--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/kernel/eka/euser/maths/um_pow.cpp Thu Dec 17 09:24:54 2009 +0200
@@ -0,0 +1,374 @@
+// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the License "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+// e32\euser\maths\um_pow.cpp
+// Raise to the power.
+//
+//
+
+#include "um_std.h"
+
+#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
+#error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh
+#endif
+
+
+#ifndef __USE_VFP_MATH
+
+LOCAL_D const TUint32 ArtanhCoeffs[] =
+ {
+ 0x5C17F0BC,0xB8AA3B29,0x80010000, // polynomial approximation to (4/ln2)artanh(x)
+ 0xD01FDDD8,0xF6384EE1,0x7FFF0000, // for |x| <= (sqr2-1)/(sqr2+1)
+ 0x7D0DDC69,0x93BB6287,0x7FFF0000,
+ 0x6564D4F5,0xD30BB153,0x7FFE0000,
+ 0x1546C858,0xA4258A33,0x7FFE0000,
+ 0xCCE50DA9,0x864D28DF,0x7FFE0000,
+ 0x8E1A5DBB,0xE35271A0,0x7FFD0000,
+ 0xF5A67D92,0xC3A36B08,0x7FFD0000,
+ 0x62D53E02,0xC4A1FFAC,0x7FFD0000
+ };
+
+LOCAL_D const TUint32 TwoToxCoeffs[] =
+ {
+ 0x00000000,0x80000000,0x7FFF0000, // polynomial approximation to 2^(x/8) for
+ 0xD1CF79AC,0xB17217F7,0x7FFB0000, // 0<=x<=1
+ 0x162CF72B,0xF5FDEFFC,0x7FF60000,
+ 0x23EC0D04,0xE35846B8,0x7FF10000,
+ 0xBDB408D7,0x9D955B7E,0x7FEC0000,
+ 0xFDD8A678,0xAEC3FE73,0x7FE60000,
+ 0xBD6E3950,0xA184E90A,0x7FE00000,
+ 0xC1054DA3,0xFFB259D8,0x7FD90000,
+ 0x70893DE4,0xB8BEDE2F,0x7FD30000
+ };
+
+LOCAL_D const TUint32 TwoToNover8[] =
+ {
+ 0xEA8BD6E7,0x8B95C1E3,0x7FFF0000, // 2^0.125
+ 0x8DB8A96F,0x9837F051,0x7FFF0000, // 2^0.250
+ 0xB15138EA,0xA5FED6A9,0x7FFF0000, // 2^0.375
+ 0xF9DE6484,0xB504F333,0x7FFF0000, // 2^0.500
+ 0x5506DADD,0xC5672A11,0x7FFF0000, // 2^0.625
+ 0xD69D6AF4,0xD744FCCA,0x7FFF0000, // 2^0.750
+ 0xDD24392F,0xEAC0C6E7,0x7FFF0000 // 2^0.875
+ };
+
+LOCAL_D const TUint32 Sqr2data[] = {0xF9DE6484,0xB504F333,0x7FFF0000}; // sqr2
+LOCAL_D const TUint32 Sqr2Invdata[] = {0xF9DE6484,0xB504F333,0x7FFE0000}; // 1/sqr2
+LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000}; // 1.0
+
+LOCAL_C void Log2(TRealX& y, TRealX& x)
+ {
+ // Calculate log2(x) and write to y
+ // Result to 64-bit precision to allow accurate powers
+ // Algorithm:
+ // log2(aSrc)=log2(2^e.m) e=exponent of aSrc, m=mantissa 1<=m<2
+ // log2(aSrc)=e+log2(m)
+ // If e=-1 (0.5<=aSrc<1), let x=aSrc else let x=mantissa(aSrc)
+ // If x>Sqr2, replace x with x/Sqr2
+ // If x<Sqr2/2, replace x with x*Sqr2
+ // Replace x with (x-1)/(x+1)
+ // Use polynomial to calculate artanh(x) for |x| <= (sqr2-1)/(sqr2+1)
+ // ( use identity ln(x) = 2artanh((x-1)/(x+1)) )
+
+ const TRealX& Sqr2=*(const TRealX*)Sqr2data;
+ const TRealX& Sqr2Inv=*(const TRealX*)Sqr2Invdata;
+ const TRealX& One=*(const TRealX*)Onedata;
+
+ TInt n=(x.iExp-0x7FFF)<<1;
+ x.iExp=0x7FFF;
+ if (n!=-2)
+ {
+ if (x>Sqr2)
+ {
+ x*=Sqr2Inv;
+ n++;
+ }
+ }
+ else
+ {
+ n=0;
+ x.iExp=0x7FFE;
+ if (x<Sqr2Inv)
+ {
+ x*=Sqr2;
+ n--;
+ }
+ }
+ x=(x-One)/(x+One); // ln(x)=2artanh((x-1)/(x+1))
+ Math::PolyX(y,x*x,8,(const TRealX*)ArtanhCoeffs);
+ y*=x;
+ y+=TRealX(n);
+ if (y.iExp>1)
+ y.iExp--;
+ else
+ y.iExp=0;
+ }
+
+LOCAL_C TInt TwoTox(TRealX& y, TRealX& x)
+ {
+ // Calculate 2^x and write result to y. Result to 64 bit precision.
+ // Algorithm:
+ // 2^x = 2^int(x).2^frac(x)
+ // 2^int(x) just adds int(x) to the final result exponent
+ // Reduce frac(x) to the range [0,0.125] (modulo 0.125)
+ // Use polynomial to calculate 2^x for 0<=x<=0.125
+ // Multiply by 2^(n/8) for n=0,1,2,3,4,5,6,7 to give 2^frac(x)
+
+ if (x.iExp)
+ x.iExp+=3;
+ TInt n=(TInt)x;
+ if (n<16384 && n>-16384)
+ {
+ if (x.iSign&1)
+ n--;
+ x-=TRealX(n);
+ Math::PolyX(y,x,8,(const TRealX*)TwoToxCoeffs);
+ y.iExp=TUint16(TInt(y.iExp)+(n>>3));
+ n&=7;
+ if (n)
+ y*= (*(const TRealX*)(TwoToNover8+3*n-3));
+ return KErrNone;
+ }
+ else
+ {
+ if (n<0)
+ {
+ y.SetZero();
+ return KErrUnderflow;
+ }
+ else
+ {
+ y.SetInfinite(0);
+ return KErrOverflow;
+ }
+ }
+ }
+
+
+
+
+EXPORT_C TInt Math::Pow(TReal &aTrg,const TReal &aSrc,const TReal &aPower)
+/**
+Calculates the value of x raised to the power of y.
+
+The behaviour conforms to that specified for pow() in the
+ISO C Standard ISO/IEC 9899 (Annex F), although floating-point exceptions
+are not supported.
+
+@param aTrg A reference containing the result.
+@param aSrc The x argument of the function.
+@param aPower The y argument of the function.
+
+@return KErrNone if successful;
+ KErrOverflow if the result is +/- infinity;
+ KErrUnderflow if the result is too small to be represented;
+ KErrArgument if the result is not a number (NaN).
+*/
+//
+// Evaluates aSrc raised to the power aPower and places the result in aTrg.
+// For non-special values algorithm is aTrg=2^(aPower*log2(aSrc))
+//
+ {
+ TRealX x,p;
+
+ TInt ret2=p.Set(aPower);
+ // pow(x, +/-0) -> 1 for any x, even a NaN
+ if (p.IsZero())
+ {
+ aTrg=1.0;
+ return KErrNone;
+ }
+
+ TInt ret1=x.Set(aSrc);
+ if (ret1==KErrArgument || ret2==KErrArgument)
+ {
+ // pow(+1, y) -> 1 for any y, even a NaN
+ // XXX First test should not be necessary, but on WINS
+ // aSrc == 1.0 is true when aSrc is NaN.
+ if (ret1 != KErrArgument && aSrc == 1.0)
+ {
+ aTrg=aSrc;
+ return KErrNone;
+ }
+ SetNaN(aTrg);
+ return KErrArgument;
+ }
+
+ // Infinite power
+ if (ret2==KErrOverflow)
+ {
+ // figure out which of these cases we have:
+ //
+ // pow(x, -INF) -> +INF for |x| < 1 } flag = 0
+ // pow(x, +INF) -> +INF for |x| > 1 }
+ // pow(x, -INF) -> +0 for |x| > 1 } flag = 1
+ // pow(x, +INF) -> +0 for |x| < 1 }
+ //
+ // flag = 2 => |x| == 1.0
+ //
+ TInt flag=2;
+ if (Abs(aSrc)>1.0)
+ flag=p.iSign&1;
+ if (Abs(aSrc)<1.0)
+ flag=1-(p.iSign&1);
+ if (flag==0)
+ {
+ SetInfinite(aTrg,0);
+ return KErrOverflow;
+ }
+ if (flag==1)
+ {
+ SetZero(aTrg,0);
+ return KErrNone;
+ }
+ if (Abs(aSrc)==1.0)
+ {
+ // pow(-1, +/-INF) -> 1
+ aTrg=1.0;
+ return KErrNone;
+ }
+ // This should never happen (i.e. aSrc is NaN, which
+ // should be taken care of above)
+ SetNaN(aTrg);
+ return KErrArgument;
+ }
+
+ // Negative Base raised to a power
+ TInt odd=1;
+ if (x.iSign & 1)
+ {
+ TReal pint;
+ Math::Int(pint,aPower);
+ if (aPower-pint) // Checks that if aSrc is less than zero, then aPower is integral
+ {
+ // pow(-INF, y) -> +0 for y < 0 and not an odd integer
+ // pow(-INF, y) -> +INF for y > 0 and not an odd integer
+ // Since we're here, aPower is not integral, so can't be odd, either
+ if (ret1 == KErrOverflow)
+ {
+ if (aPower < 0)
+ {
+ SetZero(aTrg);
+ return KErrNone;
+ }
+ else
+ {
+ SetInfinite(aTrg,0);
+ return KErrOverflow;
+ }
+ }
+ SetNaN(aTrg);
+ return KErrArgument;
+ }
+ TReal powerby2=aPower*0.5;
+ Math::Int(pint,powerby2);
+ if (powerby2-pint)
+ odd=(-1);
+ x.iSign=0;
+ }
+
+ // Zero or infinity raised to a power
+ if (x.IsZero() || ret1==KErrOverflow)
+ {
+ if (x.IsZero() && p.IsZero())
+ {
+ aTrg=1.0;
+ return KErrNone;
+ }
+ TInt sign=(odd==-1 ? 1 : 0);
+ if ((x.IsZero() && (p.iSign&1)==0) || (ret1==KErrOverflow && (p.iSign&1)))
+ {
+ SetZero(aTrg,sign);
+ return KErrNone;
+ }
+ else
+ {
+ SetInfinite(aTrg,sign);
+ return KErrOverflow;
+ }
+ }
+
+ TRealX y;
+ Log2(y,x);
+ x=y*p; // this cannot overflow or underflow
+ TInt r=TwoTox(y,x);
+ if (odd<0)
+ y.iSign=1;
+ TInt r2=y.GetTReal(aTrg);
+ return (r==KErrNone)?r2:r;
+ }
+
+#else // __USE_VFP_MATH
+
+// definitions come from RVCT math library
+extern "C" TReal pow(TReal,TReal);
+
+EXPORT_C TInt Math::Pow(TReal &aTrg,const TReal &aSrc,const TReal &aPower)
+ {
+ aTrg = pow(aSrc,aPower);
+ if (Math::IsZero(aTrg) && !Math::IsZero(aSrc) && !Math::IsInfinite(aSrc) && !Math::IsInfinite(aPower))
+ return KErrUnderflow;
+ if (Math::IsFinite(aTrg))
+ return KErrNone;
+ if (Math::IsZero(aPower)) // pow(x, +/-0) -> 1 for any x, even a NaN
+ {
+ aTrg = 1.0;
+ return KErrNone;
+ }
+ if (Math::IsInfinite(aTrg))
+ return KErrOverflow;
+ if (aSrc==1.0) // pow(+1, y) -> 1 for any y, even a NaN
+ {
+ aTrg=aSrc;
+ return KErrNone;
+ }
+ if (Math::IsInfinite(aPower))
+ {
+ if (aSrc == -1.0) // pow(-1, +/-INF) -> 1
+ {
+ aTrg = 1.0;
+ return KErrNone;
+ }
+ if (((Abs(aSrc) < 1) && (aPower < 0)) || // pow(x, -INF) -> +INF for |x| < 1
+ ((Abs(aSrc) > 1) && (aPower > 0))) // pow(x, +INF) -> +INF for |x| > 1
+ {
+ SetInfinite(aTrg,0);
+ return KErrOverflow;
+ }
+ }
+ // pow(-INF, y) -> +INF for y > 0 and not an odd integer
+ if (Math::IsInfinite(aSrc) && (aSrc < 0) && (aPower > 0))
+ {
+ TBool odd = EFalse;
+ TReal pint;
+ Math::Int(pint, aPower);
+ if (aPower == pint)
+ {
+ TReal halfPower = aPower * 0.5;
+ Math::Int(pint, halfPower);
+ if (halfPower != pint)
+ odd = ETrue;
+ }
+ if (odd == EFalse)
+ {
+ SetInfinite(aTrg,0);
+ return KErrOverflow;
+ }
+ }
+
+ // Otherwise...
+ SetNaN(aTrg);
+ return KErrArgument;
+ }
+
+#endif