kerneltest/e32test/heap/t_heapcheck.cpp
branchRCL_3
changeset 43 c1f20ce4abcf
equal deleted inserted replaced
42:a179b74831c9 43:c1f20ce4abcf
       
     1 // Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
       
     2 // All rights reserved.
       
     3 // This component and the accompanying materials are made available
       
     4 // under the terms of the License "Eclipse Public License v1.0"
       
     5 // which accompanies this distribution, and is available
       
     6 // at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     7 //
       
     8 // Initial Contributors:
       
     9 // Nokia Corporation - initial contribution.
       
    10 //
       
    11 // Contributors:
       
    12 //
       
    13 // Description:
       
    14 // e32test\debug\t_heapcorruption.cpp
       
    15 // This is a test application that will cause heap corruption 
       
    16 // to generate BTrace events (EHeapCorruption).
       
    17 // 
       
    18 //
       
    19 
       
    20 //  Include Files
       
    21 #include <e32test.h>
       
    22 #include <e32base.h>
       
    23 #include <e32panic.h>
       
    24 #include <e32cmn.h>
       
    25 #include "dla.h"
       
    26 #include "slab.h"
       
    27 #include "page_alloc.h"
       
    28 #include "heap_hybrid.h"
       
    29 
       
    30 LOCAL_D RTest test(_L("T_HEAPCHECK"));
       
    31 
       
    32 TUint32 gSeed = 0xb504f334;
       
    33 
       
    34 _LIT(KLitHeapCheck,"Heap Check");
       
    35 
       
    36 
       
    37 TUint32 Random()
       
    38 {
       
    39 	gSeed *= 69069;
       
    40 	gSeed += 41;
       
    41 	return gSeed;
       
    42 }
       
    43 
       
    44 TInt RandomNumber(TInt aMin, TInt aMax)
       
    45 {
       
    46 	TInt y = aMax - aMin;
       
    47 	if ( y <= 0 )
       
    48 		return aMax;
       
    49 	TUint32 x = Random() & 0xff;
       
    50 	TInt s = 0;
       
    51 	while ( y > (0x100 << s) )
       
    52 		{
       
    53 		s++;
       
    54 		}
       
    55 	return (aMin + (x << s) % y);
       
    56 }
       
    57 
       
    58 
       
    59 /**
       
    60 Friend class of RHeapHybrid to access to hybrid heap metadata
       
    61 */
       
    62 class TestHybridHeap
       
    63 {
       
    64 	public:
       
    65 		TBool Init();
       
    66 		TBool Check();
       
    67 		TUint8* Alloc(TInt aLth);
       
    68 		TUint8* ReAlloc(TAny* aBfr, TInt aLth, TInt aMode);
       
    69 		void   Free(TAny* aBfr);
       
    70 		TInt  AllocLen(TAny* aBfr);
       
    71 		TInt  AllocSize(TInt& aTotalAllocSize);						
       
    72 		TBool SlabAllocatorExists();
       
    73 		TBool PageAllocatorExists();			   
       
    74 		TBool SlabsCreated();
       
    75 		TBool CorruptSmallBin();
       
    76 		TBool CorruptTreeBin();
       
    77 		TBool ConfigurePageAllocator();
       
    78 		TInt  CopyPageBitmap(TUint8* aBitmap, TInt aLth);
       
    79 		TBool RestorePageBitmap(TUint8* aBitmap, TInt aLth);
       
    80 		void AllocateSomeBuffers(TUint8** aBfrs, TInt aMinLth, TInt MaxLth, TInt aCount);
       
    81 		TBool PrintHeapInitData();		
       
    82 
       
    83 	private:
       
    84 		RHybridHeap* iHybridHeap;
       
    85 };
       
    86 
       
    87 
       
    88 
       
    89 TBool TestHybridHeap::Init()
       
    90 {
       
    91 	RHybridHeap::STestCommand cmd;
       
    92 	cmd.iCommand = RHybridHeap::EHeapMetaData;
       
    93 	RAllocator& heap = User::Allocator();
       
    94 	TInt ret = heap.DebugFunction(RHeap::EHybridHeap, &cmd, 0);
       
    95 	if (ret != KErrNone)
       
    96 		return EFalse;
       
    97 	iHybridHeap = (RHybridHeap*) cmd.iData;
       
    98 	
       
    99 	return ETrue;
       
   100 }
       
   101 
       
   102 TBool TestHybridHeap::Check()
       
   103 {
       
   104 	if ( iHybridHeap )
       
   105 		{
       
   106 		iHybridHeap->Check();  
       
   107 		}
       
   108 
       
   109 	return EFalse;
       
   110 }
       
   111 
       
   112 TUint8* TestHybridHeap::Alloc(TInt aLth)
       
   113 {
       
   114 	if ( iHybridHeap )
       
   115 		{
       
   116 		return (TUint8*)iHybridHeap->Alloc(aLth);  
       
   117 		}
       
   118 
       
   119 	return NULL;
       
   120 }
       
   121 
       
   122 TUint8* TestHybridHeap::ReAlloc(TAny* aBfr, TInt aLth, TInt aMode)
       
   123 {
       
   124 	if ( iHybridHeap )
       
   125 		{
       
   126 		return (TUint8*)iHybridHeap->ReAlloc(aBfr, aLth, aMode);  
       
   127 		}
       
   128 
       
   129 	return NULL;
       
   130 }
       
   131 
       
   132 void TestHybridHeap::Free(TAny* aBfr)
       
   133 {
       
   134 	if ( iHybridHeap )
       
   135 		{
       
   136 		iHybridHeap->Free(aBfr);  
       
   137 		}
       
   138 }
       
   139 
       
   140 TInt TestHybridHeap::AllocLen(TAny* aBfr)
       
   141 {
       
   142 	if ( iHybridHeap )
       
   143 		{
       
   144 		return iHybridHeap->AllocLen(aBfr);  
       
   145 		}
       
   146 	return 0;
       
   147 }
       
   148 
       
   149 TInt TestHybridHeap::AllocSize(TInt& aTotalAllocSize)
       
   150 {
       
   151 	aTotalAllocSize = 0;
       
   152 	if ( iHybridHeap )
       
   153 		{
       
   154 		return iHybridHeap->AllocSize(aTotalAllocSize);  
       
   155 		}
       
   156 	return 0;
       
   157 }
       
   158 
       
   159 TBool TestHybridHeap::SlabAllocatorExists()
       
   160 {
       
   161 	TBool status = EFalse;
       
   162 	if ( iHybridHeap )
       
   163 		{
       
   164 		status = !iHybridHeap->iDLOnly;
       
   165 		}
       
   166 	
       
   167 	return status;
       
   168 }
       
   169 
       
   170 TBool TestHybridHeap::PageAllocatorExists()
       
   171 {
       
   172 	TBool status = EFalse;
       
   173 	if ( iHybridHeap )
       
   174 		{
       
   175 		status = (!iHybridHeap->iDLOnly && (iHybridHeap->iPageThreshold < 31));
       
   176 		}
       
   177 
       
   178 	return status;
       
   179 }
       
   180 
       
   181 TBool TestHybridHeap::SlabsCreated()
       
   182 {
       
   183 	TBool status = EFalse;
       
   184 	if ( iHybridHeap )
       
   185 		{
       
   186 		status = (iHybridHeap->iSlabThreshold != 0);
       
   187 		}
       
   188 
       
   189 	return status;
       
   190 }
       
   191 
       
   192 TBool TestHybridHeap::ConfigurePageAllocator()
       
   193 {
       
   194 	TBool status = EFalse;
       
   195 	if ( iHybridHeap )
       
   196 		{
       
   197 		RHybridHeap::STestCommand conf;
       
   198 		conf.iCommand = RHybridHeap::ESetConfig;
       
   199 		conf.iConfig.iPagePower = 14;  // 16 Kb		
       
   200 		if ( iHybridHeap->DebugFunction(RHeap::EHybridHeap, (TAny*)&conf ) == KErrNone )
       
   201 			status = ETrue;
       
   202 		}
       
   203 
       
   204 	return status;
       
   205 }
       
   206 
       
   207 
       
   208 TBool TestHybridHeap::CorruptTreeBin()
       
   209 {
       
   210 	TBool status = EFalse;
       
   211 	if ( iHybridHeap )
       
   212 		{
       
   213 		TUint i;
       
   214 		for (i = 0; i < NTREEBINS; ++i)
       
   215 			{
       
   216 			tbinptr* tb = TREEBIN_AT(&iHybridHeap->iGlobalMallocState, i);
       
   217 			tchunkptr t = *tb;
       
   218 			if ( t )
       
   219 				{
       
   220 				// Corrupt tree bin by writing erroneous index value
       
   221 				t->iIndex ++;
       
   222 				return ETrue;
       
   223 				}
       
   224 			}
       
   225 		}
       
   226 
       
   227 	return status;
       
   228 }
       
   229 
       
   230 TBool TestHybridHeap::CorruptSmallBin()
       
   231 {
       
   232 	TBool status = EFalse;
       
   233 	if ( iHybridHeap )
       
   234 		{
       
   235 		TUint i;
       
   236 		for (i = 0; i < NSMALLBINS; ++i)
       
   237 			{
       
   238 			sbinptr b = SMALLBIN_AT(&iHybridHeap->iGlobalMallocState, i);
       
   239 			mchunkptr p = b->iBk;
       
   240 			if ( p != b )
       
   241 				{ 
       
   242 				b->iBk = b;
       
   243 				status = ETrue;
       
   244 				}
       
   245 			}
       
   246 		}
       
   247 
       
   248 	return status;
       
   249 }
       
   250 
       
   251 TInt TestHybridHeap::CopyPageBitmap(TUint8* aBitmap, TInt aLth)
       
   252 {
       
   253 	TInt lth = 0;
       
   254 	if ( iHybridHeap && (aLth > (TInt) sizeof(iHybridHeap->iBitMapBuffer)) )
       
   255 		{// Dirty version
       
   256 		memcpy(aBitmap, &iHybridHeap->iBitMapBuffer[0], sizeof(iHybridHeap->iBitMapBuffer));
       
   257         lth = sizeof(iHybridHeap->iBitMapBuffer) << 3;
       
   258 		}
       
   259 
       
   260 	return lth;
       
   261 }
       
   262 
       
   263 TBool TestHybridHeap::RestorePageBitmap(TUint8* aBitmap, TInt aLth)
       
   264 {
       
   265 	TBool status = EFalse;
       
   266 	if ( iHybridHeap && ((aLth >> 3) <= (TInt) sizeof(iHybridHeap->iBitMapBuffer)) )
       
   267 		{// Dirty version
       
   268 		memcpy(&iHybridHeap->iBitMapBuffer[0], aBitmap, (aLth >> 3));
       
   269 		status = ETrue;
       
   270 		}
       
   271 
       
   272 	return status;
       
   273 }
       
   274 
       
   275 void TestHybridHeap::AllocateSomeBuffers(TUint8** aBfrs, TInt aMinLth, TInt MaxLth, TInt aCount )
       
   276 {
       
   277 	
       
   278 	TInt loop = RandomNumber(2, 8);
       
   279 
       
   280 	while ( loop )
       
   281 		{
       
   282 		// allocate all buffers
       
   283 		TInt i;
       
   284 		for (i=0; i<aCount; ++i)
       
   285 			{
       
   286 			if (!aBfrs[i])
       
   287 				{
       
   288 				aBfrs[i] = (TUint8*)Alloc(RandomNumber(aMinLth, MaxLth));
       
   289 				}
       
   290 			}
       
   291 
       
   292 		// free some cells
       
   293 		TInt n = RandomNumber(2, aCount);
       
   294 		while (--n)
       
   295 			{
       
   296 			i = RandomNumber(2, aCount);
       
   297 			if (aBfrs[i])
       
   298 				{
       
   299 				Free(aBfrs[i]);
       
   300 				aBfrs[i] = NULL;
       
   301 				}
       
   302 			}
       
   303 
       
   304 		// realloc some cells
       
   305 		n = RandomNumber(2, aCount);
       
   306 		while (--n)
       
   307 			{
       
   308 			TInt new_len = RandomNumber(aMinLth, MaxLth);
       
   309 			if (aBfrs[i])
       
   310 				{
       
   311 				TUint8* p = (TUint8*)ReAlloc(aBfrs[i], new_len, Random());
       
   312 				if (p)
       
   313 					{
       
   314 					aBfrs[i] = p;
       
   315 					}
       
   316 				}
       
   317 			}
       
   318 
       
   319 		loop --;
       
   320 		}
       
   321 
       
   322 }	
       
   323 
       
   324 TBool TestHybridHeap::PrintHeapInitData()
       
   325 {
       
   326 	TInt total;
       
   327 	TInt count = AllocSize(total);
       
   328 	RDebug::Printf("Heap initialised for test, alloc count: %d , alloc size: %d\n", count, total);
       
   329 	if ( iHybridHeap )
       
   330 		RDebug::Printf("Heap initialised for test, iCellCount: %d , iTotalAllocSize: %d\n", iHybridHeap->iCellCount, iHybridHeap->iTotalAllocSize);	    	
       
   331 	return (count != 0);
       
   332 }
       
   333 
       
   334 
       
   335 //  Local Functions
       
   336 LOCAL_D TInt HeapCheckTestThread(TAny* param)
       
   337 {
       
   338 	TInt t = *((TInt*)param);
       
   339 	TUint8* bfrs[256];
       
   340 	Mem::FillZ(bfrs, sizeof(bfrs));
       
   341 	TestHybridHeap heap;
       
   342 	test(heap.Init());
       
   343 
       
   344 	switch( t )
       
   345 		{
       
   346 		case 1:
       
   347 			{
       
   348 			// Overwrite Doug Lea buffer and check()
       
   349 			heap.AllocateSomeBuffers(bfrs, 0x40, 0xfff0, 256);
       
   350 			test(heap.PrintHeapInitData());
       
   351 			TUint8 *p = heap.Alloc(64);
       
   352 			test( p != NULL );
       
   353 			Mem::FillZ(p, 80);  // Heap corrupted
       
   354 			heap.Check();    // This should cause panic
       
   355 			break;
       
   356 			}
       
   357 
       
   358 		case 2:
       
   359 			// Corrupt a smallbin and check
       
   360 			{
       
   361 			TInt i = 0;
       
   362 			TBool smallbin_corrupted = EFalse;
       
   363 			while ( !smallbin_corrupted )
       
   364 				{
       
   365 				heap.AllocateSomeBuffers(bfrs, 0x4, 0xff, 256);
       
   366 				smallbin_corrupted = heap.CorruptSmallBin();
       
   367 				i ++;
       
   368 				if ( i > 9 )
       
   369 					break;
       
   370 				}
       
   371 			test(smallbin_corrupted);
       
   372     		test(heap.PrintHeapInitData());
       
   373 			heap.Check();    // This should cause panic
       
   374 			}
       
   375 			break;
       
   376 
       
   377 		case 3:
       
   378 			// Corrupt a treebin and check
       
   379 			{
       
   380 			TInt i = 0;
       
   381 			TBool treebin_corrupted = EFalse;
       
   382 			while ( !treebin_corrupted )
       
   383 				{
       
   384 				heap.AllocateSomeBuffers(bfrs, 0x100, 0x4000, 256);
       
   385 				treebin_corrupted = heap.CorruptTreeBin();
       
   386 				i ++;
       
   387 				if ( i > 9 )
       
   388 					break;
       
   389 				}
       
   390 			test(treebin_corrupted);
       
   391 			test(heap.PrintHeapInitData());						
       
   392 			heap.Check();    // This should cause panic
       
   393 			break;
       
   394 			}
       
   395 
       
   396 		case 10:
       
   397 			// Overwrite slab buffer and check
       
   398 			{
       
   399 			TInt i = 0;
       
   400 			TBool slabs_created = EFalse;
       
   401 			if ( !heap.SlabAllocatorExists() )
       
   402 				{
       
   403 				User::Panic(KLitHeapCheck, ETHeapDebugUnmatchedCallToCheckHeap);
       
   404 				}
       
   405 
       
   406 			while ( !slabs_created )
       
   407 				{
       
   408 				// Allocate enough buffers to cause slab allocator to be
       
   409 				// initialised  		
       
   410 				heap.AllocateSomeBuffers(bfrs, 0x4, 0x2000, 256);
       
   411 				slabs_created = heap.SlabsCreated();
       
   412 				i ++;
       
   413 				if ( i > 9 )
       
   414 					break;
       
   415 				}
       
   416 			test(slabs_created);
       
   417 			test(heap.PrintHeapInitData());						
       
   418 			i = 0;
       
   419 			TUint8* p[10];
       
   420 			while ( i < 10 )
       
   421 				{
       
   422 				p[i] = heap.Alloc(24);
       
   423 				test( p[i] != NULL );
       
   424 				i ++;
       
   425 				}
       
   426 			i = 0;
       
   427 			while ( i < 10 )
       
   428 				{
       
   429 				heap.Free(p[i]);	
       
   430 				i +=2;
       
   431 				}
       
   432 			p[0] = heap.Alloc(24);
       
   433 			test( p[0] != NULL );
       
   434 			memset((TUint8*)(Floor(p[0], SLABSIZE) + sizeof(slabhdr)), 0xee, KMaxSlabPayload);  // Heap corrupted
       
   435 			heap.Check();         // This should cause panic
       
   436 			break;
       
   437 			}
       
   438 
       
   439 		case 11:
       
   440 			// Corrupt slab header
       
   441 			{
       
   442 			TInt i = 0;
       
   443 			TBool slabs_created = EFalse;
       
   444 			if ( !heap.SlabAllocatorExists() )
       
   445 				{
       
   446 				User::Panic(KLitHeapCheck, ETHeapDebugUnmatchedCallToCheckHeap);
       
   447 				}
       
   448 
       
   449 			while ( !slabs_created )
       
   450 				{
       
   451 				// Allocate enough buffers to cause slab allocator to be
       
   452 				// initialised  		
       
   453 				heap.AllocateSomeBuffers(bfrs, 0x4, 0x2000, 256);
       
   454 				slabs_created = heap.SlabsCreated();
       
   455 				i ++;
       
   456 				if ( i > 9 )
       
   457 					break;
       
   458 				}
       
   459 			test(slabs_created);
       
   460 			test(heap.PrintHeapInitData());						
       
   461 			TUint8* p = heap.Alloc(28);
       
   462 			test(p != NULL);
       
   463 			p = Floor(p, SLABSIZE);
       
   464 			*(TUint32*)p = 0xffeeddcc;
       
   465 			heap.Check();      // This should cause panic
       
   466 			break;
       
   467 			}
       
   468 
       
   469 		case 20:
       
   470 			// Corrupt page bitmap data and check
       
   471 			{
       
   472 			if ( !heap.PageAllocatorExists() )
       
   473 				{
       
   474 				User::Panic(KLitHeapCheck, ETHeapDebugUnmatchedCallToCheckHeap);
       
   475 				}
       
   476 			test(heap.ConfigurePageAllocator());
       
   477 			// Allocate some buffers to cause slab allocator to be
       
   478 			// initialised  		
       
   479 			heap.AllocateSomeBuffers(bfrs, 0x4000, 0x10000, 16);
       
   480 			test(heap.PrintHeapInitData());						
       
   481 			TUint8* bitmap = heap.Alloc(128);  // For saved bitmap
       
   482 			test(bitmap != NULL);
       
   483 			TInt bit_lth = heap.CopyPageBitmap(bitmap, 128);
       
   484 			test(bit_lth != 0);
       
   485 			memset(bitmap, 0xee, (bit_lth>>3));  //  corrupt bitmap data
       
   486 			heap.RestorePageBitmap(bitmap, bit_lth);
       
   487 			heap.Check();      // This should cause panic
       
   488 			break;
       
   489 			}
       
   490 
       
   491 		case 21:
       
   492 			// Corrupt page bitmap with a earlier freed "ghost" buffer info
       
   493 			{
       
   494 			if ( !heap.PageAllocatorExists() )
       
   495 				{
       
   496 				User::Panic(KLitHeapCheck, ETHeapDebugUnmatchedCallToCheckHeap);
       
   497 				}
       
   498 			test(heap.ConfigurePageAllocator());
       
   499 			// Allocate some buffers to cause slab allocator to be
       
   500 			// initialised  		
       
   501 			heap.AllocateSomeBuffers(bfrs, 0x4000, 0x10000, 16);
       
   502 			test(heap.PrintHeapInitData());						
       
   503 			TUint8* bitmap = heap.Alloc(128);  // For saved bitmap
       
   504 			test(bitmap != NULL);
       
   505 			TUint8* p = heap.Alloc(0x8000);     // One more page buffer
       
   506 			TInt bit_lth = heap.CopyPageBitmap(bitmap, 128);
       
   507 			test(bit_lth != 0);
       
   508 			heap.Free(p);
       
   509 			heap.RestorePageBitmap(bitmap, bit_lth);
       
   510 			heap.Check();      // This should cause panic
       
   511 			break;
       
   512 			}
       
   513 
       
   514 		default:
       
   515 			break;
       
   516 		}
       
   517 
       
   518 	User::Invariant();	// Should not reach here 
       
   519 	return 0;
       
   520 }
       
   521 
       
   522 
       
   523 class TestHeapCheck
       
   524 {
       
   525 	public:
       
   526 		void TestCheck(void);
       
   527 		TInt TestThreadExit(RThread& aThread, TExitType aExitType, TInt aExitReason);
       
   528 };
       
   529 
       
   530 
       
   531 TInt TestHeapCheck::TestThreadExit(RThread& aThread, TExitType aExitType, TInt aExitReason)
       
   532 {
       
   533 	// Disable JIT debugging.
       
   534 	TBool justInTime=User::JustInTime();
       
   535 	User::SetJustInTime(EFalse);
       
   536 
       
   537 	TRequestStatus status;
       
   538 	aThread.Logon(status); 
       
   539 	aThread.Resume();
       
   540 	User::WaitForRequest(status);
       
   541 	if (aExitType != aThread.ExitType())
       
   542 		return KErrGeneral;
       
   543 
       
   544 	if ( (status.Int() == ETHeapDebugUnmatchedCallToCheckHeap) && (aThread.ExitReason() == ETHeapDebugUnmatchedCallToCheckHeap))
       
   545 		{
       
   546 		CLOSE_AND_WAIT(aThread);
       
   547 		// Put JIT debugging back to previous status.
       
   548 		User::SetJustInTime(justInTime);
       
   549 		return KErrNotSupported;
       
   550 		}
       
   551 
       
   552 	if ( status.Int() == ERTestFailed )
       
   553 		return KErrGeneral;
       
   554 
       
   555 	if ( aExitReason > 0 )
       
   556 		{
       
   557 		if (aExitReason != status.Int())
       
   558 			return KErrGeneral;
       
   559 
       
   560 		if (aExitReason != aThread.ExitReason())
       
   561 			return KErrGeneral;		
       
   562 		}
       
   563 	
       
   564 	CLOSE_AND_WAIT(aThread);
       
   565 
       
   566 	// Put JIT debugging back to previous status.
       
   567 	User::SetJustInTime(justInTime);
       
   568 	return KErrNone;
       
   569 
       
   570 }
       
   571 
       
   572 void TestHeapCheck::TestCheck()
       
   573 {
       
   574     TInt type;
       
   575 	TInt r;
       
   576 	
       
   577 	test.Next(_L("Testing Doug Lea allocator check"));
       
   578 	{
       
   579 	type = 1;
       
   580 	RThread thread;
       
   581 	test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x400000,  (TAny*) &type)== KErrNone);
       
   582 	test(TestThreadExit(thread, EExitPanic, ETHeapBadCellAddress)==KErrNone);
       
   583 	
       
   584     type = 2;
       
   585     test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x400000,  (TAny*) &type)==KErrNone);
       
   586     test(TestThreadExit(thread, EExitPanic, ETHeapBadCellAddress)==KErrNone);
       
   587 
       
   588 	type = 3;
       
   589 	test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x400000,  (TAny*) &type)==KErrNone);
       
   590 	test(TestThreadExit(thread, EExitPanic, ETHeapBadCellAddress)==KErrNone);
       
   591 	
       
   592 	}
       
   593 
       
   594 	test.Next(_L("Testing Slab allocator check"));	
       
   595 	{
       
   596 	type = 10;
       
   597 	RThread thread;
       
   598 	test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x400000,  (TAny*) &type)==KErrNone);
       
   599 	r = TestThreadExit(thread, EExitPanic, ETHeapBadCellAddress);
       
   600 	if ( r != KErrNotSupported )
       
   601 		{
       
   602 		test(r==KErrNone);
       
   603 		
       
   604 		type = 11;
       
   605 		RThread thread;
       
   606 		test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x400000,  (TAny*) &type)==KErrNone);
       
   607 		test(TestThreadExit(thread, EExitPanic, ETHeapBadCellAddress)==KErrNone);
       
   608 		}
       
   609 	else test.Printf(_L("Slab allocator does not exist, testes bypassed\n"));	
       
   610 	}
       
   611 
       
   612 	test.Next(_L("Testing Page allocator check"));	
       
   613 	{
       
   614 	type = 20;
       
   615 	RThread thread;
       
   616 	test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x800000,  (TAny*) &type)==KErrNone);	
       
   617 	r = TestThreadExit(thread, EExitPanic, KErrNone);   // Accept any panic reason here
       
   618 	if ( r != KErrNotSupported )
       
   619 		{
       
   620 		test(r==KErrNone);
       
   621 
       
   622 		type = 21;
       
   623 		RThread thread;
       
   624 		test(thread.Create(_L("Check UserHeap"),HeapCheckTestThread, KDefaultStackSize, 0x1000, 0x800000,  (TAny*) &type)==KErrNone);
       
   625 		test(TestThreadExit(thread, EExitPanic,	KErrNone)==KErrNone);  // Accept any panic reason here
       
   626 		}
       
   627     else test.Printf(_L("Page allocator does not exist, testes bypassed\n"));
       
   628 	}
       
   629 
       
   630 }
       
   631 
       
   632 
       
   633 
       
   634 
       
   635 //  Global Functions
       
   636 
       
   637 GLDEF_C TInt E32Main(void)
       
   638 	{
       
   639 
       
   640 	test.Title();
       
   641 	
       
   642 	test.Start(_L("Testing Heap Check function"));
       
   643 	
       
   644 	TestHeapCheck T;
       
   645 	
       
   646 	T.TestCheck();
       
   647 
       
   648 	test.End();
       
   649 	
       
   650 	return(0);
       
   651 	}
       
   652