--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/kerneltest/e32test/benchmark/bm_main.cpp Mon Oct 19 15:55:17 2009 +0100
@@ -0,0 +1,650 @@
+// Copyright (c) 2002-2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the License "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+// Overview:
+// Test and benchmark kernel-side utility operations
+// API Information:
+// RBusLogicalChannel
+// Details:
+// - Create a list of benchmark modules and start running them one by one;
+// each module contains a set of measurement units, each unit runs for a fixed
+// amount of time in a series of iterations; the results, minimum, maximum and
+// average times are displayed on the screen;
+// The tests use a high resolution timer implemented kernel side in a device
+// driver.
+// - The test contains the following benchmark modules:
+// - Real-time latency module measures:
+// - interrupt latency by calculating the time taken from when an
+// interrupt is generated until the ISR starts
+// - kernel thread latency by calculating the time taken from an ISR
+// scheduling a DFC to signal the kernel thread until the kernel thread
+// starts running
+// - kernel thread latency as above while a CPU intensive low priority
+// user thread runs at the same time
+// - user thread latency by calculating the time taken from an ISR
+// scheduling a DFC to signal the user thread until the user thread
+// starts running
+// - user thread latency as above while a CPU intensive low priority
+// user thread runs at the same time
+// - NTimer period jitter by calculating the actual period as the delta
+// between two consecutive NTimer callbacks that store the current time;
+// the jitter is the difference between the actual period and a theoretical
+// period.
+// - timer overhead by calculating the delta of time between two consecutive
+// timestamps requested from the high precision timer implemented in the
+// device driver; the calls are made from kernel side code
+// - Overhead module measures:
+// - timer overhead by calculating the delta of time between two consecutive
+// timestamps requested from the high precision timer implemented in the
+// device driver; the calls are made from user side code
+// - Synchronization module measures:
+// - mutex passing, local mutex contention, remote mutex contention,
+// local semaphore latency, remote semaphore latency,
+// local thread semaphore latency, remote thread semaphore latency.
+// - Client-server framework module measures:
+// - For local high priority, local low priority, remote high priority
+// and remote low priority: connection request latency, connection
+// reply latency, request latency, request response time, reply latency.
+// - Threads modules measures:
+// - Thread creation latency, thread creation suicide, thread suicide,
+// thread killing, setting per thread data, getting per thread data.
+// - Properties module measures:
+// - Local int notification latency, remote int notification latency,
+// local byte(1) notification latency, remote byte(1) notification latency,
+// local byte(8) notification latency, remote byte(8) notification latency,
+// local byte(512) notification latency, remote byte(512) notification latency,
+// int set overhead, byte(1) set overhead, byte(8) set overhead, byte(512) set
+// overhead, int get overhead, byte(1) get overhead, byte(8) get overhead,
+// byte(512) get overhead.
+// Platforms/Drives/Compatibility:
+// All.
+// Assumptions/Requirement/Pre-requisites:
+// Failures and causes:
+// Base Port information:
+//
+//
+
+#include "bm_suite.h"
+#include <e32svr.h>
+#include <u32hal.h>
+
+RTest test(_L("Benchmark Suite"));
+
+//
+// The default value of the time allocated for one benchmark program.
+//
+static TInt KBMSecondsPerProgram = 30;
+//
+// The initial number of iterations to estimate the acctual number of iteration.
+//
+static TInt KBMCalibrationIter = 64;
+
+//
+// Global handle to high-resolution timer.
+//
+RBMTimer bmTimer;
+//
+// The head of the benchmark programs' list
+//
+BMProgram* bmSuite;
+//
+// Global handle to the kernel side benchmark utilty API
+//
+static RBMDriver bmDriver;
+
+TBMResult::TBMResult(const TDesC& aName) : iName(aName)
+ {
+ Reset();
+ }
+
+void TBMResult::Reset()
+ {
+ ::bmTimer.Period(&iMinTicks);
+ iMaxTicks = 0;
+ iCumulatedTicks = 0;
+ iCumulatedIterations = 0;
+ iIterations = 0;
+ iMin = 0;
+ iMax = 0;
+ iAverage = 0;
+ }
+
+void TBMResult::Reset(const TDesC& aName)
+ {
+ Reset();
+ iName.Set(aName);
+ }
+
+void TBMResult::Cumulate(TBMTicks aTicks)
+{
+ if (aTicks < iMinTicks) iMinTicks = aTicks;
+ if (iMaxTicks < aTicks) iMaxTicks = aTicks;
+
+ iCumulatedTicks += aTicks;
+ if (iCumulatedIterations < KHeadSize)
+ {
+ iHeadTicks[iCumulatedIterations] = aTicks;
+ }
+ // use the array as a circular buufer to store last KTailSize results
+ // (would not really know which one was actually the last)
+ iTailTicks[iCumulatedIterations % KTailSize] = aTicks;
+ ++iCumulatedIterations;
+
+}
+
+
+void TBMResult::Cumulate(TBMTicks aTicks, TBMUInt64 aIter)
+{
+ iCumulatedIterations += aIter;
+ iCumulatedTicks += aTicks;
+}
+
+void TBMResult::Update()
+{
+ if (iCumulatedIterations == 0) return;
+ iIterations = iCumulatedIterations;
+ ::bmTimer.TicksToNs(&iMinTicks, &iMin);
+ ::bmTimer.TicksToNs(&iMaxTicks, &iMax);
+ TBMTicks averageTicks = iCumulatedTicks/TBMUInt64(iCumulatedIterations);
+ ::bmTimer.TicksToNs(&averageTicks, &iAverage);
+ TInt i;
+ for (i = 0; i < KHeadSize; ++i)
+ {
+ ::bmTimer.TicksToNs(&iHeadTicks[i], &iHead[i]);
+ }
+ for (i = 0; i < KTailSize; ++i)
+ {
+ ::bmTimer.TicksToNs(&iTailTicks[i], &iTail[i]);
+ }
+ }
+
+inline TBMNs TTimeIntervalMicroSecondsToTBMNs(TTimeIntervalMicroSeconds us)
+ {
+ return BMUsToNs(*(TBMUInt64*)&us);
+ }
+
+TBMNs TBMTimeInterval::iStampPeriodNs;
+TBMTicks TBMTimeInterval::iStampPeriod;
+
+void TBMTimeInterval::Init()
+ {
+ ::bmTimer.Period(&iStampPeriod);
+ ::bmTimer.TicksToNs(&iStampPeriod, &iStampPeriodNs);
+}
+
+void TBMTimeInterval::Begin()
+ {
+ //
+ // Order is important: read first low-precision timer, then the high-precision one.
+ // Therefore, two high-precision timer reads will be accounted in the low-precision interval,
+ // that's better than the opposite.
+ //
+ iTime.HomeTime();
+ ::bmTimer.Stamp(&iStamp);
+ }
+
+TBMNs TBMTimeInterval::EndNs()
+ {
+ //
+ // Now, in the reverse order
+ //
+ TBMTicks stamp;
+ ::bmTimer.Stamp(&stamp);
+ TTime time;
+ time.HomeTime();
+ TBMNs ns = TTimeIntervalMicroSecondsToTBMNs(time.MicroSecondsFrom(iTime));
+ //
+ // If the interval fits in the high-precision timer period we can use it;
+ // otherwise, use the low-precision timer.
+ //
+ if (ns < iStampPeriodNs)
+ {
+ stamp = TBMTicksDelta(iStamp, stamp);
+ ::bmTimer.TicksToNs(&stamp, &ns);
+ }
+ return ns;
+ }
+
+TBMTicks TBMTimeInterval::End()
+ {
+ //
+ // The same as the previous one but returns ticks
+ //
+
+ TBMTicks stamp;
+ ::bmTimer.Stamp(&stamp);
+ TTime time;
+ time.HomeTime();
+ TBMNs ns = TTimeIntervalMicroSecondsToTBMNs(time.MicroSecondsFrom(iTime));
+ if (ns < iStampPeriodNs)
+ {
+ stamp = TBMTicksDelta(iStamp, stamp);
+ }
+ else
+ {
+ // multiply first - privileging precision to improbable overflow.
+ stamp = (ns * iStampPeriod) / iStampPeriodNs;
+ }
+ return stamp;
+ }
+
+TInt BMProgram::SetAbsPriority(RThread aThread, TInt aNewPrio)
+ {
+ TInt aOldPrio=0;
+ TInt r = ::bmDriver.SetAbsPriority(aThread, aNewPrio, &aOldPrio);
+ BM_ERROR(r, r == KErrNone);
+ return aOldPrio;
+ }
+
+const TInt TBMSpawnArgs::KMagic = 0xdeadbeef;
+
+TBMSpawnArgs::TBMSpawnArgs(TThreadFunction aChildFunc, TInt aChildPrio, TBool aRemote, TInt aSize)
+ {
+ iMagic = KMagic;
+ iParentId = RThread().Id();
+ // get a thread handle meaningful in the context of any other thread.
+ // (RThread() doesn't work since contextual!)
+ TInt r = iParent.Open(iParentId);
+ BM_ERROR(r, r == KErrNone);
+ iRemote = aRemote;
+ iChildFunc = aChildFunc;
+ iChildPrio = aChildPrio;
+ iSize = aSize;
+ }
+
+TBMSpawnArgs::~TBMSpawnArgs()
+ {
+ iParent.Close();
+ }
+
+//
+// An object of CLocalChild class represents a "child" thread created by its "parent" thread
+// in the parent's process through BmProgram::SpawnChild() interface.
+//
+// CLocalChild class is typically used (invoked) by the parent's thread.
+//
+class CLocalChild : public CBase, public MBMChild
+ {
+private:
+ BMProgram* iProg;
+public:
+ RThread iChild;
+ TRequestStatus iExitStatus;
+
+ CLocalChild(BMProgram* aProg)
+ {
+ iProg = aProg;
+ }
+
+ virtual void WaitChildExit();
+ virtual void Kill();
+ };
+
+void CLocalChild::Kill()
+ {
+ iChild.Kill(KErrCancel);
+ }
+
+void CLocalChild::WaitChildExit()
+ {
+ User::WaitForRequest(iExitStatus);
+ CLOSE_AND_WAIT(iChild);
+ //
+ // Lower the parent thread prioirty and then restore the current one
+ // to make sure that the kernel-side thread destruction DFC had a chance to complete.
+ //
+ TInt prio = BMProgram::SetAbsPriority(RThread(), iProg->iOrigAbsPriority);
+ BMProgram::SetAbsPriority(RThread(), prio);
+ delete this;
+ }
+
+//
+// Local (i.e. sharing the parent's process) child's entry point
+//
+TInt LocalChildEntry(void* ptr)
+ {
+ TBMSpawnArgs* args = (TBMSpawnArgs*) ptr;
+ args->iChildOrigPriority = BMProgram::SetAbsPriority(RThread(), args->iChildPrio);
+ return args->iChildFunc(args);
+ }
+
+MBMChild* BMProgram::SpawnLocalChild(TBMSpawnArgs* args)
+ {
+ CLocalChild* child = new CLocalChild(this);
+ BM_ERROR(KErrNoMemory, child);
+ TInt r = child->iChild.Create(KNullDesC, ::LocalChildEntry, 0x2000, NULL, args);
+ BM_ERROR(r, r == KErrNone);
+ child->iChild.Logon(child->iExitStatus);
+ child->iChild.Resume();
+ return child;
+ }
+
+//
+// An object of CRemoteChild class represents a "child" thread created by its "parent" thread
+// as a separate process through BmProgram::SpawnChild() interface.
+//
+// CRemoteChild class is typically used (invoked) by the parent's thread.
+//
+class CRemoteChild : public CBase, public MBMChild
+ {
+private:
+ BMProgram* iProg;
+public:
+ RProcess iChild;
+ TRequestStatus iExitStatus;
+
+ CRemoteChild(BMProgram* aProg)
+ {
+ iProg = aProg;
+ }
+
+ virtual void WaitChildExit();
+ virtual void Kill();
+ };
+
+void CRemoteChild::Kill()
+ {
+ iChild.Kill(KErrCancel);
+ }
+
+void CRemoteChild::WaitChildExit()
+ {
+ User::WaitForRequest(iExitStatus);
+ CLOSE_AND_WAIT(iChild);
+ //
+ // Lower the parent thread prioirty and then restore the current one
+ // to make sure that the kernel-side thread destruction DFC had a chance to complete.
+ //
+ TInt prio = BMProgram::SetAbsPriority(RThread(), iProg->iOrigAbsPriority);
+ BMProgram::SetAbsPriority(RThread(), prio);
+ delete this;
+ }
+
+//
+// Remote (i.e. running in its own process) child's entry point.
+// Note that the child's process entry point is still E32Main() process (see below)
+//
+TInt ChildMain(TBMSpawnArgs* args)
+ {
+ args->iChildOrigPriority = BMProgram::SetAbsPriority(RThread(), args->iChildPrio);
+ // get a handle to the parent's thread in the child's context.
+ TInt r = args->iParent.Open(args->iParentId);
+ BM_ERROR(r, r == KErrNone);
+ return args->iChildFunc(args);
+ }
+
+MBMChild* BMProgram::SpawnRemoteChild(TBMSpawnArgs* args)
+ {
+ CRemoteChild* child = new CRemoteChild(this);
+ BM_ERROR(KErrNoMemory, child);
+ //
+ // Create the child process and pass args as a UNICODE command line.
+ // (we suppose that the args size is multiple of sizeof(TUint16))
+ //
+ BM_ASSERT((args->iSize % sizeof(TUint16)) == 0);
+ TInt r = child->iChild.Create(RProcess().FileName(), TPtrC((TUint16*) args, args->iSize/sizeof(TUint16)));
+ BM_ERROR(r, (r == KErrNone) );
+ child->iChild.Logon(child->iExitStatus);
+ child->iChild.Resume();
+ return child;
+ }
+
+MBMChild* BMProgram::SpawnChild(TBMSpawnArgs* args)
+ {
+ MBMChild* child;
+ if (args->iRemote)
+ {
+ child = SpawnRemoteChild(args);
+ }
+ else
+ {
+ child = SpawnLocalChild(args);
+ }
+ return child;
+ }
+
+//
+// The benchmark-suite entry point.
+//
+GLDEF_C TInt E32Main()
+ {
+ test.Title();
+
+ TInt r = UserSvr::HalFunction(EHalGroupKernel, EKernelHalNumLogicalCpus, 0, 0);
+ if (r != 1)
+ {
+ test.Printf(_L("%d CPUs detected ... test not run\n"), r);
+ return r;
+ }
+
+ AddProperty();
+ AddThread();
+ AddIpc();
+ AddSync();
+ AddOverhead();
+ AddrtLatency();
+
+ r = User::LoadPhysicalDevice(KBMPddFileName);
+ BM_ERROR(r, (r == KErrNone) || (r == KErrAlreadyExists));
+
+ r = User::LoadLogicalDevice(KBMLddFileName);
+ BM_ERROR(r, (r == KErrNone) || (r == KErrAlreadyExists));
+
+ r = ::bmTimer.Open();
+ BM_ERROR(r, (r == KErrNone));
+
+ r = ::bmDriver.Open();
+ BM_ERROR(r, (r == KErrNone));
+
+ TBMTimeInterval::Init();
+
+ TInt seconds = KBMSecondsPerProgram;
+
+ TInt len = User::CommandLineLength();
+ if (len)
+ {
+ //
+ // Copy the command line in a buffer
+ //
+ TInt size = len * sizeof(TUint16);
+ HBufC8* hb = HBufC8::NewMax(size);
+ BM_ERROR(KErrNoMemory, hb);
+ TPtr cmd((TUint16*) hb->Ptr(), len);
+ User::CommandLine(cmd);
+ //
+ // Check for the TBMSpawnArgs magic number.
+ //
+ TBMSpawnArgs* args = (TBMSpawnArgs*) hb->Ptr();
+ if (args->iMagic == TBMSpawnArgs::KMagic)
+ {
+ //
+ // This is a child process - call it's entry point
+ //
+ return ::ChildMain(args);
+ }
+ else
+ {
+ //
+ // A real command line - the time (in seconds) for each benchmark program.
+ //
+ TLex l(cmd);
+ r = l.Val(seconds);
+ if (r != KErrNone)
+ {
+ test.Printf(_L("Usage: bm_suite <seconds>\n"));
+ BM_ERROR(r, 0);
+ }
+ }
+ delete hb;
+ }
+
+ {
+ TBMTicks ticks = 1;
+ TBMNs ns;
+ ::bmTimer.TicksToNs(&ticks, &ns);
+ test.Printf(_L("High resolution timer tick %dns\n"), TInt(ns));
+ test.Printf(_L("High resolution timer period %dms\n"), BMNsToMs(TBMTimeInterval::iStampPeriodNs));
+ }
+
+ test.Start(_L("Performance Benchmark Suite"));
+
+ BMProgram* prog = ::bmSuite;
+ while (prog) {
+ //
+ // For each program from the benchmark-suite's list
+ //
+
+ //
+ // Remember the number of open handles. Just for a sanity check ....
+ //
+ TInt start_thc, start_phc;
+ RThread().HandleCount(start_phc, start_thc);
+
+ test.Printf(_L("%S\n"), &prog->Name());
+
+ //
+ // A benchmark-suite's thread can run at any of three possible absolute priorities:
+ // KBMPriorityLow, KBMPriorityMid and KBMPriorityHigh.
+ // The main thread starts individual benchmark programs at KBMPriorityMid
+ //
+ prog->iOrigAbsPriority = BMProgram::SetAbsPriority(RThread(), KBMPriorityMid);
+
+ //
+ // First of all figure out how many iteration would be required to run this program
+ // for the given number of seconds.
+ //
+ TInt count;
+ TBMNs ns = 0;
+ TBMUInt64 iter = KBMCalibrationIter;
+ for (;;)
+ {
+ TBMTimeInterval ti;
+ ti.Begin();
+ prog->Run(iter, &count);
+ ns = ti.EndNs();
+ // run at least 100ms (otherwise, could be too much impricise ...)
+ if (ns > BMMsToNs(100)) break;
+ iter *= 2;
+ }
+ test.Printf(_L("%d iterations in %dms\n"), TInt(iter), BMNsToMs(ns));
+ iter = (BMSecondsToNs(seconds) * iter) / ns;
+ test.Printf(_L("Go for %d iterations ...\n"), TInt(iter));
+
+ //
+ // Now the real run ...
+ //
+ TBMResult* results = prog->Run(iter, &count);
+
+ // Restore the original prioirty
+ BMProgram::SetAbsPriority(RThread(), prog->iOrigAbsPriority);
+
+ //
+ // Now print out the results
+ //
+ for (TInt i = 0; i < count; ++i)
+ {
+ if (results[i].iMax)
+ {
+ test.Printf(_L("%S. %d iterations; Avr: %dns; Min: %dns; Max: %dns\n"),
+ &results[i].iName, TInt(results[i].iIterations),
+ TInt(results[i].iAverage), TInt(results[i].iMin), TInt(results[i].iMax));
+
+ TInt j;
+ BM_ASSERT((TBMResult::KHeadSize % 4) == 0);
+ test.Printf(_L("Head:"));
+ for (j = 0; j < TBMResult::KHeadSize; j += 4)
+ {
+ test.Printf(_L(" %d %d %d %d "),
+ TInt(results[i].iHead[j]), TInt(results[i].iHead[j+1]),
+ TInt(results[i].iHead[j+2]), TInt(results[i].iHead[j+3]));
+ }
+ test.Printf(_L("\n"));
+
+ BM_ASSERT((TBMResult::KTailSize % 4) == 0);
+ test.Printf(_L("Tail:"));
+ for (j = 0; j < TBMResult::KTailSize; j += 4)
+ {
+ test.Printf(_L(" %d %d %d %d "),
+ TInt(results[i].iTail[j]), TInt(results[i].iTail[j+1]),
+ TInt(results[i].iTail[j+2]), TInt(results[i].iTail[j+3]));
+ }
+ test.Printf(_L("\n"));
+ }
+ else
+ {
+ test.Printf(_L("%S. %d iterations; Avr: %dns\n"),
+ &results[i].iName, TInt(results[i].iIterations), TInt(results[i].iAverage));
+ }
+
+ }
+
+ //
+ // Sanity check for open handles
+ //
+ TInt end_thc, end_phc;
+ RThread().HandleCount(end_phc, end_thc);
+ BM_ASSERT(start_thc == end_thc);
+ BM_ASSERT(start_phc == end_phc);
+ // and also for pending requests ...
+ BM_ASSERT(RThread().RequestCount() == 0);
+
+ prog = prog->Next();
+//
+// This can be used to run forever ...
+//
+// if (prog == NULL)
+// prog = ::bmSuite;
+//
+ }
+
+ test.End();
+
+ ::bmDriver.Close();
+ ::bmTimer.Close();
+ return 0;
+ }
+
+
+void bm_assert_failed(char* aCond, char* aFile, TInt aLine)
+ {
+ TPtrC8 fd((TUint8*)aFile);
+ TPtrC8 cd((TUint8*)aCond);
+
+ HBufC* fhb = HBufC::NewMax(fd.Length());
+ test(fhb != 0);
+ HBufC* chb = HBufC::NewMax(cd.Length());
+ test(chb != 0);
+
+ fhb->Des().Copy(fd);
+ chb->Des().Copy(cd);
+
+ test.Printf(_L("Assertion %S failed; File: %S; Line %d;\n"), chb, fhb, aLine);
+ test(0);
+ }
+
+void bm_error_detected(TInt aError, char* aCond, char* aFile, TInt aLine)
+ {
+ TPtrC8 fd((TUint8*)aFile);
+ TPtrC8 cd((TUint8*)aCond);
+
+ HBufC* fhb = HBufC::NewMax(fd.Length());
+ test(fhb != 0);
+ HBufC* chb = HBufC::NewMax(cd.Length());
+ test(chb != 0);
+
+ fhb->Des().Copy(fd);
+ chb->Des().Copy(cd);
+
+ test.Printf(_L("Error: %d; Cond: %S; File: %S; Line %d;\n"), aError, chb, fhb, aLine);
+ test(0);
+ }