kerneltest/e32test/video/t_videomemory.cpp
changeset 0 a41df078684a
child 20 597aaf25e343
equal deleted inserted replaced
-1:000000000000 0:a41df078684a
       
     1 // Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
       
     2 // All rights reserved.
       
     3 // This component and the accompanying materials are made available
       
     4 // under the terms of the License "Eclipse Public License v1.0"
       
     5 // which accompanies this distribution, and is available
       
     6 // at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     7 //
       
     8 // Initial Contributors:
       
     9 // Nokia Corporation - initial contribution.
       
    10 //
       
    11 // Contributors:
       
    12 //
       
    13 // Description:
       
    14 // Overview:
       
    15 // Test the video driver kernel extension that provides chunk handle to access video memory. 
       
    16 // API Information:
       
    17 // HAL, UserSvr
       
    18 // Details:
       
    19 // - Check that the "old" GetMemoryAddress function still works, for legacy compatibility.
       
    20 // - Check that we can get a chunk and that we can read/write the memory belonging to that chunk. 
       
    21 // - Check that asking for a DisplayMemoryHandle twice gives the same piece of memory.  
       
    22 // - Test that the same memory is available to a second process, by starting second process and
       
    23 // the second process can write to memory. Validate by confirming that the value in the second process 
       
    24 // is changed.
       
    25 // Platforms/Drives/Compatibility:
       
    26 // All.
       
    27 // Assumptions/Requirement/Pre-requisites:
       
    28 // Failures and causes:
       
    29 // Base Port information:
       
    30 // 
       
    31 //
       
    32 
       
    33 #include <e32test.h>
       
    34 #include <videodriver.h>
       
    35 #include <hal.h>
       
    36 #include <e32svr.h>
       
    37 #include <dispchannel.h>
       
    38 #include "t_videomemory.h"
       
    39 
       
    40 LOCAL_D RTest test(_L("T_VIDEOMEMORY"));
       
    41 
       
    42 #ifndef __WINS__
       
    43 #define DUMP(x) test.Printf(_L(#x"= %d =0x%08x\n"), x, x)
       
    44 #endif
       
    45 
       
    46 
       
    47 LOCAL_C void RunTestsForScreen(TInt aScreenID)
       
    48 	{
       
    49 
       
    50 	TInt ret = KErrNone;
       
    51 
       
    52 #ifdef __WINS__
       
    53 	RDisplayChannel displayChannel;
       
    54 	
       
    55 	test.Next(_L("Open Display Driver"));
       
    56 	
       
    57     _LIT(KDisplayDriver, "display0");
       
    58     ret = User::LoadLogicalDevice(KDisplayDriver);
       
    59     test(KErrNone == ret || KErrAlreadyExists == ret);
       
    60 	
       
    61 	ret = displayChannel.Open(aScreenID);
       
    62     test(KErrNone == ret);
       
    63 		
       
    64 #endif
       
    65 
       
    66 	test.Next(_L("Checking Display Memory Address"));
       
    67 	
       
    68 	// This is the real basic form of test:
       
    69 	// Get the display memory address from the HAL.
       
    70 	// Check that it's not zero - that would be invalid memory.
       
    71 	// Try to write to the memory - it should not give a page-fault/crash.
       
    72 	// Try to read the memory - we should get the same value as we wrote. 
       
    73 	
       
    74 	TInt memoryAddress=0;
       
    75 	volatile TUint32 *pMemory = 0;
       
    76 	ret = HAL::Get(aScreenID, HAL::EDisplayMemoryAddress, memoryAddress);
       
    77 	test (KErrNone == ret || KErrNotSupported == ret);
       
    78 
       
    79 	if (KErrNone == ret)
       
    80 		{
       
    81 		test.Printf(_L("Display Memory Address = %08x\n"), memoryAddress);
       
    82 		// Now check that we can write to memoryAddress:
       
    83 		test (memoryAddress != 0);
       
    84 		pMemory = reinterpret_cast<TUint32 *>(memoryAddress);
       
    85 		*pMemory = KTestValue1;
       
    86 		test(KTestValue1 == *pMemory);
       
    87 		}
       
    88 	else
       
    89 		{
       
    90 		test.Printf(_L("Memory Address not available from HAL\n"));
       
    91 		}
       
    92 	
       
    93 	// Second basic test. Use the HAL to fetch a handle
       
    94 	// to the display memory. 
       
    95 	// Check that the handle is not zero. 
       
    96 	// Get the base-address of the chunk. 
       
    97 	// Write this base address with a new value.
       
    98 	// Read with the chunk base address to see that teh new value is there. 
       
    99 	// Read the memory address from the above test and check that it changed 
       
   100 	// to the new value.
       
   101 	// Note that the memory address from above test MAY NOT BE SET - so 
       
   102 	// check to see if it's non-zero first.
       
   103 		
       
   104 	test.Next(_L("Checking Display Handle"));
       
   105 	TInt handle = 0;
       
   106 	volatile TUint32 *pChunkBase = 0;
       
   107 	RChunk chunk;
       
   108 	ret = HAL::Get(aScreenID, HALData::EDisplayMemoryHandle, handle);
       
   109 	test ((KErrNone == ret || KErrNotSupported == ret));
       
   110 	if (KErrNone == ret)
       
   111 		{
       
   112 		// Handle should not be zero. 
       
   113 		test(0 != handle);
       
   114 		ret = chunk.SetReturnedHandle(handle);
       
   115 		test(KErrNone == ret);
       
   116 		
       
   117 		pChunkBase = reinterpret_cast<TUint32 *>(chunk.Base());
       
   118 		test.Printf(_L("Display Memory Address = %08x\n"), reinterpret_cast<TUint>(pChunkBase));
       
   119 		*pChunkBase = KTestValue2;
       
   120 		test(KTestValue2 == *pChunkBase);
       
   121 		// We should see the new value through the pMemory pointer!
       
   122 		if (pMemory)
       
   123 			{
       
   124 			test(KTestValue2 == *pMemory);
       
   125 			}
       
   126 	
       
   127 		}
       
   128 	else
       
   129 		{
       
   130 		test.Printf(_L("Memory Handle not available from HAL - no point in further testing\n"));
       
   131 		return;
       
   132 		}
       
   133 	
       
   134 
       
   135 	// Check that we can write to more than the first bit of memory. 
       
   136 	test.Next(_L("Check that we can write to \"all\" of the memory"));
       
   137 	// First, find the mode with the biggest number of bits per pixel:
       
   138 	TInt totalModes;
       
   139 	ret = HAL::Get(aScreenID, HAL::EDisplayNumModes, totalModes);
       
   140 	test (KErrNone == ret);
       
   141 	TInt biggestMode = 0;
       
   142 	TInt maxBitsPerPixel = 0;
       
   143 	for(TInt mode = 0; mode < totalModes; mode++)
       
   144 		{
       
   145 		TInt bitsPerPixel = mode;
       
   146 		ret = HAL::Get(aScreenID, HAL::EDisplayBitsPerPixel, bitsPerPixel);
       
   147 		test (KErrNone == ret);
       
   148 		if (bitsPerPixel > maxBitsPerPixel)
       
   149 			{
       
   150 			maxBitsPerPixel = bitsPerPixel;
       
   151 			biggestMode = mode;
       
   152 			}
       
   153 		}
       
   154 	
       
   155 	TInt offsetToFirstPixel = biggestMode;
       
   156 	ret = HAL::Get(aScreenID, HALData::EDisplayOffsetToFirstPixel, offsetToFirstPixel);
       
   157 	test(KErrNone == ret);
       
   158 	
       
   159 	TInt stride = biggestMode;
       
   160 	ret = HAL::Get(aScreenID, HALData::EDisplayOffsetBetweenLines, stride);
       
   161 	test(KErrNone == ret);
       
   162 	
       
   163 	TInt yPixels = biggestMode;
       
   164 	ret = HAL::Get(aScreenID, HALData::EDisplayYPixels, yPixels);
       
   165 	test(KErrNone == ret);
       
   166 	
       
   167 	// Note this is no attempt to be precise. xPixels is not 
       
   168 	TUint maxByte = offsetToFirstPixel + stride * yPixels - sizeof(TUint32);
       
   169 		
       
   170 	volatile TUint32 *memPtr = reinterpret_cast<volatile TUint32 *>(reinterpret_cast<volatile TUint8 *>(pChunkBase) + maxByte);
       
   171 	*memPtr = KTestValue1;
       
   172 	test(KTestValue1 == *memPtr);
       
   173 	
       
   174 
       
   175 	// Ask for a second handle and see that this also points to the same bit of memory.
       
   176 	test.Next(_L("Checking Display Handle second time"));
       
   177 	volatile TUint32 *pChunkBase2 = 0;
       
   178 	ret = HAL::Get(aScreenID, HALData::EDisplayMemoryHandle, handle);
       
   179 	test ((KErrNone == ret || KErrNotSupported == ret));
       
   180 	if (KErrNone == ret)
       
   181 		{
       
   182 		// Handle should not be zero!
       
   183 		test(0 != handle);
       
   184 		RChunk chunk2;
       
   185 		ret = chunk2.SetReturnedHandle(handle);
       
   186 		test(KErrNone == ret);
       
   187 		
       
   188 		pChunkBase2 = reinterpret_cast<TUint32 *>(chunk2.Base());
       
   189 		test.Printf(_L("Display Memory Address = %08x\n"), reinterpret_cast<TUint>(pChunkBase));
       
   190 		test(KTestValue2 == *pChunkBase2);
       
   191 		*pChunkBase2 = KTestValue3;
       
   192 		test(KTestValue3 == *pChunkBase2);
       
   193 		chunk2.Close();
       
   194 		}
       
   195 	
       
   196 	test.Next(_L("Checking Display Handle using second process"));
       
   197 	
       
   198 	// Create a process, let it find the handle of the memory, then read it, and write it.
       
   199 	// Check that the value we have is the new value: KTestValue3.
       
   200 	_LIT(KProcName, "t_videomemprocess.exe");
       
   201 	RProcess process;
       
   202 	
       
   203 	ret = process.Create(KProcName, KNullDesC);
       
   204 	test(KErrNone == ret);
       
   205 	
       
   206 	TRequestStatus procStatus;
       
   207 	process.Logon(procStatus);
       
   208 	process.SetParameter(12, aScreenID);
       
   209 	process.Resume();
       
   210 	User::WaitForRequest(procStatus);
       
   211 	
       
   212 	test.Next(_L("Checking that second process updated video memory"));
       
   213 	// Check that we got the new value. 
       
   214 	test(KTestValue4 == *pChunkBase);
       
   215 	
       
   216 	chunk.Close();
       
   217 	
       
   218 #ifdef __WINS__
       
   219 	displayChannel.Close();
       
   220 #endif
       
   221 	
       
   222 	// Now for some negative tests: Attempt to get a handle for a closes display.
       
   223 	test.Next(_L("Negative test: Check that we CAN NOT use closed screen"));
       
   224 	ret = HAL::Get(aScreenID, HALData::EDisplayMemoryHandle, handle);
       
   225 	test (KErrNone != ret);
       
   226 	}
       
   227 
       
   228 
       
   229 
       
   230 LOCAL_C void NegativeTests(TInt aMaxScreens)
       
   231 	{
       
   232 	TInt handle;
       
   233 	TInt ret;
       
   234 	// Another few negative tests: Try invalid screen numbers.
       
   235 	test.Next(_L("Negative tests: Invalid screen ID's"));
       
   236 	ret = HAL::Get(aMaxScreens, HALData::EDisplayMemoryHandle, handle);
       
   237 	test (KErrNone != ret);
       
   238 	
       
   239 	ret = HAL::Get(aMaxScreens+1, HALData::EDisplayMemoryHandle, handle);
       
   240 	test (KErrNone != ret);
       
   241 	
       
   242 	ret = HAL::Get(4718, HALData::EDisplayMemoryHandle, handle);
       
   243 	test (KErrNone != ret);
       
   244 	
       
   245 	ret = HAL::Get(-1, HALData::EDisplayMemoryHandle, handle);
       
   246 	test (KErrNone != ret);
       
   247 	}
       
   248 
       
   249 
       
   250 
       
   251 GLDEF_C TInt E32Main()
       
   252 //
       
   253 //
       
   254     {
       
   255 
       
   256 	test.Title();
       
   257 //
       
   258 #if defined(__EPOC32__) && defined(__CPU_X86)
       
   259 	test.Printf(_L("Doesn't run on X86\n"));
       
   260 #else
       
   261 
       
   262 	test.Start(_L("Testing Video Memory HAL interfaces"));
       
   263 
       
   264 	TInt screens = 0;	
       
   265 	TInt ret=HAL::Get(HAL::EDisplayNumberOfScreens, screens);
       
   266 	test((KErrNone == ret));
       
   267 	// We expect that there is at least ONE screen. 
       
   268 	test((screens > 0));
       
   269 
       
   270 	for(TInt i=0;i<screens;i++)
       
   271 		{
       
   272 		RunTestsForScreen(i);
       
   273 		}
       
   274 	
       
   275 	NegativeTests(screens);
       
   276 #endif
       
   277 	
       
   278 	return KErrNone;
       
   279 }