|
1 // Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of the License "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // kernel\eka\common\heap_hybrid.cpp |
|
15 // |
|
16 // Uses malloc (aka dlmalloc) written by Doug Lea version 2.8.4 |
|
17 // |
|
18 |
|
19 #include "common.h" |
|
20 #ifdef __KERNEL_MODE__ |
|
21 #include <kernel/kern_priv.h> |
|
22 #endif |
|
23 #include "dla.h" |
|
24 #ifndef __KERNEL_MODE__ |
|
25 #include "slab.h" |
|
26 #include "page_alloc.h" |
|
27 #endif |
|
28 #include "heap_hybrid.h" |
|
29 |
|
30 // enables btrace code compiling into |
|
31 #define ENABLE_BTRACE |
|
32 |
|
33 // if non zero this causes the iSlabs to be configured only when the chunk size exceeds this level |
|
34 #define DELAYED_SLAB_THRESHOLD (64*1024) // 64KB seems about right based on trace data |
|
35 #define SLAB_CONFIG 0xabe // Use slabs of size 48, 40, 32, 24, 20, 16, 12, and 8 bytes |
|
36 |
|
37 #ifdef _DEBUG |
|
38 #define __SIMULATE_ALLOC_FAIL(s) if (CheckForSimulatedAllocFail()) {s} |
|
39 #define __ALLOC_DEBUG_HEADER(s) (s += EDebugHdrSize) |
|
40 #define __SET_DEBUG_DATA(p,n,c) (((SDebugCell*)(p))->nestingLevel = (n), ((SDebugCell*)(p))->allocCount = (c)) |
|
41 #define __GET_USER_DATA_BFR(p) ((p!=0) ? (TUint8*)(p) + EDebugHdrSize : NULL) |
|
42 #define __GET_DEBUG_DATA_BFR(p) ((p!=0) ? (TUint8*)(p) - EDebugHdrSize : NULL) |
|
43 #define __ZAP_CELL(p) memset( (TUint8*)p, 0xde, (AllocLen(__GET_USER_DATA_BFR(p))+EDebugHdrSize)) |
|
44 #define __DEBUG_SAVE(p) TInt dbgNestLevel = ((SDebugCell*)p)->nestingLevel |
|
45 #define __DEBUG_RESTORE(p) if (p) {((SDebugCell*)p)->nestingLevel = dbgNestLevel;} |
|
46 #define __DEBUG_HDR_SIZE EDebugHdrSize |
|
47 #define __REMOVE_DBG_HDR(n) (n*EDebugHdrSize) |
|
48 #define __GET_AVAIL_BLOCK_SIZE(s) ( (s<EDebugHdrSize) ? 0 : s-EDebugHdrSize ) |
|
49 #define __UPDATE_ALLOC_COUNT(o,n,c) if (o!=n && n) {((SDebugCell*)n)->allocCount = (c);} |
|
50 #define __INIT_COUNTERS(i) iCellCount=i,iTotalAllocSize=i |
|
51 #define __INCREMENT_COUNTERS(p) iCellCount++, iTotalAllocSize += AllocLen(p) |
|
52 #define __DECREMENT_COUNTERS(p) iCellCount--, iTotalAllocSize -= AllocLen(p) |
|
53 #define __UPDATE_TOTAL_ALLOC(p,s) iTotalAllocSize += (AllocLen(__GET_USER_DATA_BFR(p)) - s) |
|
54 |
|
55 #else |
|
56 #define __SIMULATE_ALLOC_FAIL(s) |
|
57 #define __ALLOC_DEBUG_HEADER(s) |
|
58 #define __SET_DEBUG_DATA(p,n,c) |
|
59 #define __GET_USER_DATA_BFR(p) (p) |
|
60 #define __GET_DEBUG_DATA_BFR(p) (p) |
|
61 #define __ZAP_CELL(p) |
|
62 #define __DEBUG_SAVE(p) |
|
63 #define __DEBUG_RESTORE(p) |
|
64 #define __DEBUG_HDR_SIZE 0 |
|
65 #define __REMOVE_DBG_HDR(n) 0 |
|
66 #define __GET_AVAIL_BLOCK_SIZE(s) (s) |
|
67 #define __UPDATE_ALLOC_COUNT(o,n,c) |
|
68 #define __INIT_COUNTERS(i) iCellCount=i,iTotalAllocSize=i |
|
69 #define __INCREMENT_COUNTERS(p) |
|
70 #define __DECREMENT_COUNTERS(p) |
|
71 #define __UPDATE_TOTAL_ALLOC(p,s) |
|
72 |
|
73 #endif |
|
74 |
|
75 |
|
76 #define MEMORY_MONITORED (iFlags & EMonitorMemory) |
|
77 #define GM (&iGlobalMallocState) |
|
78 #define IS_FIXED_HEAP (iFlags & EFixedSize) |
|
79 #define __INIT_COUNTERS(i) iCellCount=i,iTotalAllocSize=i |
|
80 #define __POWER_OF_2(x) (!((x)&((x)-1))) |
|
81 |
|
82 #define __DL_BFR_CHECK(M,P) \ |
|
83 if ( MEMORY_MONITORED ) \ |
|
84 if ( !IS_ALIGNED(P) || ((TUint8*)(P)<M->iSeg.iBase) || ((TUint8*)(P)>(M->iSeg.iBase+M->iSeg.iSize))) \ |
|
85 BTraceContext12(BTrace::EHeap, BTrace::EHeapCorruption, (TUint32)this, (TUint32)P, (TUint32)0), HEAP_PANIC(ETHeapBadCellAddress); \ |
|
86 else DoCheckInuseChunk(M, MEM2CHUNK(P)) |
|
87 |
|
88 #ifndef __KERNEL_MODE__ |
|
89 |
|
90 #define __SLAB_BFR_CHECK(S,P,B) \ |
|
91 if ( MEMORY_MONITORED ) \ |
|
92 if ( ((TUint32)P & 0x3) || ((TUint8*)P<iMemBase) || ((TUint8*)(P)>(TUint8*)this)) \ |
|
93 BTraceContext12(BTrace::EHeap, BTrace::EHeapCorruption, (TUint32)this, (TUint32)P, (TUint32)S), HEAP_PANIC(ETHeapBadCellAddress); \ |
|
94 else DoCheckSlab(S, EPartialFullSlab, P), BuildPartialSlabBitmap(B,S,P) |
|
95 #define __PAGE_BFR_CHECK(P) \ |
|
96 if ( MEMORY_MONITORED ) \ |
|
97 if ( ((TUint32)P & ((1 << iPageSize)-1)) || ((TUint8*)P<iMemBase) || ((TUint8*)(P)>(TUint8*)this)) \ |
|
98 BTraceContext12(BTrace::EHeap, BTrace::EHeapCorruption, (TUint32)this, (TUint32)P, (TUint32)0), HEAP_PANIC(ETHeapBadCellAddress) |
|
99 |
|
100 #endif |
|
101 |
|
102 #ifdef _MSC_VER |
|
103 // This is required while we are still using VC6 to compile, so as to avoid warnings that cannot be fixed |
|
104 // without having to edit the original Doug Lea source. The 4146 warnings are due to the original code having |
|
105 // a liking for negating unsigned numbers and the 4127 warnings are due to the original code using the RTCHECK |
|
106 // macro with values that are always defined as 1. It is better to turn these warnings off than to introduce |
|
107 // diffs between the original Doug Lea implementation and our adaptation of it |
|
108 #pragma warning( disable : 4146 ) /* unary minus operator applied to unsigned type, result still unsigned */ |
|
109 #pragma warning( disable : 4127 ) /* conditional expression is constant */ |
|
110 #endif // _MSC_VER |
|
111 |
|
112 |
|
113 /** |
|
114 @SYMPatchable |
|
115 @publishedPartner |
|
116 @released |
|
117 |
|
118 Defines the minimum cell size of a heap. |
|
119 |
|
120 The constant can be changed at ROM build time using patchdata OBY keyword. |
|
121 |
|
122 @deprecated Patching this constant no longer has any effect. |
|
123 */ |
|
124 #ifdef __X86GCC__ // For X86GCC we dont use the proper data import attribute |
|
125 #undef IMPORT_D // since the constants are not really imported. GCC doesn't |
|
126 #define IMPORT_D // allow imports from self. |
|
127 #endif |
|
128 IMPORT_D extern const TInt KHeapMinCellSize; |
|
129 |
|
130 /** |
|
131 @SYMPatchable |
|
132 @publishedPartner |
|
133 @released |
|
134 |
|
135 This constant defines the ratio that determines the amount of hysteresis between heap growing and heap |
|
136 shrinking. |
|
137 It is a 32-bit fixed point number where the radix point is defined to be |
|
138 between bits 7 and 8 (where the LSB is bit 0) i.e. using standard notation, a Q8 or a fx24.8 |
|
139 fixed point number. For example, for a ratio of 2.0, set KHeapShrinkHysRatio=0x200. |
|
140 |
|
141 The heap shrinking hysteresis value is calculated to be: |
|
142 @code |
|
143 KHeapShrinkHysRatio*(iGrowBy>>8) |
|
144 @endcode |
|
145 where iGrowBy is a page aligned value set by the argument, aGrowBy, to the RHeap constructor. |
|
146 The default hysteresis value is iGrowBy bytes i.e. KHeapShrinkHysRatio=2.0. |
|
147 |
|
148 Memory usage may be improved by reducing the heap shrinking hysteresis |
|
149 by setting 1.0 < KHeapShrinkHysRatio < 2.0. Heap shrinking hysteresis is disabled/removed |
|
150 when KHeapShrinkHysRatio <= 1.0. |
|
151 |
|
152 The constant can be changed at ROM build time using patchdata OBY keyword. |
|
153 */ |
|
154 IMPORT_D extern const TInt KHeapShrinkHysRatio; |
|
155 |
|
156 UEXPORT_C TInt RHeap::AllocLen(const TAny* aCell) const |
|
157 { |
|
158 const MAllocator* m = this; |
|
159 return m->AllocLen(aCell); |
|
160 } |
|
161 |
|
162 UEXPORT_C TAny* RHeap::Alloc(TInt aSize) |
|
163 { |
|
164 const MAllocator* m = this; |
|
165 return ((MAllocator*)m)->Alloc(aSize); |
|
166 } |
|
167 |
|
168 UEXPORT_C void RHeap::Free(TAny* aCell) |
|
169 { |
|
170 const MAllocator* m = this; |
|
171 ((MAllocator*)m)->Free(aCell); |
|
172 } |
|
173 |
|
174 UEXPORT_C TAny* RHeap::ReAlloc(TAny* aCell, TInt aSize, TInt aMode) |
|
175 { |
|
176 const MAllocator* m = this; |
|
177 return ((MAllocator*)m)->ReAlloc(aCell, aSize, aMode); |
|
178 } |
|
179 |
|
180 UEXPORT_C TInt RHeap::DebugFunction(TInt aFunc, TAny* a1, TAny* a2) |
|
181 { |
|
182 const MAllocator* m = this; |
|
183 return ((MAllocator*)m)->DebugFunction(aFunc, a1, a2); |
|
184 } |
|
185 |
|
186 UEXPORT_C TInt RHeap::Extension_(TUint aExtensionId, TAny*& a0, TAny* a1) |
|
187 { |
|
188 const MAllocator* m = this; |
|
189 return ((MAllocator*)m)->Extension_(aExtensionId, a0, a1); |
|
190 } |
|
191 |
|
192 #ifndef __KERNEL_MODE__ |
|
193 |
|
194 EXPORT_C TInt RHeap::AllocSize(TInt& aTotalAllocSize) const |
|
195 { |
|
196 const MAllocator* m = this; |
|
197 return m->AllocSize(aTotalAllocSize); |
|
198 } |
|
199 |
|
200 EXPORT_C TInt RHeap::Available(TInt& aBiggestBlock) const |
|
201 { |
|
202 const MAllocator* m = this; |
|
203 return m->Available(aBiggestBlock); |
|
204 } |
|
205 |
|
206 EXPORT_C void RHeap::Reset() |
|
207 { |
|
208 const MAllocator* m = this; |
|
209 ((MAllocator*)m)->Reset(); |
|
210 } |
|
211 |
|
212 EXPORT_C TInt RHeap::Compress() |
|
213 { |
|
214 const MAllocator* m = this; |
|
215 return ((MAllocator*)m)->Compress(); |
|
216 } |
|
217 #endif |
|
218 |
|
219 RHybridHeap::RHybridHeap() |
|
220 { |
|
221 // This initialisation cannot be done in RHeap() for compatibility reasons |
|
222 iMaxLength = iChunkHandle = iNestingLevel = 0; |
|
223 iTop = NULL; |
|
224 iFailType = ENone; |
|
225 iTestData = NULL; |
|
226 } |
|
227 |
|
228 void RHybridHeap::operator delete(TAny*, TAny*) |
|
229 /** |
|
230 Called if constructor issued by operator new(TUint aSize, TAny* aBase) throws exception. |
|
231 This is dummy as corresponding new operator does not allocate memory. |
|
232 */ |
|
233 {} |
|
234 |
|
235 |
|
236 #ifndef __KERNEL_MODE__ |
|
237 void RHybridHeap::Lock() const |
|
238 /** |
|
239 @internalComponent |
|
240 */ |
|
241 {((RFastLock&)iLock).Wait();} |
|
242 |
|
243 |
|
244 void RHybridHeap::Unlock() const |
|
245 /** |
|
246 @internalComponent |
|
247 */ |
|
248 {((RFastLock&)iLock).Signal();} |
|
249 |
|
250 |
|
251 TInt RHybridHeap::ChunkHandle() const |
|
252 /** |
|
253 @internalComponent |
|
254 */ |
|
255 { |
|
256 return iChunkHandle; |
|
257 } |
|
258 |
|
259 #else |
|
260 // |
|
261 // This method is implemented in kheap.cpp |
|
262 // |
|
263 //void RHybridHeap::Lock() const |
|
264 /** |
|
265 @internalComponent |
|
266 */ |
|
267 // {;} |
|
268 |
|
269 |
|
270 |
|
271 // |
|
272 // This method is implemented in kheap.cpp |
|
273 // |
|
274 //void RHybridHeap::Unlock() const |
|
275 /** |
|
276 @internalComponent |
|
277 */ |
|
278 // {;} |
|
279 |
|
280 |
|
281 TInt RHybridHeap::ChunkHandle() const |
|
282 /** |
|
283 @internalComponent |
|
284 */ |
|
285 { |
|
286 return 0; |
|
287 } |
|
288 #endif |
|
289 |
|
290 RHybridHeap::RHybridHeap(TInt aChunkHandle, TInt aOffset, TInt aMinLength, TInt aMaxLength, TInt aGrowBy, TInt aAlign, TBool aSingleThread, TBool aDLOnly, TBool aUseAdjust) |
|
291 /** |
|
292 Constructor for a non fixed heap. Unlike the fixed heap, this heap is quite flexible in terms of its minimum and |
|
293 maximum lengths and in that it can use the hybrid allocator if all of its requirements are met. |
|
294 */ |
|
295 : iOffset(aOffset), iChunkSize(aMinLength) |
|
296 { |
|
297 __ASSERT_ALWAYS(iOffset>=0, HEAP_PANIC(ETHeapNewBadOffset)); |
|
298 |
|
299 iChunkHandle = aChunkHandle; |
|
300 iMinLength = aMinLength; |
|
301 iMaxLength = aMaxLength; |
|
302 |
|
303 // If the user has explicitly specified 0 as the aGrowBy value, set it to 1 so that it will be rounded up to the nearst page size |
|
304 if (aGrowBy == 0) |
|
305 aGrowBy = 1; |
|
306 GET_PAGE_SIZE(iPageSize); |
|
307 iGrowBy = _ALIGN_UP(aGrowBy, iPageSize); |
|
308 |
|
309 Construct(aSingleThread, aDLOnly, aUseAdjust, aAlign); |
|
310 } |
|
311 |
|
312 RHybridHeap::RHybridHeap(TInt aMaxLength, TInt aAlign, TBool aSingleThread) |
|
313 /** |
|
314 Constructor for a fixed heap. We have restrictions in that we have fixed minimum and maximum lengths and cannot grow |
|
315 and we only use DL allocator. |
|
316 */ |
|
317 : iOffset(0), iChunkSize(aMaxLength) |
|
318 { |
|
319 iChunkHandle = NULL; |
|
320 iMinLength = aMaxLength; |
|
321 iMaxLength = aMaxLength; |
|
322 iGrowBy = 0; |
|
323 |
|
324 Construct(aSingleThread, ETrue, ETrue, aAlign); |
|
325 } |
|
326 |
|
327 TAny* RHybridHeap::operator new(TUint aSize, TAny* aBase) __NO_THROW |
|
328 { |
|
329 __ASSERT_ALWAYS(aSize>=sizeof(RHybridHeap), HEAP_PANIC(ETHeapNewBadSize)); |
|
330 RHybridHeap* h = (RHybridHeap*)aBase; |
|
331 h->iBase = ((TUint8*)aBase) + aSize; |
|
332 return aBase; |
|
333 } |
|
334 |
|
335 void RHybridHeap::Construct(TBool aSingleThread, TBool aDLOnly, TBool aUseAdjust, TInt aAlign) |
|
336 { |
|
337 iAlign = aAlign ? aAlign : RHybridHeap::ECellAlignment; |
|
338 __ASSERT_ALWAYS((TUint32)iAlign>=sizeof(TAny*) && __POWER_OF_2(iAlign), HEAP_PANIC(ETHeapNewBadAlignment)); |
|
339 |
|
340 // This initialisation cannot be done in RHeap() for compatibility reasons |
|
341 iTop = NULL; |
|
342 iFailType = ENone; |
|
343 iNestingLevel = 0; |
|
344 iTestData = NULL; |
|
345 |
|
346 iHighWaterMark = iMinLength; |
|
347 iAllocCount = 0; |
|
348 iFlags = aSingleThread ? ESingleThreaded : 0; |
|
349 iGrowBy = _ALIGN_UP(iGrowBy, iPageSize); |
|
350 |
|
351 if ( iMinLength == iMaxLength ) |
|
352 { |
|
353 iFlags |= EFixedSize; |
|
354 aDLOnly = ETrue; |
|
355 } |
|
356 #ifndef __KERNEL_MODE__ |
|
357 #ifdef DELAYED_SLAB_THRESHOLD |
|
358 iSlabInitThreshold = DELAYED_SLAB_THRESHOLD; |
|
359 #else |
|
360 iSlabInitThreshold = 0; |
|
361 #endif // DELAYED_SLAB_THRESHOLD |
|
362 iUseAdjust = aUseAdjust; |
|
363 iDLOnly = aDLOnly; |
|
364 #else |
|
365 (void)aUseAdjust; |
|
366 #endif |
|
367 // Initialise suballocators |
|
368 // if DL only is required then it cannot allocate slab or page memory |
|
369 // so these sub-allocators should be disabled. Otherwise initialise with default values |
|
370 if ( aDLOnly ) |
|
371 { |
|
372 Init(0, 0); |
|
373 } |
|
374 else |
|
375 { |
|
376 Init(SLAB_CONFIG, 16); |
|
377 } |
|
378 |
|
379 #ifdef ENABLE_BTRACE |
|
380 |
|
381 TUint32 traceData[4]; |
|
382 traceData[0] = iMinLength; |
|
383 traceData[1] = iMaxLength; |
|
384 traceData[2] = iGrowBy; |
|
385 traceData[3] = iAlign; |
|
386 BTraceContextN(BTrace::ETest1, 90, (TUint32)this, 11, traceData, sizeof(traceData)); |
|
387 #endif |
|
388 |
|
389 } |
|
390 |
|
391 #ifndef __KERNEL_MODE__ |
|
392 TInt RHybridHeap::ConstructLock(TUint32 aMode) |
|
393 { |
|
394 TBool duplicateLock = EFalse; |
|
395 TInt r = KErrNone; |
|
396 if (!(iFlags & ESingleThreaded)) |
|
397 { |
|
398 duplicateLock = aMode & UserHeap::EChunkHeapSwitchTo; |
|
399 r = iLock.CreateLocal(duplicateLock ? EOwnerThread : EOwnerProcess); |
|
400 if( r != KErrNone) |
|
401 { |
|
402 iChunkHandle = 0; |
|
403 return r; |
|
404 } |
|
405 } |
|
406 |
|
407 if ( aMode & UserHeap::EChunkHeapSwitchTo ) |
|
408 User::SwitchHeap(this); |
|
409 |
|
410 iHandles = &iChunkHandle; |
|
411 if (!(iFlags & ESingleThreaded)) |
|
412 { |
|
413 // now change the thread-relative chunk/semaphore handles into process-relative handles |
|
414 iHandleCount = 2; |
|
415 if(duplicateLock) |
|
416 { |
|
417 RHandleBase s = iLock; |
|
418 r = iLock.Duplicate(RThread()); |
|
419 s.Close(); |
|
420 } |
|
421 if (r==KErrNone && (aMode & UserHeap::EChunkHeapDuplicate)) |
|
422 { |
|
423 r = ((RChunk*)&iChunkHandle)->Duplicate(RThread()); |
|
424 if (r!=KErrNone) |
|
425 iLock.Close(), iChunkHandle=0; |
|
426 } |
|
427 } |
|
428 else |
|
429 { |
|
430 iHandleCount = 1; |
|
431 if (aMode & UserHeap::EChunkHeapDuplicate) |
|
432 r = ((RChunk*)&iChunkHandle)->Duplicate(RThread(), EOwnerThread); |
|
433 } |
|
434 |
|
435 return r; |
|
436 } |
|
437 #endif |
|
438 |
|
439 void RHybridHeap::Init(TInt aBitmapSlab, TInt aPagePower) |
|
440 { |
|
441 /*Moved code which does initilization */ |
|
442 iTop = (TUint8*)this + iMinLength; |
|
443 iBase = Ceiling(iBase, ECellAlignment); // Align iBase address |
|
444 |
|
445 __INIT_COUNTERS(0); |
|
446 // memset(&mparams,0,sizeof(mparams)); |
|
447 |
|
448 InitDlMalloc(iTop - iBase, 0); |
|
449 |
|
450 #ifndef __KERNEL_MODE__ |
|
451 SlabInit(); |
|
452 iSlabConfigBits = aBitmapSlab; |
|
453 if ( iChunkSize > iSlabInitThreshold ) |
|
454 { |
|
455 iSlabInitThreshold = KMaxTInt32; |
|
456 SlabConfig(aBitmapSlab); // Delayed slab configuration done |
|
457 } |
|
458 if ( aPagePower ) |
|
459 { |
|
460 RChunk chunk; |
|
461 chunk.SetHandle(iChunkHandle); |
|
462 iMemBase = chunk.Base(); // Store base address for paged allocator |
|
463 } |
|
464 |
|
465 /*10-1K,11-2K,12-4k,13-8K,14-16K,15-32K,16-64K*/ |
|
466 PagedInit(aPagePower); |
|
467 |
|
468 #ifdef ENABLE_BTRACE |
|
469 TUint32 traceData[3]; |
|
470 traceData[0] = aBitmapSlab; |
|
471 traceData[1] = aPagePower; |
|
472 traceData[2] = GM->iTrimCheck; |
|
473 BTraceContextN(BTrace::ETest1, 90, (TUint32)this, 0, traceData, sizeof(traceData)); |
|
474 #endif |
|
475 #else |
|
476 (void)aBitmapSlab; |
|
477 (void)aPagePower; |
|
478 #endif // __KERNEL_MODE__ |
|
479 |
|
480 } |
|
481 |
|
482 |
|
483 TInt RHybridHeap::AllocLen(const TAny* aCell) const |
|
484 { |
|
485 aCell = __GET_DEBUG_DATA_BFR(aCell); |
|
486 |
|
487 if (PtrDiff(aCell, this) >= 0) |
|
488 { |
|
489 mchunkptr m = MEM2CHUNK(aCell); |
|
490 return CHUNKSIZE(m) - OVERHEAD_FOR(m) - __DEBUG_HDR_SIZE; |
|
491 } |
|
492 #ifndef __KERNEL_MODE__ |
|
493 if ( aCell ) |
|
494 { |
|
495 if (LowBits(aCell, iPageSize) ) |
|
496 return SlabHeaderSize(slab::SlabFor(aCell)->iHeader) - __DEBUG_HDR_SIZE; |
|
497 |
|
498 return PagedSize((void*)aCell) - __DEBUG_HDR_SIZE; |
|
499 } |
|
500 #endif |
|
501 return 0; // NULL pointer situation, should PANIC !! |
|
502 } |
|
503 |
|
504 #ifdef __KERNEL_MODE__ |
|
505 TAny* RHybridHeap::Alloc(TInt aSize) |
|
506 { |
|
507 __CHECK_THREAD_STATE; |
|
508 __ASSERT_ALWAYS((TUint)aSize<(KMaxTInt/2),HEAP_PANIC(ETHeapBadAllocatedCellSize)); |
|
509 __SIMULATE_ALLOC_FAIL(return NULL;) |
|
510 Lock(); |
|
511 __ALLOC_DEBUG_HEADER(aSize); |
|
512 TAny* addr = DlMalloc(aSize); |
|
513 if ( addr ) |
|
514 { |
|
515 // iCellCount++; |
|
516 __SET_DEBUG_DATA(addr, iNestingLevel, ++iAllocCount); |
|
517 addr = __GET_USER_DATA_BFR(addr); |
|
518 __INCREMENT_COUNTERS(addr); |
|
519 memclr(addr, AllocLen(addr)); |
|
520 } |
|
521 Unlock(); |
|
522 #ifdef ENABLE_BTRACE |
|
523 if (iFlags & ETraceAllocs) |
|
524 { |
|
525 if ( addr ) |
|
526 { |
|
527 TUint32 traceData[3]; |
|
528 traceData[0] = AllocLen(addr); |
|
529 traceData[1] = aSize - __DEBUG_HDR_SIZE; |
|
530 traceData[2] = 0; |
|
531 BTraceContextN(BTrace::EHeap, BTrace::EHeapAlloc, (TUint32)this, (TUint32)addr, traceData, sizeof(traceData)); |
|
532 } |
|
533 else |
|
534 BTraceContext8(BTrace::EHeap, BTrace::EHeapAllocFail, (TUint32)this, (TUint32)(aSize - __DEBUG_HDR_SIZE)); |
|
535 } |
|
536 #endif |
|
537 return addr; |
|
538 } |
|
539 #else |
|
540 |
|
541 TAny* RHybridHeap::Alloc(TInt aSize) |
|
542 { |
|
543 __ASSERT_ALWAYS((TUint)aSize<(KMaxTInt/2),HEAP_PANIC(ETHeapBadAllocatedCellSize)); |
|
544 __SIMULATE_ALLOC_FAIL(return NULL;) |
|
545 |
|
546 TAny* addr; |
|
547 #ifdef ENABLE_BTRACE |
|
548 TInt aSubAllocator=0; |
|
549 #endif |
|
550 |
|
551 Lock(); |
|
552 |
|
553 __ALLOC_DEBUG_HEADER(aSize); |
|
554 |
|
555 if (aSize < iSlabThreshold) |
|
556 { |
|
557 TInt ix = iSizeMap[(aSize+3)>>2]; |
|
558 HEAP_ASSERT(ix != 0xff); |
|
559 addr = SlabAllocate(iSlabAlloc[ix]); |
|
560 if ( !addr ) |
|
561 { // Slab allocation has failed, try to allocate from DL |
|
562 addr = DlMalloc(aSize); |
|
563 } |
|
564 #ifdef ENABLE_BTRACE |
|
565 else |
|
566 aSubAllocator=1; |
|
567 #endif |
|
568 }else if((aSize >> iPageThreshold)==0) |
|
569 { |
|
570 addr = DlMalloc(aSize); |
|
571 } |
|
572 else |
|
573 { |
|
574 addr = PagedAllocate(aSize); |
|
575 if ( !addr ) |
|
576 { // Page allocation has failed, try to allocate from DL |
|
577 addr = DlMalloc(aSize); |
|
578 } |
|
579 #ifdef ENABLE_BTRACE |
|
580 else |
|
581 aSubAllocator=2; |
|
582 #endif |
|
583 } |
|
584 |
|
585 if ( addr ) |
|
586 { |
|
587 // iCellCount++; |
|
588 __SET_DEBUG_DATA(addr, iNestingLevel, ++iAllocCount); |
|
589 addr = __GET_USER_DATA_BFR(addr); |
|
590 __INCREMENT_COUNTERS(addr); |
|
591 } |
|
592 Unlock(); |
|
593 |
|
594 #ifdef ENABLE_BTRACE |
|
595 if (iFlags & ETraceAllocs) |
|
596 { |
|
597 if ( addr ) |
|
598 { |
|
599 TUint32 traceData[3]; |
|
600 traceData[0] = AllocLen(addr); |
|
601 traceData[1] = aSize - __DEBUG_HDR_SIZE; |
|
602 traceData[2] = aSubAllocator; |
|
603 BTraceContextN(BTrace::EHeap, BTrace::EHeapAlloc, (TUint32)this, (TUint32)addr, traceData, sizeof(traceData)); |
|
604 } |
|
605 else |
|
606 BTraceContext8(BTrace::EHeap, BTrace::EHeapAllocFail, (TUint32)this, (TUint32)(aSize - __DEBUG_HDR_SIZE)); |
|
607 } |
|
608 #endif |
|
609 |
|
610 return addr; |
|
611 } |
|
612 #endif // __KERNEL_MODE__ |
|
613 |
|
614 #ifndef __KERNEL_MODE__ |
|
615 TInt RHybridHeap::Compress() |
|
616 { |
|
617 if ( IS_FIXED_HEAP ) |
|
618 return 0; |
|
619 |
|
620 Lock(); |
|
621 TInt Reduced = SysTrim(GM, 0); |
|
622 if (iSparePage) |
|
623 { |
|
624 Unmap(iSparePage, iPageSize); |
|
625 iSparePage = 0; |
|
626 Reduced += iPageSize; |
|
627 } |
|
628 Unlock(); |
|
629 return Reduced; |
|
630 } |
|
631 #endif |
|
632 |
|
633 void RHybridHeap::Free(TAny* aPtr) |
|
634 { |
|
635 __CHECK_THREAD_STATE; |
|
636 if ( !aPtr ) |
|
637 return; |
|
638 #ifdef ENABLE_BTRACE |
|
639 TInt aSubAllocator=0; |
|
640 #endif |
|
641 Lock(); |
|
642 |
|
643 aPtr = __GET_DEBUG_DATA_BFR(aPtr); |
|
644 |
|
645 #ifndef __KERNEL_MODE__ |
|
646 if (PtrDiff(aPtr, this) >= 0) |
|
647 { |
|
648 #endif |
|
649 __DL_BFR_CHECK(GM, aPtr); |
|
650 __DECREMENT_COUNTERS(__GET_USER_DATA_BFR(aPtr)); |
|
651 __ZAP_CELL(aPtr); |
|
652 DlFree( aPtr); |
|
653 #ifndef __KERNEL_MODE__ |
|
654 } |
|
655 |
|
656 else if ( LowBits(aPtr, iPageSize) == 0 ) |
|
657 { |
|
658 #ifdef ENABLE_BTRACE |
|
659 aSubAllocator = 2; |
|
660 #endif |
|
661 __PAGE_BFR_CHECK(aPtr); |
|
662 __DECREMENT_COUNTERS(__GET_USER_DATA_BFR(aPtr)); |
|
663 PagedFree(aPtr); |
|
664 } |
|
665 else |
|
666 { |
|
667 #ifdef ENABLE_BTRACE |
|
668 aSubAllocator = 1; |
|
669 #endif |
|
670 TUint32 bm[4]; |
|
671 __SLAB_BFR_CHECK(slab::SlabFor(aPtr),aPtr,bm); |
|
672 __DECREMENT_COUNTERS(__GET_USER_DATA_BFR(aPtr)); |
|
673 __ZAP_CELL(aPtr); |
|
674 SlabFree(aPtr); |
|
675 } |
|
676 #endif // __KERNEL_MODE__ |
|
677 // iCellCount--; |
|
678 Unlock(); |
|
679 #ifdef ENABLE_BTRACE |
|
680 if (iFlags & ETraceAllocs) |
|
681 { |
|
682 TUint32 traceData; |
|
683 traceData = aSubAllocator; |
|
684 BTraceContextN(BTrace::EHeap, BTrace::EHeapFree, (TUint32)this, (TUint32)__GET_USER_DATA_BFR(aPtr), &traceData, sizeof(traceData)); |
|
685 } |
|
686 #endif |
|
687 } |
|
688 |
|
689 #ifndef __KERNEL_MODE__ |
|
690 void RHybridHeap::Reset() |
|
691 /** |
|
692 Frees all allocated cells on this heap. |
|
693 */ |
|
694 { |
|
695 Lock(); |
|
696 if ( !IS_FIXED_HEAP ) |
|
697 { |
|
698 if ( GM->iSeg.iSize > (iMinLength - sizeof(*this)) ) |
|
699 Unmap(GM->iSeg.iBase + (iMinLength - sizeof(*this)), (GM->iSeg.iSize - (iMinLength - sizeof(*this)))); |
|
700 ResetBitmap(); |
|
701 if ( !iDLOnly ) |
|
702 Init(iSlabConfigBits, iPageThreshold); |
|
703 else |
|
704 Init(0,0); |
|
705 } |
|
706 else Init(0,0); |
|
707 Unlock(); |
|
708 } |
|
709 #endif |
|
710 |
|
711 TAny* RHybridHeap::ReAllocImpl(TAny* aPtr, TInt aSize, TInt aMode) |
|
712 { |
|
713 // First handle special case of calling reallocate with NULL aPtr |
|
714 if (!aPtr) |
|
715 { |
|
716 if (( aMode & ENeverMove ) == 0 ) |
|
717 { |
|
718 aPtr = Alloc(aSize - __DEBUG_HDR_SIZE); |
|
719 aPtr = __GET_DEBUG_DATA_BFR(aPtr); |
|
720 } |
|
721 return aPtr; |
|
722 } |
|
723 |
|
724 TInt oldsize = AllocLen(__GET_USER_DATA_BFR(aPtr)) + __DEBUG_HDR_SIZE; |
|
725 |
|
726 // Insist on geometric growth when reallocating memory, this reduces copying and fragmentation |
|
727 // generated during arithmetic growth of buffer/array/vector memory |
|
728 // Experiments have shown that 25% is a good threshold for this policy |
|
729 if (aSize <= oldsize) |
|
730 { |
|
731 if (aSize >= oldsize - (oldsize>>2)) |
|
732 return aPtr; // don't change if >75% original size |
|
733 } |
|
734 else |
|
735 { |
|
736 __SIMULATE_ALLOC_FAIL(return NULL;) |
|
737 if (aSize < oldsize + (oldsize>>2)) |
|
738 { |
|
739 aSize = _ALIGN_UP(oldsize + (oldsize>>2), 4); // grow to at least 125% original size |
|
740 } |
|
741 } |
|
742 __DEBUG_SAVE(aPtr); |
|
743 |
|
744 TAny* newp; |
|
745 #ifdef __KERNEL_MODE__ |
|
746 Lock(); |
|
747 __DL_BFR_CHECK(GM, aPtr); |
|
748 newp = DlRealloc(aPtr, aSize, aMode); |
|
749 Unlock(); |
|
750 if ( newp ) |
|
751 { |
|
752 if ( aSize > oldsize ) |
|
753 memclr(((TUint8*)newp) + oldsize, (aSize-oldsize)); // Buffer has grown in place, clear extra |
|
754 __DEBUG_RESTORE(newp); |
|
755 __UPDATE_ALLOC_COUNT(aPtr, newp, ++iAllocCount); |
|
756 __UPDATE_TOTAL_ALLOC(newp, oldsize); |
|
757 } |
|
758 #else |
|
759 // Decide how to reallocate based on (a) the current cell location, (b) the mode requested and (c) the new size |
|
760 if ( PtrDiff(aPtr, this) >= 0 ) |
|
761 { // current cell in Doug Lea iArena |
|
762 if ( (aMode & ENeverMove) |
|
763 || |
|
764 (!(aMode & EAllowMoveOnShrink) && (aSize < oldsize)) |
|
765 || |
|
766 ((aSize >= iSlabThreshold) && ((aSize >> iPageThreshold) == 0)) ) |
|
767 { |
|
768 Lock(); |
|
769 __DL_BFR_CHECK(GM, aPtr); |
|
770 newp = DlRealloc(aPtr, aSize, aMode); // old and new in DL allocator |
|
771 Unlock(); |
|
772 __DEBUG_RESTORE(newp); |
|
773 __UPDATE_ALLOC_COUNT(aPtr,newp, ++iAllocCount); |
|
774 __UPDATE_TOTAL_ALLOC(newp, oldsize); |
|
775 return newp; |
|
776 } |
|
777 } |
|
778 else if (LowBits(aPtr, iPageSize) == 0) |
|
779 { // current cell in paged iArena |
|
780 if ( (aMode & ENeverMove) |
|
781 || |
|
782 (!(aMode & EAllowMoveOnShrink) && (aSize < oldsize)) |
|
783 || |
|
784 ((aSize >> iPageThreshold) != 0) ) |
|
785 { |
|
786 Lock(); |
|
787 __PAGE_BFR_CHECK(aPtr); |
|
788 newp = PagedReallocate(aPtr, aSize, aMode); // old and new in paged allocator |
|
789 Unlock(); |
|
790 __DEBUG_RESTORE(newp); |
|
791 __UPDATE_ALLOC_COUNT(aPtr,newp, ++iAllocCount); |
|
792 __UPDATE_TOTAL_ALLOC(newp, oldsize); |
|
793 return newp; |
|
794 } |
|
795 } |
|
796 else |
|
797 { // current cell in slab iArena |
|
798 TUint32 bm[4]; |
|
799 Lock(); |
|
800 __SLAB_BFR_CHECK(slab::SlabFor(aPtr), aPtr, bm); |
|
801 Unlock(); |
|
802 if ( aSize <= oldsize) |
|
803 return aPtr; |
|
804 if (aMode & ENeverMove) |
|
805 return NULL; // cannot grow in slab iArena |
|
806 // just use alloc/copy/free... |
|
807 } |
|
808 |
|
809 // fallback to allocate and copy |
|
810 // shouldn't get here if we cannot move the cell |
|
811 // __ASSERT(mode == emobile || (mode==efixshrink && size>oldsize)); |
|
812 |
|
813 newp = Alloc(aSize - __DEBUG_HDR_SIZE); |
|
814 newp = __GET_DEBUG_DATA_BFR(newp); |
|
815 if (newp) |
|
816 { |
|
817 memcpy(newp, aPtr, oldsize<aSize ? oldsize : aSize); |
|
818 __DEBUG_RESTORE(newp); |
|
819 Free(__GET_USER_DATA_BFR(aPtr)); |
|
820 } |
|
821 |
|
822 #endif // __KERNEL_MODE__ |
|
823 return newp; |
|
824 } |
|
825 |
|
826 |
|
827 TAny* RHybridHeap::ReAlloc(TAny* aPtr, TInt aSize, TInt aMode ) |
|
828 { |
|
829 |
|
830 aPtr = __GET_DEBUG_DATA_BFR(aPtr); |
|
831 __ALLOC_DEBUG_HEADER(aSize); |
|
832 |
|
833 TAny* retval = ReAllocImpl(aPtr, aSize, aMode); |
|
834 |
|
835 retval = __GET_USER_DATA_BFR(retval); |
|
836 |
|
837 #ifdef ENABLE_BTRACE |
|
838 if (iFlags & ETraceAllocs) |
|
839 { |
|
840 if ( retval ) |
|
841 { |
|
842 TUint32 traceData[3]; |
|
843 traceData[0] = AllocLen(retval); |
|
844 traceData[1] = aSize - __DEBUG_HDR_SIZE; |
|
845 traceData[2] = (TUint32)aPtr; |
|
846 BTraceContextN(BTrace::EHeap, BTrace::EHeapReAlloc,(TUint32)this, (TUint32)retval, traceData, sizeof(traceData)); |
|
847 } |
|
848 else |
|
849 BTraceContext12(BTrace::EHeap, BTrace::EHeapReAllocFail, (TUint32)this, (TUint32)aPtr, (TUint32)(aSize - __DEBUG_HDR_SIZE)); |
|
850 } |
|
851 #endif |
|
852 return retval; |
|
853 } |
|
854 |
|
855 #ifndef __KERNEL_MODE__ |
|
856 TInt RHybridHeap::Available(TInt& aBiggestBlock) const |
|
857 /** |
|
858 Gets the total free space currently available on the heap and the space |
|
859 available in the largest free block. |
|
860 |
|
861 Note that this function exists mainly for compatibility reasons. In a modern |
|
862 heap implementation such as that present in Symbian it is not appropriate to |
|
863 concern oneself with details such as the amount of free memory available on a |
|
864 heap and its largeset free block, because the way that a modern heap implmentation |
|
865 works is not simple. The amount of available virtual memory != physical memory |
|
866 and there are multiple allocation strategies used internally, which makes all |
|
867 memory usage figures "fuzzy" at best. |
|
868 |
|
869 In short, if you want to see if there is enough memory available to allocate a |
|
870 block of memory, call Alloc() and if it succeeds then there is enough memory! |
|
871 Messing around with functions like this is somewhat pointless with modern heap |
|
872 allocators. |
|
873 |
|
874 @param aBiggestBlock On return, contains the space available in the largest |
|
875 free block on the heap. Due to the internals of modern |
|
876 heap implementations, you can probably still allocate a |
|
877 block larger than this! |
|
878 |
|
879 @return The total free space currently available on the heap. Again, you can |
|
880 probably still allocate more than this! |
|
881 */ |
|
882 { |
|
883 struct HeapInfo info; |
|
884 Lock(); |
|
885 TInt Biggest = GetInfo(&info); |
|
886 aBiggestBlock = __GET_AVAIL_BLOCK_SIZE(Biggest); |
|
887 Unlock(); |
|
888 return __GET_AVAIL_BLOCK_SIZE(info.iFreeBytes); |
|
889 |
|
890 } |
|
891 |
|
892 TInt RHybridHeap::AllocSize(TInt& aTotalAllocSize) const |
|
893 /** |
|
894 Gets the number of cells allocated on this heap, and the total space |
|
895 allocated to them. |
|
896 |
|
897 @param aTotalAllocSize On return, contains the total space allocated |
|
898 to the cells. |
|
899 |
|
900 @return The number of cells allocated on this heap. |
|
901 */ |
|
902 { |
|
903 struct HeapInfo info; |
|
904 Lock(); |
|
905 GetInfo(&info); |
|
906 aTotalAllocSize = info.iAllocBytes - __REMOVE_DBG_HDR(info.iAllocN); |
|
907 Unlock(); |
|
908 return info.iAllocN; |
|
909 } |
|
910 |
|
911 #endif |
|
912 |
|
913 TInt RHybridHeap::Extension_(TUint /* aExtensionId */, TAny*& /* a0 */, TAny* /* a1 */) |
|
914 { |
|
915 return KErrNotSupported; |
|
916 } |
|
917 |
|
918 |
|
919 |
|
920 /////////////////////////////////////////////////////////////////////////////// |
|
921 // imported from dla.cpp |
|
922 /////////////////////////////////////////////////////////////////////////////// |
|
923 |
|
924 //#include <unistd.h> |
|
925 //#define DEBUG_REALLOC |
|
926 #ifdef DEBUG_REALLOC |
|
927 #include <e32debug.h> |
|
928 #endif |
|
929 |
|
930 inline void RHybridHeap::InitBins(mstate m) |
|
931 { |
|
932 /* Establish circular links for iSmallBins */ |
|
933 bindex_t i; |
|
934 for (i = 0; i < NSMALLBINS; ++i) { |
|
935 sbinptr bin = SMALLBIN_AT(m,i); |
|
936 bin->iFd = bin->iBk = bin; |
|
937 } |
|
938 } |
|
939 /* ---------------------------- malloc support --------------------------- */ |
|
940 |
|
941 /* allocate a large request from the best fitting chunk in a treebin */ |
|
942 void* RHybridHeap::TmallocLarge(mstate m, size_t nb) { |
|
943 tchunkptr v = 0; |
|
944 size_t rsize = -nb; /* Unsigned negation */ |
|
945 tchunkptr t; |
|
946 bindex_t idx; |
|
947 ComputeTreeIndex(nb, idx); |
|
948 |
|
949 if ((t = *TREEBIN_AT(m, idx)) != 0) |
|
950 { |
|
951 /* Traverse tree for this bin looking for node with size == nb */ |
|
952 size_t sizebits = nb << LEFTSHIFT_FOR_TREE_INDEX(idx); |
|
953 tchunkptr rst = 0; /* The deepest untaken right subtree */ |
|
954 for (;;) |
|
955 { |
|
956 tchunkptr rt; |
|
957 size_t trem = CHUNKSIZE(t) - nb; |
|
958 if (trem < rsize) |
|
959 { |
|
960 v = t; |
|
961 if ((rsize = trem) == 0) |
|
962 break; |
|
963 } |
|
964 rt = t->iChild[1]; |
|
965 t = t->iChild[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; |
|
966 if (rt != 0 && rt != t) |
|
967 rst = rt; |
|
968 if (t == 0) |
|
969 { |
|
970 t = rst; /* set t to least subtree holding sizes > nb */ |
|
971 break; |
|
972 } |
|
973 sizebits <<= 1; |
|
974 } |
|
975 } |
|
976 if (t == 0 && v == 0) |
|
977 { /* set t to root of next non-empty treebin */ |
|
978 binmap_t leftbits = LEFT_BITS(IDX2BIT(idx)) & m->iTreeMap; |
|
979 if (leftbits != 0) |
|
980 { |
|
981 bindex_t i; |
|
982 binmap_t leastbit = LEAST_BIT(leftbits); |
|
983 ComputeBit2idx(leastbit, i); |
|
984 t = *TREEBIN_AT(m, i); |
|
985 } |
|
986 } |
|
987 while (t != 0) |
|
988 { /* Find smallest of tree or subtree */ |
|
989 size_t trem = CHUNKSIZE(t) - nb; |
|
990 if (trem < rsize) { |
|
991 rsize = trem; |
|
992 v = t; |
|
993 } |
|
994 t = LEFTMOST_CHILD(t); |
|
995 } |
|
996 /* If iDv is a better fit, return 0 so malloc will use it */ |
|
997 if (v != 0 && rsize < (size_t)(m->iDvSize - nb)) |
|
998 { |
|
999 if (RTCHECK(OK_ADDRESS(m, v))) |
|
1000 { /* split */ |
|
1001 mchunkptr r = CHUNK_PLUS_OFFSET(v, nb); |
|
1002 HEAP_ASSERT(CHUNKSIZE(v) == rsize + nb); |
|
1003 if (RTCHECK(OK_NEXT(v, r))) |
|
1004 { |
|
1005 UnlinkLargeChunk(m, v); |
|
1006 if (rsize < MIN_CHUNK_SIZE) |
|
1007 SET_INUSE_AND_PINUSE(m, v, (rsize + nb)); |
|
1008 else |
|
1009 { |
|
1010 SET_SIZE_AND_PINUSE_OF_INUSE_CHUNK(m, v, nb); |
|
1011 SET_SIZE_AND_PINUSE_OF_FREE_CHUNK(r, rsize); |
|
1012 InsertChunk(m, r, rsize); |
|
1013 } |
|
1014 return CHUNK2MEM(v); |
|
1015 } |
|
1016 } |
|
1017 // CORRUPTION_ERROR_ACTION(m); |
|
1018 } |
|
1019 return 0; |
|
1020 } |
|
1021 |
|
1022 /* allocate a small request from the best fitting chunk in a treebin */ |
|
1023 void* RHybridHeap::TmallocSmall(mstate m, size_t nb) |
|
1024 { |
|
1025 tchunkptr t, v; |
|
1026 size_t rsize; |
|
1027 bindex_t i; |
|
1028 binmap_t leastbit = LEAST_BIT(m->iTreeMap); |
|
1029 ComputeBit2idx(leastbit, i); |
|
1030 |
|
1031 v = t = *TREEBIN_AT(m, i); |
|
1032 rsize = CHUNKSIZE(t) - nb; |
|
1033 |
|
1034 while ((t = LEFTMOST_CHILD(t)) != 0) |
|
1035 { |
|
1036 size_t trem = CHUNKSIZE(t) - nb; |
|
1037 if (trem < rsize) |
|
1038 { |
|
1039 rsize = trem; |
|
1040 v = t; |
|
1041 } |
|
1042 } |
|
1043 |
|
1044 if (RTCHECK(OK_ADDRESS(m, v))) |
|
1045 { |
|
1046 mchunkptr r = CHUNK_PLUS_OFFSET(v, nb); |
|
1047 HEAP_ASSERT(CHUNKSIZE(v) == rsize + nb); |
|
1048 if (RTCHECK(OK_NEXT(v, r))) |
|
1049 { |
|
1050 UnlinkLargeChunk(m, v); |
|
1051 if (rsize < MIN_CHUNK_SIZE) |
|
1052 SET_INUSE_AND_PINUSE(m, v, (rsize + nb)); |
|
1053 else |
|
1054 { |
|
1055 SET_SIZE_AND_PINUSE_OF_INUSE_CHUNK(m, v, nb); |
|
1056 SET_SIZE_AND_PINUSE_OF_FREE_CHUNK(r, rsize); |
|
1057 ReplaceDv(m, r, rsize); |
|
1058 } |
|
1059 return CHUNK2MEM(v); |
|
1060 } |
|
1061 } |
|
1062 // CORRUPTION_ERROR_ACTION(m); |
|
1063 // return 0; |
|
1064 } |
|
1065 |
|
1066 inline void RHybridHeap::InitTop(mstate m, mchunkptr p, size_t psize) |
|
1067 { |
|
1068 /* Ensure alignment */ |
|
1069 size_t offset = ALIGN_OFFSET(CHUNK2MEM(p)); |
|
1070 p = (mchunkptr)((TUint8*)p + offset); |
|
1071 psize -= offset; |
|
1072 m->iTop = p; |
|
1073 m->iTopSize = psize; |
|
1074 p->iHead = psize | PINUSE_BIT; |
|
1075 /* set size of fake trailing chunk holding overhead space only once */ |
|
1076 mchunkptr chunkPlusOff = CHUNK_PLUS_OFFSET(p, psize); |
|
1077 chunkPlusOff->iHead = TOP_FOOT_SIZE; |
|
1078 m->iTrimCheck = KHeapShrinkHysRatio*(iGrowBy>>8); |
|
1079 } |
|
1080 |
|
1081 |
|
1082 /* Unlink the first chunk from a smallbin */ |
|
1083 inline void RHybridHeap::UnlinkFirstSmallChunk(mstate M,mchunkptr B,mchunkptr P,bindex_t& I) |
|
1084 { |
|
1085 mchunkptr F = P->iFd; |
|
1086 HEAP_ASSERT(P != B); |
|
1087 HEAP_ASSERT(P != F); |
|
1088 HEAP_ASSERT(CHUNKSIZE(P) == SMALL_INDEX2SIZE(I)); |
|
1089 if (B == F) |
|
1090 CLEAR_SMALLMAP(M, I); |
|
1091 else if (RTCHECK(OK_ADDRESS(M, F))) |
|
1092 { |
|
1093 B->iFd = F; |
|
1094 F->iBk = B; |
|
1095 } |
|
1096 else |
|
1097 { |
|
1098 CORRUPTION_ERROR_ACTION(M); |
|
1099 } |
|
1100 } |
|
1101 /* Link a free chunk into a smallbin */ |
|
1102 inline void RHybridHeap::InsertSmallChunk(mstate M,mchunkptr P, size_t S) |
|
1103 { |
|
1104 bindex_t I = SMALL_INDEX(S); |
|
1105 mchunkptr B = SMALLBIN_AT(M, I); |
|
1106 mchunkptr F = B; |
|
1107 HEAP_ASSERT(S >= MIN_CHUNK_SIZE); |
|
1108 if (!SMALLMAP_IS_MARKED(M, I)) |
|
1109 MARK_SMALLMAP(M, I); |
|
1110 else if (RTCHECK(OK_ADDRESS(M, B->iFd))) |
|
1111 F = B->iFd; |
|
1112 else |
|
1113 { |
|
1114 CORRUPTION_ERROR_ACTION(M); |
|
1115 } |
|
1116 B->iFd = P; |
|
1117 F->iBk = P; |
|
1118 P->iFd = F; |
|
1119 P->iBk = B; |
|
1120 } |
|
1121 |
|
1122 |
|
1123 inline void RHybridHeap::InsertChunk(mstate M,mchunkptr P,size_t S) |
|
1124 { |
|
1125 if (IS_SMALL(S)) |
|
1126 InsertSmallChunk(M, P, S); |
|
1127 else |
|
1128 { |
|
1129 tchunkptr TP = (tchunkptr)(P); InsertLargeChunk(M, TP, S); |
|
1130 } |
|
1131 } |
|
1132 |
|
1133 inline void RHybridHeap::UnlinkLargeChunk(mstate M,tchunkptr X) |
|
1134 { |
|
1135 tchunkptr XP = X->iParent; |
|
1136 tchunkptr R; |
|
1137 if (X->iBk != X) |
|
1138 { |
|
1139 tchunkptr F = X->iFd; |
|
1140 R = X->iBk; |
|
1141 if (RTCHECK(OK_ADDRESS(M, F))) |
|
1142 { |
|
1143 F->iBk = R; |
|
1144 R->iFd = F; |
|
1145 } |
|
1146 else |
|
1147 { |
|
1148 CORRUPTION_ERROR_ACTION(M); |
|
1149 } |
|
1150 } |
|
1151 else |
|
1152 { |
|
1153 tchunkptr* RP; |
|
1154 if (((R = *(RP = &(X->iChild[1]))) != 0) || |
|
1155 ((R = *(RP = &(X->iChild[0]))) != 0)) |
|
1156 { |
|
1157 tchunkptr* CP; |
|
1158 while ((*(CP = &(R->iChild[1])) != 0) || |
|
1159 (*(CP = &(R->iChild[0])) != 0)) |
|
1160 { |
|
1161 R = *(RP = CP); |
|
1162 } |
|
1163 if (RTCHECK(OK_ADDRESS(M, RP))) |
|
1164 *RP = 0; |
|
1165 else |
|
1166 { |
|
1167 CORRUPTION_ERROR_ACTION(M); |
|
1168 } |
|
1169 } |
|
1170 } |
|
1171 if (XP != 0) |
|
1172 { |
|
1173 tbinptr* H = TREEBIN_AT(M, X->iIndex); |
|
1174 if (X == *H) |
|
1175 { |
|
1176 if ((*H = R) == 0) |
|
1177 CLEAR_TREEMAP(M, X->iIndex); |
|
1178 } |
|
1179 else if (RTCHECK(OK_ADDRESS(M, XP))) |
|
1180 { |
|
1181 if (XP->iChild[0] == X) |
|
1182 XP->iChild[0] = R; |
|
1183 else |
|
1184 XP->iChild[1] = R; |
|
1185 } |
|
1186 else |
|
1187 CORRUPTION_ERROR_ACTION(M); |
|
1188 if (R != 0) |
|
1189 { |
|
1190 if (RTCHECK(OK_ADDRESS(M, R))) |
|
1191 { |
|
1192 tchunkptr C0, C1; |
|
1193 R->iParent = XP; |
|
1194 if ((C0 = X->iChild[0]) != 0) |
|
1195 { |
|
1196 if (RTCHECK(OK_ADDRESS(M, C0))) |
|
1197 { |
|
1198 R->iChild[0] = C0; |
|
1199 C0->iParent = R; |
|
1200 } |
|
1201 else |
|
1202 CORRUPTION_ERROR_ACTION(M); |
|
1203 } |
|
1204 if ((C1 = X->iChild[1]) != 0) |
|
1205 { |
|
1206 if (RTCHECK(OK_ADDRESS(M, C1))) |
|
1207 { |
|
1208 R->iChild[1] = C1; |
|
1209 C1->iParent = R; |
|
1210 } |
|
1211 else |
|
1212 CORRUPTION_ERROR_ACTION(M); |
|
1213 } |
|
1214 } |
|
1215 else |
|
1216 CORRUPTION_ERROR_ACTION(M); |
|
1217 } |
|
1218 } |
|
1219 } |
|
1220 |
|
1221 /* Unlink a chunk from a smallbin */ |
|
1222 inline void RHybridHeap::UnlinkSmallChunk(mstate M, mchunkptr P,size_t S) |
|
1223 { |
|
1224 mchunkptr F = P->iFd; |
|
1225 mchunkptr B = P->iBk; |
|
1226 bindex_t I = SMALL_INDEX(S); |
|
1227 HEAP_ASSERT(P != B); |
|
1228 HEAP_ASSERT(P != F); |
|
1229 HEAP_ASSERT(CHUNKSIZE(P) == SMALL_INDEX2SIZE(I)); |
|
1230 if (F == B) |
|
1231 CLEAR_SMALLMAP(M, I); |
|
1232 else if (RTCHECK((F == SMALLBIN_AT(M,I) || OK_ADDRESS(M, F)) && |
|
1233 (B == SMALLBIN_AT(M,I) || OK_ADDRESS(M, B)))) |
|
1234 { |
|
1235 F->iBk = B; |
|
1236 B->iFd = F; |
|
1237 } |
|
1238 else |
|
1239 { |
|
1240 CORRUPTION_ERROR_ACTION(M); |
|
1241 } |
|
1242 } |
|
1243 |
|
1244 inline void RHybridHeap::UnlinkChunk(mstate M, mchunkptr P, size_t S) |
|
1245 { |
|
1246 if (IS_SMALL(S)) |
|
1247 UnlinkSmallChunk(M, P, S); |
|
1248 else |
|
1249 { |
|
1250 tchunkptr TP = (tchunkptr)(P); UnlinkLargeChunk(M, TP); |
|
1251 } |
|
1252 } |
|
1253 |
|
1254 // For DL debug functions |
|
1255 void RHybridHeap::DoComputeTreeIndex(size_t S, bindex_t& I) |
|
1256 { |
|
1257 ComputeTreeIndex(S, I); |
|
1258 } |
|
1259 |
|
1260 inline void RHybridHeap::ComputeTreeIndex(size_t S, bindex_t& I) |
|
1261 { |
|
1262 size_t X = S >> TREEBIN_SHIFT; |
|
1263 if (X == 0) |
|
1264 I = 0; |
|
1265 else if (X > 0xFFFF) |
|
1266 I = NTREEBINS-1; |
|
1267 else |
|
1268 { |
|
1269 unsigned int Y = (unsigned int)X; |
|
1270 unsigned int N = ((Y - 0x100) >> 16) & 8; |
|
1271 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4; |
|
1272 N += K; |
|
1273 N += K = (((Y <<= K) - 0x4000) >> 16) & 2; |
|
1274 K = 14 - N + ((Y <<= K) >> 15); |
|
1275 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)); |
|
1276 } |
|
1277 } |
|
1278 |
|
1279 /* ------------------------- Operations on trees ------------------------- */ |
|
1280 |
|
1281 /* Insert chunk into tree */ |
|
1282 inline void RHybridHeap::InsertLargeChunk(mstate M,tchunkptr X,size_t S) |
|
1283 { |
|
1284 tbinptr* H; |
|
1285 bindex_t I; |
|
1286 ComputeTreeIndex(S, I); |
|
1287 H = TREEBIN_AT(M, I); |
|
1288 X->iIndex = I; |
|
1289 X->iChild[0] = X->iChild[1] = 0; |
|
1290 if (!TREEMAP_IS_MARKED(M, I)) |
|
1291 { |
|
1292 MARK_TREEMAP(M, I); |
|
1293 *H = X; |
|
1294 X->iParent = (tchunkptr)H; |
|
1295 X->iFd = X->iBk = X; |
|
1296 } |
|
1297 else |
|
1298 { |
|
1299 tchunkptr T = *H; |
|
1300 size_t K = S << LEFTSHIFT_FOR_TREE_INDEX(I); |
|
1301 for (;;) |
|
1302 { |
|
1303 if (CHUNKSIZE(T) != S) { |
|
1304 tchunkptr* C = &(T->iChild[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]); |
|
1305 K <<= 1; |
|
1306 if (*C != 0) |
|
1307 T = *C; |
|
1308 else if (RTCHECK(OK_ADDRESS(M, C))) |
|
1309 { |
|
1310 *C = X; |
|
1311 X->iParent = T; |
|
1312 X->iFd = X->iBk = X; |
|
1313 break; |
|
1314 } |
|
1315 else |
|
1316 { |
|
1317 CORRUPTION_ERROR_ACTION(M); |
|
1318 break; |
|
1319 } |
|
1320 } |
|
1321 else |
|
1322 { |
|
1323 tchunkptr F = T->iFd; |
|
1324 if (RTCHECK(OK_ADDRESS(M, T) && OK_ADDRESS(M, F))) |
|
1325 { |
|
1326 T->iFd = F->iBk = X; |
|
1327 X->iFd = F; |
|
1328 X->iBk = T; |
|
1329 X->iParent = 0; |
|
1330 break; |
|
1331 } |
|
1332 else |
|
1333 { |
|
1334 CORRUPTION_ERROR_ACTION(M); |
|
1335 break; |
|
1336 } |
|
1337 } |
|
1338 } |
|
1339 } |
|
1340 } |
|
1341 |
|
1342 /* |
|
1343 Unlink steps: |
|
1344 |
|
1345 1. If x is a chained node, unlink it from its same-sized iFd/iBk links |
|
1346 and choose its iBk node as its replacement. |
|
1347 2. If x was the last node of its size, but not a leaf node, it must |
|
1348 be replaced with a leaf node (not merely one with an open left or |
|
1349 right), to make sure that lefts and rights of descendents |
|
1350 correspond properly to bit masks. We use the rightmost descendent |
|
1351 of x. We could use any other leaf, but this is easy to locate and |
|
1352 tends to counteract removal of leftmosts elsewhere, and so keeps |
|
1353 paths shorter than minimally guaranteed. This doesn't loop much |
|
1354 because on average a node in a tree is near the bottom. |
|
1355 3. If x is the base of a chain (i.e., has iParent links) relink |
|
1356 x's iParent and children to x's replacement (or null if none). |
|
1357 */ |
|
1358 |
|
1359 /* Replace iDv node, binning the old one */ |
|
1360 /* Used only when iDvSize known to be small */ |
|
1361 inline void RHybridHeap::ReplaceDv(mstate M, mchunkptr P, size_t S) |
|
1362 { |
|
1363 size_t DVS = M->iDvSize; |
|
1364 if (DVS != 0) |
|
1365 { |
|
1366 mchunkptr DV = M->iDv; |
|
1367 HEAP_ASSERT(IS_SMALL(DVS)); |
|
1368 InsertSmallChunk(M, DV, DVS); |
|
1369 } |
|
1370 M->iDvSize = S; |
|
1371 M->iDv = P; |
|
1372 } |
|
1373 |
|
1374 |
|
1375 inline void RHybridHeap::ComputeBit2idx(binmap_t X,bindex_t& I) |
|
1376 { |
|
1377 unsigned int Y = X - 1; |
|
1378 unsigned int K = Y >> (16-4) & 16; |
|
1379 unsigned int N = K; Y >>= K; |
|
1380 N += K = Y >> (8-3) & 8; Y >>= K; |
|
1381 N += K = Y >> (4-2) & 4; Y >>= K; |
|
1382 N += K = Y >> (2-1) & 2; Y >>= K; |
|
1383 N += K = Y >> (1-0) & 1; Y >>= K; |
|
1384 I = (bindex_t)(N + Y); |
|
1385 } |
|
1386 |
|
1387 |
|
1388 |
|
1389 int RHybridHeap::SysTrim(mstate m, size_t pad) |
|
1390 { |
|
1391 size_t extra = 0; |
|
1392 |
|
1393 if ( IS_INITIALIZED(m) ) |
|
1394 { |
|
1395 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ |
|
1396 |
|
1397 if (m->iTopSize > pad) |
|
1398 { |
|
1399 extra = Floor(m->iTopSize - pad, iPageSize); |
|
1400 if ( (m->iSeg.iSize - extra) < (iMinLength - sizeof(*this)) ) |
|
1401 { |
|
1402 if ( m->iSeg.iSize > (iMinLength - sizeof(*this)) ) |
|
1403 extra = Floor(m->iSeg.iSize - (iMinLength - sizeof(*this)), iPageSize); /* do not shrink heap below min length */ |
|
1404 else extra = 0; |
|
1405 } |
|
1406 |
|
1407 if ( extra ) |
|
1408 { |
|
1409 Unmap(m->iSeg.iBase + m->iSeg.iSize - extra, extra); |
|
1410 |
|
1411 m->iSeg.iSize -= extra; |
|
1412 InitTop(m, m->iTop, m->iTopSize - extra); |
|
1413 CHECK_TOP_CHUNK(m, m->iTop); |
|
1414 } |
|
1415 } |
|
1416 |
|
1417 } |
|
1418 |
|
1419 return extra; |
|
1420 } |
|
1421 |
|
1422 /* Get memory from system using MORECORE */ |
|
1423 |
|
1424 void* RHybridHeap::SysAlloc(mstate m, size_t nb) |
|
1425 { |
|
1426 HEAP_ASSERT(m->iTop); |
|
1427 /* Subtract out existing available iTop space from MORECORE request. */ |
|
1428 // size_t asize = _ALIGN_UP(nb - m->iTopSize + TOP_FOOT_SIZE + SIZE_T_ONE, iGrowBy); |
|
1429 TInt asize = _ALIGN_UP(nb - m->iTopSize + SYS_ALLOC_PADDING, iGrowBy); // From DLA version 2.8.4 |
|
1430 |
|
1431 char* br = (char*)Map(m->iSeg.iBase+m->iSeg.iSize, asize); |
|
1432 if (!br) |
|
1433 return 0; |
|
1434 HEAP_ASSERT(br == (char*)m->iSeg.iBase+m->iSeg.iSize); |
|
1435 |
|
1436 /* Merge with an existing segment */ |
|
1437 m->iSeg.iSize += asize; |
|
1438 InitTop(m, m->iTop, m->iTopSize + asize); |
|
1439 |
|
1440 if (nb < m->iTopSize) |
|
1441 { /* Allocate from new or extended iTop space */ |
|
1442 size_t rsize = m->iTopSize -= nb; |
|
1443 mchunkptr p = m->iTop; |
|
1444 mchunkptr r = m->iTop = CHUNK_PLUS_OFFSET(p, nb); |
|
1445 r->iHead = rsize | PINUSE_BIT; |
|
1446 SET_SIZE_AND_PINUSE_OF_INUSE_CHUNK(m, p, nb); |
|
1447 CHECK_TOP_CHUNK(m, m->iTop); |
|
1448 CHECK_MALLOCED_CHUNK(m, CHUNK2MEM(p), nb); |
|
1449 return CHUNK2MEM(p); |
|
1450 } |
|
1451 |
|
1452 return 0; |
|
1453 } |
|
1454 |
|
1455 |
|
1456 void RHybridHeap::InitDlMalloc(size_t capacity, int /*locked*/) |
|
1457 { |
|
1458 memset(GM,0,sizeof(malloc_state)); |
|
1459 // The maximum amount that can be allocated can be calculated as:- |
|
1460 // 2^sizeof(size_t) - sizeof(malloc_state) - TOP_FOOT_SIZE - page Size(all accordingly padded) |
|
1461 // If the capacity exceeds this, no allocation will be done. |
|
1462 GM->iSeg.iBase = iBase; |
|
1463 GM->iSeg.iSize = capacity; |
|
1464 InitBins(GM); |
|
1465 InitTop(GM, (mchunkptr)iBase, capacity - TOP_FOOT_SIZE); |
|
1466 } |
|
1467 |
|
1468 void* RHybridHeap::DlMalloc(size_t bytes) |
|
1469 { |
|
1470 /* |
|
1471 Basic algorithm: |
|
1472 If a small request (< 256 bytes minus per-chunk overhead): |
|
1473 1. If one exists, use a remainderless chunk in associated smallbin. |
|
1474 (Remainderless means that there are too few excess bytes to |
|
1475 represent as a chunk.) |
|
1476 2. If it is big enough, use the iDv chunk, which is normally the |
|
1477 chunk adjacent to the one used for the most recent small request. |
|
1478 3. If one exists, split the smallest available chunk in a bin, |
|
1479 saving remainder in iDv. |
|
1480 4. If it is big enough, use the iTop chunk. |
|
1481 5. If available, get memory from system and use it |
|
1482 Otherwise, for a large request: |
|
1483 1. Find the smallest available binned chunk that fits, and use it |
|
1484 if it is better fitting than iDv chunk, splitting if necessary. |
|
1485 2. If better fitting than any binned chunk, use the iDv chunk. |
|
1486 3. If it is big enough, use the iTop chunk. |
|
1487 4. If request size >= mmap threshold, try to directly mmap this chunk. |
|
1488 5. If available, get memory from system and use it |
|
1489 */ |
|
1490 void* mem; |
|
1491 size_t nb; |
|
1492 if (bytes <= MAX_SMALL_REQUEST) |
|
1493 { |
|
1494 bindex_t idx; |
|
1495 binmap_t smallbits; |
|
1496 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : PAD_REQUEST(bytes); |
|
1497 idx = SMALL_INDEX(nb); |
|
1498 smallbits = GM->iSmallMap >> idx; |
|
1499 |
|
1500 if ((smallbits & 0x3U) != 0) |
|
1501 { /* Remainderless fit to a smallbin. */ |
|
1502 mchunkptr b, p; |
|
1503 idx += ~smallbits & 1; /* Uses next bin if idx empty */ |
|
1504 b = SMALLBIN_AT(GM, idx); |
|
1505 p = b->iFd; |
|
1506 HEAP_ASSERT(CHUNKSIZE(p) == SMALL_INDEX2SIZE(idx)); |
|
1507 UnlinkFirstSmallChunk(GM, b, p, idx); |
|
1508 SET_INUSE_AND_PINUSE(GM, p, SMALL_INDEX2SIZE(idx)); |
|
1509 mem = CHUNK2MEM(p); |
|
1510 CHECK_MALLOCED_CHUNK(GM, mem, nb); |
|
1511 return mem; |
|
1512 } |
|
1513 |
|
1514 else if (nb > GM->iDvSize) |
|
1515 { |
|
1516 if (smallbits != 0) |
|
1517 { /* Use chunk in next nonempty smallbin */ |
|
1518 mchunkptr b, p, r; |
|
1519 size_t rsize; |
|
1520 bindex_t i; |
|
1521 binmap_t leftbits = (smallbits << idx) & LEFT_BITS(IDX2BIT(idx)); |
|
1522 binmap_t leastbit = LEAST_BIT(leftbits); |
|
1523 ComputeBit2idx(leastbit, i); |
|
1524 b = SMALLBIN_AT(GM, i); |
|
1525 p = b->iFd; |
|
1526 HEAP_ASSERT(CHUNKSIZE(p) == SMALL_INDEX2SIZE(i)); |
|
1527 UnlinkFirstSmallChunk(GM, b, p, i); |
|
1528 rsize = SMALL_INDEX2SIZE(i) - nb; |
|
1529 /* Fit here cannot be remainderless if 4byte sizes */ |
|
1530 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) |
|
1531 SET_INUSE_AND_PINUSE(GM, p, SMALL_INDEX2SIZE(i)); |
|
1532 else |
|
1533 { |
|
1534 SET_SIZE_AND_PINUSE_OF_INUSE_CHUNK(GM, p, nb); |
|
1535 r = CHUNK_PLUS_OFFSET(p, nb); |
|
1536 SET_SIZE_AND_PINUSE_OF_FREE_CHUNK(r, rsize); |
|
1537 ReplaceDv(GM, r, rsize); |
|
1538 } |
|
1539 mem = CHUNK2MEM(p); |
|
1540 CHECK_MALLOCED_CHUNK(GM, mem, nb); |
|
1541 return mem; |
|
1542 } |
|
1543 |
|
1544 else if (GM->iTreeMap != 0 && (mem = TmallocSmall(GM, nb)) != 0) |
|
1545 { |
|
1546 CHECK_MALLOCED_CHUNK(GM, mem, nb); |
|
1547 return mem; |
|
1548 } |
|
1549 } |
|
1550 } |
|
1551 else if (bytes >= MAX_REQUEST) |
|
1552 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ |
|
1553 else |
|
1554 { |
|
1555 nb = PAD_REQUEST(bytes); |
|
1556 if (GM->iTreeMap != 0 && (mem = TmallocLarge(GM, nb)) != 0) |
|
1557 { |
|
1558 CHECK_MALLOCED_CHUNK(GM, mem, nb); |
|
1559 return mem; |
|
1560 } |
|
1561 } |
|
1562 |
|
1563 if (nb <= GM->iDvSize) |
|
1564 { |
|
1565 size_t rsize = GM->iDvSize - nb; |
|
1566 mchunkptr p = GM->iDv; |
|
1567 if (rsize >= MIN_CHUNK_SIZE) |
|
1568 { /* split iDv */ |
|
1569 mchunkptr r = GM->iDv = CHUNK_PLUS_OFFSET(p, nb); |
|
1570 GM->iDvSize = rsize; |
|
1571 SET_SIZE_AND_PINUSE_OF_FREE_CHUNK(r, rsize); |
|
1572 SET_SIZE_AND_PINUSE_OF_INUSE_CHUNK(GM, p, nb); |
|
1573 } |
|
1574 else |
|
1575 { /* exhaust iDv */ |
|
1576 size_t dvs = GM->iDvSize; |
|
1577 GM->iDvSize = 0; |
|
1578 GM->iDv = 0; |
|
1579 SET_INUSE_AND_PINUSE(GM, p, dvs); |
|
1580 } |
|
1581 mem = CHUNK2MEM(p); |
|
1582 CHECK_MALLOCED_CHUNK(GM, mem, nb); |
|
1583 return mem; |
|
1584 } |
|
1585 |
|
1586 else if (nb < GM->iTopSize) |
|
1587 { /* Split iTop */ |
|
1588 size_t rsize = GM->iTopSize -= nb; |
|
1589 mchunkptr p = GM->iTop; |
|
1590 mchunkptr r = GM->iTop = CHUNK_PLUS_OFFSET(p, nb); |
|
1591 r->iHead = rsize | PINUSE_BIT; |
|
1592 SET_SIZE_AND_PINUSE_OF_INUSE_CHUNK(GM, p, nb); |
|
1593 mem = CHUNK2MEM(p); |
|
1594 CHECK_TOP_CHUNK(GM, GM->iTop); |
|
1595 CHECK_MALLOCED_CHUNK(GM, mem, nb); |
|
1596 return mem; |
|
1597 } |
|
1598 |
|
1599 return SysAlloc(GM, nb); |
|
1600 } |
|
1601 |
|
1602 |
|
1603 void RHybridHeap::DlFree(void* mem) |
|
1604 { |
|
1605 /* |
|
1606 Consolidate freed chunks with preceeding or succeeding bordering |
|
1607 free chunks, if they exist, and then place in a bin. Intermixed |
|
1608 with special cases for iTop, iDv, mmapped chunks, and usage errors. |
|
1609 */ |
|
1610 mchunkptr p = MEM2CHUNK(mem); |
|
1611 CHECK_INUSE_CHUNK(GM, p); |
|
1612 if (RTCHECK(OK_ADDRESS(GM, p) && OK_CINUSE(p))) |
|
1613 { |
|
1614 size_t psize = CHUNKSIZE(p); |
|
1615 mchunkptr next = CHUNK_PLUS_OFFSET(p, psize); |
|
1616 if (!PINUSE(p)) |
|
1617 { |
|
1618 size_t prevsize = p->iPrevFoot; |
|
1619 mchunkptr prev = CHUNK_MINUS_OFFSET(p, prevsize); |
|
1620 psize += prevsize; |
|
1621 p = prev; |
|
1622 if (RTCHECK(OK_ADDRESS(GM, prev))) |
|
1623 { /* consolidate backward */ |
|
1624 if (p != GM->iDv) |
|
1625 { |
|
1626 UnlinkChunk(GM, p, prevsize); |
|
1627 } |
|
1628 else if ((next->iHead & INUSE_BITS) == INUSE_BITS) |
|
1629 { |
|
1630 GM->iDvSize = psize; |
|
1631 SET_FREE_WITH_PINUSE(p, psize, next); |
|
1632 return; |
|
1633 } |
|
1634 } |
|
1635 else |
|
1636 { |
|
1637 USAGE_ERROR_ACTION(GM, p); |
|
1638 return; |
|
1639 } |
|
1640 } |
|
1641 |
|
1642 if (RTCHECK(OK_NEXT(p, next) && OK_PINUSE(next))) |
|
1643 { |
|
1644 if (!CINUSE(next)) |
|
1645 { /* consolidate forward */ |
|
1646 if (next == GM->iTop) |
|
1647 { |
|
1648 size_t tsize = GM->iTopSize += psize; |
|
1649 GM->iTop = p; |
|
1650 p->iHead = tsize | PINUSE_BIT; |
|
1651 if (p == GM->iDv) |
|
1652 { |
|
1653 GM->iDv = 0; |
|
1654 GM->iDvSize = 0; |
|
1655 } |
|
1656 if ( !IS_FIXED_HEAP && SHOULD_TRIM(GM, tsize) ) |
|
1657 SysTrim(GM, 0); |
|
1658 return; |
|
1659 } |
|
1660 else if (next == GM->iDv) |
|
1661 { |
|
1662 size_t dsize = GM->iDvSize += psize; |
|
1663 GM->iDv = p; |
|
1664 SET_SIZE_AND_PINUSE_OF_FREE_CHUNK(p, dsize); |
|
1665 return; |
|
1666 } |
|
1667 else |
|
1668 { |
|
1669 size_t nsize = CHUNKSIZE(next); |
|
1670 psize += nsize; |
|
1671 UnlinkChunk(GM, next, nsize); |
|
1672 SET_SIZE_AND_PINUSE_OF_FREE_CHUNK(p, psize); |
|
1673 if (p == GM->iDv) |
|
1674 { |
|
1675 GM->iDvSize = psize; |
|
1676 return; |
|
1677 } |
|
1678 } |
|
1679 } |
|
1680 else |
|
1681 SET_FREE_WITH_PINUSE(p, psize, next); |
|
1682 InsertChunk(GM, p, psize); |
|
1683 CHECK_FREE_CHUNK(GM, p); |
|
1684 return; |
|
1685 } |
|
1686 } |
|
1687 } |
|
1688 |
|
1689 |
|
1690 void* RHybridHeap::DlRealloc(void* oldmem, size_t bytes, TInt mode) |
|
1691 { |
|
1692 mchunkptr oldp = MEM2CHUNK(oldmem); |
|
1693 size_t oldsize = CHUNKSIZE(oldp); |
|
1694 mchunkptr next = CHUNK_PLUS_OFFSET(oldp, oldsize); |
|
1695 mchunkptr newp = 0; |
|
1696 void* extra = 0; |
|
1697 |
|
1698 /* Try to either shrink or extend into iTop. Else malloc-copy-free */ |
|
1699 |
|
1700 if (RTCHECK(OK_ADDRESS(GM, oldp) && OK_CINUSE(oldp) && |
|
1701 OK_NEXT(oldp, next) && OK_PINUSE(next))) |
|
1702 { |
|
1703 size_t nb = REQUEST2SIZE(bytes); |
|
1704 if (oldsize >= nb) { /* already big enough */ |
|
1705 size_t rsize = oldsize - nb; |
|
1706 newp = oldp; |
|
1707 if (rsize >= MIN_CHUNK_SIZE) |
|
1708 { |
|
1709 mchunkptr remainder = CHUNK_PLUS_OFFSET(newp, nb); |
|
1710 SET_INUSE(GM, newp, nb); |
|
1711 // SET_INUSE(GM, remainder, rsize); |
|
1712 SET_INUSE_AND_PINUSE(GM, remainder, rsize); // corrected in original DLA version V2.8.4 |
|
1713 extra = CHUNK2MEM(remainder); |
|
1714 } |
|
1715 } |
|
1716 else if (next == GM->iTop && oldsize + GM->iTopSize > nb) |
|
1717 { |
|
1718 /* Expand into iTop */ |
|
1719 size_t newsize = oldsize + GM->iTopSize; |
|
1720 size_t newtopsize = newsize - nb; |
|
1721 mchunkptr newtop = CHUNK_PLUS_OFFSET(oldp, nb); |
|
1722 SET_INUSE(GM, oldp, nb); |
|
1723 newtop->iHead = newtopsize |PINUSE_BIT; |
|
1724 GM->iTop = newtop; |
|
1725 GM->iTopSize = newtopsize; |
|
1726 newp = oldp; |
|
1727 } |
|
1728 } |
|
1729 else |
|
1730 { |
|
1731 USAGE_ERROR_ACTION(GM, oldmem); |
|
1732 } |
|
1733 |
|
1734 if (newp != 0) |
|
1735 { |
|
1736 if (extra != 0) |
|
1737 { |
|
1738 DlFree(extra); |
|
1739 } |
|
1740 CHECK_INUSE_CHUNK(GM, newp); |
|
1741 return CHUNK2MEM(newp); |
|
1742 } |
|
1743 else |
|
1744 { |
|
1745 if ( mode & ENeverMove ) |
|
1746 return 0; // cannot move |
|
1747 void* newmem = DlMalloc(bytes); |
|
1748 if (newmem != 0) |
|
1749 { |
|
1750 size_t oc = oldsize - OVERHEAD_FOR(oldp); |
|
1751 memcpy(newmem, oldmem, (oc < bytes)? oc : bytes); |
|
1752 DlFree(oldmem); |
|
1753 } |
|
1754 return newmem; |
|
1755 } |
|
1756 // return 0; |
|
1757 } |
|
1758 |
|
1759 size_t RHybridHeap::DlInfo(struct HeapInfo* i, SWalkInfo* wi) const |
|
1760 { |
|
1761 TInt max = ((GM->iTopSize-1) & ~CHUNK_ALIGN_MASK) - CHUNK_OVERHEAD; |
|
1762 if ( max < 0 ) |
|
1763 max = 0; |
|
1764 else ++i->iFreeN; // iTop always free |
|
1765 i->iFreeBytes += max; |
|
1766 |
|
1767 Walk(wi, GM->iTop, max, EGoodFreeCell, EDougLeaAllocator); // Introduce DL iTop buffer to the walk function |
|
1768 |
|
1769 for (mchunkptr q = ALIGN_AS_CHUNK(GM->iSeg.iBase); q != GM->iTop; q = NEXT_CHUNK(q)) |
|
1770 { |
|
1771 TInt sz = CHUNKSIZE(q); |
|
1772 if (!CINUSE(q)) |
|
1773 { |
|
1774 if ( sz > max ) |
|
1775 max = sz; |
|
1776 i->iFreeBytes += sz; |
|
1777 ++i->iFreeN; |
|
1778 Walk(wi, CHUNK2MEM(q), sz, EGoodFreeCell, EDougLeaAllocator); // Introduce DL free buffer to the walk function |
|
1779 } |
|
1780 else |
|
1781 { |
|
1782 i->iAllocBytes += sz - CHUNK_OVERHEAD; |
|
1783 ++i->iAllocN; |
|
1784 Walk(wi, CHUNK2MEM(q), (sz- CHUNK_OVERHEAD), EGoodAllocatedCell, EDougLeaAllocator); // Introduce DL allocated buffer to the walk function |
|
1785 } |
|
1786 } |
|
1787 return max; // return largest available chunk size |
|
1788 } |
|
1789 |
|
1790 // |
|
1791 // get statistics about the state of the allocator |
|
1792 // |
|
1793 TInt RHybridHeap::GetInfo(struct HeapInfo* i, SWalkInfo* wi) const |
|
1794 { |
|
1795 memset(i,0,sizeof(HeapInfo)); |
|
1796 i->iFootprint = iChunkSize; |
|
1797 i->iMaxSize = iMaxLength; |
|
1798 #ifndef __KERNEL_MODE__ |
|
1799 PagedInfo(i, wi); |
|
1800 SlabInfo(i, wi); |
|
1801 #endif |
|
1802 return DlInfo(i,wi); |
|
1803 } |
|
1804 |
|
1805 // |
|
1806 // Methods to commit/decommit memory pages from chunk |
|
1807 // |
|
1808 |
|
1809 |
|
1810 void* RHybridHeap::Map(void* p, TInt sz) |
|
1811 // |
|
1812 // allocate pages in the chunk |
|
1813 // if p is NULL, Find an allocate the required number of pages (which must lie in the lower half) |
|
1814 // otherwise commit the pages specified |
|
1815 // |
|
1816 { |
|
1817 HEAP_ASSERT(sz > 0); |
|
1818 |
|
1819 if ( iChunkSize + sz > iMaxLength) |
|
1820 return 0; |
|
1821 |
|
1822 #ifdef __KERNEL_MODE__ |
|
1823 |
|
1824 TInt r = ((DChunk*)iChunkHandle)->Adjust(iChunkSize + iOffset + sz); |
|
1825 if (r < 0) |
|
1826 return 0; |
|
1827 |
|
1828 iChunkSize += sz; |
|
1829 |
|
1830 #else |
|
1831 |
|
1832 RChunk chunk; |
|
1833 chunk.SetHandle(iChunkHandle); |
|
1834 if ( p ) |
|
1835 { |
|
1836 TInt r; |
|
1837 if ( iUseAdjust ) |
|
1838 r = chunk.Adjust(iChunkSize + sz); |
|
1839 else |
|
1840 { |
|
1841 HEAP_ASSERT(sz == Ceiling(sz, iPageSize)); |
|
1842 HEAP_ASSERT(p == Floor(p, iPageSize)); |
|
1843 r = chunk.Commit(iOffset + PtrDiff(p, this),sz); |
|
1844 } |
|
1845 if (r < 0) |
|
1846 return 0; |
|
1847 } |
|
1848 else |
|
1849 { |
|
1850 TInt r = chunk.Allocate(sz); |
|
1851 if (r < 0) |
|
1852 return 0; |
|
1853 if (r > iOffset) |
|
1854 { |
|
1855 // can't allow page allocations in DL zone |
|
1856 chunk.Decommit(r, sz); |
|
1857 return 0; |
|
1858 } |
|
1859 p = Offset(this, r - iOffset); |
|
1860 } |
|
1861 iChunkSize += sz; |
|
1862 |
|
1863 if (iChunkSize >= iSlabInitThreshold) |
|
1864 { // set up slab system now that heap is large enough |
|
1865 SlabConfig(iSlabConfigBits); |
|
1866 iSlabInitThreshold = KMaxTInt32; |
|
1867 } |
|
1868 |
|
1869 #endif // __KERNEL_MODE__ |
|
1870 |
|
1871 #ifdef ENABLE_BTRACE |
|
1872 if(iChunkSize > iHighWaterMark) |
|
1873 { |
|
1874 iHighWaterMark = Ceiling(iChunkSize,16*iPageSize); |
|
1875 TUint32 traceData[6]; |
|
1876 traceData[0] = iChunkHandle; |
|
1877 traceData[1] = iMinLength; |
|
1878 traceData[2] = iMaxLength; |
|
1879 traceData[3] = sz; |
|
1880 traceData[4] = iChunkSize; |
|
1881 traceData[5] = iHighWaterMark; |
|
1882 BTraceContextN(BTrace::ETest1, 90, (TUint32)this, 33, traceData, sizeof(traceData)); |
|
1883 } |
|
1884 #endif |
|
1885 |
|
1886 return p; |
|
1887 } |
|
1888 |
|
1889 void RHybridHeap::Unmap(void* p, TInt sz) |
|
1890 { |
|
1891 HEAP_ASSERT(sz > 0); |
|
1892 |
|
1893 #ifdef __KERNEL_MODE__ |
|
1894 |
|
1895 (void)p; |
|
1896 HEAP_ASSERT(sz == Ceiling(sz, iPageSize)); |
|
1897 #if defined(_DEBUG) |
|
1898 TInt r = |
|
1899 #endif |
|
1900 ((DChunk*)iChunkHandle)->Adjust(iChunkSize + iOffset - sz); |
|
1901 HEAP_ASSERT(r >= 0); |
|
1902 |
|
1903 #else |
|
1904 |
|
1905 RChunk chunk; |
|
1906 chunk.SetHandle(iChunkHandle); |
|
1907 if ( iUseAdjust ) |
|
1908 { |
|
1909 HEAP_ASSERT(sz == Ceiling(sz, iPageSize)); |
|
1910 #if defined(_DEBUG) |
|
1911 TInt r = |
|
1912 #endif |
|
1913 chunk.Adjust(iChunkSize - sz); |
|
1914 HEAP_ASSERT(r >= 0); |
|
1915 } |
|
1916 else |
|
1917 { |
|
1918 HEAP_ASSERT(sz == Ceiling(sz, iPageSize)); |
|
1919 HEAP_ASSERT(p == Floor(p, iPageSize)); |
|
1920 #if defined(_DEBUG) |
|
1921 TInt r = |
|
1922 #endif |
|
1923 chunk.Decommit(PtrDiff(p, Offset(this,-iOffset)), sz); |
|
1924 HEAP_ASSERT(r >= 0); |
|
1925 } |
|
1926 #endif // __KERNEL_MODE__ |
|
1927 |
|
1928 iChunkSize -= sz; |
|
1929 } |
|
1930 |
|
1931 |
|
1932 #ifndef __KERNEL_MODE__ |
|
1933 // |
|
1934 // Slab allocator code |
|
1935 // |
|
1936 |
|
1937 //inline slab* slab::SlabFor(void* p) |
|
1938 slab* slab::SlabFor( const void* p) |
|
1939 { |
|
1940 return (slab*)(Floor(p, SLABSIZE)); |
|
1941 } |
|
1942 |
|
1943 // |
|
1944 // Remove slab s from its tree/heap (not necessarily the root), preserving the address order |
|
1945 // invariant of the heap |
|
1946 // |
|
1947 void RHybridHeap::TreeRemove(slab* s) |
|
1948 { |
|
1949 slab** r = s->iParent; |
|
1950 slab* c1 = s->iChild1; |
|
1951 slab* c2 = s->iChild2; |
|
1952 for (;;) |
|
1953 { |
|
1954 if (!c2) |
|
1955 { |
|
1956 *r = c1; |
|
1957 if (c1) |
|
1958 c1->iParent = r; |
|
1959 return; |
|
1960 } |
|
1961 if (!c1) |
|
1962 { |
|
1963 *r = c2; |
|
1964 c2->iParent = r; |
|
1965 return; |
|
1966 } |
|
1967 if (c1 > c2) |
|
1968 { |
|
1969 slab* c3 = c1; |
|
1970 c1 = c2; |
|
1971 c2 = c3; |
|
1972 } |
|
1973 slab* newc2 = c1->iChild2; |
|
1974 *r = c1; |
|
1975 c1->iParent = r; |
|
1976 c1->iChild2 = c2; |
|
1977 c2->iParent = &c1->iChild2; |
|
1978 s = c1; |
|
1979 c1 = s->iChild1; |
|
1980 c2 = newc2; |
|
1981 r = &s->iChild1; |
|
1982 } |
|
1983 } |
|
1984 // |
|
1985 // Insert slab s into the tree/heap rooted at r, preserving the address ordering |
|
1986 // invariant of the heap |
|
1987 // |
|
1988 void RHybridHeap::TreeInsert(slab* s,slab** r) |
|
1989 { |
|
1990 slab* n = *r; |
|
1991 for (;;) |
|
1992 { |
|
1993 if (!n) |
|
1994 { // tree empty |
|
1995 *r = s; |
|
1996 s->iParent = r; |
|
1997 s->iChild1 = s->iChild2 = 0; |
|
1998 break; |
|
1999 } |
|
2000 if (s < n) |
|
2001 { // insert between iParent and n |
|
2002 *r = s; |
|
2003 s->iParent = r; |
|
2004 s->iChild1 = n; |
|
2005 s->iChild2 = 0; |
|
2006 n->iParent = &s->iChild1; |
|
2007 break; |
|
2008 } |
|
2009 slab* c1 = n->iChild1; |
|
2010 slab* c2 = n->iChild2; |
|
2011 if ((c1 - 1) > (c2 - 1)) |
|
2012 { |
|
2013 r = &n->iChild1; |
|
2014 n = c1; |
|
2015 } |
|
2016 else |
|
2017 { |
|
2018 r = &n->iChild2; |
|
2019 n = c2; |
|
2020 } |
|
2021 } |
|
2022 } |
|
2023 |
|
2024 void* RHybridHeap::AllocNewSlab(slabset& allocator) |
|
2025 // |
|
2026 // Acquire and initialise a new slab, returning a cell from the slab |
|
2027 // The strategy is: |
|
2028 // 1. Use the lowest address free slab, if available. This is done by using the lowest slab |
|
2029 // in the page at the root of the iPartialPage heap (which is address ordered). If the |
|
2030 // is now fully used, remove it from the iPartialPage heap. |
|
2031 // 2. Allocate a new page for iSlabs if no empty iSlabs are available |
|
2032 // |
|
2033 { |
|
2034 page* p = page::PageFor(iPartialPage); |
|
2035 if (!p) |
|
2036 return AllocNewPage(allocator); |
|
2037 |
|
2038 unsigned h = p->iSlabs[0].iHeader; |
|
2039 unsigned pagemap = SlabHeaderPagemap(h); |
|
2040 HEAP_ASSERT(&p->iSlabs[HIBIT(pagemap)] == iPartialPage); |
|
2041 |
|
2042 unsigned slabix = LOWBIT(pagemap); |
|
2043 p->iSlabs[0].iHeader = h &~ (0x100<<slabix); |
|
2044 if (!(pagemap &~ (1<<slabix))) |
|
2045 { |
|
2046 TreeRemove(iPartialPage); // last free slab in page |
|
2047 } |
|
2048 |
|
2049 return InitNewSlab(allocator, &p->iSlabs[slabix]); |
|
2050 } |
|
2051 |
|
2052 /**Defination of this functionis not there in proto code***/ |
|
2053 #if 0 |
|
2054 void RHybridHeap::partial_insert(slab* s) |
|
2055 { |
|
2056 // slab has had first cell freed and needs to be linked back into iPartial tree |
|
2057 slabset& ss = iSlabAlloc[iSizeMap[s->clz]]; |
|
2058 |
|
2059 HEAP_ASSERT(s->used == slabfull); |
|
2060 s->used = ss.fulluse - s->clz; // full-1 loading |
|
2061 TreeInsert(s,&ss.iPartial); |
|
2062 CHECKTREE(&ss.iPartial); |
|
2063 } |
|
2064 /**Defination of this functionis not there in proto code***/ |
|
2065 #endif |
|
2066 |
|
2067 void* RHybridHeap::AllocNewPage(slabset& allocator) |
|
2068 // |
|
2069 // Acquire and initialise a new page, returning a cell from a new slab |
|
2070 // The iPartialPage tree is empty (otherwise we'd have used a slab from there) |
|
2071 // The iPartialPage link is put in the highest addressed slab in the page, and the |
|
2072 // lowest addressed slab is used to fulfill the allocation request |
|
2073 // |
|
2074 { |
|
2075 page* p = iSparePage; |
|
2076 if (p) |
|
2077 iSparePage = 0; |
|
2078 else |
|
2079 { |
|
2080 p = static_cast<page*>(Map(0, iPageSize)); |
|
2081 if (!p) |
|
2082 return 0; |
|
2083 } |
|
2084 HEAP_ASSERT(p == Floor(p, iPageSize)); |
|
2085 // Store page allocated for slab into paged_bitmap (for RHybridHeap::Reset()) |
|
2086 if (!PagedSetSize(p, iPageSize)) |
|
2087 { |
|
2088 Unmap(p, iPageSize); |
|
2089 return 0; |
|
2090 } |
|
2091 p->iSlabs[0].iHeader = ((1<<3) + (1<<2) + (1<<1))<<8; // set pagemap |
|
2092 p->iSlabs[3].iParent = &iPartialPage; |
|
2093 p->iSlabs[3].iChild1 = p->iSlabs[3].iChild2 = 0; |
|
2094 iPartialPage = &p->iSlabs[3]; |
|
2095 return InitNewSlab(allocator,&p->iSlabs[0]); |
|
2096 } |
|
2097 |
|
2098 void RHybridHeap::FreePage(page* p) |
|
2099 // |
|
2100 // Release an unused page to the OS |
|
2101 // A single page is cached for reuse to reduce thrashing |
|
2102 // the OS allocator. |
|
2103 // |
|
2104 { |
|
2105 HEAP_ASSERT(Ceiling(p, iPageSize) == p); |
|
2106 if (!iSparePage) |
|
2107 { |
|
2108 iSparePage = p; |
|
2109 return; |
|
2110 } |
|
2111 |
|
2112 // unmapped slab page must be cleared from paged_bitmap, too |
|
2113 PagedZapSize(p, iPageSize); // clear page map |
|
2114 |
|
2115 Unmap(p, iPageSize); |
|
2116 } |
|
2117 |
|
2118 void RHybridHeap::FreeSlab(slab* s) |
|
2119 // |
|
2120 // Release an empty slab to the slab manager |
|
2121 // The strategy is: |
|
2122 // 1. The page containing the slab is checked to see the state of the other iSlabs in the page by |
|
2123 // inspecting the pagemap field in the iHeader of the first slab in the page. |
|
2124 // 2. The pagemap is updated to indicate the new unused slab |
|
2125 // 3. If this is the only unused slab in the page then the slab iHeader is used to add the page to |
|
2126 // the iPartialPage tree/heap |
|
2127 // 4. If all the iSlabs in the page are now unused the page is release back to the OS |
|
2128 // 5. If this slab has a higher address than the one currently used to track this page in |
|
2129 // the iPartialPage heap, the linkage is moved to the new unused slab |
|
2130 // |
|
2131 { |
|
2132 TreeRemove(s); |
|
2133 CHECKTREE(s->iParent); |
|
2134 HEAP_ASSERT(SlabHeaderUsedm4(s->iHeader) == SlabHeaderSize(s->iHeader)-4); |
|
2135 |
|
2136 page* p = page::PageFor(s); |
|
2137 unsigned h = p->iSlabs[0].iHeader; |
|
2138 int slabix = s - &p->iSlabs[0]; |
|
2139 unsigned pagemap = SlabHeaderPagemap(h); |
|
2140 p->iSlabs[0].iHeader = h | (0x100<<slabix); |
|
2141 if (pagemap == 0) |
|
2142 { // page was full before, use this slab as link in empty heap |
|
2143 TreeInsert(s, &iPartialPage); |
|
2144 } |
|
2145 else |
|
2146 { // Find the current empty-link slab |
|
2147 slab* sl = &p->iSlabs[HIBIT(pagemap)]; |
|
2148 pagemap ^= (1<<slabix); |
|
2149 if (pagemap == 0xf) |
|
2150 { // page is now empty so recycle page to os |
|
2151 TreeRemove(sl); |
|
2152 FreePage(p); |
|
2153 return; |
|
2154 } |
|
2155 // ensure the free list link is in highest address slab in page |
|
2156 if (s > sl) |
|
2157 { // replace current link with new one. Address-order tree so position stays the same |
|
2158 slab** r = sl->iParent; |
|
2159 slab* c1 = sl->iChild1; |
|
2160 slab* c2 = sl->iChild2; |
|
2161 s->iParent = r; |
|
2162 s->iChild1 = c1; |
|
2163 s->iChild2 = c2; |
|
2164 *r = s; |
|
2165 if (c1) |
|
2166 c1->iParent = &s->iChild1; |
|
2167 if (c2) |
|
2168 c2->iParent = &s->iChild2; |
|
2169 } |
|
2170 CHECK(if (s < sl) s=sl); |
|
2171 } |
|
2172 HEAP_ASSERT(SlabHeaderPagemap(p->iSlabs[0].iHeader) != 0); |
|
2173 HEAP_ASSERT(HIBIT(SlabHeaderPagemap(p->iSlabs[0].iHeader)) == unsigned(s - &p->iSlabs[0])); |
|
2174 } |
|
2175 |
|
2176 |
|
2177 void RHybridHeap::SlabInit() |
|
2178 { |
|
2179 iSlabThreshold=0; |
|
2180 iPartialPage = 0; |
|
2181 iFullSlab = 0; |
|
2182 iSparePage = 0; |
|
2183 memset(&iSizeMap[0],0xff,sizeof(iSizeMap)); |
|
2184 memset(&iSlabAlloc[0],0,sizeof(iSlabAlloc)); |
|
2185 } |
|
2186 |
|
2187 void RHybridHeap::SlabConfig(unsigned slabbitmap) |
|
2188 { |
|
2189 HEAP_ASSERT((slabbitmap & ~EOkBits) == 0); |
|
2190 HEAP_ASSERT(MAXSLABSIZE <= 60); |
|
2191 |
|
2192 unsigned int ix = 0xff; |
|
2193 unsigned int bit = 1<<((MAXSLABSIZE>>2)-1); |
|
2194 for (int sz = MAXSLABSIZE; sz >= 0; sz -= 4, bit >>= 1) |
|
2195 { |
|
2196 if (slabbitmap & bit) |
|
2197 { |
|
2198 if (ix == 0xff) |
|
2199 iSlabThreshold=sz+1; |
|
2200 ix = (sz>>2)-1; |
|
2201 } |
|
2202 iSizeMap[sz>>2] = (TUint8) ix; |
|
2203 } |
|
2204 } |
|
2205 |
|
2206 |
|
2207 void* RHybridHeap::SlabAllocate(slabset& ss) |
|
2208 // |
|
2209 // Allocate a cell from the given slabset |
|
2210 // Strategy: |
|
2211 // 1. Take the partially full slab at the iTop of the heap (lowest address). |
|
2212 // 2. If there is no such slab, allocate from a new slab |
|
2213 // 3. If the slab has a non-empty freelist, pop the cell from the front of the list and update the slab |
|
2214 // 4. Otherwise, if the slab is not full, return the cell at the end of the currently used region of |
|
2215 // the slab, updating the slab |
|
2216 // 5. Otherwise, release the slab from the iPartial tree/heap, marking it as 'floating' and go back to |
|
2217 // step 1 |
|
2218 // |
|
2219 { |
|
2220 for (;;) |
|
2221 { |
|
2222 slab *s = ss.iPartial; |
|
2223 if (!s) |
|
2224 break; |
|
2225 unsigned h = s->iHeader; |
|
2226 unsigned free = h & 0xff; // extract free cell positioning |
|
2227 if (free) |
|
2228 { |
|
2229 HEAP_ASSERT(((free<<2)-sizeof(slabhdr))%SlabHeaderSize(h) == 0); |
|
2230 void* p = Offset(s,free<<2); |
|
2231 free = *(unsigned char*)p; // get next pos in free list |
|
2232 h += (h&0x3C000)<<6; // update usedm4 |
|
2233 h &= ~0xff; |
|
2234 h |= free; // update freelist |
|
2235 s->iHeader = h; |
|
2236 HEAP_ASSERT(SlabHeaderFree(h) == 0 || ((SlabHeaderFree(h)<<2)-sizeof(slabhdr))%SlabHeaderSize(h) == 0); |
|
2237 HEAP_ASSERT(SlabHeaderUsedm4(h) <= 0x3F8u); |
|
2238 HEAP_ASSERT((SlabHeaderUsedm4(h)+4)%SlabHeaderSize(h) == 0); |
|
2239 return p; |
|
2240 } |
|
2241 unsigned h2 = h + ((h&0x3C000)<<6); |
|
2242 // if (h2 < 0xfc00000) |
|
2243 if (h2 < MAXUSEDM4BITS) |
|
2244 { |
|
2245 HEAP_ASSERT((SlabHeaderUsedm4(h2)+4)%SlabHeaderSize(h2) == 0); |
|
2246 s->iHeader = h2; |
|
2247 return Offset(s,(h>>18) + sizeof(unsigned) + sizeof(slabhdr)); |
|
2248 } |
|
2249 h |= FLOATING_BIT; // mark the slab as full-floating |
|
2250 s->iHeader = h; |
|
2251 TreeRemove(s); |
|
2252 slab* c = iFullSlab; // add to full list |
|
2253 iFullSlab = s; |
|
2254 s->iParent = &iFullSlab; |
|
2255 s->iChild1 = c; |
|
2256 s->iChild2 = 0; |
|
2257 if (c) |
|
2258 c->iParent = &s->iChild1; |
|
2259 |
|
2260 CHECKTREE(&ss.iPartial); |
|
2261 // go back and try the next slab... |
|
2262 } |
|
2263 // no iPartial iSlabs found, so allocate from a new slab |
|
2264 return AllocNewSlab(ss); |
|
2265 } |
|
2266 |
|
2267 void RHybridHeap::SlabFree(void* p) |
|
2268 // |
|
2269 // Free a cell from the slab allocator |
|
2270 // Strategy: |
|
2271 // 1. Find the containing slab (round down to nearest 1KB boundary) |
|
2272 // 2. Push the cell into the slab's freelist, and update the slab usage count |
|
2273 // 3. If this is the last allocated cell, free the slab to the main slab manager |
|
2274 // 4. If the slab was full-floating then insert the slab in it's respective iPartial tree |
|
2275 // |
|
2276 { |
|
2277 HEAP_ASSERT(LowBits(p,3)==0); |
|
2278 slab* s = slab::SlabFor(p); |
|
2279 CHECKSLAB(s,ESlabAllocator,p); |
|
2280 CHECKSLABBFR(s,p); |
|
2281 |
|
2282 unsigned pos = LowBits(p, SLABSIZE); |
|
2283 unsigned h = s->iHeader; |
|
2284 HEAP_ASSERT(SlabHeaderUsedm4(h) != 0x3fC); // slab is empty already |
|
2285 HEAP_ASSERT((pos-sizeof(slabhdr))%SlabHeaderSize(h) == 0); |
|
2286 *(unsigned char*)p = (unsigned char)h; |
|
2287 h &= ~0xFF; |
|
2288 h |= (pos>>2); |
|
2289 unsigned size = h & 0x3C000; |
|
2290 if (int(h) >= 0) |
|
2291 { |
|
2292 h -= size<<6; |
|
2293 if (int(h)>=0) |
|
2294 { |
|
2295 s->iHeader = h; |
|
2296 return; |
|
2297 } |
|
2298 FreeSlab(s); |
|
2299 return; |
|
2300 } |
|
2301 h -= size<<6; |
|
2302 h &= ~FLOATING_BIT; |
|
2303 s->iHeader = h; |
|
2304 slab** full = s->iParent; // remove from full list |
|
2305 slab* c = s->iChild1; |
|
2306 *full = c; |
|
2307 if (c) |
|
2308 c->iParent = full; |
|
2309 |
|
2310 slabset& ss = iSlabAlloc[iSizeMap[size>>14]]; |
|
2311 TreeInsert(s,&ss.iPartial); |
|
2312 CHECKTREE(&ss.iPartial); |
|
2313 } |
|
2314 |
|
2315 void* RHybridHeap::InitNewSlab(slabset& allocator, slab* s) |
|
2316 // |
|
2317 // initialise an empty slab for this allocator and return the fist cell |
|
2318 // pre-condition: the slabset has no iPartial iSlabs for allocation |
|
2319 // |
|
2320 { |
|
2321 HEAP_ASSERT(allocator.iPartial==0); |
|
2322 TInt size = 4 + ((&allocator-&iSlabAlloc[0])<<2); // infer size from slab allocator address |
|
2323 unsigned h = s->iHeader & 0xF00; // preserve pagemap only |
|
2324 h |= (size<<12); // set size |
|
2325 h |= (size-4)<<18; // set usedminus4 to one object minus 4 |
|
2326 s->iHeader = h; |
|
2327 allocator.iPartial = s; |
|
2328 s->iParent = &allocator.iPartial; |
|
2329 s->iChild1 = s->iChild2 = 0; |
|
2330 return Offset(s,sizeof(slabhdr)); |
|
2331 } |
|
2332 |
|
2333 const unsigned char slab_bitcount[16] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4}; |
|
2334 |
|
2335 const unsigned char slab_ext_frag[16] = |
|
2336 { |
|
2337 0, |
|
2338 16 + (1008 % 4), |
|
2339 16 + (1008 % 8), |
|
2340 16 + (1008 % 12), |
|
2341 16 + (1008 % 16), |
|
2342 16 + (1008 % 20), |
|
2343 16 + (1008 % 24), |
|
2344 16 + (1008 % 28), |
|
2345 16 + (1008 % 32), |
|
2346 16 + (1008 % 36), |
|
2347 16 + (1008 % 40), |
|
2348 16 + (1008 % 44), |
|
2349 16 + (1008 % 48), |
|
2350 16 + (1008 % 52), |
|
2351 16 + (1008 % 56), |
|
2352 16 + (1008 % 60) |
|
2353 }; |
|
2354 |
|
2355 void RHybridHeap::TreeWalk(slab* const* root, void (*f)(slab*, struct HeapInfo*, SWalkInfo*), struct HeapInfo* i, SWalkInfo* wi) |
|
2356 { |
|
2357 // iterative walk around the tree at root |
|
2358 |
|
2359 slab* s = *root; |
|
2360 if (!s) |
|
2361 return; |
|
2362 |
|
2363 for (;;) |
|
2364 { |
|
2365 slab* c; |
|
2366 while ((c = s->iChild1) != 0) |
|
2367 s = c; // walk down left side to end |
|
2368 for (;;) |
|
2369 { |
|
2370 f(s, i, wi); |
|
2371 c = s->iChild2; |
|
2372 if (c) |
|
2373 { // one step down right side, now try and walk down left |
|
2374 s = c; |
|
2375 break; |
|
2376 } |
|
2377 for (;;) |
|
2378 { // loop to walk up right side |
|
2379 slab** pp = s->iParent; |
|
2380 if (pp == root) |
|
2381 return; |
|
2382 s = slab::SlabFor(pp); |
|
2383 if (pp == &s->iChild1) |
|
2384 break; |
|
2385 } |
|
2386 } |
|
2387 } |
|
2388 } |
|
2389 |
|
2390 void RHybridHeap::SlabEmptyInfo(slab* s, struct HeapInfo* i, SWalkInfo* wi) |
|
2391 { |
|
2392 Walk(wi, s, SLABSIZE, EGoodFreeCell, EEmptySlab); // Introduce an empty slab to the walk function |
|
2393 int nslab = slab_bitcount[SlabHeaderPagemap(page::PageFor(s)->iSlabs[0].iHeader)]; |
|
2394 i->iFreeN += nslab; |
|
2395 i->iFreeBytes += nslab << SLABSHIFT; |
|
2396 } |
|
2397 |
|
2398 void RHybridHeap::SlabPartialInfo(slab* s, struct HeapInfo* i, SWalkInfo* wi) |
|
2399 { |
|
2400 Walk(wi, s, SLABSIZE, EGoodAllocatedCell, EPartialFullSlab); // Introduce a full slab to the walk function |
|
2401 unsigned h = s->iHeader; |
|
2402 unsigned used = SlabHeaderUsedm4(h)+4; |
|
2403 unsigned size = SlabHeaderSize(h); |
|
2404 unsigned free = 1024 - slab_ext_frag[size>>2] - used; |
|
2405 i->iFreeN += (free/size); |
|
2406 i->iFreeBytes += free; |
|
2407 i->iAllocN += (used/size); |
|
2408 i->iAllocBytes += used; |
|
2409 } |
|
2410 |
|
2411 void RHybridHeap::SlabFullInfo(slab* s, struct HeapInfo* i, SWalkInfo* wi) |
|
2412 { |
|
2413 Walk(wi, s, SLABSIZE, EGoodAllocatedCell, EFullSlab); // Introduce a full slab to the walk function |
|
2414 unsigned h = s->iHeader; |
|
2415 unsigned used = SlabHeaderUsedm4(h)+4; |
|
2416 unsigned size = SlabHeaderSize(h); |
|
2417 HEAP_ASSERT(1024 - slab_ext_frag[size>>2] - used == 0); |
|
2418 i->iAllocN += (used/size); |
|
2419 i->iAllocBytes += used; |
|
2420 } |
|
2421 |
|
2422 void RHybridHeap::SlabInfo(struct HeapInfo* i, SWalkInfo* wi) const |
|
2423 { |
|
2424 if (iSparePage) |
|
2425 { |
|
2426 i->iFreeBytes += iPageSize; |
|
2427 i->iFreeN = 4; |
|
2428 Walk(wi, iSparePage, iPageSize, EGoodFreeCell, ESlabSpare); // Introduce Slab spare page to the walk function |
|
2429 } |
|
2430 TreeWalk(&iFullSlab, &SlabFullInfo, i, wi); |
|
2431 for (int ix = 0; ix < (MAXSLABSIZE>>2); ++ix) |
|
2432 TreeWalk(&iSlabAlloc[ix].iPartial, &SlabPartialInfo, i, wi); |
|
2433 TreeWalk(&iPartialPage, &SlabEmptyInfo, i, wi); |
|
2434 } |
|
2435 |
|
2436 |
|
2437 // |
|
2438 // Bitmap class implementation for large page allocator |
|
2439 // |
|
2440 inline unsigned char* paged_bitmap::Addr() const {return iBase;} |
|
2441 inline unsigned paged_bitmap::Size() const {return iNbits;} |
|
2442 // |
|
2443 |
|
2444 void paged_bitmap::Init(unsigned char* p, unsigned size, unsigned bit) |
|
2445 { |
|
2446 iBase = p; |
|
2447 iNbits=size; |
|
2448 int bytes=Ceiling(size,8)>>3; |
|
2449 memset(p,bit?0xff:0,bytes); |
|
2450 } |
|
2451 |
|
2452 inline void paged_bitmap::Set(unsigned ix, unsigned bit) |
|
2453 { |
|
2454 if (bit) |
|
2455 iBase[ix>>3] |= (1<<(ix&7)); |
|
2456 else |
|
2457 iBase[ix>>3] &= ~(1<<(ix&7)); |
|
2458 } |
|
2459 |
|
2460 inline unsigned paged_bitmap::operator[](unsigned ix) const |
|
2461 { |
|
2462 return 1U&(iBase[ix>>3] >> (ix&7)); |
|
2463 } |
|
2464 |
|
2465 void paged_bitmap::Setn(unsigned ix, unsigned len, unsigned bit) |
|
2466 { |
|
2467 int l=len; |
|
2468 while (--l>=0) |
|
2469 Set(ix++,bit); |
|
2470 } |
|
2471 |
|
2472 void paged_bitmap::Set(unsigned ix, unsigned len, unsigned val) |
|
2473 { |
|
2474 int l=len; |
|
2475 while (--l>=0) |
|
2476 { |
|
2477 Set(ix++,val&1); |
|
2478 val>>=1; |
|
2479 } |
|
2480 } |
|
2481 |
|
2482 unsigned paged_bitmap::Bits(unsigned ix, unsigned len) const |
|
2483 { |
|
2484 int l=len; |
|
2485 unsigned val=0; |
|
2486 unsigned bit=0; |
|
2487 while (--l>=0) |
|
2488 val |= (*this)[ix++]<<bit++; |
|
2489 return val; |
|
2490 } |
|
2491 |
|
2492 bool paged_bitmap::Is(unsigned ix, unsigned len, unsigned bit) const |
|
2493 { |
|
2494 unsigned i2 = ix+len; |
|
2495 if (i2 > iNbits) |
|
2496 return false; |
|
2497 for (;;) |
|
2498 { |
|
2499 if ((*this)[ix] != bit) |
|
2500 return false; |
|
2501 if (++ix==i2) |
|
2502 return true; |
|
2503 } |
|
2504 } |
|
2505 |
|
2506 int paged_bitmap::Find(unsigned start, unsigned bit) const |
|
2507 { |
|
2508 if (start<iNbits) do |
|
2509 { |
|
2510 if ((*this)[start]==bit) |
|
2511 return start; |
|
2512 } while (++start<iNbits); |
|
2513 return -1; |
|
2514 } |
|
2515 |
|
2516 |
|
2517 // |
|
2518 // Page allocator code |
|
2519 // |
|
2520 void RHybridHeap::PagedInit(TInt aPagePower) |
|
2521 { |
|
2522 if (aPagePower > 0) |
|
2523 { |
|
2524 if (aPagePower < MINPAGEPOWER) |
|
2525 aPagePower = MINPAGEPOWER; |
|
2526 } |
|
2527 else aPagePower = 31; |
|
2528 |
|
2529 iPageThreshold = aPagePower; |
|
2530 /*------------------------------------------------------------- |
|
2531 * Initialize page bitmap |
|
2532 *-------------------------------------------------------------*/ |
|
2533 iPageMap.Init((unsigned char*)&iBitMapBuffer, MAXSMALLPAGEBITS, 0); |
|
2534 } |
|
2535 |
|
2536 void* RHybridHeap::PagedAllocate(unsigned size) |
|
2537 { |
|
2538 TInt nbytes = Ceiling(size, iPageSize); |
|
2539 void* p = Map(0, nbytes); |
|
2540 if (!p) |
|
2541 return 0; |
|
2542 if (!PagedSetSize(p, nbytes)) |
|
2543 { |
|
2544 Unmap(p, nbytes); |
|
2545 return 0; |
|
2546 } |
|
2547 return p; |
|
2548 } |
|
2549 |
|
2550 void* RHybridHeap::PagedReallocate(void* p, unsigned size, TInt mode) |
|
2551 { |
|
2552 |
|
2553 HEAP_ASSERT(Ceiling(p, iPageSize) == p); |
|
2554 unsigned nbytes = Ceiling(size, iPageSize); |
|
2555 |
|
2556 unsigned osize = PagedSize(p); |
|
2557 if ( nbytes == 0 ) // Special case to handle shrinking below min page threshold |
|
2558 nbytes = Min((1 << MINPAGEPOWER), osize); |
|
2559 |
|
2560 if (osize == nbytes) |
|
2561 return p; |
|
2562 |
|
2563 if (nbytes < osize) |
|
2564 { // shrink in place, unmap final pages and rewrite the pagemap |
|
2565 Unmap(Offset(p, nbytes), osize-nbytes); |
|
2566 // zap old code and then write new code (will not fail) |
|
2567 PagedZapSize(p, osize); |
|
2568 |
|
2569 TBool check = PagedSetSize(p, nbytes); |
|
2570 __ASSERT_ALWAYS(check, HEAP_PANIC(ETHeapBadCellAddress)); |
|
2571 |
|
2572 return p; |
|
2573 } |
|
2574 |
|
2575 // nbytes > osize |
|
2576 // try and extend current region first |
|
2577 |
|
2578 void* newp = Map(Offset(p, osize), nbytes-osize); |
|
2579 if (newp) |
|
2580 { // In place growth. Possibility that pagemap may have to grow AND then fails |
|
2581 if (!PagedSetSize(p, nbytes)) |
|
2582 { // must release extra mapping |
|
2583 Unmap(Offset(p, osize), nbytes-osize); |
|
2584 return 0; |
|
2585 } |
|
2586 // if successful, the new length code will have overwritten the old one (it is at least as long) |
|
2587 return p; |
|
2588 } |
|
2589 |
|
2590 // fallback to allocate/copy/free |
|
2591 if (mode & ENeverMove) |
|
2592 return 0; // not allowed to move cell |
|
2593 |
|
2594 newp = PagedAllocate(nbytes); |
|
2595 if (!newp) |
|
2596 return 0; |
|
2597 memcpy(newp, p, osize); |
|
2598 PagedFree(p); |
|
2599 return newp; |
|
2600 } |
|
2601 |
|
2602 void RHybridHeap::PagedFree(void* p) |
|
2603 { |
|
2604 HEAP_ASSERT(Ceiling(p, iPageSize) == p); |
|
2605 |
|
2606 |
|
2607 unsigned size = PagedSize(p); |
|
2608 |
|
2609 PagedZapSize(p, size); // clear page map |
|
2610 Unmap(p, size); |
|
2611 } |
|
2612 |
|
2613 void RHybridHeap::PagedInfo(struct HeapInfo* i, SWalkInfo* wi) const |
|
2614 { |
|
2615 for (int ix = 0;(ix = iPageMap.Find(ix,1)) >= 0;) |
|
2616 { |
|
2617 int npage = PagedDecode(ix); |
|
2618 // Introduce paged buffer to the walk function |
|
2619 TAny* bfr = Bitmap2addr(ix); |
|
2620 int len = npage << PAGESHIFT; |
|
2621 if ( len > iPageSize ) |
|
2622 { // If buffer is not larger than one page it must be a slab page mapped into bitmap |
|
2623 i->iAllocBytes += len; |
|
2624 ++i->iAllocN; |
|
2625 Walk(wi, bfr, len, EGoodAllocatedCell, EPageAllocator); |
|
2626 } |
|
2627 ix += (npage<<1); |
|
2628 } |
|
2629 } |
|
2630 |
|
2631 void RHybridHeap::ResetBitmap() |
|
2632 /*--------------------------------------------------------- |
|
2633 * Go through paged_bitmap and unmap all buffers to system |
|
2634 * This method is called from RHybridHeap::Reset() to unmap all page |
|
2635 * allocated - and slab pages which are stored in bitmap, too |
|
2636 *---------------------------------------------------------*/ |
|
2637 { |
|
2638 unsigned iNbits = iPageMap.Size(); |
|
2639 if ( iNbits ) |
|
2640 { |
|
2641 for (int ix = 0;(ix = iPageMap.Find(ix,1)) >= 0;) |
|
2642 { |
|
2643 int npage = PagedDecode(ix); |
|
2644 void* p = Bitmap2addr(ix); |
|
2645 unsigned size = PagedSize(p); |
|
2646 PagedZapSize(p, size); // clear page map |
|
2647 Unmap(p, size); |
|
2648 ix += (npage<<1); |
|
2649 } |
|
2650 if ( (TInt)iNbits > MAXSMALLPAGEBITS ) |
|
2651 { |
|
2652 // unmap page reserved for enlarged bitmap |
|
2653 Unmap(iPageMap.Addr(), (iNbits >> 3) ); |
|
2654 } |
|
2655 } |
|
2656 } |
|
2657 |
|
2658 TBool RHybridHeap::CheckBitmap(void* aBfr, TInt aSize, TUint32& aDummy, TInt& aNPages) |
|
2659 /*--------------------------------------------------------- |
|
2660 * If aBfr = NULL |
|
2661 * Go through paged_bitmap and unmap all buffers to system |
|
2662 * and assure that by reading the first word of each page of aBfr |
|
2663 * that aBfr is still accessible |
|
2664 * else |
|
2665 * Assure that specified buffer is mapped with correct length in |
|
2666 * page map |
|
2667 *---------------------------------------------------------*/ |
|
2668 { |
|
2669 TBool ret; |
|
2670 if ( aBfr ) |
|
2671 { |
|
2672 __ASSERT_ALWAYS((Ceiling(aBfr, iPageSize) == aBfr), HEAP_PANIC(ETHeapBadCellAddress)); |
|
2673 ret = ( aSize == (TInt)PagedSize(aBfr)); |
|
2674 } |
|
2675 else |
|
2676 { |
|
2677 ret = ETrue; |
|
2678 unsigned iNbits = iPageMap.Size(); |
|
2679 if ( iNbits ) |
|
2680 { |
|
2681 TInt npage; |
|
2682 aNPages = 0; |
|
2683 for (int ix = 0;(ix = iPageMap.Find(ix,1)) >= 0;) |
|
2684 { |
|
2685 npage = PagedDecode(ix); |
|
2686 aNPages += npage; |
|
2687 void* p = Bitmap2addr(ix); |
|
2688 __ASSERT_ALWAYS((Ceiling(p, iPageSize) == p), HEAP_PANIC(ETHeapBadCellAddress)); |
|
2689 unsigned s = PagedSize(p); |
|
2690 __ASSERT_ALWAYS((Ceiling(s, iPageSize) == s), HEAP_PANIC(ETHeapBadCellAddress)); |
|
2691 while ( s ) |
|
2692 { |
|
2693 aDummy += *(TUint32*)((TUint8*)p + (s-iPageSize)); |
|
2694 s -= iPageSize; |
|
2695 } |
|
2696 ix += (npage<<1); |
|
2697 } |
|
2698 if ( (TInt)iNbits > MAXSMALLPAGEBITS ) |
|
2699 { |
|
2700 // add enlarged bitmap page(s) to total page count |
|
2701 npage = (iNbits >> 3); |
|
2702 __ASSERT_ALWAYS((Ceiling(npage, iPageSize) == npage), HEAP_PANIC(ETHeapBadCellAddress)); |
|
2703 aNPages += (npage / iPageSize); |
|
2704 } |
|
2705 } |
|
2706 } |
|
2707 |
|
2708 return ret; |
|
2709 } |
|
2710 |
|
2711 |
|
2712 // The paged allocations are tracked in a bitmap which has 2 bits per page |
|
2713 // this allows us to store allocations as small as 4KB |
|
2714 // The presence and size of an allocation is encoded as follows: |
|
2715 // let N = number of pages in the allocation, then |
|
2716 // 10 : N = 1 // 4KB |
|
2717 // 110n : N = 2 + n // 8-12KB |
|
2718 // 1110nnnn : N = nnnn // 16-60KB |
|
2719 // 1111n[18] : N = n[18] // 64KB-1GB |
|
2720 |
|
2721 const struct etab { unsigned char offset, len, codelen, code;} encode_table[] = |
|
2722 { |
|
2723 {1,2,2,0x1}, |
|
2724 {2,4,3,0x3}, |
|
2725 {0,8,4,0x7}, |
|
2726 {0,22,4,0xf} |
|
2727 }; |
|
2728 |
|
2729 // Return code length for specified allocation Size(assumed to be aligned to pages) |
|
2730 inline unsigned paged_codelen(unsigned size, unsigned pagesz) |
|
2731 { |
|
2732 HEAP_ASSERT(size == Ceiling(size, pagesz)); |
|
2733 |
|
2734 if (size == pagesz) |
|
2735 return 2; |
|
2736 else if (size < 4*pagesz) |
|
2737 return 4; |
|
2738 else if (size < 16*pagesz) |
|
2739 return 8; |
|
2740 else |
|
2741 return 22; |
|
2742 } |
|
2743 |
|
2744 inline const etab& paged_coding(unsigned npage) |
|
2745 { |
|
2746 if (npage < 4) |
|
2747 return encode_table[npage>>1]; |
|
2748 else if (npage < 16) |
|
2749 return encode_table[2]; |
|
2750 else |
|
2751 return encode_table[3]; |
|
2752 } |
|
2753 |
|
2754 bool RHybridHeap::PagedEncode(unsigned pos, unsigned npage) |
|
2755 { |
|
2756 const etab& e = paged_coding(npage); |
|
2757 if (pos + e.len > iPageMap.Size()) |
|
2758 { |
|
2759 // need to grow the page bitmap to fit the cell length into the map |
|
2760 // if we outgrow original bitmap buffer in RHybridHeap metadata, then just get enough pages to cover the full space: |
|
2761 // * initial 68 byte bitmap mapped (68*8*4kB):2 = 1,1MB |
|
2762 // * 4KB can Map(4096*8*4kB):2 = 64MB |
|
2763 unsigned maxsize = Ceiling(iMaxLength, iPageSize); |
|
2764 unsigned mapbits = maxsize >> (PAGESHIFT-1); |
|
2765 maxsize = Ceiling(mapbits>>3, iPageSize); |
|
2766 void* newb = Map(0, maxsize); |
|
2767 if (!newb) |
|
2768 return false; |
|
2769 |
|
2770 unsigned char* oldb = iPageMap.Addr(); |
|
2771 iPageMap.Init((unsigned char*)newb, (maxsize<<3), 0); |
|
2772 memcpy(newb, oldb, Ceiling(MAXSMALLPAGEBITS,8)>>3); |
|
2773 } |
|
2774 // encode the allocation block size into the bitmap, starting at the bit for the start page |
|
2775 unsigned bits = e.code; |
|
2776 bits |= (npage - e.offset) << e.codelen; |
|
2777 iPageMap.Set(pos, e.len, bits); |
|
2778 return true; |
|
2779 } |
|
2780 |
|
2781 unsigned RHybridHeap::PagedDecode(unsigned pos) const |
|
2782 { |
|
2783 __ASSERT_ALWAYS(pos + 2 <= iPageMap.Size(), HEAP_PANIC(ETHeapBadCellAddress)); |
|
2784 |
|
2785 unsigned bits = iPageMap.Bits(pos,2); |
|
2786 __ASSERT_ALWAYS(bits & 1, HEAP_PANIC(ETHeapBadCellAddress)); |
|
2787 bits >>= 1; |
|
2788 if (bits == 0) |
|
2789 return 1; |
|
2790 __ASSERT_ALWAYS(pos + 4 <= iPageMap.Size(), HEAP_PANIC(ETHeapBadCellAddress)); |
|
2791 bits = iPageMap.Bits(pos+2,2); |
|
2792 if ((bits & 1) == 0) |
|
2793 return 2 + (bits>>1); |
|
2794 else if ((bits>>1) == 0) |
|
2795 { |
|
2796 __ASSERT_ALWAYS(pos + 8 <= iPageMap.Size(), HEAP_PANIC(ETHeapBadCellAddress)); |
|
2797 return iPageMap.Bits(pos+4, 4); |
|
2798 } |
|
2799 else |
|
2800 { |
|
2801 __ASSERT_ALWAYS(pos + 22 <= iPageMap.Size(), HEAP_PANIC(ETHeapBadCellAddress)); |
|
2802 return iPageMap.Bits(pos+4, 18); |
|
2803 } |
|
2804 } |
|
2805 |
|
2806 inline void RHybridHeap::PagedZapSize(void* p, unsigned size) |
|
2807 {iPageMap.Setn(PtrDiff(p, iMemBase) >> (PAGESHIFT-1), paged_codelen(size, iPageSize) ,0);} |
|
2808 |
|
2809 inline unsigned RHybridHeap::PagedSize(void* p) const |
|
2810 { return PagedDecode(PtrDiff(p, iMemBase) >> (PAGESHIFT-1)) << PAGESHIFT; } |
|
2811 |
|
2812 inline bool RHybridHeap::PagedSetSize(void* p, unsigned size) |
|
2813 { return PagedEncode(PtrDiff(p, iMemBase) >> (PAGESHIFT-1), size >> PAGESHIFT); } |
|
2814 |
|
2815 inline void* RHybridHeap::Bitmap2addr(unsigned pos) const |
|
2816 { return iMemBase + (1 << (PAGESHIFT-1))*pos; } |
|
2817 |
|
2818 |
|
2819 ////////////////////////////////////////////////////////////////////////// |
|
2820 ////////////////////////////////////////////////////////////////////////// |
|
2821 ////////////////////////////////////////////////////////////////////////// |
|
2822 /** |
|
2823 Constructor where minimum and maximum length of the heap can be defined. |
|
2824 It defaults the chunk heap to be created to have use a new local chunk, |
|
2825 to have a grow by value of KMinHeapGrowBy, to be unaligned, not to be |
|
2826 single threaded and not to have any mode flags set. |
|
2827 |
|
2828 @param aMinLength The minimum length of the heap to be created. |
|
2829 @param aMaxLength The maximum length to which the heap to be created can grow. |
|
2830 If the supplied value is less than a page size, then it |
|
2831 is discarded and the page size is used instead. |
|
2832 */ |
|
2833 EXPORT_C TChunkHeapCreateInfo::TChunkHeapCreateInfo(TInt aMinLength, TInt aMaxLength) : |
|
2834 iVersionNumber(EVersion0), iMinLength(aMinLength), iMaxLength(aMaxLength), |
|
2835 iAlign(0), iGrowBy(1), iSingleThread(EFalse), |
|
2836 iOffset(0), iPaging(EUnspecified), iMode(0), iName(NULL) |
|
2837 { |
|
2838 } |
|
2839 |
|
2840 |
|
2841 /** |
|
2842 Sets the chunk heap to create a new chunk with the specified name. |
|
2843 |
|
2844 This overriddes any previous call to TChunkHeapCreateInfo::SetNewChunkHeap() or |
|
2845 TChunkHeapCreateInfo::SetExistingChunkHeap() for this TChunkHeapCreateInfo object. |
|
2846 |
|
2847 @param aName The name to be given to the chunk heap to be created |
|
2848 If NULL, the function constructs a local chunk to host the heap. |
|
2849 If not NULL, a pointer to a descriptor containing the name to be |
|
2850 assigned to the global chunk hosting the heap. |
|
2851 */ |
|
2852 EXPORT_C void TChunkHeapCreateInfo::SetCreateChunk(const TDesC* aName) |
|
2853 { |
|
2854 iName = (TDesC*)aName; |
|
2855 iChunk.SetHandle(KNullHandle); |
|
2856 } |
|
2857 |
|
2858 |
|
2859 /** |
|
2860 Sets the chunk heap to be created to use the chunk specified. |
|
2861 |
|
2862 This overriddes any previous call to TChunkHeapCreateInfo::SetNewChunkHeap() or |
|
2863 TChunkHeapCreateInfo::SetExistingChunkHeap() for this TChunkHeapCreateInfo object. |
|
2864 |
|
2865 @param aChunk A handle to the chunk to use for the heap. |
|
2866 */ |
|
2867 EXPORT_C void TChunkHeapCreateInfo::SetUseChunk(const RChunk aChunk) |
|
2868 { |
|
2869 iName = NULL; |
|
2870 iChunk = aChunk; |
|
2871 } |
|
2872 |
|
2873 EXPORT_C RHeap* UserHeap::FixedHeap(TAny* aBase, TInt aMaxLength, TInt aAlign, TBool aSingleThread) |
|
2874 /** |
|
2875 Creates a fixed length heap at a specified location. |
|
2876 |
|
2877 On successful return from this function, the heap is ready to use. This assumes that |
|
2878 the memory pointed to by aBase is mapped and able to be used. You must ensure that you |
|
2879 pass in a large enough value for aMaxLength. Passing in a value that is too small to |
|
2880 hold the metadata for the heap (~1 KB) will result in the size being rounded up and the |
|
2881 heap thereby running over the end of the memory assigned to it. But then if you were to |
|
2882 pass in such as small value then you would not be able to do any allocations from the |
|
2883 heap anyway. Moral of the story: Use a sensible value for aMaxLength! |
|
2884 |
|
2885 @param aBase A pointer to the location where the heap is to be constructed. |
|
2886 @param aMaxLength The maximum length in bytes to which the heap can grow. If the |
|
2887 supplied value is too small to hold the heap's metadata, it |
|
2888 will be increased. |
|
2889 @param aAlign From Symbian^4 onwards, this value is ignored but EABI 8 |
|
2890 byte alignment is guaranteed for all allocations 8 bytes or |
|
2891 more in size. 4 byte allocations will be aligned to a 4 |
|
2892 byte boundary. Best to pass in zero. |
|
2893 @param aSingleThread EFalse if the heap is to be accessed from multiple threads. |
|
2894 This will cause internal locks to be created, guaranteeing |
|
2895 thread safety. |
|
2896 |
|
2897 @return A pointer to the new heap, or NULL if the heap could not be created. |
|
2898 |
|
2899 @panic USER 56 if aMaxLength is negative. |
|
2900 */ |
|
2901 { |
|
2902 __ASSERT_ALWAYS( aMaxLength>=0, ::Panic(ETHeapMaxLengthNegative)); |
|
2903 if ( aMaxLength < (TInt)sizeof(RHybridHeap) ) |
|
2904 aMaxLength = sizeof(RHybridHeap); |
|
2905 |
|
2906 RHybridHeap* h = new(aBase) RHybridHeap(aMaxLength, aAlign, aSingleThread); |
|
2907 |
|
2908 if (!aSingleThread) |
|
2909 { |
|
2910 TInt r = h->iLock.CreateLocal(); |
|
2911 if (r!=KErrNone) |
|
2912 return NULL; // No need to delete the RHybridHeap instance as the new above is only a placement new |
|
2913 h->iHandles = (TInt*)&h->iLock; |
|
2914 h->iHandleCount = 1; |
|
2915 } |
|
2916 return h; |
|
2917 } |
|
2918 |
|
2919 /** |
|
2920 Creates a chunk heap of the type specified by the parameter aCreateInfo. |
|
2921 |
|
2922 @param aCreateInfo A reference to a TChunkHeapCreateInfo object specifying the |
|
2923 type of chunk heap to create. |
|
2924 |
|
2925 @return A pointer to the new heap or NULL if the heap could not be created. |
|
2926 |
|
2927 @panic USER 41 if the heap's specified minimum length is greater than the specified maximum length. |
|
2928 @panic USER 55 if the heap's specified minimum length is negative. |
|
2929 @panic USER 172 if the heap's specified alignment is not a power of 2 or is less than the size of a TAny*. |
|
2930 */ |
|
2931 EXPORT_C RHeap* UserHeap::ChunkHeap(const TChunkHeapCreateInfo& aCreateInfo) |
|
2932 { |
|
2933 // aCreateInfo must have been configured to use a new chunk or an exiting chunk. |
|
2934 __ASSERT_ALWAYS(!(aCreateInfo.iMode & (TUint32)~EChunkHeapMask), ::Panic(EHeapCreateInvalidMode)); |
|
2935 RHeap* h = NULL; |
|
2936 |
|
2937 if (aCreateInfo.iChunk.Handle() == KNullHandle) |
|
2938 { |
|
2939 // A new chunk is to be created for this heap. |
|
2940 |
|
2941 __ASSERT_ALWAYS(aCreateInfo.iMinLength >= 0, ::Panic(ETHeapMinLengthNegative)); |
|
2942 __ASSERT_ALWAYS(aCreateInfo.iMaxLength >= aCreateInfo.iMinLength, ::Panic(ETHeapCreateMaxLessThanMin)); |
|
2943 |
|
2944 TInt maxLength = aCreateInfo.iMaxLength; |
|
2945 TInt page_size; |
|
2946 GET_PAGE_SIZE(page_size); |
|
2947 |
|
2948 if (maxLength < page_size) |
|
2949 maxLength = page_size; |
|
2950 |
|
2951 TChunkCreateInfo chunkInfo; |
|
2952 #if USE_HYBRID_HEAP |
|
2953 if ( aCreateInfo.iOffset ) |
|
2954 chunkInfo.SetNormal(0, maxLength); // Create DL only heap |
|
2955 else |
|
2956 { |
|
2957 maxLength = 2*maxLength; |
|
2958 chunkInfo.SetDisconnected(0, 0, maxLength); // Create hybrid heap |
|
2959 } |
|
2960 #else |
|
2961 chunkInfo.SetNormal(0, maxLength); // Create DL only heap |
|
2962 #endif |
|
2963 chunkInfo.SetOwner((aCreateInfo.iSingleThread)? EOwnerThread : EOwnerProcess); |
|
2964 if (aCreateInfo.iName) |
|
2965 chunkInfo.SetGlobal(*aCreateInfo.iName); |
|
2966 // Set the paging attributes of the chunk. |
|
2967 if (aCreateInfo.iPaging == TChunkHeapCreateInfo::EPaged) |
|
2968 chunkInfo.SetPaging(TChunkCreateInfo::EPaged); |
|
2969 if (aCreateInfo.iPaging == TChunkHeapCreateInfo::EUnpaged) |
|
2970 chunkInfo.SetPaging(TChunkCreateInfo::EUnpaged); |
|
2971 // Create the chunk. |
|
2972 RChunk chunk; |
|
2973 if (chunk.Create(chunkInfo) != KErrNone) |
|
2974 return NULL; |
|
2975 // Create the heap using the new chunk. |
|
2976 TUint mode = aCreateInfo.iMode | EChunkHeapDuplicate; // Must duplicate the handle. |
|
2977 h = OffsetChunkHeap(chunk, aCreateInfo.iMinLength, aCreateInfo.iOffset, |
|
2978 aCreateInfo.iGrowBy, maxLength, aCreateInfo.iAlign, |
|
2979 aCreateInfo.iSingleThread, mode); |
|
2980 chunk.Close(); |
|
2981 } |
|
2982 else |
|
2983 { |
|
2984 h = OffsetChunkHeap(aCreateInfo.iChunk, aCreateInfo.iMinLength, aCreateInfo.iOffset, |
|
2985 aCreateInfo.iGrowBy, aCreateInfo.iMaxLength, aCreateInfo.iAlign, |
|
2986 aCreateInfo.iSingleThread, aCreateInfo.iMode); |
|
2987 } |
|
2988 return h; |
|
2989 } |
|
2990 |
|
2991 |
|
2992 |
|
2993 EXPORT_C RHeap* UserHeap::ChunkHeap(const TDesC* aName, TInt aMinLength, TInt aMaxLength, TInt aGrowBy, TInt aAlign, TBool aSingleThread) |
|
2994 /** |
|
2995 Creates a heap in a local or global chunk. |
|
2996 |
|
2997 The chunk hosting the heap can be local or global. |
|
2998 |
|
2999 A local chunk is one which is private to the process creating it and is not |
|
3000 intended for access by other user processes. A global chunk is one which is |
|
3001 visible to all processes. |
|
3002 |
|
3003 The hosting chunk is local, if the pointer aName is NULL, otherwise the |
|
3004 hosting chunk is global and the descriptor *aName is assumed to contain |
|
3005 the name to be assigned to it. |
|
3006 |
|
3007 Ownership of the host chunk is vested in the current process. |
|
3008 |
|
3009 A minimum and a maximum size for the heap can be specified. On successful |
|
3010 return from this function, the size of the heap is at least aMinLength. |
|
3011 If subsequent requests for allocation of memory from the heap cannot be |
|
3012 satisfied by compressing the heap, the size of the heap is extended in |
|
3013 increments of aGrowBy until the request can be satisfied. Attempts to extend |
|
3014 the heap causes the size of the host chunk to be adjusted. |
|
3015 |
|
3016 Note that the size of the heap cannot be adjusted by more than aMaxLength. |
|
3017 |
|
3018 @param aName If NULL, the function constructs a local chunk to host |
|
3019 the heap. If not NULL, a pointer to a descriptor containing |
|
3020 the name to be assigned to the global chunk hosting the heap. |
|
3021 @param aMinLength The minimum length of the heap in bytes. This will be |
|
3022 rounded up to the nearest page size by the allocator. |
|
3023 @param aMaxLength The maximum length in bytes to which the heap can grow. This |
|
3024 will be rounded up to the nearest page size by the allocator. |
|
3025 @param aGrowBy The number of bytes by which the heap will grow when more |
|
3026 memory is required. This will be rounded up to the nearest |
|
3027 page size by the allocator. If a value is not explicitly |
|
3028 specified, the page size is taken by default. |
|
3029 @param aAlign From Symbian^4 onwards, this value is ignored but EABI 8 |
|
3030 byte alignment is guaranteed for all allocations 8 bytes or |
|
3031 more in size. 4 byte allocations will be aligned to a 4 |
|
3032 byte boundary. Best to pass in zero. |
|
3033 @param aSingleThread EFalse if the heap is to be accessed from multiple threads. |
|
3034 This will cause internal locks to be created, guaranteeing |
|
3035 thread safety. |
|
3036 |
|
3037 @return A pointer to the new heap or NULL if the heap could not be created. |
|
3038 |
|
3039 @panic USER 41 if aMaxLength is < aMinLength. |
|
3040 @panic USER 55 if aMinLength is negative. |
|
3041 @panic USER 56 if aMaxLength is negative. |
|
3042 */ |
|
3043 { |
|
3044 TInt page_size; |
|
3045 GET_PAGE_SIZE(page_size); |
|
3046 TInt minLength = _ALIGN_UP(aMinLength, page_size); |
|
3047 TInt maxLength = Max(aMaxLength, minLength); |
|
3048 |
|
3049 TChunkHeapCreateInfo createInfo(minLength, maxLength); |
|
3050 createInfo.SetCreateChunk(aName); |
|
3051 createInfo.SetGrowBy(aGrowBy); |
|
3052 createInfo.SetAlignment(aAlign); |
|
3053 createInfo.SetSingleThread(aSingleThread); |
|
3054 |
|
3055 return ChunkHeap(createInfo); |
|
3056 } |
|
3057 |
|
3058 EXPORT_C RHeap* UserHeap::ChunkHeap(RChunk aChunk, TInt aMinLength, TInt aGrowBy, TInt aMaxLength, TInt aAlign, TBool aSingleThread, TUint32 aMode) |
|
3059 /** |
|
3060 Creates a heap in an existing chunk. |
|
3061 |
|
3062 This function is intended to be used to create a heap in a user writable code |
|
3063 chunk as created by a call to RChunk::CreateLocalCode(). This type of heap can |
|
3064 be used to hold code fragments from a JIT compiler. |
|
3065 |
|
3066 @param aChunk The chunk that will host the heap. |
|
3067 @param aMinLength The minimum length of the heap in bytes. This will be |
|
3068 rounded up to the nearest page size by the allocator. |
|
3069 @param aGrowBy The number of bytes by which the heap will grow when more |
|
3070 memory is required. This will be rounded up to the nearest |
|
3071 page size by the allocator. If a value is not explicitly |
|
3072 specified, the page size is taken by default. |
|
3073 @param aMaxLength The maximum length in bytes to which the heap can grow. This |
|
3074 will be rounded up to the nearest page size by the allocator. |
|
3075 If 0 is passed in, the maximum lengt of the chunk is used. |
|
3076 @param aAlign From Symbian^4 onwards, this value is ignored but EABI 8 |
|
3077 byte alignment is guaranteed for all allocations 8 bytes or |
|
3078 more in size. 4 byte allocations will be aligned to a 4 |
|
3079 byte boundary. Best to pass in zero. |
|
3080 @param aSingleThread EFalse if the heap is to be accessed from multiple threads. |
|
3081 This will cause internal locks to be created, guaranteeing |
|
3082 thread safety. |
|
3083 @param aMode Flags controlling the heap creation. See RAllocator::TFlags. |
|
3084 |
|
3085 @return A pointer to the new heap or NULL if the heap could not be created. |
|
3086 |
|
3087 @see UserHeap::OffsetChunkHeap() |
|
3088 */ |
|
3089 { |
|
3090 return OffsetChunkHeap(aChunk, aMinLength, 0, aGrowBy, aMaxLength, aAlign, aSingleThread, aMode); |
|
3091 } |
|
3092 |
|
3093 EXPORT_C RHeap* UserHeap::OffsetChunkHeap(RChunk aChunk, TInt aMinLength, TInt aOffset, TInt aGrowBy, TInt aMaxLength, TInt aAlign, TBool aSingleThread, TUint32 aMode) |
|
3094 /** |
|
3095 Creates a heap in an existing chunk, offset from the beginning of the chunk. |
|
3096 |
|
3097 This function is intended to be used to create a heap using a chunk which has |
|
3098 some of its memory already used, at the start of that that chunk. The maximum |
|
3099 length to which the heap can grow is the maximum size of the chunk, minus the |
|
3100 data at the start of the chunk. |
|
3101 |
|
3102 The offset at which to create the heap is passed in as the aOffset parameter. |
|
3103 Legacy heap implementations always respected the aOffset value, however more |
|
3104 modern heap implementations are more sophisticated and cannot necessarily respect |
|
3105 this value. Therefore, if possible, you should always use an aOffset of 0 unless |
|
3106 you have a very explicit requirement for using a non zero value. Using a non zero |
|
3107 value will result in a less efficient heap algorithm being used in order to respect |
|
3108 the offset. |
|
3109 |
|
3110 Another issue to consider when using this function is the type of the chunk passed |
|
3111 in. In order for the most efficient heap algorithms to be used, the chunk passed |
|
3112 in should always be a disconnected chunk. Passing in a non disconnected chunk will |
|
3113 again result in a less efficient heap algorithm being used. |
|
3114 |
|
3115 Finally, another requirement for the most efficient heap algorithms to be used is |
|
3116 for the heap to be able to expand. Therefore, unless you have a specific reason to |
|
3117 do so, always specify aMaxLength > aMinLength. |
|
3118 |
|
3119 So, if possible, use aOffset == zero, aMaxLength > aMinLength and a disconnected |
|
3120 chunk for best results! |
|
3121 |
|
3122 @param aChunk The chunk that will host the heap. |
|
3123 @param aMinLength The minimum length of the heap in bytes. This will be |
|
3124 rounded up to the nearest page size by the allocator. |
|
3125 @param aOffset The offset in bytes from the start of the chunk at which to |
|
3126 create the heap. If used (and it shouldn't really be!) |
|
3127 then it will be rounded up to a multiple of 8, to respect |
|
3128 EABI 8 byte alignment requirements. |
|
3129 @param aGrowBy The number of bytes by which the heap will grow when more |
|
3130 memory is required. This will be rounded up to the nearest |
|
3131 page size by the allocator. If a value is not explicitly |
|
3132 specified, the page size is taken by default. |
|
3133 @param aMaxLength The maximum length in bytes to which the heap can grow. This |
|
3134 will be rounded up to the nearest page size by the allocator. |
|
3135 If 0 is passed in, the maximum length of the chunk is used. |
|
3136 @param aAlign From Symbian^4 onwards, this value is ignored but EABI 8 |
|
3137 byte alignment is guaranteed for all allocations 8 bytes or |
|
3138 more in size. 4 byte allocations will be aligned to a 4 |
|
3139 byte boundary. Best to pass in zero. |
|
3140 @param aSingleThread EFalse if the heap is to be accessed from multiple threads. |
|
3141 This will cause internal locks to be created, guaranteeing |
|
3142 thread safety. |
|
3143 @param aMode Flags controlling the heap creation. See RAllocator::TFlags. |
|
3144 |
|
3145 @return A pointer to the new heap or NULL if the heap could not be created. |
|
3146 |
|
3147 @panic USER 41 if aMaxLength is < aMinLength. |
|
3148 @panic USER 55 if aMinLength is negative. |
|
3149 @panic USER 56 if aMaxLength is negative. |
|
3150 @panic USER 168 if aOffset is negative. |
|
3151 */ |
|
3152 { |
|
3153 TBool dlOnly = EFalse; |
|
3154 TInt pageSize; |
|
3155 GET_PAGE_SIZE(pageSize); |
|
3156 TInt align = RHybridHeap::ECellAlignment; // Always use EABI 8 byte alignment |
|
3157 |
|
3158 __ASSERT_ALWAYS(aMinLength>=0, ::Panic(ETHeapMinLengthNegative)); |
|
3159 __ASSERT_ALWAYS(aMaxLength>=0, ::Panic(ETHeapMaxLengthNegative)); |
|
3160 |
|
3161 if ( aMaxLength > 0 ) |
|
3162 __ASSERT_ALWAYS(aMaxLength>=aMinLength, ::Panic(ETHeapCreateMaxLessThanMin)); |
|
3163 |
|
3164 // Stick to EABI alignment for the start offset, if any |
|
3165 aOffset = _ALIGN_UP(aOffset, align); |
|
3166 |
|
3167 // Using an aOffset > 0 means that we can't use the hybrid allocator and have to revert to Doug Lea only |
|
3168 if (aOffset > 0) |
|
3169 dlOnly = ETrue; |
|
3170 |
|
3171 // Ensure that the minimum length is enough to hold the RHybridHeap object itself |
|
3172 TInt minCell = _ALIGN_UP(Max((TInt)RHybridHeap::EAllocCellSize, (TInt)RHybridHeap::EFreeCellSize), align); |
|
3173 TInt hybridHeapSize = (sizeof(RHybridHeap) + minCell); |
|
3174 if (aMinLength < hybridHeapSize) |
|
3175 aMinLength = hybridHeapSize; |
|
3176 |
|
3177 // Round the minimum length up to a multiple of the page size, taking into account that the |
|
3178 // offset takes up a part of the chunk's memory |
|
3179 aMinLength = _ALIGN_UP((aMinLength + aOffset), pageSize); |
|
3180 |
|
3181 // If aMaxLength is 0 then use the entire chunk |
|
3182 TInt chunkSize = aChunk.MaxSize(); |
|
3183 if (aMaxLength == 0) |
|
3184 { |
|
3185 aMaxLength = chunkSize; |
|
3186 } |
|
3187 // Otherwise round the maximum length up to a multiple of the page size, taking into account that |
|
3188 // the offset takes up a part of the chunk's memory. We also clip the maximum length to the chunk |
|
3189 // size, so the user may get a little less than requested if the chunk size is not large enough |
|
3190 else |
|
3191 { |
|
3192 aMaxLength = _ALIGN_UP((aMaxLength + aOffset), pageSize); |
|
3193 if (aMaxLength > chunkSize) |
|
3194 aMaxLength = chunkSize; |
|
3195 } |
|
3196 |
|
3197 // If the rounded up values don't make sense then a crazy aMinLength or aOffset must have been passed |
|
3198 // in, so fail the heap creation |
|
3199 if (aMinLength > aMaxLength) |
|
3200 return NULL; |
|
3201 |
|
3202 // Adding the offset into the minimum and maximum length was only necessary for ensuring a good fit of |
|
3203 // the heap into the chunk. Re-adjust them now back to non offset relative sizes |
|
3204 aMinLength -= aOffset; |
|
3205 aMaxLength -= aOffset; |
|
3206 |
|
3207 // If we are still creating the hybrid allocator (call parameter |
|
3208 // aOffset is 0 and aMaxLength > aMinLength), we must reduce heap |
|
3209 // aMaxLength size to the value aMaxLength/2 and set the aOffset to point in the middle of chunk. |
|
3210 TInt offset = aOffset; |
|
3211 TInt maxLength = aMaxLength; |
|
3212 if (!dlOnly && (aMaxLength > aMinLength)) |
|
3213 maxLength = offset = _ALIGN_UP(aMaxLength >> 1, pageSize); |
|
3214 |
|
3215 // Try to use commit to map aMinLength physical memory for the heap, taking into account the offset. If |
|
3216 // the operation fails, suppose that the chunk is not a disconnected heap and try to map physical memory |
|
3217 // with adjust. In this case, we also can't use the hybrid allocator and have to revert to Doug Lea only |
|
3218 TBool useAdjust = EFalse; |
|
3219 TInt r = aChunk.Commit(offset, aMinLength); |
|
3220 if (r == KErrGeneral) |
|
3221 { |
|
3222 dlOnly = useAdjust = ETrue; |
|
3223 r = aChunk.Adjust(aMinLength); |
|
3224 if (r != KErrNone) |
|
3225 return NULL; |
|
3226 } |
|
3227 else if (r == KErrNone) |
|
3228 { |
|
3229 // We have a disconnected chunk reset aOffset and aMaxlength |
|
3230 aOffset = offset; |
|
3231 aMaxLength = maxLength; |
|
3232 } |
|
3233 |
|
3234 else |
|
3235 return NULL; |
|
3236 |
|
3237 // Parameters have been mostly verified and we know whether to use the hybrid allocator or Doug Lea only. The |
|
3238 // constructor for the hybrid heap will automatically drop back to Doug Lea if it determines that aMinLength |
|
3239 // == aMaxLength, so no need to worry about that requirement here. The user specified alignment is not used but |
|
3240 // is passed in so that it can be sanity checked in case the user is doing something totally crazy with it |
|
3241 RHybridHeap* h = new (aChunk.Base() + aOffset) RHybridHeap(aChunk.Handle(), aOffset, aMinLength, aMaxLength, |
|
3242 aGrowBy, aAlign, aSingleThread, dlOnly, useAdjust); |
|
3243 |
|
3244 if (h->ConstructLock(aMode) != KErrNone) |
|
3245 return NULL; |
|
3246 |
|
3247 // Return the heap address |
|
3248 return h; |
|
3249 } |
|
3250 |
|
3251 #define UserTestDebugMaskBit(bit) (TBool)(UserSvr::DebugMask(bit>>5) & (1<<(bit&31))) |
|
3252 |
|
3253 _LIT(KLitDollarHeap,"$HEAP"); |
|
3254 EXPORT_C TInt UserHeap::CreateThreadHeap(SStdEpocThreadCreateInfo& aInfo, RHeap*& aHeap, TInt aAlign, TBool aSingleThread) |
|
3255 /** |
|
3256 @internalComponent |
|
3257 */ |
|
3258 // |
|
3259 // Create a user-side heap |
|
3260 // |
|
3261 { |
|
3262 TInt page_size; |
|
3263 GET_PAGE_SIZE(page_size); |
|
3264 TInt minLength = _ALIGN_UP(aInfo.iHeapInitialSize, page_size); |
|
3265 TInt maxLength = Max(aInfo.iHeapMaxSize, minLength); |
|
3266 if (UserTestDebugMaskBit(96)) // 96 == KUSERHEAPTRACE in nk_trace.h |
|
3267 aInfo.iFlags |= ETraceHeapAllocs; |
|
3268 // Create the thread's heap chunk. |
|
3269 RChunk c; |
|
3270 TChunkCreateInfo createInfo; |
|
3271 |
|
3272 createInfo.SetThreadHeap(0, maxLength, KLitDollarHeap()); // Initialise with no memory committed. |
|
3273 #if USE_HYBRID_HEAP |
|
3274 // |
|
3275 // Create disconnected chunk for hybrid heap with double max length value |
|
3276 // |
|
3277 maxLength = 2*maxLength; |
|
3278 createInfo.SetDisconnected(0, 0, maxLength); |
|
3279 #endif |
|
3280 // Set the paging policy of the heap chunk based on the thread's paging policy. |
|
3281 TUint pagingflags = aInfo.iFlags & EThreadCreateFlagPagingMask; |
|
3282 switch (pagingflags) |
|
3283 { |
|
3284 case EThreadCreateFlagPaged: |
|
3285 createInfo.SetPaging(TChunkCreateInfo::EPaged); |
|
3286 break; |
|
3287 case EThreadCreateFlagUnpaged: |
|
3288 createInfo.SetPaging(TChunkCreateInfo::EUnpaged); |
|
3289 break; |
|
3290 case EThreadCreateFlagPagingUnspec: |
|
3291 // Leave the chunk paging policy unspecified so the process's |
|
3292 // paging policy is used. |
|
3293 break; |
|
3294 } |
|
3295 |
|
3296 TInt r = c.Create(createInfo); |
|
3297 if (r!=KErrNone) |
|
3298 return r; |
|
3299 |
|
3300 aHeap = ChunkHeap(c, minLength, page_size, maxLength, aAlign, aSingleThread, EChunkHeapSwitchTo|EChunkHeapDuplicate); |
|
3301 c.Close(); |
|
3302 |
|
3303 if ( !aHeap ) |
|
3304 return KErrNoMemory; |
|
3305 |
|
3306 if (aInfo.iFlags & ETraceHeapAllocs) |
|
3307 { |
|
3308 aHeap->iFlags |= RHeap::ETraceAllocs; |
|
3309 BTraceContext8(BTrace::EHeap, BTrace::EHeapCreate,(TUint32)aHeap, RHybridHeap::EAllocCellSize); |
|
3310 TInt chunkId = ((RHandleBase&)((RHybridHeap*)aHeap)->iChunkHandle).BTraceId(); |
|
3311 BTraceContext8(BTrace::EHeap, BTrace::EHeapChunkCreate, (TUint32)aHeap, chunkId); |
|
3312 } |
|
3313 if (aInfo.iFlags & EMonitorHeapMemory) |
|
3314 aHeap->iFlags |= RHeap::EMonitorMemory; |
|
3315 |
|
3316 return KErrNone; |
|
3317 } |
|
3318 |
|
3319 #endif // __KERNEL_MODE__ |