!=KErrNone) |
|
77 return r; |
|
78 } |
|
79 return KErrNone; |
|
80 } |
|
81 |
|
82 SEraseInfo EraseInfo; |
|
83 RThread EraseThread; |
|
84 TRequestStatus EraseStatus; |
|
85 const TInt KHeapSize=0x4000; |
|
86 |
|
87 _LIT(KEraseThreadName,"Eraser"); |
|
88 TInt StartAsyncErase(TInt aFirstBlock, TInt aNumBlocks) |
|
89 { |
|
90 EraseInfo.iFirstBlock=aFirstBlock; |
|
91 EraseInfo.iNumBlocks=aNumBlocks; |
|
92 TInt r=EraseThread.Create(KEraseThreadName,EraseThreadFn,0x4000,KHeapSize,KHeapSize,&EraseInfo,EOwnerThread); |
|
93 if (r!=KErrNone) |
|
94 return r; |
|
95 EraseThread.Logon(EraseStatus); |
|
96 EraseThread.Resume(); |
|
97 return KErrNone; |
|
98 } |
|
99 |
|
100 TInt WaitForAsyncErase() |
|
101 { |
|
102 User::WaitForRequest(EraseStatus); |
|
103 TInt exitType=EraseThread.ExitType(); |
|
104 TInt exitReason=EraseThread.ExitReason(); |
|
105 TBuf<16> exitCat=EraseThread.ExitCategory(); |
|
106 if((exitType!= EExitKill)||(exitReason!=KErrNone)) |
|
107 { |
|
108 test.Printf(_L("Async erase error: %d, block %d\n"),EraseStatus.Int(),Block); |
|
109 test.Printf(_L("Thread exit reason: %d,%d,%S\n"),exitType,exitReason,&exitCat); |
|
110 test(0); |
|
111 } |
|
112 EraseThread.Close(); |
|
113 |
|
114 TUint32 pos=EraseInfo.iFirstBlock*EbSz; |
|
115 TUint32 endpos=pos+EraseInfo.iNumBlocks*EbSz; |
|
116 test.Printf(_L("\nAsync erase completed; verifying...\n")); |
|
117 for (; pos<endpos; pos+=KBufferSize) |
|
118 { |
|
119 TInt64 pos64 = MAKE_TINT64(0, pos); |
|
120 TPtr8 ptr(Buffer,0,KBufferSize); |
|
121 Mem::FillZ(Buffer,KBufferSize); |
|
122 TInt r=Drive.Read(pos64,KBufferSize,ptr); |
|
123 test(r==KErrNone); |
|
124 test(ptr.Length()==KBufferSize); |
|
125 const TUint32* pB=(const TUint32*)Buffer; |
|
126 const TUint32* pE=(const TUint32*)(Buffer+KBufferSize); |
|
127 while (pB<pE && *pB==0xffffffff) ++pB; |
|
128 if (pB<pE) |
|
129 { |
|
130 test.Printf(_L("ERROR: pos %08x data %08x\n"),((TUint32)pB)-((TUint32)Buffer)+pos,*pB); |
|
131 test(0); |
|
132 } |
|
133 test.Printf(KDot); |
|
134 } |
|
135 test.Printf(_L("\n")); |
|
136 return KErrNone; |
|
137 } |
|
138 |
|
139 /****************************************************************************** |
|
140 * Extra thread for background write, for use in the read-while-write tests |
|
141 ******************************************************************************/ |
|
142 TUint seed[2]; |
|
143 |
|
144 TInt WriteThreadFn(TAny* aPtr) |
|
145 { |
|
146 // re-use the struct created for the erase thread |
|
147 SEraseInfo& e=*(SEraseInfo*)aPtr; |
|
148 TInt r=KErrNone; |
|
149 |
|
150 TPtrC8 wptr(Buffer,KBufferSize); |
|
151 TUint32* pB=(TUint32*)Buffer; |
|
152 TUint32* pE=(TUint32*)(Buffer+KBufferSize); |
|
153 while (pB<pE) |
|
154 *pB++=Random(seed); |
|
155 |
|
156 for (Block=e.iFirstBlock; Block<e.iFirstBlock+e.iNumBlocks; ++Block) |
|
157 { |
|
158 TInt64 pos64 = MAKE_TINT64(0, Block*EbSz); |
|
159 r=Drive.Write(pos64,wptr); |
|
160 if (r!=KErrNone) |
|
161 return r; |
|
162 } |
|
163 return KErrNone; |
|
164 } |
|
165 |
|
166 RThread WriteThread; |
|
167 TRequestStatus WriteStatus; |
|
168 |
|
169 _LIT(KWriteThreadName,"Writer"); |
|
170 TInt StartAsyncWrite(TInt aFirstBlock, TInt aNumBlocks) |
|
171 { |
|
172 // re-use the struct created for the erase thread |
|
173 EraseInfo.iFirstBlock=aFirstBlock; |
|
174 EraseInfo.iNumBlocks=aNumBlocks; |
|
175 TInt r=WriteThread.Create(KWriteThreadName,WriteThreadFn,0x4000,KHeapSize,KHeapSize,&EraseInfo,EOwnerThread); |
|
176 if (r!=KErrNone) |
|
177 return r; |
|
178 WriteThread.Logon(WriteStatus); |
|
179 WriteThread.Resume(); |
|
180 return KErrNone; |
|
181 } |
|
182 |
|
183 TInt WaitForAsyncWrite() |
|
184 { |
|
185 User::WaitForRequest(WriteStatus); |
|
186 TInt exitType=WriteThread.ExitType(); |
|
187 TInt exitReason=WriteThread.ExitReason(); |
|
188 TBuf<16> exitCat=WriteThread.ExitCategory(); |
|
189 if((exitType!= EExitKill)||(exitReason!=KErrNone)) |
|
190 { |
|
191 test.Printf(_L("Async Write error: %d, block %d\n"),WriteStatus.Int(),Block); |
|
192 test.Printf(_L("Thread exit reason: %d,%d,%S\n"),exitType,exitReason,&exitCat); |
|
193 test(0); |
|
194 } |
|
195 WriteThread.Close(); |
|
196 // No verification performed |
|
197 test.Printf(_L("\n")); |
|
198 return KErrNone; |
|
199 } |
|
200 |
|
201 /****************************************************************************** |
|
202 * Control mode and Object mode test functions |
|
203 ******************************************************************************/ |
|
204 TInt DoControlModeWriteAndVerify(TUint32 aPattern, TUint32 aStartOffset) |
|
205 { |
|
206 // Writes 4K bytes of a given pattern to the "A" half of programming regions, |
|
207 // starting at the specified offset, then reads the data back to verify it |
|
208 |
|
209 TUint32* pB=(TUint32*)(Buffer); |
|
210 TUint32* pE=(TUint32*)(Buffer + KBufferSize); |
|
211 TInt r=KErrNone; |
|
212 |
|
213 // Fill the entire buffer with an initial value |
|
214 while (pB<pE) |
|
215 *pB++= aPattern; |
|
216 |
|
217 // In this mode, half the device is available for writing, the other half is reserved; |
|
218 // the available half appears as the first DriveCaps.iControlModeSize bytes, the reserved |
|
219 // half as the following DriveCaps.iControlModeSize, and this alternating continues. |
|
220 // To perform this discrete-write test, therefore, the data held in Buffer that corresponds |
|
221 // to the reserved area is overwritten with 0xFF; 'writing' this value to the reserved area |
|
222 // has no detrimental effect. |
|
223 TInt i; |
|
224 TUint32 b; |
|
225 pB=(TUint32*)Buffer; |
|
226 for(i=0; i< KBufferSize; i+=(DriveCaps.iControlModeSize*2)) |
|
227 { |
|
228 pB = (TUint32 *)((TUint32)pB + DriveCaps.iControlModeSize); |
|
229 for (b=0; b < DriveCaps.iControlModeSize; b+=4) |
|
230 { |
|
231 *pB = 0xFFFFFFFF; |
|
232 pB++; |
|
233 } |
|
234 } |
|
235 // Write the data |
|
236 for (i=0; i<KBufferSize; i+=(4*DriveCaps.iControlModeSize)) |
|
237 { |
|
238 TInt64 pos64(i + aStartOffset); |
|
239 TPtrC8 ptr(Buffer+i,(4*DriveCaps.iControlModeSize)); |
|
240 r=Drive.Write(pos64,ptr); |
|
241 test(r==KErrNone); |
|
242 } |
|
243 // Check what has been written |
|
244 Mem::FillZ(Buffer,KBigBufferSize); |
|
245 TPtr8 buf(Buffer,0,KBufferSize); |
|
246 r=Drive.Read(aStartOffset,KBufferSize,buf); |
|
247 test(r==KErrNone); |
|
248 pB=(TUint32*)Buffer; |
|
249 for(i=0; i< KBufferSize; i+=(DriveCaps.iControlModeSize*2)) |
|
250 { |
|
251 for (b=0; b< DriveCaps.iControlModeSize; b+=4) |
|
252 { |
|
253 if(*pB++ != aPattern) |
|
254 { |
|
255 test.Printf(_L("ERROR: addr %08x data %08x expected %08x\n"),pB,*pB,aPattern); |
|
256 r=KErrCorrupt; |
|
257 break; |
|
258 } |
|
259 } |
|
260 for (b=0; b< DriveCaps.iControlModeSize; b+=4) |
|
261 { |
|
262 if(*pB++ != 0xFFFFFFFF) |
|
263 { |
|
264 test.Printf(_L("ERROR: addr %08x data %08x expected 0xFFFFFFFF\n"),pB,*pB); |
|
265 r=KErrCorrupt; |
|
266 break; |
|
267 } |
|
268 } |
|
269 } |
|
270 return r; |
|
271 } |
|
272 |
|
273 TInt DoObjectModeWriteAndVerify(TUint32 aOffset, TUint32 aSize) |
|
274 { |
|
275 // Writes 'aSize' bytes of a 'random' pattern to the specified offset |
|
276 // then read back and verify |
|
277 TInt r=KErrNone; |
|
278 |
|
279 // Check that aSize is valid |
|
280 if(aSize>DriveCaps.iObjectModeSize) |
|
281 { |
|
282 test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - aSize=%x is greater than max (%x)\n"),aSize,DriveCaps.iObjectModeSize); |
|
283 return KErrArgument; |
|
284 } |
|
285 // write the data |
|
286 TUint seed[2]; |
|
287 seed[0]=0xb17217f8; |
|
288 seed[1]=0; |
|
289 TInt64 pos64 = MAKE_TINT64(0, aOffset); |
|
290 TPtrC8 ptr(Buffer,aSize); |
|
291 TUint32* pB=(TUint32*)Buffer; |
|
292 TUint32* pE=(TUint32*)(Buffer+aSize); |
|
293 while (pB<pE) |
|
294 *pB++=Random(seed); |
|
295 r=Drive.Write(pos64,ptr); |
|
296 if(r!=KErrNone) |
|
297 { |
|
298 return r; |
|
299 } |
|
300 |
|
301 // Read the data back |
|
302 seed[0]=0xb17217f8; |
|
303 seed[1]=0; |
|
304 TPtr8 rptr(Buffer,0,aSize); |
|
305 Mem::FillZ(Buffer,aSize); |
|
306 r=Drive.Read(pos64,aSize,rptr); |
|
307 if(r!=KErrNone) |
|
308 { |
|
309 test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - Read returned %d\n"),r); |
|
310 return r; |
|
311 } |
|
312 test((TUint32)(rptr.Length())==aSize); |
|
313 |
|
314 // Verify the content |
|
315 pB=(TUint32*)Buffer; |
|
316 pE=(TUint32*)(Buffer+aSize); |
|
317 TUint32 ex=0; |
|
318 while (pB<pE && (ex=Random(seed),*pB==ex)) ++pB; |
|
319 if (pB<pE) |
|
320 { |
|
321 test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - addr %08x data %08x expected %08x\n"),pB,*pB,ex); |
|
322 r=KErrCorrupt; |
|
323 } |
|
324 return r; |
|
325 } |
|
326 |
|
327 |
|
328 TInt DoControlModeBoundaryWriteAndVerify() |
|
329 { |
|
330 // |
|
331 |
|
332 TInt r=KErrNone; |
|
333 //test.Printf(_L("Entering: DoControlModeBoundaryWriteAndVerify - Start Test\n")); |
|
334 |
|
335 r=Drive.Format(0,DriveCaps.iEraseBlockSize); |
|
336 test(r==KErrNone); |
|
337 |
|
338 // Program into the last Control mode region in the programming region. |
|
339 TInt64 pos64 = MAKE_TINT64(0, (DriveCaps.iObjectModeSize - (DriveCaps.iControlModeSize*2))); |
|
340 TPtrC8 ptr(Buffer,DriveCaps.iControlModeSize); |
|
341 TUint32* pB=(TUint32*)Buffer; |
|
342 TUint32* pE=(TUint32*)(Buffer+DriveCaps.iControlModeSize); |
|
343 while (pB<pE) |
|
344 *pB++=0xb4b4a5a5; |
|
345 r=Drive.Write(pos64,ptr); |
|
346 if(r!=KErrNone) |
|
347 { |
|
348 test.Printf(_L("ERROR: DoControlModeBoundaryWriteAndVerify - Write 1\n")); |
|
349 return r; |
|
350 } |
|
351 |
|
352 // Program into the next programming region starting at the first byte up to the size of the Control Mode Size. |
|
353 pos64 = MAKE_TINT64(0, DriveCaps.iObjectModeSize); |
|
354 r=Drive.Write(pos64,ptr); |
|
355 if(r!=KErrNone) |
|
356 { |
|
357 test.Printf(_L("ERROR: DoControlModeBoundaryWriteAndVerify - Write 2\n")); |
|
358 return r; |
|
359 } |
|
360 |
|
361 // Read the data back from the first program |
|
362 pos64 = MAKE_TINT64(0, (DriveCaps.iObjectModeSize - (DriveCaps.iControlModeSize*2))); |
|
363 TPtr8 rptr(Buffer,0,(TInt)DriveCaps.iControlModeSize); |
|
364 Mem::FillZ(Buffer,DriveCaps.iControlModeSize); |
|
365 r=Drive.Read(pos64,DriveCaps.iControlModeSize,rptr); |
|
366 if(r!=KErrNone) |
|
367 { |
|
368 test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - Read returned %d\n"),r); |
|
369 return r; |
|
370 } |
|
371 test((TUint32)(rptr.Length())==DriveCaps.iControlModeSize); |
|
372 |
|
373 // Verify the content |
|
374 pB=(TUint32*)Buffer; |
|
375 pE=(TUint32*)(Buffer+DriveCaps.iControlModeSize); |
|
376 TUint32 ex=0xb4b4a5a5; |
|
377 while (pB<pE && (*pB==ex)) ++pB; |
|
378 if (pB<pE) |
|
379 { |
|
380 test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - addr %08x data %08x expected %08x\n"),pB,*pB,ex); |
|
381 r=KErrCorrupt; |
|
382 } |
|
383 |
|
384 // Read the data back from the second program |
|
385 pos64 = MAKE_TINT64(0, DriveCaps.iObjectModeSize); |
|
386 TPtr8 rptr2(Buffer,0,((TInt)DriveCaps.iControlModeSize)); |
|
387 Mem::FillZ(Buffer,DriveCaps.iControlModeSize); |
|
388 r=Drive.Read(pos64,DriveCaps.iControlModeSize,rptr2); |
|
389 if(r!=KErrNone) |
|
390 { |
|
391 test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - Read returned %d\n"),r); |
|
392 return r; |
|
393 } |
|
394 test((TUint32)(rptr2.Length())==DriveCaps.iControlModeSize); |
|
395 |
|
396 // Verify the content |
|
397 pB=(TUint32*)Buffer; |
|
398 pE=(TUint32*)(Buffer+DriveCaps.iControlModeSize); |
|
399 ex=0xb4b4a5a5; |
|
400 while (pB<pE && (*pB==ex)) ++pB; |
|
401 if (pB<pE) |
|
402 { |
|
403 test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - addr %08x data %08x expected %08x\n"),pB,*pB,ex); |
|
404 r=KErrCorrupt; |
|
405 } |
|
406 |
|
407 // Bit Twiddle the last bit of the last Control Mode Region |
|
408 // Then bit twiddle the first bit of the first control Mode region. |
|
409 |
|
410 // Program into the last Control mode region in the programming region. |
|
411 pos64 = MAKE_TINT64(0, (DriveCaps.iObjectModeSize - DriveCaps.iControlModeSize - 4)); |
|
412 TPtrC8 ptr2(Buffer,4); |
|
413 TUint32* pC=(TUint32*)Buffer; |
|
414 *pC = 0xFFFFFFFE; |
|
415 r=Drive.Write(pos64,ptr2); |
|
416 if(r!=KErrNone) |
|
417 { |
|
418 test.Printf(_L("ERROR: DoControlModeBoundaryWriteAndVerify - Write 3\n")); |
|
419 |
|
420 return r; |
|
421 } |
|
422 |
|
423 // Read the data back from the first program |
|
424 pos64 = MAKE_TINT64(0, (DriveCaps.iObjectModeSize - DriveCaps.iControlModeSize - 4)); |
|
425 TPtr8 rptr3(Buffer,0,4); |
|
426 Mem::FillZ(Buffer,4); |
|
427 r=Drive.Read(pos64,4,rptr3); |
|
428 if(r!=KErrNone) |
|
429 { |
|
430 test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - Read returned %d\n"),r); |
|
431 return r; |
|
432 } |
|
433 test(rptr3.Length()==4); |
|
434 |
|
435 // Verify the content |
|
436 pB=(TUint32*)Buffer; |
|
437 if (*pB != 0xb4b4a5a4) |
|
438 { |
|
439 test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - addr %08x data %08x expected 0xb4b4a5a4\n"),pB,*pB); |
|
440 r=KErrCorrupt; |
|
441 } |
|
442 |
|
443 // Program into the last Control mode region in the programming region. |
|
444 pos64 = MAKE_TINT64(0, DriveCaps.iObjectModeSize); |
|
445 TPtrC8 ptr3(Buffer,4); |
|
446 pC=(TUint32*)Buffer; |
|
447 *pC = 0x7FFFFFFF; |
|
448 r=Drive.Write(pos64,ptr3); |
|
449 if(r!=KErrNone) |
|
450 { |
|
451 test.Printf(_L("ERROR: DoControlModeBoundaryWriteAndVerify - Write 4\n")); |
|
452 |
|
453 return r; |
|
454 } |
|
455 |
|
456 // Read the data back from the first program |
|
457 pos64 = MAKE_TINT64(0, DriveCaps.iObjectModeSize); |
|
458 TPtr8 rptr4(Buffer,0,4); |
|
459 Mem::FillZ(Buffer,4); |
|
460 r=Drive.Read(pos64,4,rptr4); |
|
461 if(r!=KErrNone) |
|
462 { |
|
463 test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - Read returned %d\n"),r); |
|
464 return r; |
|
465 } |
|
466 test(rptr4.Length()==4); |
|
467 |
|
468 // Verify the content |
|
469 pB=(TUint32*)Buffer; |
|
470 if (*pB != 0x34b4a5a5) |
|
471 { |
|
472 test.Printf(_L("ERROR: DoObjectModeWriteAndVerify - addr %08x data %08x expected 0x34b4a5a5\n"),pB,*pB); |
|
473 r=KErrCorrupt; |
|
474 } |
|
475 |
|
476 return r; |
|
477 } |
|
478 |
|
479 |
|
480 |
|
481 |
|
482 /****************************************************************************** |
|
483 * Main test program |
|
484 ******************************************************************************/ |
|
485 GLDEF_C TInt E32Main() |
|
486 { |
|
487 test.Title(); |
|
488 |
|
489 /****************************************************************************** |
|
490 * Initialisation |
|
491 ******************************************************************************/ |
|
492 TDriveInfoV1Buf diBuf; |
|
493 UserHal::DriveInfo(diBuf); |
|
494 TDriveInfoV1 &di=diBuf(); |
|
495 test.Start(_L("Test the LFFS media driver")); |
|
496 test.Printf(_L("DRIVES PRESENT :%d\r\n"),di.iTotalSupportedDrives); |
|
497 test.Printf(_L("C:(1ST) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[0]); |
|
498 test.Printf(_L("D:(2ND) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[1]); |
|
499 test.Printf(_L("E:(3RD) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[2]); |
|
500 test.Printf(_L("F:(4TH) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[3]); |
|
501 test.Printf(_L("G:(5TH) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[4]); |
|
502 test.Printf(_L("H:(6TH) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[5]); |
|
503 test.Printf(_L("I:(7TH) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[6]); |
|
504 test.Printf(_L("J:(8TH) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[7]); |
|
505 test.Printf(_L("K:(9TH) DRIVE NAME :%- 16S\r\n"),&di.iDriveName[8]); |
|
506 |
|
507 test.Printf(_L("\r\nWarning - all data on LFFS drive will be lost.\r\n")); |
|
508 test.Printf(_L("<<<Select drive to continue>>>\r\n")); |
|
509 FOREVER |
|
510 { |
|
511 TChar c=(TUint)test.Getch(); |
|
512 c.UpperCase(); |
|
513 DriveNumber=((TUint)c)-'C'; |
|
514 if (DriveNumber>=0&&DriveNumber<='C'+ 8) |
|
515 break; |
|
516 } |
|
517 |
|
518 test.Next(_L("Load media driver")); |
|
519 TInt r=User::LoadPhysicalDevice(KMediaDriverName); |
|
520 test(r==KErrNone || r==KErrAlreadyExists); |
|
521 |
|
522 test.Next(_L("Connect to drive")); |
|
523 r=Drive.Connect(DriveNumber,ChangedFlag); |
|
524 test(r==KErrNone); |
|
525 test.Next(_L("Get capabilities")); |
|
526 |
|
527 DriveCaps.iControlModeSize=0; // If test invoked for a chip other than Sibley then this element will not be updated |
|
528 DriveCaps.iObjectModeSize=0; // If test invoked for a chip other than Sibley then this element will not be updated |
|
529 TPckg<TLocalDriveCapsV7> capsPckg(DriveCaps); |
|
530 r=Drive.Caps(capsPckg); |
|
531 |
|
532 test(r==KErrNone); |
|
533 test.Printf(_L("Size : %08x\n"),I64LOW(DriveCaps.iSize)); |
|
534 test.Printf(_L("Type : %d\n"),DriveCaps.iType); |
|
535 test.Printf(_L("BatState : %d\n"),DriveCaps.iBattery); |
|
536 test.Printf(_L("DriveAtt : %02x\n"),DriveCaps.iDriveAtt); |
|
537 test.Printf(_L("MediaAtt : %02x\n"),DriveCaps.iMediaAtt); |
|
538 test.Printf(_L("BaseAddress : %08x\n"),DriveCaps.iBaseAddress); |
|
539 test.Printf(_L("FileSysID : %d\n"),DriveCaps.iFileSystemId); |
|
540 test.Printf(_L("Hidden sectors : %d\n"),DriveCaps.iHiddenSectors); |
|
541 test.Printf(_L("Erase block size: %d\n"),DriveCaps.iEraseBlockSize); |
|
542 |
|
543 test.Printf(_L("Partition size: %d\n"),DriveCaps.iPartitionSize); |
|
544 test.Printf(_L("Control Mode size: %d\n"),DriveCaps.iControlModeSize); |
|
545 test.Printf(_L("Object Mode size: %d\n"),DriveCaps.iObjectModeSize); |
|
546 test.Printf(_L("Press any key...\n\n")); |
|
547 test.Getch(); |
|
548 |
|
549 test(DriveCaps.iDriveAtt==(KDriveAttLocal|KDriveAttInternal)); |
|
550 test((DriveCaps.iMediaAtt&KMediaAttFormattable)==(KMediaAttFormattable)); // Apply mask since other flags may be set |
|
551 |
|
552 #if defined(_DEBUG) && defined(_WINS) |
|
553 /****************************************************************************** |
|
554 * Simulate device timeout |
|
555 ******************************************************************************/ |
|
556 test.Next(_L("Timeout")); |
|
557 EbSz=DriveCaps.iEraseBlockSize; |
|
558 r=Drive.Format(0,EbSz); |
|
559 test(r==KErrNone); |
|
560 r=Drive.ControlIO(ECtrlIoTimeout, NULL, NULL); |
|
561 |
|
562 if(r!=KErrNotSupported) |
|
563 { |
|
564 if(r==KErrNone) |
|
565 { |
|
566 // Test timeout behaviour for Write operation |
|
567 TPtrC8 ptr(Buffer,1); |
|
568 r=Drive.Write(0,ptr); |
|
569 test(r==KErrNotReady); |
|
570 // Test condition now cleared, ensure normal operation is OK |
|
571 r=Drive.Write(0,ptr); |
|
572 test(r==KErrNone); |
|
573 // Test timeout behaviour for Format operation |
|
574 r=Drive.ControlIO(ECtrlIoTimeout, NULL, NULL); |
|
575 test(r==KErrNone); |
|
576 r=Drive.Format(0,EbSz); |
|
577 test(r==KErrNotReady); |
|
578 // Cleanup |
|
579 r=Drive.Format(0,EbSz); |
|
580 test(r==KErrNone); |
|
581 } |
|
582 else |
|
583 { |
|
584 test.Printf(_L("Timeout ControlIO failed initialisation\n")); |
|
585 test(0); // Cannot proceed with this test |
|
586 } |
|
587 } |
|
588 else |
|
589 { |
|
590 test.Printf(_L("Timeout ControlIO not supported\n")); |
|
591 } |
|
592 |
|
593 test.Printf(_L("Press any key...\n")); |
|
594 test.Getch(); |
|
595 #endif |
|
596 |
|
597 /****************************************************************************** |
|
598 * Formatting |
|
599 ******************************************************************************/ |
|
600 test.Next(_L("Format")); |
|
601 TUint32 pos; |
|
602 EbSz=DriveCaps.iEraseBlockSize; |
|
603 Size=I64LOW(DriveCaps.iSize); |
|
604 // Reduce size so test doesn't take forever |
|
605 if (Size>8*EbSz) |
|
606 Size=8*EbSz; |
|
607 |
|
608 for (pos=0; pos<Size; pos+=EbSz) |
|
609 { |
|
610 TInt64 pos64 = MAKE_TINT64(0, pos); |
|
611 r=Drive.Format(pos64,EbSz); |
|
612 test(r==KErrNone); |
|
613 test.Printf(KDot); |
|
614 } |
|
615 test.Next(_L("\nVerify")); |
|
616 for (pos=0; pos<Size; pos+=KBufferSize) |
|
617 { |
|
618 TInt64 pos64 = MAKE_TINT64(0, pos); |
|
619 TPtr8 ptr(Buffer,0,KBufferSize); |
|
620 Mem::FillZ(Buffer,KBigBufferSize); |
|
621 r=Drive.Read(pos64,KBufferSize,ptr); |
|
622 test(r==KErrNone); |
|
623 test(ptr.Length()==KBufferSize); |
|
624 const TUint32* pB=(const TUint32*)Buffer; |
|
625 const TUint32* pE=(const TUint32*)(Buffer+KBufferSize); |
|
626 while (pB<pE && *pB==0xffffffff) ++pB; |
|
627 if (pB<pE) |
|
628 { |
|
629 test.Printf(_L("ERROR: addr %08x data %08x\n"),pB,*pB); |
|
630 test(0); |
|
631 } |
|
632 test.Printf(KDot); |
|
633 } |
|
634 test.Printf(_L("\nPress any key...\n\n")); |
|
635 test.Getch(); |
|
636 |
|
637 /****************************************************************************** |
|
638 * Large block writes |
|
639 ******************************************************************************/ |
|
640 test.Next(_L("Write")); |
|
641 TUint seed[2]; |
|
642 seed[0]=0xb17217f8; |
|
643 seed[1]=0; |
|
644 for (pos=0; pos<Size; pos+=KBufferSize) |
|
645 { |
|
646 TInt64 pos64 = MAKE_TINT64(0, pos); |
|
647 TPtrC8 ptr(Buffer,KBufferSize); |
|
648 TUint32* pB=(TUint32*)Buffer; |
|
649 TUint32* pE=(TUint32*)(Buffer+KBufferSize); |
|
650 while (pB<pE) |
|
651 *pB++=Random(seed); |
|
652 r=Drive.Write(pos64,ptr); |
|
653 test(r==KErrNone); |
|
654 test.Printf(KDot); |
|
655 } |
|
656 test.Printf(_L("\n")); |
|
657 test.Next(_L("Verify")); |
|
658 seed[0]=0xb17217f8; |
|
659 seed[1]=0; |
|
660 for (pos=0; pos<Size; pos+=KBufferSize) |
|
661 { |
|
662 TInt64 pos64 = MAKE_TINT64(0, pos); |
|
663 TPtr8 ptr(Buffer,0,KBufferSize); |
|
664 Mem::FillZ(Buffer,KBigBufferSize); |
|
665 r=Drive.Read(pos64,KBufferSize,ptr); |
|
666 test(r==KErrNone); |
|
667 test(ptr.Length()==KBufferSize); |
|
668 const TUint32* pB=(const TUint32*)Buffer; |
|
669 const TUint32* pE=(const TUint32*)(Buffer+KBufferSize); |
|
670 TUint32 ex=0; |
|
671 while (pB<pE && (ex=Random(seed),*pB==ex)) ++pB; |
|
672 if (pB<pE) |
|
673 { |
|
674 test.Printf(_L("ERROR: addr %08x data %08x expected %08x\n"),pB,*pB,ex); |
|
675 test(0); |
|
676 } |
|
677 test.Printf(KDot); |
|
678 } |
|
679 |
|
680 test.Printf(_L("\nPress any key...\n\n")); |
|
681 test.Getch(); |
|
682 |
|
683 /****************************************************************************** |
|
684 * Single byte writes |
|
685 ******************************************************************************/ |
|
686 test.Next(_L("Format first block")); |
|
687 r=Drive.Format(0,EbSz); |
|
688 test(r==KErrNone); |
|
689 test.Next(_L("Single byte writes")); |
|
690 seed[0]=0x317b106f; |
|
691 seed[1]=0; |
|
692 TUint32* pB=(TUint32*)Buffer; |
|
693 TUint32* pE=(TUint32*)(Buffer+KBufferSize); |
|
694 while (pB<pE) |
|
695 *pB++= Random(seed); |
|
696 |
|
697 // For M18 devices, this test requires control mode operation. |
|
698 // In this mode, half the device is available for writing, the other half is reserved; |
|
699 // the available half appears as the first DriveCaps.iControlModeSize bytes, the reserved |
|
700 // half as the following DriveCaps.iControlModeSize, and this alternating continues. |
|
701 // To perform this discrete-write test, therefore, the data held in Buffer that corresponds |
|
702 // to the reserved area is overwritten with 0xFF; 'writing' this value to the reserved area |
|
703 // has no detrimental effect. |
|
704 TInt i; |
|
705 TUint32 b; |
|
706 if (DriveCaps.iControlModeSize > 0) |
|
707 { |
|
708 pB=(TUint32*)Buffer; |
|
709 for(i=0; i< KBufferSize; i+=(DriveCaps.iControlModeSize*2)) |
|
710 { |
|
711 pB = (TUint32 *)((TUint32)pB + DriveCaps.iControlModeSize); |
|
712 for (b=0; b < DriveCaps.iControlModeSize; b+=4) |
|
713 { |
|
714 *pB = 0xFFFFFFFF; |
|
715 pB++; |
|
716 } |
|
717 } |
|
718 } |
|
719 |
|
720 #if 0 |
|
721 // Debug - print content of buffer |
|
722 test.Printf(_L("Content of buffer after inserting 0xFFFFFFFFs follows\n")); |
|
723 i=0; |
|
724 TUint32* verifyPtr=(TUint32*)Buffer; |
|
725 while(i<KBufferSize) |
|
726 { |
|
727 test.Printf(_L("%8x %8X %8X\n"),i+=8,*verifyPtr++,*verifyPtr++); |
|
728 } |
|
729 #endif |
|
730 |
|
731 for (i=0; i<KBufferSize; ++i) |
|
732 { |
|
733 TInt64 pos64(i); |
|
734 TPtrC8 ptr(Buffer+i,1); |
|
735 r=Drive.Write(pos64,ptr); |
|
736 test(r==KErrNone); |
|
737 if (!(i%16)) |
|
738 test.Printf(KDot); |
|
739 } |
|
740 test.Printf(_L("\n")); |
|
741 test.Next(_L("Verify")); |
|
742 Mem::FillZ(Buffer,KBigBufferSize); |
|
743 TPtr8 buf(Buffer,0,KBufferSize); |
|
744 r=Drive.Read(0,KBufferSize,buf); |
|
745 test(r==KErrNone); |
|
746 seed[0]=0x317b106f; |
|
747 seed[1]=0; |
|
748 pB=(TUint32*)Buffer; |
|
749 TUint32 ex=0; |
|
750 if (DriveCaps.iControlModeSize > 0) |
|
751 { |
|
752 pB=(TUint32*)Buffer; |
|
753 for(i=0; i< KBufferSize; i+=(DriveCaps.iControlModeSize*2)) |
|
754 { |
|
755 for (b=0; b< DriveCaps.iControlModeSize; b+=4) |
|
756 { |
|
757 ex=Random(seed); |
|
758 if(*pB++ != ex) |
|
759 { |
|
760 test.Printf(_L("ERROR: addr %08x data %08x expected %08x\n"),pB,*pB,ex); |
|
761 break; |
|
762 } |
|
763 } |
|
764 for (b=0; b< DriveCaps.iControlModeSize; b+=4) |
|
765 { |
|
766 ex=Random(seed); |
|
767 if(*pB++ != 0xFFFFFFFF) |
|
768 { |
|
769 test.Printf(_L("ERROR: addr %08x data %08x expected 0xFF\n"),pB,*pB); |
|
770 break; |
|
771 } |
|
772 } |
|
773 if (!((i+1)%64)) |
|
774 test.Printf(KDot); |
|
775 |
|
776 } |
|
777 } |
|
778 else |
|
779 { |
|
780 while (pB<pE && (ex=Random(seed),*pB==ex)) ++pB; |
|
781 } |
|
782 if (pB<pE) |
|
783 { |
|
784 test.Printf(_L("ERROR: addr %08x data %08x expected %08x\n"),pB,*pB,ex); |
|
785 test(0); |
|
786 } |
|
787 |
|
788 test.Printf(_L("Single byte writes OK\n")); |
|
789 |
|
790 test.Printf(_L("Press any key...\n\n")); |
|
791 test.Getch(); |
|
792 |
|
793 /****************************************************************************** |
|
794 * Random length writes |
|
795 ******************************************************************************/ |
|
796 test.Next(_L("Random length writes")); |
|
797 // Prepare the device (required if control mode is used for M18 devices) |
|
798 // assume that a maximum of 2 blocks is required |
|
799 r=Drive.Format(0,EbSz); |
|
800 r=Drive.Format(DriveCaps.iEraseBlockSize,EbSz); |
|
801 |
|
802 seed[0]=0xdeadbeef; |
|
803 seed[1]=0; |
|
804 pB=(TUint32*)Buffer; |
|
805 pE=(TUint32*)(Buffer+KBigBufferSize); |
|
806 while (pB<pE) |
|
807 *pB++=Random(seed); |
|
808 TInt remain=KBigBufferSize; |
|
809 TInt objectModeOffset=0; |
|
810 TUint32 writeCount=0; |
|
811 seed[0]=0xdeadbeef; |
|
812 seed[1]=0; |
|
813 for(writeCount=0; remain && (writeCount<512); writeCount++) |
|
814 { |
|
815 TInt l=1+(Random(seed)&255); // random length between 1 and 256 |
|
816 if (l>remain) |
|
817 l=remain; |
|
818 TInt pos=0; |
|
819 if(DriveCaps.iObjectModeSize == 0) |
|
820 { |
|
821 pos=KBigBufferSize-remain; |
|
822 } |
|
823 |
|
824 TPtrC8 ptr(Buffer+(KBigBufferSize-remain),l); |
|
825 TInt64 pos64(pos+objectModeOffset); // Start writes in a new programming region if object mode supported |
|
826 r=Drive.Write(pos64,ptr); |
|
827 test(r==KErrNone); |
|
828 objectModeOffset+=DriveCaps.iObjectModeSize; |
|
829 remain-=l; |
|
830 test.Printf(KDot); |
|
831 } |
|
832 test.Printf(_L("\n")); |
|
833 test.Next(_L("Verify")); |
|
834 Mem::FillZ(Buffer,KBigBufferSize); |
|
835 new (&buf) TPtr8(Buffer,0,KBigBufferSize); |
|
836 if(DriveCaps.iObjectModeSize==0) |
|
837 { |
|
838 r=Drive.Read(0,KBigBufferSize,buf); |
|
839 test(r==KErrNone); |
|
840 |
|
841 } |
|
842 else |
|
843 { |
|
844 remain=KBigBufferSize; |
|
845 objectModeOffset=0; |
|
846 |
|
847 while(remain && writeCount) |
|
848 { |
|
849 TInt totalLength=0; |
|
850 TInt l=1+(Random(seed)&255); // random length between 1 and 256 |
|
851 if (l>remain) |
|
852 l=remain; |
|
853 TPtr8 ptr(Buffer+(totalLength),l); |
|
854 r=Drive.Read(objectModeOffset,l,ptr); |
|
855 test(r==KErrNone); |
|
856 totalLength +=l; |
|
857 remain-=l; |
|
858 writeCount--; |
|
859 test.Printf(KDot); |
|
860 } |
|
861 } |
|
862 |
|
863 seed[0]=0xdeadbeef; |
|
864 seed[1]=0; |
|
865 pB=(TUint32*)Buffer; |
|
866 ex=0; |
|
867 if(DriveCaps.iObjectModeSize==0) |
|
868 { |
|
869 while (pB<pE && (ex=Random(seed),*pB==ex)) ++pB; |
|
870 if (pB<pE) |
|
871 { |
|
872 test.Printf(_L("ERROR: addr %08x data %08x expected %08x\n"),pB,*pB,ex); |
|
873 // test.Getch(); |
|
874 test(0); |
|
875 } |
|
876 } |
|
877 |
|
878 r=Drive.Format(0,EbSz); |
|
879 r=Drive.Format(DriveCaps.iEraseBlockSize,EbSz); |
|
880 test.Printf(_L("\nPress any key...\n\n")); |
|
881 test.Getch(); |
|
882 |
|
883 /****************************************************************************** |
|
884 * Concurrent read/write/erase |
|
885 ******************************************************************************/ |
|
886 test.Printf(_L("Foreground R/W\n")); |
|
887 r=StartAsyncErase(1,Size/EbSz-1); |
|
888 test(r==KErrNone); |
|
889 |
|
890 seed[0]=0xb17217f8; |
|
891 seed[1]=0; |
|
892 for (pos=KBufferSize+KBigBufferSize; pos<EbSz; pos+=KBufferSize) |
|
893 { |
|
894 TInt64 pos64 = MAKE_TINT64(0, pos); |
|
895 TPtrC8 wptr(Buffer,KBufferSize); |
|
896 TUint32* pB=(TUint32*)Buffer; |
|
897 TUint32* pE=(TUint32*)(Buffer+KBufferSize); |
|
898 while (pB<pE) |
|
899 *pB++=Random(seed); |
|
900 r=Drive.Write(pos64,wptr); |
|
901 test(r==KErrNone); |
|
902 test.Printf(KDot); |
|
903 Mem::FillZ(Buffer+KBufferSize,KBufferSize); |
|
904 TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize); |
|
905 r=Drive.Read(pos64,KBufferSize,rptr); |
|
906 test(r==KErrNone); |
|
907 test(rptr.Length()==KBufferSize); |
|
908 //test(Mem::Compare(Buffer,KBufferSize,Buffer+KBufferSize,KBufferSize)==0); |
|
909 r = Mem::Compare(Buffer,KBufferSize,Buffer+KBufferSize,KBufferSize); |
|
910 #if 0 |
|
911 if (r!=KErrNone) |
|
912 { |
|
913 pB=(TUint32*)Buffer; |
|
914 pE=(TUint32*)(Buffer+KBufferSize); |
|
915 for(TInt i=0; i < (KBufferSize>>2); i++) |
|
916 { |
|
917 test.Printf(_L("%d Buffer Content %08x %08x Flash Content\n"),i, pB[i], pE[i]); |
|
918 } |
|
919 } |
|
920 #endif |
|
921 test (r==KErrNone); |
|
922 test.Printf(KSemiColon); |
|
923 } |
|
924 |
|
925 r=WaitForAsyncErase(); |
|
926 test(r==KErrNone); |
|
927 |
|
928 r=Drive.Format(0,EbSz); |
|
929 r=Drive.Format(DriveCaps.iEraseBlockSize,EbSz); |
|
930 test.Printf(_L("Press any key...\n\n")); |
|
931 test.Getch(); |
|
932 |
|
933 // Perform the following tests for debug builds, only |
|
934 |
|
935 #ifdef _DEBUG |
|
936 |
|
937 /****************************************************************************** |
|
938 * Concurrent operations to exercise TYAX Read-While-Write capability |
|
939 * First, show read while write denied when attempting to read from a partition |
|
940 * that is being written to |
|
941 * Second, show read while write proceeding when reading from a partition other |
|
942 * than that which is being written to |
|
943 ******************************************************************************/ |
|
944 |
|
945 // Do not perform these tests unless read-while-write is supported |
|
946 if(DriveCaps.iMediaAtt&KMediaAttReadWhileWrite) |
|
947 { |
|
948 test.Next(_L("Denied read while write")); |
|
949 r=Drive.ControlIO(ECtrlIoRww, NULL, NULL); |
|
950 if(r!=KErrNone) |
|
951 { |
|
952 test.Printf(_L("ControlIO not ready, returned %d\n"), r); |
|
953 test(0); // Cannot proceed with this test |
|
954 } |
|
955 test.Printf(_L("Press any key...\n")); |
|
956 test.Getch(); |
|
957 |
|
958 test.Printf(_L("Starting async write for the first RWE/RWW test")); |
|
959 r=StartAsyncWrite(1,3); // Write to the first three blocks, only, to limit duration |
|
960 test(r==KErrNone); |
|
961 |
|
962 // Allow the write thread to be created and ready to run |
|
963 // This will ensure that the driver will have received a write request before the second of the read |
|
964 // requests, below. Following the issue of the ControlIO command, above, the driver will not instigate |
|
965 // the write request until the next (second) read request is received. This is done so that the high priority |
|
966 // driver thread recognises the existence of a read request (from a lower priority test / user thread) |
|
967 // before it executes a sequence of writes to the FLASH device. This is necessary because, although |
|
968 // each write takes a finite amount of time, the poll timer expires so quickly that the driver thread |
|
969 // would not be blocked for a sufficiently long period to allow the read request to be processed. Adopting |
|
970 // the contrived, and artificial, approach of using ControlIO to 'stage' the write allows the read-while-write |
|
971 // capability of the device to be execrised. |
|
972 User::After(1000); |
|
973 |
|
974 test.Printf(_L("Starting concurrent loop for background write\n")); |
|
975 { |
|
976 // First read - this will be performed before the write thread is run, so does |
|
977 // not exercise read while write. |
|
978 TInt64 pos64 = MAKE_TINT64(0,0); |
|
979 TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize); |
|
980 test.Printf(_L("Issuing Drive.Read 1\n")); |
|
981 r=Drive.Read(pos64,KBufferSize,rptr); |
|
982 test(r==KErrNone); |
|
983 test.Printf(KSemiColon); |
|
984 } |
|
985 { |
|
986 // Second read - to same partition (and block) as the active write |
|
987 // This read should be deferred by the driver |
|
988 TInt64 pos64 = MAKE_TINT64(0, 2*EbSz); |
|
989 TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize); |
|
990 test.Printf(_L("Issuing Drive.Read 2\n")); |
|
991 r=Drive.Read(pos64,KBufferSize,rptr); // Should collide with second write |
|
992 test(r==KErrNone); |
|
993 test.Printf(KSemiColon); |
|
994 } |
|
995 { |
|
996 // Third read - due to the tight poll timer period, this will not be scheduled |
|
997 // until the write request has completed - so does not exercise read while write. |
|
998 TInt64 pos64 = MAKE_TINT64(0, DriveCaps.iPartitionSize); |
|
999 TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize); |
|
1000 test.Printf(_L("Issuing Drive.Read 3\n")); |
|
1001 r=Drive.Read(pos64,KBufferSize,rptr); |
|
1002 test(r==KErrNone); |
|
1003 test.Printf(KSemiColon); |
|
1004 } |
|
1005 |
|
1006 r=WaitForAsyncWrite(); |
|
1007 test(r==KErrNone); |
|
1008 |
|
1009 /////////////////////////////////////////////////////////////////////////////// |
|
1010 r=Drive.Format(0,EbSz); |
|
1011 r=Drive.Format(DriveCaps.iEraseBlockSize,EbSz); |
|
1012 r=Drive.Format((DriveCaps.iEraseBlockSize*2),EbSz); |
|
1013 r=Drive.Format((DriveCaps.iEraseBlockSize*3),EbSz); |
|
1014 test.Printf(_L("Press any key...\n")); |
|
1015 test.Getch(); |
|
1016 test.Next(_L("Supported read while write")); |
|
1017 r=Drive.ControlIO(ECtrlIoRww, NULL, NULL); |
|
1018 if(r!=KErrNone) |
|
1019 { |
|
1020 test.Printf(_L("ControlIO not ready\n")); |
|
1021 return r; |
|
1022 } |
|
1023 test.Printf(_L("Press any key...\n")); |
|
1024 test.Getch(); |
|
1025 |
|
1026 test.Printf(_L("Starting async write for the second RWE/RWW test")); |
|
1027 r=StartAsyncWrite(1,3); // Write to the first three blocks, only, to limit duration |
|
1028 test(r==KErrNone); |
|
1029 |
|
1030 // Allow the write thread to be created and ready to run |
|
1031 User::After(1000); |
|
1032 |
|
1033 test.Printf(_L("Starting concurrent loop for background write\n")); |
|
1034 { |
|
1035 // First read - this will be performed before the write thread is run, so does |
|
1036 // not exercise read while write. |
|
1037 TInt64 pos64 = MAKE_TINT64(0, DriveCaps.iPartitionSize); |
|
1038 TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize); |
|
1039 test.Printf(_L("Issuing Drive.Read 1\n")); |
|
1040 r=Drive.Read(pos64,KBufferSize,rptr); |
|
1041 test(r==KErrNone); |
|
1042 test.Printf(KSemiColon); |
|
1043 } |
|
1044 { |
|
1045 // Second read - to different partition than that targeted by the active write |
|
1046 // This read should check the overlap and proceed without being deferred |
|
1047 TInt64 pos64 = MAKE_TINT64(0, DriveCaps.iPartitionSize); |
|
1048 TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize); |
|
1049 test.Printf(_L("Issuing Drive.Read 2\n")); |
|
1050 r=Drive.Read(pos64,KBufferSize,rptr); // Should collide with second write |
|
1051 test(r==KErrNone); |
|
1052 test.Printf(KSemiColon); |
|
1053 } |
|
1054 { |
|
1055 // Third read - due to the tight poll timer period, this will not be scheduled |
|
1056 // until the write request has completed - so does not exercise read while write. |
|
1057 TInt64 pos64 = MAKE_TINT64(0, DriveCaps.iPartitionSize); |
|
1058 TPtr8 rptr(Buffer+KBufferSize,0,KBufferSize); |
|
1059 test.Printf(_L("Issuing Drive.Read 3\n")); |
|
1060 r=Drive.Read(pos64,KBufferSize,rptr); |
|
1061 test(r==KErrNone); |
|
1062 test.Printf(KSemiColon); |
|
1063 } |
|
1064 |
|
1065 test.Printf(_L("\nForeground Read OK\n")); |
|
1066 r=WaitForAsyncWrite(); |
|
1067 test(r==KErrNone); |
|
1068 } |
|
1069 #endif |
|
1070 |
|
1071 // Clean up |
|
1072 r=Drive.Format(0,EbSz); |
|
1073 r=Drive.Format(DriveCaps.iEraseBlockSize,EbSz); |
|
1074 r=Drive.Format((DriveCaps.iEraseBlockSize*2),EbSz); |
|
1075 r=Drive.Format((DriveCaps.iEraseBlockSize*3),EbSz); |
|
1076 |
|
1077 /***************************************************************************************************** |
|
1078 Tests for M18 NOR Flash devices |
|
1079 |
|
1080 These tests assume that object mode and control mode is supported |
|
1081 *****************************************************************************************************/ |
|
1082 if((DriveCaps.iControlModeSize !=0) && (DriveCaps.iObjectModeSize != 0)) |
|
1083 { |
|
1084 // Control mode writes |
|
1085 // Prove that control mode writes are supported |
|
1086 // This requires that data is formatted such that areas coinciding with the "B" Half of a |
|
1087 // programming region are set to all 0xFFs |
|
1088 // Write to programming region zero |
|
1089 test.Next(_L("\nControl mode writes")); |
|
1090 |
|
1091 r=DoControlModeWriteAndVerify(0xa5a5a5a5, 0); |
|
1092 test(r==KErrNone); |
|
1093 // Now verify that data written in control mode can be further modified |
|
1094 // Do this by ANDing the read-back pattern with a mask that clears particular bits |
|
1095 // then write the resulting pattern back to the region |
|
1096 r=DoControlModeWriteAndVerify(0x84848484, 0); |
|
1097 test(r==KErrNone); |
|
1098 // Now verify that data written in control mode can be further modified to all 0x00s |
|
1099 // Do this by ANDing the read-back pattern with a mask that clears the remaining bits |
|
1100 // then write the resulting pattern back to the region |
|
1101 r=DoControlModeWriteAndVerify(0x00000000, 0); |
|
1102 test(r==KErrNone); |
|
1103 // Erase the block before attempting to re-use the programming region for object mode writing |
|
1104 test.Printf(_L("\nErase block 0 before object mode write")); |
|
1105 r=Drive.Format(0,EbSz); |
|
1106 test(r==KErrNone); |
|
1107 |
|
1108 test.Next(_L("\n(Subsequent) Object mode writes")); |
|
1109 |
|
1110 // Control mode writes |
|
1111 // Prove that object mode writes are allowd to an erased block that was previously |
|
1112 // used in control mode |
|
1113 // Use offset zero and length equal to one-quarter of the allowed object mode size (i.e. one- |
|
1114 // quarter of the lengh of the programming region) (The write test, above, wrote an entire region |
|
1115 // in object mode) |
|
1116 test.Printf(_L("\nObject mode write, object mode size=%d"),DriveCaps.iObjectModeSize); |
|
1117 r=DoObjectModeWriteAndVerify(0, (DriveCaps.iObjectModeSize>>2)); |
|
1118 test(r==KErrNone); |
|
1119 // Prove that an attempt to append data to an object mode region fails |
|
1120 test.Printf(_L("\nAttempt append to object mode region")); |
|
1121 r=DoObjectModeWriteAndVerify((DriveCaps.iObjectModeSize>>2),(DriveCaps.iObjectModeSize>>2)); |
|
1122 test(r==KErrGeneral); |
|
1123 // Erase the block after a failed write and before attempting to re-use for programming |
|
1124 test.Printf(_L("\nErase block 0 after failed object mode write")); |
|
1125 r=Drive.Format(0,EbSz); |
|
1126 test(r==KErrNone); |
|
1127 |
|
1128 test.Next(_L("\n(Subsequent) Object mode writes following an error")); |
|
1129 |
|
1130 // write to a new object mode region after a failed write and before attempting to erase the block |
|
1131 // Prove that erase block can be re-written to |
|
1132 test.Printf(_L("\nObject mode write following failed write and erase")); |
|
1133 r=DoObjectModeWriteAndVerify(0, (DriveCaps.iObjectModeSize>>2)); |
|
1134 test(r==KErrNone); |
|
1135 // Cause a failed object mode write |
|
1136 r=DoObjectModeWriteAndVerify(0, (DriveCaps.iObjectModeSize>>2)); |
|
1137 test(r==KErrGeneral); |
|
1138 // the status register has an error. Attempt to write in a new region and ensure that it succeeds |
|
1139 r=DoObjectModeWriteAndVerify(DriveCaps.iObjectModeSize, DriveCaps.iObjectModeSize); |
|
1140 test(r==KErrNone); |
|
1141 |
|
1142 test.Next(_L("\n(Subsequent) Control mode writes following previous use in object mode")); |
|
1143 |
|
1144 // Re-use a former object mode region for control mode writes |
|
1145 // Erase the block after a failed write and before attempting to re-use for programming |
|
1146 r=Drive.Format(0,EbSz); |
|
1147 test(r==KErrNone); |
|
1148 r=DoControlModeWriteAndVerify(0xa5a5a5a5, 0); |
|
1149 test(r==KErrNone); |
|
1150 // Verify that data written in control mode can be further modified |
|
1151 r=DoControlModeWriteAndVerify(0x84848484, 0); |
|
1152 test(r==KErrNone); |
|
1153 |
|
1154 test.Next(_L("\n(Subsequent) Control mode writes following an error")); |
|
1155 |
|
1156 // Test that a control mode write can succeed after a previous error |
|
1157 // Use a failed object mode write attempt to the "B" half of a control mode region |
|
1158 // to cause the error |
|
1159 r=DoObjectModeWriteAndVerify(DriveCaps.iControlModeSize,(DriveCaps.iObjectModeSize>>2)); |
|
1160 test(r==KErrGeneral); |
|
1161 r=DoControlModeWriteAndVerify(0x00000000, 0); |
|
1162 test(r==KErrNone); |
|
1163 |
|
1164 test.Next(_L("\nControl mode boundary write test")); |
|
1165 |
|
1166 r=DoControlModeBoundaryWriteAndVerify(); |
|
1167 test(r==KErrNone); |
|
1168 |
|
1169 } |
|
1170 |
|
1171 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
1172 |
|
1173 test.Printf(_L("Press any key...\n")); |
|
1174 test.Getch(); |
|
1175 test.End(); |
|
1176 return KErrNone; |
|
1177 } |