|
1 /* |
|
2 * Portions Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies). |
|
3 * All rights reserved. |
|
4 * This component and the accompanying materials are made available |
|
5 * under the terms of "Eclipse Public License v1.0" |
|
6 * which accompanies this distribution, and is available |
|
7 * at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
8 * |
|
9 * Initial Contributors: |
|
10 * Nokia Corporation - initial contribution. |
|
11 * |
|
12 * Contributors: |
|
13 * |
|
14 * Description: |
|
15 * The original NIST Statistical Test Suite code is placed in public domain. |
|
16 * (http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html) |
|
17 * |
|
18 * This software was developed at the National Institute of Standards and Technology by |
|
19 * employees of the Federal Government in the course of their official duties. Pursuant |
|
20 * to title 17 Section 105 of the United States Code this software is not subject to |
|
21 * copyright protection and is in the public domain. The NIST Statistical Test Suite is |
|
22 * an experimental system. NIST assumes no responsibility whatsoever for its use by other |
|
23 * parties, and makes no guarantees, expressed or implied, about its quality, reliability, |
|
24 * or any other characteristic. We would appreciate acknowledgment if the software is used. |
|
25 */ |
|
26 |
|
27 |
|
28 |
|
29 #include "openc.h" |
|
30 #include "../include/cephes.h" |
|
31 |
|
32 static const double rel_error = 1E-12; |
|
33 |
|
34 double MACHEP = 1.11022302462515654042E-16; // 2**-53 |
|
35 double MAXLOG = 7.09782712893383996732224E2; // log(MAXNUM) |
|
36 double MAXNUM = 1.7976931348623158E308; // 2**1024*(1-MACHEP) |
|
37 double PI = 3.14159265358979323846; // pi, duh! |
|
38 |
|
39 static double big = 4.503599627370496e15; |
|
40 static double biginv = 2.22044604925031308085e-16; |
|
41 |
|
42 int sgngam = 0; |
|
43 |
|
44 double |
|
45 cephes_igamc(double a, double x) |
|
46 { |
|
47 double ans, ax, c, yc, r, t, y, z; |
|
48 double pk, pkm1, pkm2, qk, qkm1, qkm2; |
|
49 |
|
50 if ( (x <= 0) || ( a <= 0) ) |
|
51 return( 1.0 ); |
|
52 |
|
53 if ( (x < 1.0) || (x < a) ) |
|
54 return( 1.e0 - cephes_igam(a,x) ); |
|
55 |
|
56 ax = a * log(x) - x - cephes_lgam(a); |
|
57 |
|
58 if ( ax < -MAXLOG ) { |
|
59 printf("igamc: UNDERFLOW\n"); |
|
60 return 0.0; |
|
61 } |
|
62 ax = exp(ax); |
|
63 |
|
64 /* continued fraction */ |
|
65 y = 1.0 - a; |
|
66 z = x + y + 1.0; |
|
67 c = 0.0; |
|
68 pkm2 = 1.0; |
|
69 qkm2 = x; |
|
70 pkm1 = x + 1.0; |
|
71 qkm1 = z * x; |
|
72 ans = pkm1/qkm1; |
|
73 |
|
74 do { |
|
75 c += 1.0; |
|
76 y += 1.0; |
|
77 z += 2.0; |
|
78 yc = y * c; |
|
79 pk = pkm1 * z - pkm2 * yc; |
|
80 qk = qkm1 * z - qkm2 * yc; |
|
81 if ( qk != 0 ) { |
|
82 r = pk/qk; |
|
83 t = fabs( (ans - r)/r ); |
|
84 ans = r; |
|
85 } |
|
86 else |
|
87 t = 1.0; |
|
88 pkm2 = pkm1; |
|
89 pkm1 = pk; |
|
90 qkm2 = qkm1; |
|
91 qkm1 = qk; |
|
92 if ( fabs(pk) > big ) { |
|
93 pkm2 *= biginv; |
|
94 pkm1 *= biginv; |
|
95 qkm2 *= biginv; |
|
96 qkm1 *= biginv; |
|
97 } |
|
98 } while ( t > MACHEP ); |
|
99 |
|
100 return ans*ax; |
|
101 } |
|
102 |
|
103 double |
|
104 cephes_igam(double a, double x) |
|
105 { |
|
106 double ans, ax, c, r; |
|
107 |
|
108 if ( (x <= 0) || ( a <= 0) ) |
|
109 return 0.0; |
|
110 |
|
111 if ( (x > 1.0) && (x > a ) ) |
|
112 return 1.e0 - cephes_igamc(a,x); |
|
113 |
|
114 /* Compute x**a * exp(-x) / gamma(a) */ |
|
115 ax = a * log(x) - x - cephes_lgam(a); |
|
116 if ( ax < -MAXLOG ) { |
|
117 printf("igam: UNDERFLOW\n"); |
|
118 return 0.0; |
|
119 } |
|
120 ax = exp(ax); |
|
121 |
|
122 /* power series */ |
|
123 r = a; |
|
124 c = 1.0; |
|
125 ans = 1.0; |
|
126 |
|
127 do { |
|
128 r += 1.0; |
|
129 c *= x/r; |
|
130 ans += c; |
|
131 } while ( c/ans > MACHEP ); |
|
132 |
|
133 return ans * ax/a; |
|
134 } |
|
135 |
|
136 |
|
137 /* A[]: Stirling's formula expansion of log gamma |
|
138 * B[], C[]: log gamma function between 2 and 3 |
|
139 */ |
|
140 static unsigned short A[] = { |
|
141 0x6661,0x2733,0x9850,0x3f4a, |
|
142 0xe943,0xb580,0x7fbd,0xbf43, |
|
143 0x5ebb,0x20dc,0x019f,0x3f4a, |
|
144 0xa5a1,0x16b0,0xc16c,0xbf66, |
|
145 0x554b,0x5555,0x5555,0x3fb5 |
|
146 }; |
|
147 static unsigned short B[] = { |
|
148 0x6761,0x8ff3,0x8901,0xc095, |
|
149 0xb93e,0x355b,0xf234,0xc0e2, |
|
150 0x89e5,0xf890,0x3d73,0xc114, |
|
151 0xdb51,0xf994,0xbc82,0xc131, |
|
152 0xf20b,0x0219,0x4589,0xc13a, |
|
153 0x055e,0x5418,0x0c67,0xc12a |
|
154 }; |
|
155 static unsigned short C[] = { |
|
156 /*0x0000,0x0000,0x0000,0x3ff0,*/ |
|
157 0x12b2,0x1cf3,0xfd0d,0xc075, |
|
158 0xd757,0x7b89,0xaa0d,0xc0d0, |
|
159 0x4c9b,0xb974,0xeb84,0xc10a, |
|
160 0x0043,0x7195,0x6286,0xc131, |
|
161 0xf34c,0x892f,0x5255,0xc143, |
|
162 0xe14a,0x6a11,0xce4b,0xc13e |
|
163 }; |
|
164 |
|
165 #define MAXLGM 2.556348e305 |
|
166 |
|
167 |
|
168 /* Logarithm of gamma function */ |
|
169 double |
|
170 cephes_lgam(double x) |
|
171 { |
|
172 double p, q, u, w, z; |
|
173 int i; |
|
174 |
|
175 sgngam = 1; |
|
176 |
|
177 if ( x < -34.0 ) { |
|
178 q = -x; |
|
179 w = cephes_lgam(q); /* note this modifies sgngam! */ |
|
180 p = floor(q); |
|
181 if ( p == q ) { |
|
182 lgsing: |
|
183 goto loverf; |
|
184 } |
|
185 i = (int)p; |
|
186 if ( (i & 1) == 0 ) |
|
187 sgngam = -1; |
|
188 else |
|
189 sgngam = 1; |
|
190 z = q - p; |
|
191 if ( z > 0.5 ) { |
|
192 p += 1.0; |
|
193 z = p - q; |
|
194 } |
|
195 z = q * sin( PI * z ); |
|
196 if ( z == 0.0 ) |
|
197 goto lgsing; |
|
198 /* z = log(PI) - log( z ) - w;*/ |
|
199 z = log(PI) - log( z ) - w; |
|
200 return z; |
|
201 } |
|
202 |
|
203 if ( x < 13.0 ) { |
|
204 z = 1.0; |
|
205 p = 0.0; |
|
206 u = x; |
|
207 while ( u >= 3.0 ) { |
|
208 p -= 1.0; |
|
209 u = x + p; |
|
210 z *= u; |
|
211 } |
|
212 while ( u < 2.0 ) { |
|
213 if ( u == 0.0 ) |
|
214 goto lgsing; |
|
215 z /= u; |
|
216 p += 1.0; |
|
217 u = x + p; |
|
218 } |
|
219 if ( z < 0.0 ) { |
|
220 sgngam = -1; |
|
221 z = -z; |
|
222 } |
|
223 else |
|
224 sgngam = 1; |
|
225 if ( u == 2.0 ) |
|
226 return( log(z) ); |
|
227 p -= 2.0; |
|
228 x = x + p; |
|
229 p = x * cephes_polevl( x, (double *)B, 5 ) / cephes_p1evl( x, (double *)C, 6); |
|
230 |
|
231 return log(z) + p; |
|
232 } |
|
233 |
|
234 if ( x > MAXLGM ) { |
|
235 loverf: |
|
236 printf("lgam: OVERFLOW\n"); |
|
237 |
|
238 return sgngam * MAXNUM; |
|
239 } |
|
240 |
|
241 q = ( x - 0.5 ) * log(x) - x + log( sqrt( 2*PI ) ); |
|
242 if ( x > 1.0e8 ) |
|
243 return q; |
|
244 |
|
245 p = 1.0/(x*x); |
|
246 if ( x >= 1000.0 ) |
|
247 q += (( 7.9365079365079365079365e-4 * p |
|
248 - 2.7777777777777777777778e-3) *p |
|
249 + 0.0833333333333333333333) / x; |
|
250 else |
|
251 q += cephes_polevl( p, (double *)A, 4 ) / x; |
|
252 |
|
253 return q; |
|
254 } |
|
255 |
|
256 double |
|
257 cephes_polevl(double x, double *coef, int N) |
|
258 { |
|
259 double ans; |
|
260 int i; |
|
261 double *p; |
|
262 |
|
263 p = coef; |
|
264 ans = *p++; |
|
265 i = N; |
|
266 |
|
267 do |
|
268 ans = ans * x + *p++; |
|
269 while ( --i ); |
|
270 |
|
271 return ans; |
|
272 } |
|
273 |
|
274 double |
|
275 cephes_p1evl(double x, double *coef, int N) |
|
276 { |
|
277 double ans; |
|
278 double *p; |
|
279 int i; |
|
280 |
|
281 p = coef; |
|
282 ans = x + *p++; |
|
283 i = N-1; |
|
284 |
|
285 do |
|
286 ans = ans * x + *p++; |
|
287 while ( --i ); |
|
288 |
|
289 return ans; |
|
290 } |
|
291 |
|
292 double |
|
293 cephes_erf(double x) |
|
294 { |
|
295 static const double two_sqrtpi = 1.128379167095512574; |
|
296 double sum = x, term = x, xsqr = x * x; |
|
297 int j = 1; |
|
298 |
|
299 if ( fabs(x) > 2.2 ) |
|
300 return 1.0 - cephes_erfc(x); |
|
301 |
|
302 do { |
|
303 term *= xsqr/j; |
|
304 sum -= term/(2*j+1); |
|
305 j++; |
|
306 term *= xsqr/j; |
|
307 sum += term/(2*j+1); |
|
308 j++; |
|
309 } while ( fabs(term)/sum > rel_error ); |
|
310 |
|
311 return two_sqrtpi*sum; |
|
312 } |
|
313 |
|
314 double |
|
315 cephes_erfc(double x) |
|
316 { |
|
317 static const double one_sqrtpi = 0.564189583547756287; |
|
318 double a = 1, b = x, c = x, d = x*x + 0.5; |
|
319 double q1, q2 = b/d, n = 1.0, t; |
|
320 |
|
321 if ( fabs(x) < 2.2 ) |
|
322 return 1.0 - cephes_erf(x); |
|
323 if ( x < 0 ) |
|
324 return 2.0 - cephes_erfc(-x); |
|
325 |
|
326 do { |
|
327 t = a*n + b*x; |
|
328 a = b; |
|
329 b = t; |
|
330 t = c*n + d*x; |
|
331 c = d; |
|
332 d = t; |
|
333 n += 0.5; |
|
334 q1 = q2; |
|
335 q2 = b/d; |
|
336 } while ( fabs(q1-q2)/q2 > rel_error ); |
|
337 |
|
338 return one_sqrtpi*exp(-x*x)*q2; |
|
339 } |
|
340 |
|
341 |
|
342 double |
|
343 cephes_normal(double x) |
|
344 { |
|
345 double arg, result, sqrt2=1.414213562373095048801688724209698078569672; |
|
346 |
|
347 if (x > 0) { |
|
348 arg = x/sqrt2; |
|
349 result = 0.5 * ( 1 + erf(arg) ); |
|
350 } |
|
351 else { |
|
352 arg = -x/sqrt2; |
|
353 result = 0.5 * ( 1 - erf(arg) ); |
|
354 } |
|
355 |
|
356 return( result); |
|
357 } |