--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/kernel/eka/nkernsmp/x86/ncthrd.cpp Thu Dec 17 09:24:54 2009 +0200
@@ -0,0 +1,658 @@
+// Copyright (c) 2006-2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the License "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+// e32\nkernsmp\x86\ncthrd.cpp
+//
+//
+
+// NThreadBase member data
+#define __INCLUDE_NTHREADBASE_DEFINES__
+
+#include <x86.h>
+#include <apic.h>
+#include <nk_irq.h>
+
+// Called by a thread when it first runs
+void __StartThread();
+
+void NThreadBase::OnKill()
+ {
+ }
+
+void NThreadBase::OnExit()
+ {
+ }
+
+extern void __ltr(TInt /*aSelector*/);
+
+extern "C" TUint __tr();
+extern void InitAPTimestamp(SNThreadCreateInfo& aInfo);
+
+TInt NThread::Create(SNThreadCreateInfo& aInfo, TBool aInitial)
+ {
+ if (!aInfo.iStackBase || aInfo.iStackSize<0x100)
+ return KErrArgument;
+ new (this) NThread;
+ TInt cpu = -1;
+ if (aInitial)
+ {
+ cpu = __e32_atomic_add_ord32(&TheScheduler.iNumCpus, 1);
+ if (cpu==0)
+ memset(SubSchedulerLookupTable, 0x9a, sizeof(SubSchedulerLookupTable));
+ aInfo.iCpuAffinity = cpu;
+ // OK since we can't migrate yet
+ TUint32 apicid = *(volatile TUint32*)(X86_LOCAL_APIC_BASE + X86_LOCAL_APIC_OFFSET_ID) >> 24;
+ TSubScheduler& ss = TheSubSchedulers[cpu];
+ ss.i_APICID = (TAny*)(apicid<<24);
+ ss.iCurrentThread = this;
+ SubSchedulerLookupTable[apicid] = &ss;
+ ss.iLastTimestamp64 = NKern::Timestamp();
+ iRunCount64 = UI64LIT(1);
+ __KTRACE_OPT(KBOOT,DEBUGPRINT("Init: cpu=%d APICID=%08x ss=%08x", cpu, apicid, &ss));
+ if (cpu)
+ {
+ __ltr(TSS_SELECTOR(cpu));
+ NIrq::HwInit2AP();
+ __e32_atomic_ior_ord32(&TheScheduler.iActiveCpus1, 1<<cpu);
+ __e32_atomic_ior_ord32(&TheScheduler.iActiveCpus2, 1<<cpu);
+ __e32_atomic_ior_ord32(&TheScheduler.iCpusNotIdle, 1<<cpu);
+ __KTRACE_OPT(KBOOT,DEBUGPRINT("AP TR=%x",__tr()));
+ }
+ }
+ TInt r=NThreadBase::Create(aInfo,aInitial);
+ if (r!=KErrNone)
+ return r;
+ if (!aInitial)
+ {
+ TLinAddr stack_top = (TLinAddr)iStackBase + (TLinAddr)iStackSize;
+ TLinAddr sp = stack_top;
+ TUint32 pb = (TUint32)aInfo.iParameterBlock;
+ SThreadStackStub* tss = 0;
+ if (aInfo.iParameterBlockSize)
+ {
+ tss = (SThreadStackStub*)stack_top;
+ --tss;
+ tss->iVector = SThreadStackStub::EVector;
+ tss->iError = 0;
+ tss->iEip = 0;
+ tss->iCs = 0;
+ tss->iEflags = 0;
+ sp = (TLinAddr)tss;
+ sp -= (TLinAddr)aInfo.iParameterBlockSize;
+ wordmove((TAny*)sp, aInfo.iParameterBlock, aInfo.iParameterBlockSize);
+ pb = (TUint32)sp;
+ tss->iPBlock = sp;
+ }
+ SThreadInitStack* tis = (SThreadInitStack*)sp;
+ --tis;
+ tis->iR.iCR0 = X86::DefaultCR0 | KX86CR0_TS;
+ tis->iR.iReschedFlag = 1;
+ tis->iR.iEip = (TUint32)&__StartThread;
+ tis->iR.iReason = 0;
+ tis->iX.iEcx = 0;
+ tis->iX.iEdx = 0;
+ tis->iX.iEbx = pb; // parameter block pointer
+ tis->iX.iEsi = 0;
+ tis->iX.iEdi = 0;
+ tis->iX.iEbp = stack_top;
+ tis->iX.iEax = (TUint32)aInfo.iFunction;
+ tis->iX.iDs = KRing0DS;
+ tis->iX.iEs = KRing0DS;
+ tis->iX.iFs = 0;
+ tis->iX.iGs = KRing0DS;
+ tis->iX.iVector = SThreadInitStack::EVector;
+ tis->iX.iError = 0;
+ tis->iX.iEip = (TUint32)aInfo.iFunction;
+ tis->iX.iCs = KRing0CS;
+ tis->iX.iEflags = (TUint32)(EX86FlagIF|EX86FlagAC|0x1002);
+ tis->iX.iEsp3 = 0xFFFFFFFFu;
+ tis->iX.iSs3 = 0xFFFFFFFFu;
+ wordmove(&iCoprocessorState, DefaultCoprocessorState, sizeof(iCoprocessorState));
+ iSavedSP = (TLinAddr)tis;
+ }
+ else
+ {
+ NKern::EnableAllInterrupts();
+
+ // synchronize AP's timestamp with BP's
+ if (cpu>0)
+ InitAPTimestamp(aInfo);
+ }
+#ifdef BTRACE_THREAD_IDENTIFICATION
+ BTrace4(BTrace::EThreadIdentification,BTrace::ENanoThreadCreate,this);
+#endif
+ return KErrNone;
+ }
+
+void DumpExcInfo(TX86ExcInfo& a)
+ {
+ DEBUGPRINT("Exc %02x EFLAGS=%08x FAR=%08x ErrCode=%08x",a.iExcId,a.iEflags,a.iFaultAddress,a.iExcErrorCode);
+ DEBUGPRINT("EAX=%08x EBX=%08x ECX=%08x EDX=%08x",a.iEax,a.iEbx,a.iEcx,a.iEdx);
+ DEBUGPRINT("ESP=%08x EBP=%08x ESI=%08x EDI=%08x",a.iEsp,a.iEbp,a.iEsi,a.iEdi);
+ DEBUGPRINT(" CS=%08x EIP=%08x DS=%08x SS=%08x",a.iCs,a.iEip,a.iDs,a.iSs);
+ DEBUGPRINT(" ES=%08x FS=%08x GS=%08x",a.iEs,a.iFs,a.iGs);
+ if (a.iCs&3)
+ {
+ DEBUGPRINT("SS3=%08x ESP3=%08x",a.iSs3,a.iEsp3);
+ }
+ TScheduler& s = TheScheduler;
+ TInt irq = NKern::DisableAllInterrupts();
+ TSubScheduler& ss = SubScheduler();
+ NThreadBase* ct = ss.iCurrentThread;
+ TInt inc = TInt(ss.i_IrqNestCount);
+ TInt cpu = ss.iCpuNum;
+ NKern::RestoreInterrupts(irq);
+ DEBUGPRINT("Thread %T, CPU %d, KLCount=%08x, IrqNest=%d",ct,cpu,ss.iKernLockCount,inc);
+ }
+
+
+void GetContextAfterExc(TX86RegSet& aContext, SThreadExcStack* txs, TUint32& aAvailRegistersMask, TBool aSystem)
+ {
+ TInt cpl = txs->iCs & 3;
+ aAvailRegistersMask = 0xffffu; // EAX,EBX,ECX,EDX,ESP,EBP,ESI,EDI,CS,DS,ES,FS,GS,SS,EFLAGS,EIP all valid
+ aContext.iEax = txs->iEax;
+ aContext.iEbx = txs->iEbx;
+ aContext.iEcx = txs->iEcx;
+ aContext.iEdx = txs->iEdx;
+ if (aSystem)
+ {
+ aContext.iEsp = TUint32(txs+1);
+ if (cpl==0)
+ aContext.iEsp -= 8; // two less words pushed if interrupt taken while CPL=0
+ aContext.iSs = KRing0DS;
+ aAvailRegistersMask &= ~0x2000u; // SS assumed not read
+ }
+ else if (cpl==3)
+ {
+ aContext.iEsp = txs->iEsp3;
+ aContext.iSs = txs->iSs3;
+ }
+ else
+ {
+ __crash();
+ }
+ aContext.iEbp = txs->iEbp;
+ aContext.iEsi = txs->iEsi;
+ aContext.iEdi = txs->iEdi;
+ aContext.iCs = txs->iCs;
+ aContext.iDs = txs->iDs;
+ aContext.iEs = txs->iEs;
+ aContext.iFs = txs->iFs;
+ aContext.iGs = txs->iGs;
+ aContext.iEflags = txs->iEflags;
+ aContext.iEip = txs->iEip;
+ }
+
+void GetContextAfterSlowExec(TX86RegSet& aContext, SThreadSlowExecStack* tsxs, TUint32& aAvailRegistersMask)
+ {
+ TInt cpl = tsxs->iCs & 3;
+ if (cpl!=3)
+ {
+ __crash();
+ }
+ aAvailRegistersMask = 0xffffu; // EAX,EBX,ECX,EDX,ESP,EBP,ESI,EDI,CS,DS,ES,FS,GS,SS,EFLAGS,EIP all valid
+ aContext.iEax = tsxs->iEax;
+ aContext.iEbx = tsxs->iEbx;
+ aContext.iEcx = tsxs->iEcx;
+ aContext.iEdx = tsxs->iEdx;
+ aContext.iEsp = tsxs->iEsp3;
+ aContext.iSs = tsxs->iSs3;
+ aContext.iEbp = tsxs->iEbp;
+ aContext.iEsi = tsxs->iEsi;
+ aContext.iEdi = tsxs->iEdi;
+ aContext.iCs = tsxs->iCs;
+ aContext.iDs = tsxs->iDs;
+ aContext.iEs = tsxs->iEs;
+ aContext.iFs = tsxs->iFs;
+ aContext.iGs = tsxs->iGs;
+ aContext.iEflags = tsxs->iEflags;
+ aContext.iEip = tsxs->iEip;
+ }
+
+
+// Enter and return with kernel locked
+void NThread::GetUserContext(TX86RegSet& aContext, TUint32& aAvailRegistersMask)
+ {
+ NThread* pC = NCurrentThreadL();
+ TSubScheduler* ss = 0;
+ if (pC != this)
+ {
+ AcqSLock();
+ if (iWaitState.ThreadIsDead())
+ {
+ RelSLock();
+ aAvailRegistersMask = 0;
+ return;
+ }
+ if (iReady && iParent->iReady)
+ {
+ ss = TheSubSchedulers + (iParent->iReady & EReadyCpuMask);
+ ss->iReadyListLock.LockOnly();
+ }
+ if (iCurrent)
+ {
+ // thread is actually running on another CPU
+ // interrupt that CPU and wait for it to enter interrupt mode
+ // this allows a snapshot of the thread user state to be observed
+ // and ensures the thread cannot return to user mode
+ send_resched_ipi_and_wait(iLastCpu);
+ }
+ }
+ TUint32* stack = (TUint32*)(TLinAddr(iStackBase) + TLinAddr(iStackSize));
+ if (stack[-1]!=0xFFFFFFFFu && stack[-2]!=0xFFFFFFFFu && stack[-7]<0x100u) // if not, thread never entered user mode
+ {
+ if (stack[-7] == 0x21) // slow exec
+ GetContextAfterSlowExec(aContext, ((SThreadSlowExecStack*)stack)-1, aAvailRegistersMask);
+ else
+ GetContextAfterExc(aContext, ((SThreadExcStack*)stack)-1, aAvailRegistersMask, FALSE);
+ }
+ if (pC != this)
+ {
+ if (ss)
+ ss->iReadyListLock.UnlockOnly();
+ RelSLock();
+ }
+ }
+
+class TGetContextIPI : public TGenericIPI
+ {
+public:
+ void Get(TInt aCpu, TX86RegSet& aContext, TUint32& aAvailRegistersMask);
+ static void Isr(TGenericIPI*);
+public:
+ TX86RegSet* iContext;
+ TUint32* iAvailRegsMask;
+ };
+
+void TGetContextIPI::Isr(TGenericIPI* aPtr)
+ {
+ TGetContextIPI& ipi = *(TGetContextIPI*)aPtr;
+ TX86RegSet& a = *ipi.iContext;
+ TSubScheduler& ss = SubScheduler();
+ TUint32* irqstack = (TUint32*)ss.i_IrqStackTop;
+ SThreadExcStack* txs = (SThreadExcStack*)irqstack[-1]; // first word pushed on IRQ stack points to thread supervisor stack
+ GetContextAfterExc(a, txs, *ipi.iAvailRegsMask, TRUE);
+ }
+
+void TGetContextIPI::Get(TInt aCpu, TX86RegSet& aContext, TUint32& aAvailRegsMask)
+ {
+ iContext = &aContext;
+ iAvailRegsMask = &aAvailRegsMask;
+ Queue(&Isr, 1u<<aCpu);
+ WaitCompletion();
+ }
+
+// Enter and return with kernel locked
+void NThread::GetSystemContext(TX86RegSet& aContext, TUint32& aAvailRegsMask)
+ {
+ aAvailRegsMask = 0;
+ NThread* pC = NCurrentThreadL();
+ __NK_ASSERT_ALWAYS(pC!=this);
+ TSubScheduler* ss = 0;
+ AcqSLock();
+ if (iWaitState.ThreadIsDead())
+ {
+ RelSLock();
+ return;
+ }
+ if (iReady && iParent->iReady)
+ {
+ ss = TheSubSchedulers + (iParent->iReady & EReadyCpuMask);
+ ss->iReadyListLock.LockOnly();
+ }
+ if (iCurrent)
+ {
+ // thread is actually running on another CPU
+ // use an interprocessor interrupt to get a snapshot of the state
+ TGetContextIPI ipi;
+ ipi.Get(iLastCpu, aContext, aAvailRegsMask);
+ }
+ else
+ {
+ // thread is not running and can't start
+ SThreadReschedStack* trs = (SThreadReschedStack*)iSavedSP;
+ TUint32 kct = trs->iReason;
+ TLinAddr sp = TLinAddr(trs+1);
+ TUint32* stack = (TUint32*)sp;
+ switch (kct)
+ {
+ case 0: // thread not yet started
+ {
+ aContext.iEcx = stack[0];
+ aContext.iEdx = stack[1];
+ aContext.iEbx = stack[2];
+ aContext.iEsi = stack[3];
+ aContext.iEdi = stack[4];
+ aContext.iEbp = stack[5];
+ aContext.iEax = stack[6];
+ aContext.iDs = stack[7];
+ aContext.iEs = stack[8];
+ aContext.iFs = stack[9];
+ aContext.iGs = stack[10];
+ aContext.iEsp = sp + 40 - 8; // entry to initial function
+ aContext.iEip = aContext.iEax;
+ aContext.iEflags = 0x41202; // guess
+ aContext.iCs = KRing0CS;
+ aContext.iSs = KRing0DS;
+ aAvailRegsMask = 0x9effu;
+ break;
+ }
+ case 1: // unlock
+ {
+ aContext.iFs = stack[0];
+ aContext.iGs = stack[1];
+ aContext.iEbx = stack[2];
+ aContext.iEbp = stack[3];
+ aContext.iEdi = stack[4];
+ aContext.iEsi = stack[5];
+ aContext.iEip = stack[6]; // return address from NKern::Unlock()
+ aContext.iCs = KRing0CS;
+ aContext.iDs = KRing0DS;
+ aContext.iEs = KRing0DS;
+ aContext.iSs = KRing0DS;
+ aContext.iEsp = sp + 28; // ESP after return from NKern::Unlock()
+ aContext.iEax = 0; // unknown
+ aContext.iEcx = 0; // unknown
+ aContext.iEdx = 0; // unknown
+ aContext.iEflags = 0x41202; // guess
+ aAvailRegsMask =0x98f2u; // EIP,GS,FS,EDI,ESI,EBP,ESP,EBX available, others guessed or unavailable
+ break;
+ }
+ case 2: // IRQ
+ {
+ GetContextAfterExc(aContext, (SThreadExcStack*)sp, aAvailRegsMask, TRUE);
+ break;
+ }
+ default: // unknown reschedule reason
+ __NK_ASSERT_ALWAYS(0);
+ }
+ }
+ if (ss)
+ ss->iReadyListLock.UnlockOnly();
+ RelSLock();
+ }
+
+// Enter and return with kernel locked
+void NThread::SetUserContext(const TX86RegSet& aContext, TUint32& aRegMask)
+ {
+ NThread* pC = NCurrentThreadL();
+ TSubScheduler* ss = 0;
+ if (pC != this)
+ {
+ AcqSLock();
+ if (iWaitState.ThreadIsDead())
+ {
+ RelSLock();
+ aRegMask = 0;
+ return;
+ }
+ if (iReady && iParent->iReady)
+ {
+ ss = TheSubSchedulers + (iParent->iReady & EReadyCpuMask);
+ ss->iReadyListLock.LockOnly();
+ }
+ if (iCurrent)
+ {
+ // thread is actually running on another CPU
+ // interrupt that CPU and wait for it to enter interrupt mode
+ // this allows a snapshot of the thread user state to be observed
+ // and ensures the thread cannot return to user mode
+ send_resched_ipi_and_wait(iLastCpu);
+ }
+ }
+ TUint32* stack = (TUint32*)(TLinAddr(iStackBase) + TLinAddr(iStackSize));
+ SThreadExcStack* txs = 0;
+ SThreadSlowExecStack* tsxs = 0;
+ aRegMask &= 0xffffu;
+ if (stack[-1]!=0xFFFFFFFFu && stack[-2]!=0xFFFFFFFFu && stack[-7]<0x100u) // if not, thread never entered user mode
+ {
+ if (stack[-7] == 0x21) // slow exec
+ tsxs = ((SThreadSlowExecStack*)stack)-1;
+ else
+ txs = ((SThreadExcStack*)stack)-1;
+
+#define WRITE_REG(reg, value) \
+ { if (tsxs) tsxs->reg=(value); else txs->reg=(value); }
+
+ if (aRegMask & 0x0001u)
+ WRITE_REG(iEax, aContext.iEax);
+ if (aRegMask & 0x0002u)
+ WRITE_REG(iEbx, aContext.iEbx);
+ if (aRegMask & 0x0004u)
+ {
+ // don't allow write to iEcx if in slow exec since this may conflict
+ // with handle preprocessing
+ if (tsxs)
+ aRegMask &= ~0x0004u;
+ else
+ txs->iEcx = aContext.iEcx;
+ }
+ if (aRegMask & 0x0008u)
+ WRITE_REG(iEdx, aContext.iEdx);
+ if (aRegMask & 0x0010u)
+ WRITE_REG(iEsp3, aContext.iEsp);
+ if (aRegMask & 0x0020u)
+ WRITE_REG(iEbp, aContext.iEbp);
+ if (aRegMask & 0x0040u)
+ WRITE_REG(iEsi, aContext.iEsi);
+ if (aRegMask & 0x0080u)
+ WRITE_REG(iEdi, aContext.iEdi);
+ if (aRegMask & 0x0100u)
+ WRITE_REG(iCs, aContext.iCs|3);
+ if (aRegMask & 0x0200u)
+ WRITE_REG(iDs, aContext.iDs|3);
+ if (aRegMask & 0x0400u)
+ WRITE_REG(iEs, aContext.iEs|3);
+ if (aRegMask & 0x0800u)
+ WRITE_REG(iFs, aContext.iFs|3);
+ if (aRegMask & 0x1000u)
+ WRITE_REG(iGs, aContext.iGs|3);
+ if (aRegMask & 0x2000u)
+ WRITE_REG(iSs3, aContext.iSs|3);
+ if (aRegMask & 0x4000u)
+ WRITE_REG(iEflags, aContext.iEflags);
+ if (aRegMask & 0x8000u)
+ WRITE_REG(iEip, aContext.iEip);
+ }
+ else
+ aRegMask = 0;
+ if (pC != this)
+ {
+ if (ss)
+ ss->iReadyListLock.UnlockOnly();
+ RelSLock();
+ }
+ }
+
+/** Get (subset of) user context of specified thread.
+
+ The nanokernel does not systematically save all registers in the supervisor
+ stack on entry into privileged mode and the exact subset depends on why the
+ switch to privileged mode occured. So in general only a subset of the
+ register set is available.
+
+ @param aThread Thread to inspect. It can be the current thread or a
+ non-current one.
+
+ @param aContext Pointer to TX86RegSet structure where the context is
+ copied.
+
+ @param aAvailRegistersMask Bit mask telling which subset of the context is
+ available and has been copied to aContext (1: register available / 0: not
+ available). Bits represent fields in TX86RegSet, i.e.
+ 0:EAX 1:EBX 2:ECX 3:EDX 4:ESP 5:EBP 6:ESI 7:EDI
+ 8:CS 9:DS 10:ES 11:FS 12:GS 13:SS 14:EFLAGS 15:EIP
+
+ @see TX86RegSet
+ @see ThreadSetUserContext
+
+ @pre Call in a thread context.
+ @pre Interrupts must be enabled.
+ */
+EXPORT_C void NKern::ThreadGetUserContext(NThread* aThread, TAny* aContext, TUint32& aAvailRegistersMask)
+ {
+ CHECK_PRECONDITIONS(MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::ThreadGetUserContext");
+ TX86RegSet& a = *(TX86RegSet*)aContext;
+ memclr(aContext, sizeof(TX86RegSet));
+ NKern::Lock();
+ aThread->GetUserContext(a, aAvailRegistersMask);
+ NKern::Unlock();
+ }
+
+
+/** Get (subset of) system context of specified thread.
+
+ @param aThread Thread to inspect. It can be the current thread or a
+ non-current one.
+
+ @param aContext Pointer to TX86RegSet structure where the context is
+ copied.
+
+ @param aAvailRegistersMask Bit mask telling which subset of the context is
+ available and has been copied to aContext (1: register available / 0: not
+ available). Bits represent fields in TX86RegSet, i.e.
+ 0:EAX 1:EBX 2:ECX 3:EDX 4:ESP 5:EBP 6:ESI 7:EDI
+ 8:CS 9:DS 10:ES 11:FS 12:GS 13:SS 14:EFLAGS 15:EIP
+
+ @see TX86RegSet
+ @see ThreadGetUserContext
+
+ @pre Call in a thread context.
+ @pre Interrupts must be enabled.
+ */
+EXPORT_C void NKern::ThreadGetSystemContext(NThread* aThread, TAny* aContext, TUint32& aAvailRegistersMask)
+ {
+ CHECK_PRECONDITIONS(MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::ThreadGetSystemContext");
+ TX86RegSet& a = *(TX86RegSet*)aContext;
+ memclr(aContext, sizeof(TX86RegSet));
+ NKern::Lock();
+ aThread->GetSystemContext(a, aAvailRegistersMask);
+ NKern::Unlock();
+ }
+
+
+/** Set (subset of) user context of specified thread.
+
+ @param aThread Thread to modify. It can be the current thread or a
+ non-current one.
+
+ @param aContext Pointer to TX86RegSet structure containing the context
+ to set. The values of registers which aren't part of the context saved
+ on the supervisor stack are ignored.
+
+ @see TX86RegSet
+ @see ThreadGetUserContext
+
+ @pre Call in a thread context.
+ @pre Interrupts must be enabled.
+ */
+EXPORT_C void NKern::ThreadSetUserContext(NThread* aThread, TAny* aContext)
+ {
+ CHECK_PRECONDITIONS(MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR|MASK_NOT_IDFC,"NKern::ThreadSetUserContext");
+ TX86RegSet& a = *(TX86RegSet*)aContext;
+ TUint32 mask = 0xffffu;
+ NKern::Lock();
+ aThread->SetUserContext(a, mask);
+ NKern::Unlock();
+ }
+
+
+/** Return the total CPU time so far used by the specified thread.
+
+ @return The total CPU time in units of 1/NKern::CpuTimeMeasFreq().
+*/
+EXPORT_C TUint64 NKern::ThreadCpuTime(NThread* aThread)
+ {
+ TSubScheduler* ss = 0;
+ NKern::Lock();
+ aThread->AcqSLock();
+ if (aThread->i_NThread_Initial)
+ ss = &TheSubSchedulers[aThread->iLastCpu];
+ else if (aThread->iReady && aThread->iParent->iReady)
+ ss = &TheSubSchedulers[aThread->iParent->iReady & NSchedulable::EReadyCpuMask];
+ if (ss)
+ ss->iReadyListLock.LockOnly();
+ TUint64 t = aThread->iTotalCpuTime64;
+ if (aThread->iCurrent || (aThread->i_NThread_Initial && !ss->iCurrentThread))
+ t += (NKern::Timestamp() - ss->iLastTimestamp64);
+ if (ss)
+ ss->iReadyListLock.UnlockOnly();
+ aThread->RelSLock();
+ NKern::Unlock();
+ return t;
+ }
+
+extern "C" void __fastcall add_dfc(TDfc* aDfc)
+ {
+ aDfc->Add();
+ }
+
+
+TInt NKern::QueueUserModeCallback(NThreadBase* aThread, TUserModeCallback* aCallback)
+ {
+ __e32_memory_barrier();
+ if (aCallback->iNext != KUserModeCallbackUnqueued)
+ return KErrInUse;
+ TInt result = KErrDied;
+ NKern::Lock();
+ TUserModeCallback* listHead = aThread->iUserModeCallbacks;
+ do {
+ if (TLinAddr(listHead) & 3)
+ goto done; // thread exiting
+ aCallback->iNext = listHead;
+ } while (!__e32_atomic_cas_ord_ptr(&aThread->iUserModeCallbacks, &listHead, aCallback));
+ result = KErrNone;
+
+ if (!listHead) // if this isn't first callback someone else will have done this bit
+ {
+ /*
+ * If aThread is currently running on another CPU we need to send an IPI so
+ * that it will enter kernel mode and run the callback.
+ * The synchronization is tricky here. We want to check if the thread is
+ * running and if so on which core. We need to avoid any possibility of
+ * the thread entering user mode without having seen the callback,
+ * either because we thought it wasn't running so didn't send an IPI or
+ * because the thread migrated after we looked and we sent the IPI to
+ * the wrong processor. Sending a redundant IPI is not a problem (e.g.
+ * because the thread is running in kernel mode - which we can't tell -
+ * or because the thread stopped running after we looked)
+ * The following events are significant:
+ * Event A: Target thread writes to iCurrent when it starts running
+ * Event B: Target thread reads iUserModeCallbacks before entering user
+ * mode
+ * Event C: This thread writes to iUserModeCallbacks
+ * Event D: This thread reads iCurrent to check if aThread is running
+ * There is a barrier between A and B since A occurs with the ready
+ * list lock for the CPU involved or the thread lock for aThread held
+ * and this lock is released before B occurs.
+ * There is a barrier between C and D (__e32_atomic_cas_ord_ptr).
+ * Any observer which observes B must also have observed A.
+ * Any observer which observes D must also have observed C.
+ * If aThread observes B before C (i.e. enters user mode without running
+ * the callback) it must observe A before C and so it must also observe
+ * A before D (i.e. D reads the correct value for iCurrent).
+ */
+ TInt current = aThread->iCurrent;
+ if (current)
+ {
+ TInt cpu = current & NSchedulable::EReadyCpuMask;
+ if (cpu != NKern::CurrentCpu())
+ send_resched_ipi(cpu);
+ }
+ }
+done:
+ NKern::Unlock();
+ return result;
+ }
+
+