kerneltest/e32test/pci/t_pci.cpp
branchRCL_3
changeset 44 3e88ff8f41d5
parent 19 4a8fed1c0ef6
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kerneltest/e32test/pci/t_pci.cpp	Wed Sep 01 12:34:56 2010 +0100
@@ -0,0 +1,865 @@
+// Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the License "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+// This is a test for the PCI driver, so far implemented only on the
+// Naviengine platform. It aims to test:
+//	-That known values of data in config and memory space, on a given
+//	device can be read as expected.
+//	-That data can be written and modified in config and memory space
+//	-PCI memory buffers mapped or allocated by the PCI driver work as
+//	expected. These are
+//		-DChunk created by PCI driver and accessible from PCI
+//		-DPlatHwChunk created by PCI driver and accessible from PCI
+//		-DChunk created externally, then mapped in to PCI memory space
+//	There are tests to:
+//		- Create and close each buffer. Heap checking ensures proper
+//		cleanup
+//		- Create and close multiple buffers from multiple threads.
+//		This is an SMP focused test to check that the implementation
+//		of the chunk manager and allocator in the driver are thread
+//		safe. The tests should pass without triggering any assertions in
+//		the driver's invariance checks.
+//		- Write to buffers from software, and read back via the
+//		system to PCI window, and vice-versa -- a loop-back test.
+//		This checks that PCI buffers are indeed accessible to PCI devices.
+//
+// The tests require several pieces of PSL specific information:
+//	- A TPciDevice containing the vendor and device IDs of a PCI device
+//	to use for testing.
+//	- TAddrSpaceTests which identify regions of a device's config and
+//	memory space with known values, or which are known to be writable.
+//
+//	The test driver grants access to the PCI API with the following
+//	constructs: 
+//	- TUserConfigSpace and TUserMemorySpace, derived from TUserPciSpace,
+//	which are user side equivalents of kernel-side objects allowing
+//	accesses of different sizes to a PCI device's config space or
+//	memory space.
+//	- RPciChunk which is derived from and RChunk and corresponds to
+//	a kernel-side DChunk, which in turn corresponds to a PCI chunk or
+//	buffer. The test driver uses these for all PCI chunk types (a
+//	"wrapper" DChunk is used to map the memory of a PCI DPlatHwChunk
+//	to user side).
+//
+//	Known Issues:
+//	The test driver d_pci is intended to be platform independent but
+//	for now still contains some PSL specific information .eg the test
+//	info structure (which should really be passed up from the PSL) and
+//	the address and size of the system to pci window. For now the
+//	test driver code will remain in the Naviengine baseport directory.
+//	If the PCI driver is ever ported to a new platform this can be
+//	rectified.
+//	
+//
+//
+#include "../misc/test_thread.h"
+#include <e32std.h>
+#define __E32TEST_EXTENSION__
+#include <e32test.h>
+#include "t_pci.h"
+#include <assp/naviengine/pci.h>
+
+class RPci;
+/**
+Extends RChunk to hold the PCI address
+associated with a chunk.
+*/
+class RPciChunk: public RChunk
+	{
+public:
+	TUint PciBase()
+		{
+		return iPciBaseAddr;
+		}
+
+	/**
+	Return the PCI accessible size
+	*/
+	TInt Size() const
+		{
+		return iPciSize;
+		}
+
+private:
+	friend class RPci;
+	TUint iPciBaseAddr;
+	TInt iPciSize; //size of the region mapped into PCI
+	};
+
+typedef TInt (RPci::*ChunkOpenFn)(RPciChunk&, TInt, TRequestStatus*);
+
+class RPci : public RBusLogicalChannel
+	{
+public:
+	TInt Open();
+	TInt GetTestInfo(TPciTestInfo& aTestInfo);
+
+	TInt Open(const TPciDevice&);
+
+	TUint AccessConfigSpace(const TUserConfigSpace& aCs);
+	TUint AccessMemorySpace(const TUserMemorySpace& aMs);
+	TInt  OpenPciDChunk(RPciChunk& aPciChunk,TInt aPciChunkSize, TRequestStatus* aStatus=0);
+	TInt  OpenPciPlatHwChunk(RPciChunk& aPciHwChunk,TInt aPciChunkSize, TRequestStatus* aStatus=0);
+	TInt  OpenPciMappedChunk(RPciChunk& aPciMappedChunk,TInt aPciChunkSize, TRequestStatus* aStatus=0);	
+	TInt  OpenPciWindowChunk(RChunk& aPciWindowChunk);
+	TInt  RunUnitTests();
+private:	
+	TInt DoOpenPciChunk(RPciChunk& aPciChunk, TInt aPciChunkSize, TPciTestCmd aCmd, TRequestStatus* aStatus);
+	};
+
+inline TInt RPci::Open()
+	{
+	return DoCreate(KPciLddFactory, TVersion(), KNullUnit, NULL, NULL);
+	}
+
+inline TInt RPci::Open(const TPciDevice& aDevice) 
+	{
+	TPckgC<TPciDevice> devicePkg(aDevice);
+	return DoCreate(KPciLddFactory, TVersion(), KNullUnit, NULL, &devicePkg);
+	}
+
+inline TInt RPci::GetTestInfo(TPciTestInfo& aTestInfo)
+	{
+	TPckg<TPciTestInfo> info(aTestInfo);
+	return DoControl(EGetTestInfo, &info);
+	}
+
+inline TInt RPci::RunUnitTests()
+	{
+	return DoControl(ERunUnitTests);
+	}
+
+TUint RPci::AccessConfigSpace(const TUserConfigSpace& aCs)
+	{
+	TPckgC<TUserConfigSpace> pkg(aCs);
+	return DoControl(EAccessConfigSpace, &pkg);
+	}
+
+TUint RPci::AccessMemorySpace(const TUserMemorySpace& aMs)
+	{
+	TPckgC<TUserMemorySpace> pkg(aMs);
+	return DoControl(EAccessMemorySpace, &pkg);
+	}
+
+TInt RPci::OpenPciDChunk(RPciChunk& aPciChunk,TInt aPciChunkSize, TRequestStatus* aStatus)	
+	{	
+	return DoOpenPciChunk(aPciChunk, aPciChunkSize, EOpenPciDChunk, aStatus);
+	}
+
+TInt RPci::OpenPciPlatHwChunk(RPciChunk& aPciHwChunk,TInt aPciChunkSize, TRequestStatus* aStatus)	
+	{
+	return DoOpenPciChunk(aPciHwChunk, aPciChunkSize, EOpenPciPlatHwChunk, aStatus);
+	}
+
+TInt RPci::OpenPciMappedChunk(RPciChunk& aPciMappedChunk,TInt aPciChunkSize, TRequestStatus* aStatus)	
+	{
+	return DoOpenPciChunk(aPciMappedChunk, aPciChunkSize, EOpenPciMappedChunk, aStatus);
+	}
+
+TInt RPci::OpenPciWindowChunk(RChunk& aPciWindowChunk)
+	{	
+	TUint chunkHandle = DoControl(EOpenPciWindowChunk);			
+	return aPciWindowChunk.SetReturnedHandle(chunkHandle);
+	}
+
+TInt RPci::DoOpenPciChunk(RPciChunk& aPciChunk, TInt aPciChunkSize, TPciTestCmd aCmd, TRequestStatus* aStatus)
+	{
+	const TInt constPciChunkSize = aPciChunkSize;
+	TPciChunkCreateInfo info(constPciChunkSize, aPciChunk.iPciBaseAddr, aStatus);
+	TPckgC<TPciChunkCreateInfo> pkg(info);
+
+	TUint chunkHandle = DoControl(aCmd, &pkg);	
+	
+	const TInt r = aPciChunk.SetReturnedHandle(chunkHandle);
+	if(r == KErrNone)
+		{		
+		aPciChunk.iPciSize = constPciChunkSize;					
+		}
+	return r;
+	}
+
+TUserPciSpace::TUserPciSpace(RPci& aPci)
+	:iPci(&aPci)
+	{}
+
+TUserConfigSpace::TUserConfigSpace(RPci& aPci)
+	:TUserPciSpace(aPci)
+	{}
+
+TUint TUserConfigSpace::Call()
+	{
+	return iPci->AccessConfigSpace(*this);
+	}
+
+TUserPciSpace* TUserConfigSpace::Clone() const
+	{
+	return new TUserConfigSpace(*this);
+	}
+
+TUserMemorySpace::TUserMemorySpace(RPci& aPci, TInt aBarIndex)
+	:TUserPciSpace(aPci), iBarIndex(aBarIndex)
+	{}
+
+TUint TUserMemorySpace::Call()
+	{
+	return iPci->AccessMemorySpace(*this);
+	}
+
+TUserPciSpace* TUserMemorySpace::Clone() const
+	{
+	return new TUserMemorySpace(*this);
+	}
+
+/**
+Test address allocator
+*/
+TInt TestRunPciUnitTest(RPci& pci)
+	{		
+	return pci.RunUnitTests();
+	}
+
+
+/**
+Read from a defined address in memory or config space, compare against expected values.
+8,16, and 32 bit accesses performed.
+
+@param aSpace Object gving access to either the config or memory space of a PCI device
+@param aInfo Contains the address and expected value of a dword
+*/
+void TestReadAddressSpace(TUserPciSpace& aSpace, const TPciTestInfo::TAddrSpaceTest& aInfo, RTest& test, TBool aVerbose=EFalse)
+	{
+	const TUint os = aInfo.iOffset;
+	//Iterate over different widths, and possible
+	//subfields of 32 bit word
+	for(TInt bitWidth=32; bitWidth>=8; bitWidth>>=1)
+		{
+		const TInt numberOfFields = (32/bitWidth);
+		for(TInt i=0; i< numberOfFields; i++)
+			{
+			const TInt extraByteOffset = i * (bitWidth >> 3);
+			const TInt byteOffset = os + extraByteOffset;
+			if(aVerbose)
+				test.Printf(_L("Access bitWidth=%d byte offset=%d\n"), bitWidth, byteOffset);
+
+			const TUint expected = aInfo.Expected(bitWidth, byteOffset);
+			const TUint read = aSpace.Read(bitWidth, byteOffset);
+			if(aVerbose)
+				test.Printf(_L("expect 0x%08x, read 0x%08x\n"), expected, read);
+			test_Equal(expected, read);
+			}
+		}
+	}
+
+/**
+Verify writes and modifications to a defined address in memory or config space. 8,16, and 32 bit
+accesses performed.
+
+@param aSpace Object gving access to either the config or memory space of a PCI device
+@param aInfo Contains the address of a (at least partially) writable dword
+*/
+void TestWriteAddressSpace(TUserPciSpace& aSpace, TPciTestInfo::TAddrSpaceTest& aInfo, RTest& test, TBool aVerbose=EFalse)
+	{
+	const TUint original = aSpace.Read(32, aInfo.iOffset);
+	const TUint os = aInfo.iOffset;
+	TUint mask = ~aInfo.iReadOnlyMask;
+
+	//The pattern will be truncated when used with bit widths
+	//less than 32.
+	const TUint initPattern = 0xFFFFFFFF;
+
+	for(TInt bitWidth=32; bitWidth>=8; bitWidth>>=1)
+		{
+		const TUint pattern = initPattern >> (32-bitWidth);
+		const TInt numberOfFields = (32/bitWidth);
+		for(TInt i=0; i< numberOfFields; i++)
+			{
+			const TInt extraByteOffset = i * (bitWidth >> 3);
+			const TInt byteOffset = os + extraByteOffset;
+			if(aVerbose)
+				test.Printf(_L("Access bitWidth=%d byte offset=%d\n"), bitWidth, byteOffset);
+			//the full dword we expect
+			//currently assume that the unwritable bits will be 0
+			const TUint writeExpect = (pattern << (bitWidth * i) ) & mask; 
+			const TUint clearExpect = 0;
+						
+			//do write followed by clear
+			const TUint expect[] = {writeExpect, clearExpect};
+			const TUint write[] = {pattern, 0};
+			for(TInt n = 0; n < 2; n++)
+				{
+				aSpace.Write(bitWidth, byteOffset, write[n]);
+				TUint result = aSpace.Read(32, os);
+							
+				if(aVerbose)
+					test.Printf(_L("wrote 0x%08x, expect 0x%08x, read 0x%08x\n"),
+						write[n], expect[n], result);
+				test_Equal(expect[n], result);
+				}
+
+			//test Modify calls. Set then clear pattern
+			TUint set[] = {pattern, 0};
+			TUint clear[] = {0, pattern};
+
+			for(TInt m = 0; m < 2; m++)
+				{	
+				aSpace.Modify(bitWidth, byteOffset, clear[m], set[m]);
+				TUint result = aSpace.Read(32, os);
+						
+				if(aVerbose)
+					test.Printf(_L("clear 0x%08x, set 0x%08x,  expect 0x%08x, read 0x%08x\n"), clear[m], set[m], expect[m], result);
+				test_Equal(expect[m], result);
+				}
+			}
+		}
+
+	//restore orginal value or we will not be able to access device
+	aSpace.Write(32, os, original);
+	}
+
+
+/**
+Verify that a PCI DChunk can be opened and closed from user side
+
+@param pci  The RPci object to use
+@param test The RTest object to use
+@param aPciChunkSize The size of the DChunk which would be created
+*/
+void TestOpenAndCloseDChunk(RPci& pci,RTest& test,TInt aPciChunkSize)
+	{
+	RPciChunk testPciDChunk;
+
+	// Create and open Chunk
+	TRequestStatus status;
+	TInt r = pci.OpenPciDChunk(testPciDChunk,aPciChunkSize, &status);	
+	test_KErrNone(r);
+	
+	test(testPciDChunk.IsWritable());
+	test(testPciDChunk.IsReadable());
+
+	test.Printf(_L("PCI Chunk base = 0x%08x\n"), testPciDChunk.Base());
+	test.Printf(_L("PCI Chunk size = %d\n"), testPciDChunk.Size());
+	test.Printf(_L("PCI Address = 0x%08x\n"), testPciDChunk.PciBase());	
+
+	//Close Chunk
+	test.Next(_L("Close PCI Chunk handle"));	
+
+	RTest::CloseHandleAndWaitForDestruction(testPciDChunk);
+	User::WaitForRequest(status);
+	}
+
+/**
+Verify that a PCI PlatHwChunk can be opened and closed from user side
+
+
+@param pci  The RPci object to use
+@param test The RTest object to use
+@param aPciChunkSize The size of the PlatHwChunk which would be created
+*/
+void TestOpenAndClosePciPlatHwChunk(RPci& pci,RTest& test,TInt aPciChunkSize)
+	{
+	RPciChunk testPciPlatHwChunk;
+
+	// Create and open Chunk
+	TRequestStatus status;
+	TInt r = pci.OpenPciPlatHwChunk(testPciPlatHwChunk,aPciChunkSize, &status);	
+	test_KErrNone(r);
+	
+	test(testPciPlatHwChunk.IsWritable());
+	test(testPciPlatHwChunk.IsReadable());
+
+	test.Printf(_L("PCI Chunk base = 0x%08x\n"), testPciPlatHwChunk.Base());
+	test.Printf(_L("PCI Chunk size = %d\n"), testPciPlatHwChunk.Size());
+	test.Printf(_L("PCI Address = 0x%08x\n"), testPciPlatHwChunk.PciBase());	
+
+	//Close Chunk	
+	testPciPlatHwChunk.Close();
+	User::WaitForRequest(status);
+	test.Next(_L("Closed PCI PlatHwChunk handle"));	
+	}
+
+/**
+Verify that pci-mapped DChunk can be opended and closed form user side 
+
+@param pci  The RPci object to use
+@param test The RTest object to use
+@param aPciChunkSize The size of the pci-mapped DChunk which would be created
+*/
+void TestPciMapppedChunk(RPci& pci,RTest& test,TInt aPciChunkSize)
+	{
+	RPciChunk testPciMappedChunk;
+
+	// Create and open Chunk
+	TRequestStatus status;
+	TInt r = pci.OpenPciMappedChunk(testPciMappedChunk,aPciChunkSize, &status);	
+	test_KErrNone(r);
+	
+	test(testPciMappedChunk.IsWritable());
+	test(testPciMappedChunk.IsReadable());
+
+	test.Printf(_L("PCI Chunk base = 0x%08x\n"), testPciMappedChunk.Base());
+	test.Printf(_L("PCI Chunk size = %d\n"), testPciMappedChunk.Size());
+	test.Printf(_L("PCI Address = 0x%08x\n"), testPciMappedChunk.PciBase());	
+
+	//Close Chunk
+	testPciMappedChunk.Close();
+	User::WaitForRequest(status);
+	test.Next(_L("Closed PCI Mapped Chunk handle"));	
+	}
+
+/**
+Verify that an RChunk can be open to grant access to the internal PCI window from the user side
+
+@param pci  The RPci object to use
+@param test The RTest object to use
+*/
+void TestPciWindowChunk(RPci& pci,RTest& test)
+	{
+	RChunk testPciWindowChunk;
+
+	// Create and open DChunk
+	TInt r = pci.OpenPciWindowChunk(testPciWindowChunk);	
+	test_KErrNone(r);
+	
+	test(testPciWindowChunk.IsWritable());
+	test(testPciWindowChunk.IsReadable());
+
+	test.Printf(_L("PCI Window Chunk base = 0x%08x\n"), testPciWindowChunk.Base());
+	test.Printf(_L("PCI Window Chunk size = %d\n"), testPciWindowChunk.Size());
+	
+	//Close Chunk
+	testPciWindowChunk.Close();
+	test.Next(_L("Closed PCI Window Chunk handle"));	
+	}
+
+
+class CPciTest : public CTest
+	{
+protected:
+	CPciTest(const TDesC& aName, TInt aIterations, RPci& aDevice)
+		: CTest(aName, aIterations), iDevice(aDevice)
+		{}
+
+	RPci iDevice;
+	};
+
+/**
+Each instance of test will open a chunk, using the function specified in
+the template argument, FUNC.
+
+The total number of chunks that can be opened by all instances is limited
+by iMaxCount.
+
+All intances of the test will hold their chunk open until iMaxCount has
+been reached.
+*/
+template<ChunkOpenFn FUNC>
+class CPciOpenChunkTest : public CPciTest
+	{
+public:
+	CPciOpenChunkTest(const TDesC& aName, TInt aIterations, RPci& aDevice,
+			RSemaphore aSemOpen, RSemaphore aSemClose, RFastLock aLock, TInt aMaxCount)
+		:CPciTest(aName, aIterations, aDevice),
+			iSemOpen(aSemOpen), iSemClose(aSemClose), iLock(aLock), iMaxCount(aMaxCount)
+		{
+		}
+
+	virtual void RunTest()
+		{
+		RTest test(iName);
+		RPciChunk chunk;
+
+		iSemOpen.Wait();
+		TRequestStatus status;
+		const TInt chunkSize = 0x400;
+		//open chunk by calling FUNC
+		TInt r = ((iDevice).*(FUNC))(chunk, chunkSize, &status);
+		test_KErrNone(r);
+
+		iLock.Wait();
+		iOpenCount++;
+		test.Printf(_L("Opened chunk %d\n"), iOpenCount);
+		if(iOpenCount == iMaxCount)
+			{
+			test.Printf(_L("Opened=%d, max=%d: Allow chunks to close\n"), iOpenCount, iMaxCount);
+			//release all waiting threads
+			//plus 1 preincrement so this
+			//thread also passes
+			iSemClose.Signal(iOpenCount);			
+			iOpenCount = 0;
+			}	
+		iLock.Signal();
+
+
+		iSemClose.Wait();
+		chunk.Close();
+		User::WaitForRequest(status);
+
+		// permit another chunk to be opened  
+		iSemOpen.Signal();
+		test.Close();
+		}
+
+	virtual CTest* Clone() const
+		{
+		//make shallow copy
+		return new CPciOpenChunkTest(*this);
+		}
+
+
+private:
+	RSemaphore& iSemOpen; ///!< Represents the number of available PCI mappings
+	RSemaphore& iSemClose; ///!< Represents the number of threads waiting to close their chunk
+	RFastLock& iLock;
+	static TInt iOpenCount;
+	const TInt iMaxCount;
+	};
+
+template<ChunkOpenFn FUNC>
+TInt CPciOpenChunkTest<FUNC>::iOpenCount = 0;
+
+
+/**
+Test which will perform various reads from a PCI address
+space (config or memory) and confirm that values are read
+as expected
+*/
+class CPciAddressSpaceRead : public CPciTest
+	{
+public:
+	CPciAddressSpaceRead(const TDesC& aName, TInt aIterations, RPci& aDevice,
+		const TUserPciSpace& aSpace, const TPciTestInfo::TAddrSpaceTest& aInfo)
+		:CPciTest(aName, aIterations, aDevice),
+			iAddressSpace(aSpace.Clone()), iSpaceTestInfo(aInfo)
+	{
+	}
+
+	CPciAddressSpaceRead(const CPciAddressSpaceRead& aOther)
+		:CPciTest(aOther)/* TODO-REVIEW have object-sliced aOther - is this ok?*/,
+			iAddressSpace(aOther.iAddressSpace->Clone()), iSpaceTestInfo(aOther.iSpaceTestInfo)
+	{
+	}
+
+	virtual ~CPciAddressSpaceRead()
+		{
+		delete iAddressSpace;
+		}
+
+	virtual void RunTest()
+		{
+		__UHEAP_MARK;
+		RTest test(iName);
+		TestReadAddressSpace(*iAddressSpace, iSpaceTestInfo, test);
+		test.Close();
+		__UHEAP_MARKEND;
+		}
+
+	virtual CTest* Clone() const
+		{
+		//make shallow copy
+		return new CPciAddressSpaceRead(*this);
+		}
+
+private:
+	TUserPciSpace* iAddressSpace;
+	const TPciTestInfo::TAddrSpaceTest& iSpaceTestInfo;
+	};
+
+/**
+For aBuffer, test writing to it then reading back from aWindow
+then write via window and read back from chunk
+
+@param test The RTest object to use
+@param aBuffer RChunk corresponding to a PCI accessible buffer
+@param aWindow RChunk coressponding an appropriate System-to-PCI memory window
+It is presumed to start at PCI address 0
+*/
+void DoLoopBackTest(RTest& test, RPciChunk aBuffer, RChunk aWindow)
+	{
+	test.Start(_L("Test accessing memory via PCI"));
+
+	TUint8* const bufferBase = aBuffer.Base();
+	const TUint bufferSize = aBuffer.Size();
+	const TUint bufferPciBase = aBuffer.PciBase();
+
+	TUint8* const windowBase = aWindow.Base();
+	const TUint windowSize = aWindow.Size();
+
+#define PRINT(N) RDebug::Printf("%s = 0x%08x (%d)", #N, (N), (N)) 
+	PRINT(bufferBase);
+	PRINT(bufferSize);
+	PRINT(bufferPciBase);
+
+	PRINT(windowBase);
+	PRINT(windowSize);
+
+#undef PRINT
+
+	//need to check that the end of the buffer
+	//is within the windowed region
+	test(bufferPciBase + bufferSize <= windowSize);
+	TUint8* const bufferBaseWithinWindow = windowBase + bufferPciBase;
+
+	test.Next(_L("write chunk"));
+	for(TUint i = 0; i < bufferSize; ++i)
+		{
+		//each byte will hold its own offset modulo 256
+		bufferBase[i] = (TUint8)i;
+		}
+
+	test.Next(_L("read back via window"));
+	for(TUint j=0; j < bufferSize; ++j)
+		{
+		const TUint8 result = bufferBaseWithinWindow[j];
+		test_Equal(j%256, result);
+		}
+
+	//clear chunk
+	memclr(bufferBase, bufferSize);
+	test.Next(_L("write via window"));
+	for(TUint k=0; k < bufferSize; ++k)
+		{
+		//each byte will hold its own offset modulo 256
+		bufferBaseWithinWindow[k] = (TUint8)k;
+		}
+
+	test.Next(_L("read back from chunk"));
+	for(TUint l=0; l < bufferSize; ++l)
+		{
+		const TUint8 result = bufferBase[l];
+		test_Equal(l%256, result);
+		}
+
+	test.End();
+	}
+
+/**
+Take care of opening a chunk, running the test and closing
+*/
+template<ChunkOpenFn OPEN_FUNC>
+inline void LoopBackTest(RPci& aPci, RTest& test, RChunk& aWindow)
+	{
+	RPciChunk pciChunk;
+	const TInt chunkSize = 0x400; //1k
+
+	//call the specified chunk opening function
+	TRequestStatus status;
+	TInt r = ((aPci).*(OPEN_FUNC))(pciChunk, chunkSize, &status);	
+	test_KErrNone(r);
+	DoLoopBackTest(test, pciChunk, aWindow);
+	pciChunk.Close();
+	User::WaitForRequest(status);
+	}
+
+/**
+Run the loopback test for the 3 types of buffer supported by the PCI driver.
+DChunk
+DPlatChunk
+Mapped In external memory
+*/
+void TestLoopBack(RPci& aPci, RTest& test)
+	{
+	test.Next(_L("Open PCI window"));
+	RChunk window;
+	
+	TInt r = aPci.OpenPciWindowChunk(window);	
+	test_KErrNone(r);
+
+	test.Next(_L("DChunk"));
+	LoopBackTest<&RPci::OpenPciDChunk>(aPci, test, window);
+
+	test.Next(_L("DPlatHwChunk"));
+	LoopBackTest<&RPci::OpenPciPlatHwChunk>(aPci, test, window);
+
+	test.Next(_L("DChunk (mapped in)"));
+	LoopBackTest<&RPci::OpenPciMappedChunk>(aPci, test, window);
+
+	window.Close();
+	}
+#ifndef __VC32__ //visual studio 6 doesn't approve of pointer to member function template parameters
+/**
+Run the CPciOpenChunkTest for each type of chunk. This function also creates (and destroys) the
+necessary semaphores and locks.
+CPciOpenChunkTest objects are run in multiple threads using MultipleTestRun().
+
+@param aDevice Handle to the test driver
+@param test RTest to use.
+@param aBufferLimit The maximum number of buffers which can be opened simultaneously
+*/
+void TestBufferOpenConcurrency(RPci& aDevice, RTest& test, TInt aBufferLimit)
+	{
+	RSemaphore semaphoreOpen;
+	RSemaphore semaphoreClose;
+	RFastLock lock;
+
+	TInt r = semaphoreOpen.CreateLocal(aBufferLimit);
+	test_KErrNone(r);
+
+	r = semaphoreClose.CreateLocal(0);
+	test_KErrNone(r);
+
+	r = lock.CreateLocal();
+	test_KErrNone(r);
+
+	const TInt iterations = 3;
+	{
+	test.Printf(_L("Opening %d PCI DChunks in %d threads\n"), aBufferLimit, aBufferLimit);
+	CPciOpenChunkTest<&RPci::OpenPciDChunk>
+		dChunkTest(_L("Concurrent-DChunk"), iterations, aDevice, semaphoreOpen, semaphoreClose, lock, aBufferLimit);
+
+	MultipleTestRun(test, dChunkTest, aBufferLimit);
+	}
+
+	{
+	test.Printf(_L("Opening %d PCI DPlatHwChunks in %d threads\n"), aBufferLimit, aBufferLimit);
+	CPciOpenChunkTest<&RPci::OpenPciPlatHwChunk>
+		platChunkTest(_L("Concurrent-DPlatHwChunk"), iterations, aDevice, semaphoreOpen, semaphoreClose, lock, aBufferLimit);
+
+	MultipleTestRun(test, platChunkTest, aBufferLimit);
+	}
+
+	{
+	test.Printf(_L("Opening %d PCI Mapped chunks in %d threads\n"), aBufferLimit, aBufferLimit);
+	CPciOpenChunkTest<&RPci::OpenPciMappedChunk>
+		mappedChunkTest(_L("Concurrent-DChunk(mapped)"), iterations, aDevice, semaphoreOpen, semaphoreClose, lock, aBufferLimit);
+
+	MultipleTestRun(test, mappedChunkTest, aBufferLimit);
+	}
+
+	semaphoreOpen.Close();
+	semaphoreClose.Close();
+	lock.Close();
+	}
+#endif
+
+TInt E32Main()
+	{
+	__UHEAP_MARK;
+
+	_LIT(KPci, "PCI");
+	RTest test(KPci);
+	test.Start(_L("Running PCI tests\n"));
+
+	TInt r = User::LoadLogicalDevice(KPciLdd);
+
+	__KHEAP_MARK;
+	
+	if(r==KErrNotFound)
+		{
+		test.Printf(_L("No PCI system present - skipping test\n"));
+		return KErrNone;
+		}
+	if(r!=KErrNone && r!=KErrAlreadyExists)
+		{
+		test_KErrNone(r);
+		}
+	
+	test.Next(_L("Open non-existant device\n"));
+	RPci device;
+	TPciDevice unavailable;
+	r = device.Open(unavailable);
+	test_Equal(KErrNotFound, r);
+
+	RPci pciInfo;
+	r = pciInfo.Open();
+	test_KErrNone(r);
+
+	test.Next(_L("Get test info from driver\n"));
+	TPciTestInfo info;
+	r = pciInfo.GetTestInfo(info);
+	test_KErrNone(r);
+	pciInfo.Close();
+
+	test.Next(_L("Open test device\n"));
+	r = device.Open(info.iDevice);
+	test_KErrNone(r);
+
+	test.Next(_L("Run Device Unit Test\n"));
+	r=TestRunPciUnitTest(device);	
+	test_KErrNone(r);
+
+	test.Next(_L("Read config space\n"));
+	TUserConfigSpace cs(device);
+	TestReadAddressSpace(cs, info.iCfgSpaceRead, test);
+
+	test.Next(_L("Write config space\n"));
+	TestWriteAddressSpace(cs, info.iCfgSpaceWrite, test);
+	
+	test.Next(_L("Read memory space\n"));
+	TUserMemorySpace ms(device, info.iMemSpaceIndex);
+	TestReadAddressSpace(ms, info.iMemSpaceRead, test);
+
+	test.Next(_L("Modify memory space\n"));
+	TestWriteAddressSpace(ms, info.iMemSpaceWrite, test);
+
+	{
+	const TInt addrSpaceThreadCount = 4;
+	const TInt iterations = 100;
+	test.Next(_L("Concurrent config space reads")); 
+	CPciAddressSpaceRead cfgSpaceRead(_L("Cfg Space Read"), iterations, device, cs, info.iCfgSpaceRead);
+	MultipleTestRun(test, cfgSpaceRead, addrSpaceThreadCount);
+
+	test.Next(_L("Concurrent memory space reads")); 
+	CPciAddressSpaceRead memSpaceRead(_L("Memory Space Read"), iterations, device, ms, info.iMemSpaceRead);
+	MultipleTestRun(test, memSpaceRead, addrSpaceThreadCount);
+	}
+
+	TInt testDChunkSize = 0x4000;
+	test.Next(_L("Open and Close DChunks\n"));	
+	TestOpenAndCloseDChunk(device,test,testDChunkSize);
+	
+	TInt testDPlatChunkSize = 0x2000;
+	test.Next(_L("Open and Close PlatHwChunks\n"));	
+	TestOpenAndClosePciPlatHwChunk(device,test,testDPlatChunkSize);
+
+	//TestPciMapppedChunk() fails for sizes greater than 4K.
+	//The issue is that a block of externally mapped memory must be
+	//naturally alligned in order to be accessible to the PCI bus (ie
+	//an 8k buffer would have to start at an address which is a
+	//multiple of 8k.
+	//
+	//Now we could fix this for sure on the kernel side, by making
+	//sure we only commit correctly aligned memory into the chunk (as
+	//the pci driver itself does),
+	//However, by using a 4k chunk, we know this will be on a page
+	//boundary so the alignment is correct (assuming the page size
+	//isn't changed). 	
+	TInt testMapppedChunkSize = 0x1000; 
+	test.Next(_L("Open and Close Pci Mappped Chunk\n"));	
+	TestPciMapppedChunk(device,test,testMapppedChunkSize);
+
+	test.Next(_L("Open and Close Pci Window Chunk\n"));	
+	TestPciWindowChunk(device,test);
+
+	const TInt numberOfThreads = info.iNumberOfBars;
+	test.Printf(_L("Open buffers concurrently, max supported = %d\n"), numberOfThreads);
+#ifndef __VC32__
+	TestBufferOpenConcurrency(device, test, numberOfThreads);
+#else
+	test.Printf(_L("TestBufferOpenConcurrency not implemented for WINS"), numberOfThreads);
+#endif
+
+	test.Next(_L("Test loop back"));	
+	TestLoopBack(device, test);
+
+	device.Close();
+	__KHEAP_MARKEND;
+
+	r = User::FreeLogicalDevice(KPciLdd);
+	test_KErrNone(r);
+
+	test.End();
+	test.Close();
+
+	__UHEAP_MARKEND;
+	return KErrNone;
+	}