kernel/eka/memmodel/epoc/flexible/mmu/mptalloc.cpp
changeset 0 a41df078684a
child 6 0173bcd7697c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kernel/eka/memmodel/epoc/flexible/mmu/mptalloc.cpp	Mon Oct 19 15:55:17 2009 +0100
@@ -0,0 +1,1217 @@
+// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the License "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+//
+
+#include <plat_priv.h>
+#include "mm.h"
+#include "mmu.h"
+#include "mpager.h"
+
+#include "mmanager.h"
+#include "mmapping.h"
+#include "mobject.h"
+
+#include "mptalloc.h"
+#include "cache_maintenance.inl"
+
+/**
+@class PageTableAllocator
+@details
+
+NOTES
+
+Page tables are mapped into a sparse array in the virtual address range
+#KPageTableBase..#KPageTableEnd. For each present page table there is a
+corresponding #SPageTableInfo object mapped from #KPageTableInfoBase upwards.
+
+Page tables for demand paged content are kept separate from other page tables,
+this enables the memory for these to be freed when the page tables no longer map
+any memory i.e. when it has all been paged-out. Pages with these 'paged' page
+tables are stored in the demand paging live list, so it participates in the page
+aging process.
+
+The 'unpaged' page tables are allocated from the bottom of the array upwards,
+via TPtPageAllocator::iLowerAllocator; the 'paged' page tables are allocated
+from the top of the array downwards, via TPtPageAllocator::iUpperAllocator.
+These two regions are prevented from overlapping, or from coming close enough
+together so that the #SPageTableInfo struct for paged and unpaged page tables
+lie in the same page. This means that the SPageTableInfo memory for paged page
+tables can be discarded when it's page tables are discarded.
+
+Memory for page tables and page table info objects is managed by
+#ThePageTableMemoryManager. When allocating memory for demand paged use, this
+uses memory from #ThePager which will reclaim paged memory if necessary.
+Providing the live list always has #DPager::iMinYoungPages, this guarantees that
+handling page faults can never fail by running out of memory.
+
+TODO: In really pathological situations page table allocation can fail due to
+being out of virtual address space to map the table, this needs to be prevented
+from happening when handling demand paging faults.
+*/
+
+
+PageTableAllocator PageTables;
+
+
+
+TBool PageTablesLockIsHeld()
+	{
+	return ::PageTables.LockIsHeld();
+	}
+
+
+/**
+Minimum number of page tables to keep in reserve.
+*/
+const TUint KNumReservedPageTables = 0; // none needed - page tables for mapping page tables and infos are permanently allocated
+
+
+/**
+Manager for the memory object used to store all the MMU page tables.
+*/
+class DPageTableMemoryManager : public DMemoryManager
+	{
+public:
+	/**
+	Not implemented - page table memory is never destroyed.
+	*/
+	virtual void Destruct(DMemoryObject* aMemory)
+		{}
+
+	virtual TInt StealPage(DMemoryObject* aMemory, SPageInfo* aPageInfo)
+		{ return PageTables.StealPage(aPageInfo); }
+
+	/**
+	Does nothing, returns KErrNone.
+	The RAM containing page tables does not need access restrictions applied for demand paging
+	purposes. Page table life-time is implicitly managed through the pages it maps.
+	*/
+	virtual TInt RestrictPage(DMemoryObject* aMemory, SPageInfo* aPageInfo, TRestrictPagesType aRestriction)
+		{ return KErrNone; }
+
+	/**
+	Does nothing, returns KErrNone.
+	The contents of page tables never need saving as their contents are dynamically generated.
+	*/
+	virtual TInt CleanPage(DMemoryObject* aMemory, SPageInfo* aPageInfo, TPhysAddr*& aPageArrayEntry)
+		{ return KErrNone; }
+
+	/**
+	Not implemented, returns KErrNotSupported.
+	*/
+	virtual TInt Pin(DMemoryObject* aMemory, DMemoryMappingBase* aMapping, TPinArgs& aPinArgs)
+		{ return KErrNotSupported; }
+
+	/**
+	Not implemented.
+	*/
+	virtual void Unpin(DMemoryObject* aMemory, DMemoryMappingBase* aMapping, TPinArgs& aPinArgs)
+		{ }
+
+
+	virtual TInt MovePage(	DMemoryObject* aMemory, SPageInfo* aOldPageInfo, 
+							TPhysAddr& aNewPage, TUint aBlockZoneId, TBool aBlockRest);
+public:
+	/**
+	Allocate a page of RAM for storing page tables in.
+
+	@param aMemory		A memory object associated with this manager.
+	@param aIndex		Page index, within the memory, to allocate the page at.
+	@param aDemandPaged	True if the memory is to be used for page tables mapping
+						demand paged content.
+
+	@return KErrNone if successful, otherwise one of the system wide error codes.
+	*/
+	TInt Alloc(DMemoryObject* aMemory, TUint aIndex, TBool aDemandPaged);
+
+	/**
+	Allocate a page of RAM being used for storing page tables in.
+
+	@param aMemory		A memory object associated with this manager.
+	@param aIndex		Page index, within the memory, to free the page from.
+	@param aDemandPaged	True if the memory is being used for page tables mapping
+						demand paged content.
+
+	@return KErrNone if successful, otherwise one of the system wide error codes.
+	*/
+	TInt Free(DMemoryObject* aMemory, TUint aIndex, TBool aDemandPaged);
+	};
+
+/**
+The single instance of the #DPageTableMemoryManager class.
+*/
+DPageTableMemoryManager ThePageTableMemoryManager;
+
+
+TInt DPageTableMemoryManager::Alloc(DMemoryObject* aMemory, TUint aIndex, TBool aDemandPaged)
+	{
+	TRACE2(("DPageTableMemoryManager::Alloc(0x%08x,0x%x,%d)",aMemory, aIndex, aDemandPaged));
+	__NK_ASSERT_DEBUG(MemoryObjectLock::IsHeld(aMemory));
+
+	// allocate page array entry...
+	RPageArray::TIter pageList;
+	TPhysAddr* p = aMemory->iPages.AddPageStart(aIndex,pageList);
+	if(!p)
+		return KErrNoMemory;
+
+	// allocate RAM...
+	RamAllocLock::Lock();
+	TPhysAddr pagePhys;
+	TInt r;
+	if(aDemandPaged)
+		{
+		r = ThePager.PageInAllocPages(&pagePhys,1,aMemory->RamAllocFlags());
+		__NK_ASSERT_DEBUG(r!=KErrNoMemory);
+		}
+	else
+		{// Allocate fixed paged as page tables aren't movable.
+		r = TheMmu.AllocRam(&pagePhys, 1, aMemory->RamAllocFlags(), EPageFixed);
+		}
+	RamAllocLock::Unlock();
+
+	TUint usedNew = 0;
+	if(r==KErrNone)
+		{
+		// add RAM to page array...
+		MmuLock::Lock();
+		if(aDemandPaged)
+			ThePager.Event(DPager::EEventPagePageTableAlloc,SPageInfo::FromPhysAddr(pagePhys));
+		SPageInfo* pi = SPageInfo::FromPhysAddr(pagePhys);
+		pi->SetManaged(aMemory,aIndex,aMemory->PageInfoFlags());
+		RPageArray::AddPage(p,pagePhys);
+		MmuLock::Unlock();
+		usedNew = 1;
+
+		// map page...
+		r = aMemory->MapPages(pageList);
+		}
+
+	// release page array entry...
+	aMemory->iPages.AddPageEnd(aIndex,usedNew);
+
+	// revert if error...
+	if(r!=KErrNone)
+		Free(aMemory,aIndex,aDemandPaged);
+
+	return r;
+	}
+
+
+TInt DPageTableMemoryManager::Free(DMemoryObject* aMemory, TUint aIndex, TBool aDemandPaged)
+	{
+	TRACE2(("DPageTableMemoryManager::Free(0x%08x,0x%x,%d)",aMemory, aIndex, aDemandPaged));
+	__NK_ASSERT_DEBUG(MemoryObjectLock::IsHeld(aMemory));
+
+	// find page array entry...
+	RPageArray::TIter pageList;
+	TPhysAddr* p = aMemory->iPages.RemovePageStart(aIndex,pageList);
+	if(!p)
+		return KErrNoMemory;
+
+	// unmap page...
+	aMemory->UnmapPages(pageList,true);
+
+	RamAllocLock::Lock();
+
+	// remove page...
+	MmuLock::Lock();
+	TPhysAddr pagePhys = RPageArray::RemovePage(p);
+	MmuLock::Unlock();
+
+	TInt r;
+	if(pagePhys==KPhysAddrInvalid)
+		{
+		// no page removed...
+		r = 0;
+		}
+	else
+		{
+		// free the removed page...
+		if(aDemandPaged)
+			ThePager.PageInFreePages(&pagePhys,1);
+		else
+			TheMmu.FreeRam(&pagePhys, 1, EPageFixed);
+		r = 1;
+		}
+
+	RamAllocLock::Unlock();
+
+	// cleanup...
+	aMemory->iPages.RemovePageEnd(aIndex,r);
+	return r;
+	}
+
+TInt DPageTableMemoryManager::MovePage(	DMemoryObject* aMemory, SPageInfo* aOldPageInfo, 
+										TPhysAddr& aNewPage, TUint aBlockZoneId, TBool aBlockRest)
+		{
+		// This could be a demand paged page table info which can be discarded 
+		// but let the PageTableAllocator handle that.
+		return ::PageTables.MovePage(aMemory, aOldPageInfo, aBlockZoneId, aBlockRest);
+		}
+
+
+//
+// PageTableAllocator
+//
+
+void PageTableAllocator::Init2(DMutex* aLock)
+	{
+	TRACEB(("PageTableAllocator::Init2(0x%x)",aLock));
+	iLock = aLock;
+
+	__NK_ASSERT_DEBUG(iUnpagedAllocator.CheckFreeList());
+
+	// scan for already allocated page tables
+	// (assumes the first page table is used to map page tables)...
+	SPageTableInfo* pti = (SPageTableInfo*)KPageTableInfoBase;
+	TUint pages = 0;
+	for(;;)
+		{
+		TPte pte = ((TPte*)KPageTableBase)[pages];
+		if(pte==KPteUnallocatedEntry)
+			break; // end (assumes no gaps in page table allocation) 
+
+		// process free page tables in this page...
+		TUint freeCount = 0;
+		do
+			{
+			if(pti->IsUnused())
+				{
+				pti->PtClusterAlloc();
+				iUnpagedAllocator.iFreeList.Add(&pti->FreeLink());
+				++freeCount;
+				}
+#ifdef _DEBUG
+			else
+				__NK_ASSERT_DEBUG(pti->IsPtClusterAllocated());
+#endif
+			}
+		while(!(++pti)->IsFirstInPage());
+		iUnpagedAllocator.iFreeCount += freeCount;
+		__NK_ASSERT_DEBUG(iUnpagedAllocator.CheckFreeList());
+		TRACE2(("PT page 0x%08x has %d free tables",pti[-KPtClusterSize].PageTable(),freeCount));
+
+		// count page, and move on to next one...
+		++pages;
+		__NK_ASSERT_DEBUG(pages<KChunkSize/KPageSize); // we've assumed less than one page table of page tables
+		}
+
+	// construct allocator for page table pages...
+	iPtPageAllocator.Init2(pages);
+
+	// initialise allocator page table infos...
+	iPageTableGroupCounts[0] = pages;
+	__NK_ASSERT_DEBUG(pages/KPageTableGroupSize==0); // we've assumed less than 1 page of page table infos
+
+	// FOLLOWING CODE WILL USE THIS OBJECT TO ALLOCATE SOME PAGE TABLES,
+	// SO ALLOCATOR MUST BE INITIALISED TO A FIT STATE BEFORE THIS POINT!
+
+	// construct memory object for page tables...
+	TMappingCreateFlags mapFlags = (TMappingCreateFlags)(EMappingCreateFixedVirtual|EMappingCreateReserveAllResources);
+#if defined(__CPU_PAGE_TABLES_FULLY_CACHED)
+	TMemoryAttributes memAttr = EMemoryAttributeStandard;
+#else
+	TMemoryAttributes memAttr = (TMemoryAttributes)(EMemoryAttributeNormalUncached|EMemoryAttributeDefaultShareable);
+#endif
+	TMemoryCreateFlags createFlags = (TMemoryCreateFlags)(EMemoryCreateNoWipe|EMemoryCreateCustomManager);
+	TInt r = MM::InitFixedKernelMemory(iPageTableMemory, KPageTableBase, KPageTableEnd, pages<<KPageShift, (TMemoryObjectType)(T_UintPtr)&ThePageTableMemoryManager, createFlags, memAttr, mapFlags);
+	__NK_ASSERT_ALWAYS(r==KErrNone);
+	MM::MemorySetLock(iPageTableMemory,aLock);
+
+	// construct memory object for page table infos...
+	memAttr = EMemoryAttributeStandard;
+	TUint size = pages*KPtClusterSize*sizeof(SPageTableInfo);
+	size = (size+KPageMask)&~KPageMask;
+	r = MM::InitFixedKernelMemory(iPageTableInfoMemory, KPageTableInfoBase, KPageTableInfoEnd, size, (TMemoryObjectType)(T_UintPtr)&ThePageTableMemoryManager, createFlags, memAttr, mapFlags);
+	__NK_ASSERT_ALWAYS(r==KErrNone);
+	MM::MemorySetLock(iPageTableInfoMemory,aLock);
+
+	// make sure we have enough reserve page tables...
+	Lock();
+	iUnpagedAllocator.Init2(this,KNumReservedPageTables,false);
+	iPagedAllocator.Init2(this,0,true);
+	Unlock();
+
+	TRACEB(("PageTableAllocator::Init2 done"));
+	}
+
+
+void PageTableAllocator::Init2B()
+	{
+	TRACEB(("PageTableAllocator::Init2B()"));
+	TInt r = iPageTableMemory->iPages.PreallocateMemory();
+	__NK_ASSERT_ALWAYS(r==KErrNone);
+	r = iPageTableInfoMemory->iPages.PreallocateMemory();
+	__NK_ASSERT_ALWAYS(r==KErrNone);
+	TRACEB(("PageTableAllocator::Init2B done"));
+	}
+
+
+void PageTableAllocator::TSubAllocator::Init2(PageTableAllocator* aAllocator, TUint aReserveCount, TBool aDemandPaged)
+	{
+	iReserveCount = aReserveCount;
+	iDemandPaged = aDemandPaged;
+	while(iFreeCount<aReserveCount)
+		if(!aAllocator->AllocReserve(*this))
+			{
+			__NK_ASSERT_ALWAYS(0);
+			}
+	}
+
+
+void PageTableAllocator::TPtPageAllocator::Init2(TUint aNumInitPages)
+	{
+	iLowerAllocator = TBitMapAllocator::New(KMaxPageTablePages,ETrue);
+	__NK_ASSERT_ALWAYS(iLowerAllocator);
+	iLowerAllocator->Alloc(0,aNumInitPages);
+	iLowerWaterMark = aNumInitPages-1;
+
+	iUpperAllocator = TBitMapAllocator::New(KMaxPageTablePages,ETrue);
+	__NK_ASSERT_ALWAYS(iUpperAllocator);
+	iUpperWaterMark = KMaxPageTablePages;
+	}
+
+
+TInt PageTableAllocator::TPtPageAllocator::Alloc(TBool aDemandPaged)
+	{
+	__NK_ASSERT_DEBUG(PageTablesLockIsHeld());
+	TUint pageIndex;
+	if(aDemandPaged)
+		{
+		TInt bit = iUpperAllocator->Alloc();
+		if(bit<0)
+			return bit;
+		pageIndex = KMaxPageTablePages-1-bit;
+		if(pageIndex<iUpperWaterMark)
+			{
+			// new upper watermark...
+			if((pageIndex&~(KPageTableGroupSize-1))<=iLowerWaterMark)
+				{
+				// clashes with other bitmap allocator, so fail..
+				iUpperAllocator->Free(bit);
+				return -1;
+				}
+			iUpperWaterMark = pageIndex;
+			TRACE(("TPtPageAllocator::Alloc new iUpperWaterMark=%d",pageIndex));
+			}
+		}
+	else
+		{
+		TInt bit = iLowerAllocator->Alloc();
+		if(bit<0)
+			return bit;
+		pageIndex = bit;
+		if(pageIndex>iLowerWaterMark)
+			{
+			// new upper watermark...
+			if(pageIndex>=(iUpperWaterMark&~(KPageTableGroupSize-1)))
+				{
+				// clashes with other bitmap allocator, so fail..
+				iLowerAllocator->Free(bit);
+				return -1;
+				}
+			iLowerWaterMark = pageIndex;
+			TRACE(("TPtPageAllocator::Alloc new iLowerWaterMark=%d",pageIndex));
+			}
+		}
+	return pageIndex;
+	}
+
+
+void PageTableAllocator::TPtPageAllocator::Free(TUint aPageIndex, TBool aDemandPaged)
+	{
+	__NK_ASSERT_DEBUG(PageTablesLockIsHeld());
+	if(aDemandPaged)
+		iUpperAllocator->Free(KMaxPageTablePages-1-aPageIndex);
+	else
+		iLowerAllocator->Free(aPageIndex);
+	}
+
+
+void PageTableAllocator::Lock()
+	{
+	Kern::MutexWait(*iLock);
+	}
+
+
+void PageTableAllocator::Unlock()
+	{
+	Kern::MutexSignal(*iLock);
+	}
+
+
+TBool PageTableAllocator::LockIsHeld()
+	{
+	return iLock->iCleanup.iThread == &Kern::CurrentThread();
+	}
+
+
+TBool PageTableAllocator::AllocReserve(TSubAllocator& aSubAllocator)
+	{
+	__NK_ASSERT_DEBUG(LockIsHeld());
+
+	// allocate page...
+	TInt ptPageIndex = iPtPageAllocator.Alloc(aSubAllocator.iDemandPaged);
+	if(ptPageIndex<0)
+		return false;
+
+	// commit memory for page...
+	__NK_ASSERT_DEBUG(iPageTableMemory); // check we've initialised iPageTableMemory
+	TInt r = ThePageTableMemoryManager.Alloc(iPageTableMemory,ptPageIndex,aSubAllocator.iDemandPaged);
+	if(r==KErrNoMemory)
+		{
+		iPtPageAllocator.Free(ptPageIndex,aSubAllocator.iDemandPaged);
+		return false;
+		}
+	__NK_ASSERT_DEBUG(r==KErrNone);
+
+	// allocate page table info...
+	TUint ptgIndex = ptPageIndex/KPageTableGroupSize;
+	if(!iPageTableGroupCounts[ptgIndex])
+		{
+		__NK_ASSERT_DEBUG(iPageTableInfoMemory); // check we've initialised iPageTableInfoMemory
+		r = ThePageTableMemoryManager.Alloc(iPageTableInfoMemory,ptgIndex,aSubAllocator.iDemandPaged);
+
+		if(r==KErrNoMemory)
+			{
+			r = ThePageTableMemoryManager.Free(iPageTableMemory,ptPageIndex,aSubAllocator.iDemandPaged);
+			__NK_ASSERT_DEBUG(r==1);
+			iPtPageAllocator.Free(ptPageIndex,aSubAllocator.iDemandPaged);
+			return false;
+			}
+		__NK_ASSERT_DEBUG(r==KErrNone);
+		// For paged page tables set all the page table infos in this page as unused 
+		// and their page table clusters as not allocated.
+		if (aSubAllocator.iDemandPaged)
+			{
+			SPageTableInfo* ptiBase = (SPageTableInfo*)KPageTableInfoBase + (ptgIndex*KPageTableInfosPerPage);
+			memclr(ptiBase, KPageSize);
+			}
+		}
+	++iPageTableGroupCounts[ptgIndex];
+
+	SPageTableInfo* pti = (SPageTableInfo*)KPageTableInfoBase+ptPageIndex*KPtClusterSize;
+	aSubAllocator.AllocPage(pti);
+	return true;
+	}
+
+
+void PageTableAllocator::TSubAllocator::AllocPage(SPageTableInfo* aPageTableInfo)
+	{
+	SPageTableInfo* pti = aPageTableInfo;
+	__NK_ASSERT_DEBUG(pti->IsFirstInPage());
+
+	TRACE2(("Alloc PT page (%d) 0x%08x",iDemandPaged,pti->PageTable()));
+
+	// initialise page table infos...
+	do pti->New(iDemandPaged);
+	while(!(++pti)->IsFirstInPage());
+	pti -= KPtClusterSize;
+
+	// all page tables initially unused, so start them off on iCleanupList...
+	pti->AddToCleanupList(iCleanupList);
+	iFreeCount += KPtClusterSize;
+	__NK_ASSERT_DEBUG(CheckFreeList());
+	}
+
+
+SPageTableInfo* PageTableAllocator::TSubAllocator::FreePage()
+	{
+	if(!IsCleanupRequired())
+		return 0;
+
+	// get a completely free page...
+	SDblQueLink* link = iCleanupList.Last();
+	__NK_ASSERT_DEBUG(link);
+	SPageTableInfo* pti = SPageTableInfo::FromFreeLink(link);
+	__NK_ASSERT_DEBUG(pti->IsFirstInPage());
+	pti->RemoveFromCleanupList();
+	iFreeCount -= KPtClusterSize;
+	__NK_ASSERT_DEBUG(CheckFreeList());
+
+	TRACE2(("Free PT page (%d) 0x%08x",iDemandPaged,pti->PageTable()));
+
+	// Mark each page table info as no longer having its page table cluster allocated.
+	do 
+		{// make sure all page tables in page are unused...
+		__NK_ASSERT_DEBUG(pti->IsUnused());
+		pti->PtClusterFreed();
+		}
+	while(!(++pti)->IsFirstInPage());
+	pti -= KPtClusterSize;
+
+	return pti;
+	}
+
+
+TBool PageTableAllocator::FreeReserve(TSubAllocator& aSubAllocator)
+	{
+	__NK_ASSERT_DEBUG(LockIsHeld());
+
+	// get a page which needs freeing...
+	SPageTableInfo* pti = aSubAllocator.FreePage();
+	if(!pti)
+		return false;
+
+	// free the page...
+	TUint ptPageIndex = ((TLinAddr)pti-KPageTableInfoBase)>>(KPageTableInfoShift+KPtClusterShift);
+	iPtPageAllocator.Free(ptPageIndex,aSubAllocator.iDemandPaged);
+	TInt r = ThePageTableMemoryManager.Free(iPageTableMemory,ptPageIndex,aSubAllocator.iDemandPaged);
+	(void)r;
+	__NK_ASSERT_DEBUG(r==1);
+
+	// free page table info...
+	TUint ptgIndex = ptPageIndex/KPageTableGroupSize;
+	TUint groupCount = iPageTableGroupCounts[ptgIndex]; // compiler handles half-word values stupidly, so give it a hand
+	--groupCount;
+	iPageTableGroupCounts[ptgIndex] = groupCount;
+	if(!groupCount)
+		r = ThePageTableMemoryManager.Free(iPageTableInfoMemory,ptgIndex,aSubAllocator.iDemandPaged);
+
+	return true;
+	}
+
+
+TPte* PageTableAllocator::Alloc(TBool aDemandPaged)
+	{
+	TRACE(("PageTableAllocator::Alloc(%d)",(bool)aDemandPaged));
+	TPte* pt = DoAlloc(aDemandPaged);
+	TRACE(("PageTableAllocator::Alloc() returns 0x%08x phys=0x%08x",pt,pt?Mmu::PageTablePhysAddr(pt):KPhysAddrInvalid));
+	return pt;
+	}
+
+
+TPte* PageTableAllocator::DoAlloc(TBool aDemandPaged)
+	{
+	__NK_ASSERT_DEBUG(LockIsHeld());
+
+#ifdef _DEBUG
+	// simulated OOM, but not if demand paged as this can't fail under normal circumstances...
+	if(!aDemandPaged)
+		{
+		RamAllocLock::Lock();
+		TBool fail = K::CheckForSimulatedAllocFail();
+		RamAllocLock::Unlock();
+		if(fail)
+			return 0;
+		}
+#endif
+
+	TSubAllocator& allocator = aDemandPaged ? iPagedAllocator : iUnpagedAllocator;
+
+	__NK_ASSERT_DEBUG(!iAllocating || !aDemandPaged); // can't recursively allocate demand paged tables
+
+	__NK_ASSERT_DEBUG(iAllocating<=allocator.iReserveCount); // can't recursively allocate more than the reserve
+
+	// keep up enough spare page tables...
+	if(!iAllocating++) // if we haven't gone recursive...
+		{
+		// make sure we have a page table to allocate...
+		while(allocator.iFreeCount<=allocator.iReserveCount)
+			if(!AllocReserve(allocator))
+				{
+				--iAllocating;
+				return 0; // out of memory
+				}
+		}
+	else
+		{
+		TRACE(("PageTableAllocator::DoAlloc recurse=%d",iAllocating));
+		}
+
+	// allocate a page table...
+	SPageTableInfo* pti = allocator.Alloc();
+
+	// initialise page table info...
+	pti->Init();
+
+	// initialise page table...
+	TPte* pt = pti->PageTable();
+	memclr(pt,KPageTableSize);
+	CacheMaintenance::MultiplePtesUpdated((TLinAddr)pt,KPageTableSize);
+
+	// done...
+	--iAllocating;
+	return pt;
+	}
+
+
+SPageTableInfo* PageTableAllocator::TSubAllocator::Alloc()
+	{
+	__NK_ASSERT_DEBUG(PageTablesLockIsHeld());
+	__NK_ASSERT_DEBUG(iFreeCount);
+	__NK_ASSERT_DEBUG(CheckFreeList());
+
+	// get next free page table...
+	SDblQueLink* link = iFreeList.GetFirst();
+	SPageTableInfo* pti; 
+	if(link)
+		pti = SPageTableInfo::FromFreeLink(link);
+	else
+		{
+		// need to get one back from the cleanup list...
+		link = iCleanupList.First();
+		__NK_ASSERT_DEBUG(link); // we can't be out of page tables
+		pti = SPageTableInfo::FromFreeLink(link);
+		__NK_ASSERT_DEBUG(pti->IsFirstInPage());
+		pti->RemoveFromCleanupList();
+
+		// add other page tables in the page to the free list...
+		SPageTableInfo* free = pti+1;
+		while(!free->IsFirstInPage())
+			{
+			__NK_ASSERT_DEBUG(free->IsUnused());
+			iFreeList.Add(&free->FreeLink());
+			++free;
+			}
+		}
+
+	// count page as allocated...
+	--iFreeCount;
+	__NK_ASSERT_DEBUG(pti->IsUnused());
+	__NK_ASSERT_DEBUG(CheckFreeList());
+
+	return pti;
+	}
+
+
+void PageTableAllocator::Free(TPte* aPageTable)
+	{
+	TRACE(("PageTableAllocator::Free(0x%08x)",aPageTable));
+	DoFree(aPageTable);
+	}
+
+
+void PageTableAllocator::DoFree(TPte* aPageTable)
+	{
+	__NK_ASSERT_DEBUG(LockIsHeld());
+
+	// make sure page table isn't being aliased...
+	TPhysAddr pagePhys = Mmu::PageTablePhysAddr(aPageTable);
+	__NK_ASSERT_DEBUG(pagePhys!=KPhysAddrInvalid);
+	TheMmu.RemoveAliasesForPageTable(pagePhys);
+
+	// free page table...
+	SPageTableInfo* pti = SPageTableInfo::FromPtPtr(aPageTable);
+	TSubAllocator& allocator = pti->IsDemandPaged() ? iPagedAllocator : iUnpagedAllocator;
+	allocator.Free(pti);
+
+	// check for surplus pages...
+	if(allocator.IsCleanupRequired())
+		{
+		iCleanup.Add(CleanupTrampoline,this);
+		}
+	}
+
+
+void PageTableAllocator::TSubAllocator::Free(SPageTableInfo* aPageTableInfo)
+	{
+	__NK_ASSERT_DEBUG(PageTablesLockIsHeld());
+	__NK_ASSERT_DEBUG(CheckFreeList());
+
+	SPageTableInfo* pti = aPageTableInfo;
+
+	// clear the page table info...
+	MmuLock::Lock();
+	__NK_ASSERT_DEBUG(!pti->PermanenceCount());
+	pti->SetUnused();
+	MmuLock::Unlock();
+
+	// scan other page tables in same page...
+	SPageTableInfo* first = pti->FirstInPage();
+	SPageTableInfo* last = pti->LastInPage();
+	SPageTableInfo* prev;
+	SPageTableInfo* next;
+
+	// try insert page table after previous free page table in same page...
+	prev = pti;
+	while(prev>first)
+		{
+		--prev;
+		if(prev->IsUnused())
+			{
+			pti->FreeLink().InsertAfter(&prev->FreeLink());
+			goto inserted;
+			}
+		}
+
+	// try insert page table before next free page table in same page...
+	next = pti;
+	while(next<last)
+		{
+		++next;
+		if(next->IsUnused())
+			{
+			pti->FreeLink().InsertBefore(&next->FreeLink());
+			goto inserted;
+			}
+		}
+
+	// only free page table in page, so link into start of free list...
+	pti->FreeLink().InsertAfter(&iFreeList.iA);
+
+inserted:
+	++iFreeCount;
+	__NK_ASSERT_DEBUG(CheckFreeList());
+
+	// see if all page tables in page are empty...
+	pti = first;
+	do
+		{
+		if(!pti->IsUnused())
+			return; // some page tables still in use, so end
+		}
+	while(!(++pti)->IsFirstInPage());
+	pti -= KPtClusterSize;
+
+	// check if page with page table in is pinned...
+	MmuLock::Lock();
+	TPte* pt = pti->PageTable();
+	TPhysAddr pagePhys = Mmu::PageTablePhysAddr(pt);
+	SPageInfo* pi = SPageInfo::FromPhysAddr(pagePhys);
+	TBool pinned = pi->PagedState()==SPageInfo::EPagedPinned;
+	MmuLock::Unlock();
+	// Note, the pinned state can't change even though we've now released the MmuLock.
+	// This is because all page tables in the page are unused and we don't pin unused
+	// page tables. Also, the page table(s) can't become used again whilst this function
+	// executes as we hold the page table allocator lock.
+	if(pinned)
+		{
+		// return now and leave page table(s) in free list if their page is pinned...
+		// Note, when page is unpinned it will end up in the paging live list and
+		// eventually be reclaimed for other use (if the page tables in the page
+		// don't get reallocated before then).
+		__NK_ASSERT_DEBUG(pti->IsDemandPaged()); // only paged page tables should have been pinned
+		return; 
+		}
+
+	// the page with our page table in it is no longer in use...
+	MoveToCleanup(pti);
+	}
+
+
+void PageTableAllocator::TSubAllocator::MoveToCleanup(SPageTableInfo* aPageTableInfo)
+	{
+	__NK_ASSERT_DEBUG(PageTablesLockIsHeld());
+	__NK_ASSERT_DEBUG(CheckFreeList());
+
+	SPageTableInfo* pti = aPageTableInfo;
+	__NK_ASSERT_DEBUG(pti->IsFirstInPage());
+
+	TRACE2(("Cleanup PT page (%d) 0x%08x",iDemandPaged,pti->PageTable()));
+
+	// make sure all page tables in page are unused...
+#ifdef _DEBUG
+	do __NK_ASSERT_DEBUG(pti->IsUnused());
+	while(!(++pti)->IsFirstInPage());
+	pti -= KPtClusterSize;
+#endif
+
+	// unlink all page tables in page...
+	SDblQueLink* prev = pti->FreeLink().iPrev;
+	SDblQueLink* next = pti->LastInPage()->FreeLink().iNext;
+	prev->iNext = next;
+	next->iPrev = prev;
+
+	// add page tables to cleanup list...
+	__NK_ASSERT_DEBUG(!pti->IsOnCleanupList());
+	pti->AddToCleanupList(iCleanupList);
+	__NK_ASSERT_DEBUG(CheckFreeList());
+	}
+
+
+
+TBool PageTableAllocator::TSubAllocator::IsCleanupRequired()
+	{
+	return iFreeCount>=iReserveCount+KPtClusterSize && !iCleanupList.IsEmpty();
+	}
+
+
+#ifdef _DEBUG
+
+TBool PageTableAllocator::TSubAllocator::CheckFreeList()
+	{
+	TUint count = iFreeCount;
+
+	// count page tables in iCleanupList...
+	SDblQueLink* head = &iCleanupList.iA;
+	SDblQueLink* link = head;
+	for(;;)
+		{
+		link = link->iNext;
+		if(link==head)
+			break;
+		SPageTableInfo* pti = SPageTableInfo::FromFreeLink(link);
+		__NK_ASSERT_DEBUG(pti->IsFirstInPage());
+		__NK_ASSERT_DEBUG(pti->IsOnCleanupList());
+		if(count<(TUint)KPtClusterSize)
+			return false;
+		count -= KPtClusterSize;
+		}
+
+	// count page tables in iFreeList...	
+	head = &iFreeList.iA;
+	link = head;
+	while(count)
+		{
+		link = link->iNext;
+		if(link==head)
+			return false;
+
+		// check next free page table in page is linked in correct order...
+		SPageTableInfo* pti = SPageTableInfo::FromFreeLink(link);
+		SPageTableInfo* last = pti->LastInPage();
+		SPageTableInfo* next = pti;
+		while(next<last)
+			{
+			++next;
+			if(next->IsUnused())
+				{
+				__NK_ASSERT_DEBUG(pti->FreeLink().iNext==&next->FreeLink());
+				__NK_ASSERT_DEBUG(next->FreeLink().iPrev==&pti->FreeLink());
+				break;
+				}
+			}
+
+		--count;
+		}
+
+	return link->iNext==head;
+	}
+
+#endif
+
+
+
+//
+// Paged page table handling
+//
+
+TInt SPageTableInfo::ForcedFree()
+	{
+	__NK_ASSERT_DEBUG(PageTablesLockIsHeld());
+	__NK_ASSERT_DEBUG(MmuLock::IsHeld());
+	__NK_ASSERT_DEBUG(IsDemandPaged());
+
+	TUint type = iType;
+
+	if(type==EUnused)
+		return KErrNone;
+
+	__NK_ASSERT_DEBUG(iPermanenceCount==0);
+
+	// clear all PTEs in page table...
+	TPte* pt = PageTable();
+	memclr(pt,KPageTableSize);
+	__e32_memory_barrier(); // make sure all CPUs read zeros from pt so forcing a page-in (rather than a rejuvenate) if accessed
+	iPageCount = 0;
+
+	if(type==ECoarseMapping)
+		{
+		TRACE2(("SPageTableInfo::ForcedFree() coarse 0x%08x 0x%x %d",iCoarse.iMemoryObject,iCoarse.iChunkIndex,iCoarse.iPteType));
+		// mustn't release MmuLock between clearing page table and calling this
+		// (otherwise page table may get updated before its actually removed from
+		// the memory object)...
+		iCoarse.iMemoryObject->StealPageTable(iCoarse.iChunkIndex,iCoarse.iPteType);
+		}
+	else if(type==EFineMapping)
+		{
+		// need to remove page table from address spaces's page directory...
+		TLinAddr addr = iFine.iLinAddrAndOsAsid;
+		TUint osAsid = addr&KPageMask;
+		TPde* pPde = Mmu::PageDirectoryEntry(osAsid,addr);
+
+		TRACE2(("SPageTableInfo::ForcedFree() fine %d 0x%08x",osAsid,addr&~KPageMask));
+
+		TPde pde = KPdeUnallocatedEntry;
+		TRACE2(("!PDE %x=%x",pPde,pde));
+		*pPde = pde;
+		SinglePdeUpdated(pPde);
+		}
+	else
+		{
+		// invalid type...
+		__NK_ASSERT_DEBUG(0);
+		return KErrNotSupported;
+		}
+
+	MmuLock::Unlock();
+
+	// make sure page table updates visible to MMU...
+	CacheMaintenance::MultiplePtesUpdated((TLinAddr)pt,KPageTableSize);
+	InvalidateTLB();
+
+	// free the page table back to the allocator,
+	// this will also remove any IPC alias using it...
+	__NK_ASSERT_DEBUG(iPageCount==0); // should still be unused
+	::PageTables.Free(pt);
+
+	MmuLock::Lock();
+
+	return KErrNone;
+	}
+
+
+TInt PageTableAllocator::StealPage(SPageInfo* aPageInfo)
+	{
+	TRACE2(("PageTableAllocator::StealPage(0x%08x)",aPageInfo));
+	__NK_ASSERT_DEBUG(LockIsHeld()); // only works if PageTableAllocator lock is the RamAllocLock
+	__NK_ASSERT_DEBUG(MmuLock::IsHeld());
+
+	if (aPageInfo->Owner() == iPageTableInfoMemory)
+		return StealPageTableInfo(aPageInfo);
+
+	__UNLOCK_GUARD_START(MmuLock);
+
+	// This must be a page table page so steal it.
+	__NK_ASSERT_ALWAYS(aPageInfo->Owner()==iPageTableMemory);
+	TUint ptPageIndex = aPageInfo->Index();
+	SPageTableInfo* pti = (SPageTableInfo*)KPageTableInfoBase+ptPageIndex*KPtClusterSize;
+
+	aPageInfo->SetModifier(&pti);
+	__UNLOCK_GUARD_END(MmuLock);
+
+	// forcibly free each page table in the page...
+	TInt r;
+	do
+		{// Check for pinning, ForcedFree() releases MmuLock so must check for
+		// each page table.
+		if (aPageInfo->PagedState() == SPageInfo::EPagedPinned)
+			{// The page table page is pinned so can't steal it.
+			r = KErrInUse;
+			break;
+			}
+		r = pti->ForcedFree();
+		if(r!=KErrNone)
+			break;
+		if(aPageInfo->CheckModified(&pti))
+			{
+			r = KErrInUse;
+			break;
+			}
+		}
+	while(!(++pti)->IsFirstInPage());
+	pti -= KPtClusterSize; // restore pti back to first page table
+
+	if(r==KErrNone)
+		{
+		MmuLock::Unlock();
+		if(!pti->IsOnCleanupList())
+			{
+			// the page might not already be on the cleanup list in the case where
+			// it was previously freed whilst it was pinned.
+			// In this case, a later unpinning would have put it back into the paging live
+			// list from where it is now subsequently being stolen...
+			iPagedAllocator.MoveToCleanup(pti);
+			}
+		// free the page from allocator so it ends up back in the paging pool as a free page...
+		while(FreeReserve(iPagedAllocator))
+			{}
+		// return an 'error' to indicate page has not been stolen.
+		// We have however achieved the main aim of making the page 'free' and
+		// it will be available if page stealing attempts to steal the page again...
+		r = KErrCompletion;
+		MmuLock::Lock();
+		}
+
+	__NK_ASSERT_DEBUG(MmuLock::IsHeld());
+	TRACE2(("PageTableAllocator::StealPage returns %d",r));
+	return r;
+	}
+
+
+TInt PageTableAllocator::StealPageTableInfo(SPageInfo* aPageInfo)
+	{
+	// Need to steal every page table for every page table info in this page.
+	// This page can't be modified or removed as we hold the lock, however
+	// the page table pages being freed may be rejuvenated and therefore their 
+	// SPageInfos may be marked as modified.
+	TInt r = KErrNone;
+	TUint ptiOffset = aPageInfo->Index() * KPageTableInfosPerPage;
+	SPageTableInfo* ptiBase = (SPageTableInfo*)KPageTableInfoBase + ptiOffset;
+	SPageTableInfo* ptiEnd = ptiBase + KPageTableInfosPerPage;
+	TUint flash = 0;
+	for (SPageTableInfo* pti = ptiBase; pti < ptiEnd;)
+		{// Free each page table cluster that is allocated.
+		if (pti->IsPtClusterAllocated())
+			{
+			TPhysAddr ptPhysAddr = Mmu::LinearToPhysical((TLinAddr)pti->PageTable());
+			SPageInfo* ptSPageInfo = SPageInfo::FromPhysAddr(ptPhysAddr);
+			ptSPageInfo->SetModifier(&flash);
+			do 
+				{
+				__NK_ASSERT_DEBUG(pti->IsPtClusterAllocated());
+				if (aPageInfo->PagedState() == SPageInfo::EPagedPinned || 
+					ptSPageInfo->PagedState() == SPageInfo::EPagedPinned)
+					{// The page table or page table info is pinned so can't steal info page.
+					r = KErrInUse;
+					break;
+					}
+				r = pti->ForcedFree();
+				if(r!=KErrNone)
+					break;
+				if(ptSPageInfo->CheckModified(&flash))
+					{// The page table page has been rejunvenated so can't steal it.
+					r = KErrInUse;
+					break;
+					}
+				}
+			while (!(++pti)->IsFirstInPage());
+			if (r != KErrNone)
+				break;
+			SPageTableInfo* ptiTmp = pti - KPtClusterSize;
+			MmuLock::Unlock();
+			if(!ptiTmp->IsOnCleanupList())
+				{
+				// the page might not already be on the cleanup list in the case where
+				// it was previously freed whilst it was pinned.
+				// In this case, a later unpinning would have put it back into the paging live
+				// list from where it is now subsequently being stolen...
+				iPagedAllocator.MoveToCleanup(ptiTmp);
+				}
+			MmuLock::Lock();
+			flash = 0;		// The MmuLock has been flashed at least once.
+			}
+		else
+			{// Move onto the next cluster this page of page table infos refers to.
+			__NK_ASSERT_DEBUG(pti->IsFirstInPage());
+			pti += KPtClusterSize;
+			MmuLock::Flash(flash,KMaxPageInfoUpdatesInOneGo);
+			}
+		}
+	// free the pages discarded from allocator so they end up back in the paging pool as free pages...
+	MmuLock::Unlock();
+	while(FreeReserve(iPagedAllocator))
+		{}
+	if (r == KErrNone)
+		r = KErrCompletion;	// The pager needs to remove the page from the live list.
+	MmuLock::Lock();
+	return r;
+	}
+
+
+TInt PageTableAllocator::MovePage(DMemoryObject* aMemory, SPageInfo* aOldPageInfo, 
+									TUint aBlockZoneId, TBool aBlockRest)
+	{
+	// We don't move page table or page table info pages, however, if this page 
+	// is demand paged then we may be able to discard it.
+	MmuLock::Lock();
+	if (!(iPtPageAllocator.IsDemandPaged(aOldPageInfo)))
+		{
+		MmuLock::Unlock();
+		return KErrNotSupported;
+		}
+	if (aOldPageInfo->PagedState() == SPageInfo::EPagedPinned)
+		{// The page is pinned so don't attempt to discard it as pinned pages 
+		// can't be discarded.  Also, the pager will invoke this method again.
+		MmuLock::Unlock();
+		return KErrInUse;
+		}
+	// Let the pager discard the page as it controls the size of the live list.
+	// If the size of the live list allows then eventually 
+	// PageTableAllocator::StealPage() will be invoked on this page.
+	return ThePager.DiscardPage(aOldPageInfo, aBlockZoneId, aBlockRest);
+	}
+
+
+void PageTableAllocator::PinPageTable(TPte* aPageTable, TPinArgs& aPinArgs)
+	{
+	__NK_ASSERT_DEBUG(MmuLock::IsHeld());
+	__NK_ASSERT_DEBUG(SPageTableInfo::FromPtPtr(aPageTable)->IsDemandPaged());
+	__NK_ASSERT_DEBUG(!SPageTableInfo::FromPtPtr(aPageTable)->IsUnused());
+	__NK_ASSERT_DEBUG(aPinArgs.HaveSufficientPages(KNumPagesToPinOnePageTable));
+
+	// pin page with page table in...
+	TPhysAddr pagePhys = Mmu::PageTablePhysAddr(aPageTable);
+	SPageInfo* pi = SPageInfo::FromPhysAddr(pagePhys);
+	ThePager.Pin(pi,aPinArgs);
+
+	// pin page with page table info in...
+	SPageTableInfo* pti = SPageTableInfo::FromPtPtr(aPageTable);
+	pagePhys = Mmu::UncheckedLinearToPhysical((TLinAddr)pti,KKernelOsAsid);
+	pi = SPageInfo::FromPhysAddr(pagePhys);
+	ThePager.Pin(pi,aPinArgs);
+	}
+
+
+void PageTableAllocator::UnpinPageTable(TPte* aPageTable, TPinArgs& aPinArgs)
+	{
+	// unpin page with page table info in...
+	SPageTableInfo* pti = SPageTableInfo::FromPtPtr(aPageTable);
+	TPhysAddr pagePhys = Mmu::UncheckedLinearToPhysical((TLinAddr)pti,KKernelOsAsid);
+	SPageInfo* pi = SPageInfo::FromPhysAddr(pagePhys);
+	ThePager.Unpin(pi,aPinArgs);
+
+	// unpin page with page table in...
+	pagePhys = Mmu::PageTablePhysAddr(aPageTable);
+	pi = SPageInfo::FromPhysAddr(pagePhys);
+	ThePager.Unpin(pi,aPinArgs);
+	}
+
+
+#ifdef _DEBUG
+TBool IsPageTableUnpagedRemoveAllowed(SPageInfo* aPageInfo)
+		{ return ::PageTables.IsPageTableUnpagedRemoveAllowed(aPageInfo); }
+
+TBool PageTableAllocator::IsPageTableUnpagedRemoveAllowed(SPageInfo* aPageInfo)
+	{
+	if (aPageInfo->Owner() == iPageTableInfoMemory)
+		{// Page table info pages are never added to the live list but can be
+		// stolen via DPager::StealPage()
+		return ETrue;
+		}
+
+	if (aPageInfo->Owner() == iPageTableMemory)
+		{// Page table pages are added to the live list but only after the page they 
+		// map has been paged in. Therefore, a pde can reference a pte before it has been
+		// added to the live list so allow this but for uninitialised page table pages only.
+		TUint ptPageIndex = aPageInfo->Index();
+		SPageTableInfo* pti = (SPageTableInfo*)KPageTableInfoBase+ptPageIndex*KPtClusterSize;
+		do
+			{
+			if (!pti->IsUnused())
+				{
+				TPte* pte = pti->PageTable();
+				TPte* pteEnd = pte + (KPageTableSize/sizeof(TPte));
+				while (pte < pteEnd)
+					if (*pte++ != KPteUnallocatedEntry)
+						return EFalse;
+				}
+			}
+		while(!(++pti)->IsFirstInPage());
+		return ETrue;
+		}
+	return EFalse;
+	}
+#endif
+
+
+//
+// Cleanup
+//
+
+void PageTableAllocator::CleanupTrampoline(TAny* aSelf)
+	{
+	((PageTableAllocator*)aSelf)->Cleanup();
+	}
+
+
+void PageTableAllocator::Cleanup()
+	{
+	// free any surplus pages...
+	Lock();
+	while(FreeReserve(iPagedAllocator) || FreeReserve(iUnpagedAllocator))
+		{}
+	Unlock();
+	}