|
1 // Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of the License "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // f32\sfat32\sl_bpb32.cpp |
|
15 // Boot sector code, specific for EFat32.fsy |
|
16 // |
|
17 // |
|
18 |
|
19 /** |
|
20 @file |
|
21 @internalTechnology |
|
22 */ |
|
23 |
|
24 #include "sl_std.h" |
|
25 |
|
26 |
|
27 //------------------------------------------------------------------------------------------------------------------- |
|
28 |
|
29 TFatBootSector::TFatBootSector() |
|
30 { |
|
31 Initialise(); |
|
32 } |
|
33 |
|
34 /** initialises the boot sector data */ |
|
35 void TFatBootSector::Initialise() |
|
36 { |
|
37 Mem::FillZ(this, sizeof(TFatBootSector)); |
|
38 } |
|
39 |
|
40 //------------------------------------------------------------------------------------------------------------------- |
|
41 |
|
42 /** |
|
43 @return ETrue if the boot sector contents seems to be valid |
|
44 */ |
|
45 TBool TFatBootSector::IsValid() const |
|
46 { |
|
47 const TFatType fatType = FatType(); //-- it will check SectorsPerCluster etc. |
|
48 |
|
49 if(fatType == EInvalid || ReservedSectors() < 1 || NumberOfFats() < 1) |
|
50 goto Invalid; |
|
51 |
|
52 if(fatType == EFat32) |
|
53 { |
|
54 if(VersionNumber()!= 0 || FatSectors()!=0 || FatSectors32()<1 || RootClusterNum()<KFatFirstSearchCluster || |
|
55 TotalSectors()!=0 || HugeSectors() <5 || RootDirEntries() !=0) |
|
56 { |
|
57 goto Invalid; //-- these values are not compliant with FAT specs |
|
58 } |
|
59 } |
|
60 else //-- FAT12/16 |
|
61 { |
|
62 if(TotalSectors() >0 && HugeSectors() >0 ) |
|
63 goto Invalid; //-- values clash |
|
64 |
|
65 const TUint32 totSectors = Max(TotalSectors(), HugeSectors()); |
|
66 const TUint32 rootDirStartSec = ReservedSectors() + FatSectors()*NumberOfFats(); //-- root directory start sector |
|
67 |
|
68 if(FatSectors() < 1 || rootDirStartSec < 3 || RootDirEntries() < 1 || totSectors < 5) |
|
69 goto Invalid; //-- these values are not compliant with FAT specs |
|
70 } |
|
71 |
|
72 return ETrue; |
|
73 |
|
74 Invalid: |
|
75 __PRINT(_L("TFatBootSector::IsValid() failed!")); |
|
76 |
|
77 return EFalse; |
|
78 } |
|
79 |
|
80 //------------------------------------------------------------------------------------------------------------------- |
|
81 |
|
82 /** |
|
83 Initialize boot sector object from the given bufer. Does not validate the data. |
|
84 @param aBuf buffer with data. |
|
85 */ |
|
86 void TFatBootSector::Internalize(const TDesC8& aBuf) |
|
87 { |
|
88 ASSERT(aBuf.Size() >= KSizeOfFatBootSector); |
|
89 |
|
90 Initialise(); |
|
91 |
|
92 TInt pos=0; |
|
93 |
|
94 Mem::Copy(&iJumpInstruction, &aBuf[pos],3); pos+=3; // 0 TUint8 iJumpInstruction[3] |
|
95 Mem::Copy(&iVendorId,&aBuf[pos],KVendorIdSize); pos+=KVendorIdSize; // 3 TUint8 iVendorId[KVendorIdSize] |
|
96 Mem::Copy(&iBytesPerSector,&aBuf[pos],2); pos+=2; // 11 TUint16 iBytesPerSector |
|
97 Mem::Copy(&iSectorsPerCluster,&aBuf[pos],1); pos+=1; // 13 TUint8 iSectorsPerCluster |
|
98 Mem::Copy(&iReservedSectors,&aBuf[pos],2); pos+=2; // 14 TUint16 iReservedSectors |
|
99 Mem::Copy(&iNumberOfFats,&aBuf[pos],1); pos+=1; // 16 TUint8 iNumberOfFats |
|
100 Mem::Copy(&iRootDirEntries,&aBuf[pos],2); pos+=2; // 17 TUint16 iRootDirEntries |
|
101 Mem::Copy(&iTotalSectors,&aBuf[pos],2); pos+=2; // 19 TUint16 iTotalSectors |
|
102 Mem::Copy(&iMediaDescriptor,&aBuf[pos],1); pos+=1; // 21 TUint8 iMediaDescriptor |
|
103 Mem::Copy(&iFatSectors,&aBuf[pos],2); pos+=2; // 22 TUint16 iFatSectors |
|
104 Mem::Copy(&iSectorsPerTrack,&aBuf[pos],2); pos+=2; // 24 TUint16 iSectorsPerTrack |
|
105 Mem::Copy(&iNumberOfHeads,&aBuf[pos],2); pos+=2; // 26 TUint16 iNumberOfHeads |
|
106 Mem::Copy(&iHiddenSectors,&aBuf[pos],4); pos+=4; // 28 TUint32 iHiddenSectors |
|
107 Mem::Copy(&iHugeSectors,&aBuf[pos],4); pos+=4; // 32 TUint32 iHugeSectors |
|
108 |
|
109 if(RootDirEntries() == 0) //-- we have FAT32 volume |
|
110 { |
|
111 Mem::Copy(&iFatSectors32, &aBuf[pos],4); pos+=4; // 36 TUint32 iFatSectors32 |
|
112 Mem::Copy(&iFATFlags, &aBuf[pos],2); pos+=2; // 40 TUint16 iFATFlags |
|
113 Mem::Copy(&iVersionNumber, &aBuf[pos],2); pos+=2; // 42 TUint16 iVersionNumber |
|
114 Mem::Copy(&iRootClusterNum, &aBuf[pos],4); pos+=4; // 44 TUint32 iRootClusterNum |
|
115 Mem::Copy(&iFSInfoSectorNum, &aBuf[pos],2); pos+=2; // 48 TUint16 iFSInfoSectorNum |
|
116 Mem::Copy(&iBkBootRecSector, &aBuf[pos],2); // 50 TUint16 iBkBootRecSector |
|
117 pos+=(2+12); //extra 12 for the reserved bytes |
|
118 } |
|
119 |
|
120 Mem::Copy(&iPhysicalDriveNumber,&aBuf[pos],1); pos+=1;// 36|64 TUint8 iPhysicalDriveNumber |
|
121 Mem::Copy(&iReserved,&aBuf[pos],1); pos+=1;// 37|65 TUint8 iReserved |
|
122 Mem::Copy(&iExtendedBootSignature,&aBuf[pos],1);pos+=1;// 38|66 TUint8 iExtendedBootSignature |
|
123 Mem::Copy(&iUniqueID,&aBuf[pos],4); pos+=4;// 39|67 TUint32 iUniqueID |
|
124 Mem::Copy(&iVolumeLabel,&aBuf[pos],KVolumeLabelSize); // 43|71 TUint8 iVolumeLabel[KVolumeLabelSize] |
|
125 pos+=KVolumeLabelSize; |
|
126 |
|
127 // 54|82 TUint8 iFileSysType[KFileSysTypeSize] |
|
128 ASSERT(aBuf.Size() >= pos+KFileSysTypeSize); |
|
129 Mem::Copy(&iFileSysType,&aBuf[pos],KFileSysTypeSize); |
|
130 } |
|
131 |
|
132 //------------------------------------------------------------------------------------------------------------------- |
|
133 |
|
134 /** |
|
135 Externalize boot sector object to the given data buffer. |
|
136 @param aBuf buffer to externalize. |
|
137 */ |
|
138 void TFatBootSector::Externalize(TDes8& aBuf) const |
|
139 { |
|
140 ASSERT(aBuf.MaxSize() >= KSizeOfFatBootSector); |
|
141 |
|
142 if(aBuf.Size() < KSizeOfFatBootSector) |
|
143 aBuf.SetLength(KSizeOfFatBootSector); |
|
144 |
|
145 TInt pos=0; |
|
146 |
|
147 Mem::Copy(&aBuf[pos],&iJumpInstruction,3); pos+=3; |
|
148 Mem::Copy(&aBuf[pos],&iVendorId,KVendorIdSize); pos+=8; |
|
149 Mem::Copy(&aBuf[pos],&iBytesPerSector,2); pos+=2; |
|
150 Mem::Copy(&aBuf[pos],&iSectorsPerCluster,1); pos+=1; |
|
151 Mem::Copy(&aBuf[pos],&iReservedSectors,2); pos+=2; |
|
152 Mem::Copy(&aBuf[pos],&iNumberOfFats,1); pos+=1; |
|
153 Mem::Copy(&aBuf[pos],&iRootDirEntries,2); pos+=2; |
|
154 Mem::Copy(&aBuf[pos],&iTotalSectors,2); pos+=2; |
|
155 Mem::Copy(&aBuf[pos],&iMediaDescriptor,1); pos+=1; |
|
156 Mem::Copy(&aBuf[pos],&iFatSectors,2); pos+=2; |
|
157 Mem::Copy(&aBuf[pos],&iSectorsPerTrack,2); pos+=2; |
|
158 Mem::Copy(&aBuf[pos],&iNumberOfHeads,2); pos+=2; |
|
159 Mem::Copy(&aBuf[pos],&iHiddenSectors,4); pos+=4; |
|
160 Mem::Copy(&aBuf[pos],&iHugeSectors,4); pos+=4; |
|
161 |
|
162 if(iFatSectors == 0) |
|
163 { |
|
164 Mem::Copy(&aBuf[pos], &iFatSectors32,4); pos+=4; |
|
165 Mem::Copy(&aBuf[pos], &iFATFlags, 2); pos+=2; |
|
166 Mem::Copy(&aBuf[pos], &iVersionNumber, 2); pos+=2; |
|
167 Mem::Copy(&aBuf[pos], &iRootClusterNum, 4); pos+=4; |
|
168 Mem::Copy(&aBuf[pos], &iFSInfoSectorNum, 2);pos+=2; |
|
169 Mem::Copy(&aBuf[pos], &iBkBootRecSector, 2);pos+=2; |
|
170 |
|
171 //extra 12 for the reserved bytes |
|
172 ASSERT(aBuf.Size() >= pos+12); |
|
173 Mem::FillZ(&aBuf[pos],12); |
|
174 pos+=12; |
|
175 } |
|
176 |
|
177 Mem::Copy(&aBuf[pos],&iPhysicalDriveNumber,1); pos+=1; |
|
178 Mem::FillZ(&aBuf[pos],1); pos+=1; |
|
179 Mem::Copy(&aBuf[pos],&iExtendedBootSignature,1);pos+=1; |
|
180 Mem::Copy(&aBuf[pos],&iUniqueID,4); pos+=4; |
|
181 |
|
182 Mem::Copy(&aBuf[pos],&iVolumeLabel,KVolumeLabelSize); |
|
183 pos+=KVolumeLabelSize; |
|
184 |
|
185 ASSERT(aBuf.MaxSize() >= pos+KFileSysTypeSize); |
|
186 Mem::Copy(&aBuf[pos],&iFileSysType,KFileSysTypeSize); |
|
187 } |
|
188 |
|
189 //------------------------------------------------------------------------------------------------------------------- |
|
190 |
|
191 #ifdef _DEBUG |
|
192 /** replaces all non-printable characters in a buffer with spaces */ |
|
193 static void FixDes(TDes& aDes) |
|
194 { |
|
195 for(TInt i=0; i< aDes.Length(); ++i) |
|
196 { |
|
197 TChar ch=aDes[i]; |
|
198 if(!ch.IsPrint()) |
|
199 aDes[i]=' '; |
|
200 } |
|
201 } |
|
202 #endif |
|
203 |
|
204 |
|
205 /** |
|
206 Print out the boot sector info. |
|
207 */ |
|
208 void TFatBootSector::PrintDebugInfo() const |
|
209 { |
|
210 #ifdef _DEBUG |
|
211 __PRINT(_L("\n")); |
|
212 __PRINT(_L("======== BootSector info: =======")); |
|
213 |
|
214 TBuf<40> buf; |
|
215 buf.Copy(FileSysType()); FixDes(buf); |
|
216 __PRINT1(_L("FAT type:%S"), &buf); |
|
217 |
|
218 buf.Copy(VendorId()); FixDes(buf); |
|
219 __PRINT1(_L("Vendor ID:%S"), &buf); |
|
220 |
|
221 __PRINT1(_L("BytesPerSector:%d"),BytesPerSector()); |
|
222 __PRINT1(_L("SectorsPerCluster:%d"),SectorsPerCluster()); |
|
223 __PRINT1(_L("ReservedSectors:%d"),ReservedSectors()); |
|
224 __PRINT1(_L("NumberOfFats:%d"),NumberOfFats()); |
|
225 __PRINT1(_L("RootDirEntries:%d"),RootDirEntries()); |
|
226 __PRINT1(_L("Total Sectors:%d"),TotalSectors()); |
|
227 __PRINT1(_L("MediaDescriptor:0x%x"),MediaDescriptor()); |
|
228 __PRINT1(_L("FatSectors:%d"),FatSectors()); |
|
229 __PRINT1(_L("SectorsPerTrack:%d"),SectorsPerTrack()); |
|
230 __PRINT1(_L("NumberOfHeads:%d"),NumberOfHeads()); |
|
231 __PRINT1(_L("HugeSectors:%d"),HugeSectors()); |
|
232 __PRINT1(_L("Fat32 Sectors:%d"),FatSectors32()); |
|
233 __PRINT1(_L("Fat32 Flags:%d"),FATFlags()); |
|
234 __PRINT1(_L("Fat32 Version Number:%d"),VersionNumber()); |
|
235 __PRINT1(_L("Root Cluster Number:%d"),RootClusterNum()); |
|
236 __PRINT1(_L("FSInfo Sector Number:%d"),FSInfoSectorNum()); |
|
237 __PRINT1(_L("Backup Boot Rec Sector Number:%d"),BkBootRecSector()); |
|
238 __PRINT1(_L("PhysicalDriveNumber:%d"),PhysicalDriveNumber()); |
|
239 __PRINT1(_L("ExtendedBootSignature:%d"),ExtendedBootSignature()); |
|
240 __PRINT1(_L("UniqueID:0x%x"),UniqueID()); |
|
241 |
|
242 buf.Copy(VolumeLabel()); FixDes(buf); |
|
243 __PRINT1(_L("VolumeLabel:%S"), &buf); |
|
244 |
|
245 __PRINT(_L("=============================\n")); |
|
246 #endif |
|
247 } |
|
248 |
|
249 //------------------------------------------------------------------------------------------------------------------- |
|
250 |
|
251 /** |
|
252 Determine FAT type according to the information from boot sector, see FAT32 specs. |
|
253 @return FAT type. |
|
254 */ |
|
255 TFatType TFatBootSector::FatType(void) const |
|
256 { |
|
257 |
|
258 //-- check iBytesPerSector validity; it shall be one of: 512,1024,2048,4096 |
|
259 if(!IsPowerOf2(iBytesPerSector) || iBytesPerSector < 512 || iBytesPerSector > 4096) |
|
260 return EInvalid; //-- invalid iBytesPerSector value |
|
261 |
|
262 //-- check iSectorsPerCluster validity, it shall be one of: 1,2,4,8...128 |
|
263 if(!IsPowerOf2(iSectorsPerCluster) || iSectorsPerCluster > 128) |
|
264 return EInvalid; //-- invalid iSectorsPerCluster value |
|
265 |
|
266 const TUint32 rootDirSectors = (iRootDirEntries*KSizeOfFatDirEntry + (iBytesPerSector-1)) / iBytesPerSector; |
|
267 const TUint32 fatSz = iFatSectors ? iFatSectors : iFatSectors32; |
|
268 const TUint32 totSec = iTotalSectors ? iTotalSectors : iHugeSectors; |
|
269 const TUint32 dataSec = totSec - (iReservedSectors + (iNumberOfFats * fatSz) + rootDirSectors); |
|
270 const TUint32 clusterCnt = dataSec / iSectorsPerCluster; |
|
271 |
|
272 //-- magic. see FAT specs for details. |
|
273 if(clusterCnt < 4085) |
|
274 return EFat12; |
|
275 else if(clusterCnt < 65525) |
|
276 return EFat16; |
|
277 else |
|
278 return EFat32; |
|
279 |
|
280 } |
|
281 |
|
282 |
|
283 |
|
284 /** @return The first Fat sector number */ |
|
285 TInt TFatBootSector::FirstFatSector() const |
|
286 { |
|
287 __ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter)); |
|
288 return ReservedSectors(); |
|
289 } |
|
290 |
|
291 /** |
|
292 @return Number of sectors in root directory. 0 for FAT32 |
|
293 */ |
|
294 TUint32 TFatBootSector::RootDirSectors() const |
|
295 { |
|
296 __ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter)); |
|
297 return ( (RootDirEntries()*KSizeOfFatDirEntry + (BytesPerSector()-1)) / BytesPerSector() ); |
|
298 } |
|
299 |
|
300 |
|
301 /** @return Start sector number of the root directory */ |
|
302 TInt TFatBootSector::RootDirStartSector() const |
|
303 { |
|
304 __ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter)); |
|
305 |
|
306 const TUint32 firstNonFatSec = ReservedSectors() + TotalFatSectors()*NumberOfFats(); |
|
307 |
|
308 if(FatType() == EFat32) |
|
309 {//-- FAT32 root dir is a file, calculate the position by it's 1st cluster number. FAT[0]+FAT[1] are reserved. |
|
310 return (firstNonFatSec + (RootClusterNum()-KFatFirstSearchCluster) * SectorsPerCluster()); |
|
311 } |
|
312 else |
|
313 {//-- FAT12/16 root dir starts just after the FATs |
|
314 return firstNonFatSec; |
|
315 } |
|
316 } |
|
317 |
|
318 |
|
319 /** @return first data sector number. for FAT32 it includes the root directory */ |
|
320 TInt TFatBootSector::FirstDataSector() const |
|
321 { |
|
322 return( ReservedSectors() + NumberOfFats()*TotalFatSectors() + RootDirSectors() ); |
|
323 } |
|
324 |
|
325 /** @return FAT-type independent sector count on the volume */ |
|
326 TUint32 TFatBootSector::VolumeTotalSectorNumber() const |
|
327 { |
|
328 __ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter)); |
|
329 return TotalSectors() >0 ? (TUint32)TotalSectors() : (TUint32)HugeSectors(); |
|
330 } |
|
331 |
|
332 /** @return FAT-type independent number of sectors in one FAT */ |
|
333 TUint32 TFatBootSector::TotalFatSectors() const |
|
334 { |
|
335 __ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter)); |
|
336 return FatSectors() >0 ? (TUint32)FatSectors() : FatSectors32(); |
|
337 } |
|
338 |
|
339 |
|
340 |
|
341 |
|
342 //------------------------------------------------------------------------------------------------------------------- |
|
343 |
|
344 const TUint32 KLeadSignature = 0x41615252; ///< FSInfo Lead signiture value |
|
345 const TUint32 KStructureSignature = 0x61417272; ///< FSInfo Structure signiture value |
|
346 const TUint32 KTrailingSignature = 0xAA550000; ///< FSInfo Trailing signiture |
|
347 |
|
348 TFSInfo::TFSInfo() |
|
349 { |
|
350 Initialise(); |
|
351 } |
|
352 //------------------------------------------------------------------------------------------------------------------- |
|
353 |
|
354 /** Initialise the data */ |
|
355 void TFSInfo::Initialise() |
|
356 { |
|
357 Mem::FillZ(this, sizeof(TFSInfo)); |
|
358 |
|
359 iLeadSig = KLeadSignature; |
|
360 iStructureSig = KStructureSignature; |
|
361 iTrainlingSig = KTrailingSignature; |
|
362 } |
|
363 |
|
364 //------------------------------------------------------------------------------------------------------------------- |
|
365 |
|
366 /** |
|
367 @return ETrue if FSInfo sector contents seems to be valid |
|
368 */ |
|
369 TBool TFSInfo::IsValid() const |
|
370 { |
|
371 return (iLeadSig == KLeadSignature && iStructureSig == KStructureSignature && iTrainlingSig == KTrailingSignature); |
|
372 } |
|
373 |
|
374 //------------------------------------------------------------------------------------------------------------------- |
|
375 |
|
376 /** |
|
377 Initialize FSInfo sector object from the given bufer. Does not validate the data. |
|
378 @param aBuf buffer with data. |
|
379 */ |
|
380 void TFSInfo::Internalize(const TDesC8& aBuf) |
|
381 { |
|
382 ASSERT((TUint32)aBuf.Size() >= KSizeOfFSInfo); |
|
383 |
|
384 TInt pos=0; |
|
385 |
|
386 Mem::Copy(&iLeadSig, &aBuf[pos],4); pos+=(KFSInfoReserved1Size+4); |
|
387 Mem::Copy(&iStructureSig, &aBuf[pos],4); pos+=4; |
|
388 Mem::Copy(&iFreeCount,&aBuf[pos],4); pos+=4; |
|
389 Mem::Copy(&iNextFree,&aBuf[pos],4); pos+=(4+KFSInfoReserved2Size); |
|
390 Mem::Copy(&iTrainlingSig,&aBuf[pos],4); |
|
391 } |
|
392 |
|
393 //------------------------------------------------------------------------------------------------------------------- |
|
394 |
|
395 /** |
|
396 Externalize FSInfo sector object to the given data buffer. |
|
397 @param aBuf buffer to externalize. |
|
398 */ |
|
399 void TFSInfo::Externalize(TDes8& aBuf) const |
|
400 { |
|
401 ASSERT((TUint32)aBuf.MaxSize() >= KSizeOfFSInfo); |
|
402 |
|
403 aBuf.SetLength(KSizeOfFSInfo); |
|
404 aBuf.FillZ(); |
|
405 |
|
406 TInt pos=0; |
|
407 |
|
408 Mem::Copy(&aBuf[pos],&KLeadSignature,4); pos+=4; |
|
409 pos+=KFSInfoReserved1Size; |
|
410 Mem::Copy(&aBuf[pos],&KStructureSignature,4); pos+=4; |
|
411 Mem::Copy(&aBuf[pos],&iFreeCount,4); pos+=4; |
|
412 Mem::Copy(&aBuf[pos],&iNextFree,4); pos+=4; |
|
413 pos+=KFSInfoReserved2Size; |
|
414 Mem::Copy(&aBuf[pos],&KTrailingSignature,4); |
|
415 } |
|
416 |
|
417 //------------------------------------------------------------------------------------------------------------------- |
|
418 |
|
419 /** |
|
420 Print out the FSInfo sector info. |
|
421 */ |
|
422 void TFSInfo::PrintDebugInfo() const |
|
423 { |
|
424 __PRINT(_L("\n==== FSInfoSector : ====")); |
|
425 __PRINT1(_L("FSI_LeadSig: 0x%x"),iLeadSig); |
|
426 __PRINT1(_L("FSI_StrucSig: 0x%x"),iStructureSig); |
|
427 __PRINT1(_L("FSI_FreeCount: 0x%x"),iFreeCount); |
|
428 __PRINT1(_L("FSI_NxtFree: 0x%x"),iNextFree); |
|
429 __PRINT1(_L("FSI_TrailSig: 0x%x"),iTrainlingSig); |
|
430 __PRINT(_L("========================\n")); |
|
431 } |
|
432 |
|
433 |
|
434 |
|
435 |