--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/kerneltest/e32test/buffer/t_huff.cpp Mon Oct 19 15:55:17 2009 +0100
@@ -0,0 +1,995 @@
+// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the License "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+// e32test/buffer/t_huff.cpp
+// Overview:
+// Test methods of the Huffman, TBitInput and TBitOutput classes.
+// API Information:
+// Huffman, TBitInput, TBitOutput
+// Details:
+// - Test and verify the results of TBitInput bit reading:
+// - test and verify single bit reads, multiple bit reads and 32-bit reads
+// - test and verify single bit reads and multiple bit reads from a
+// fractured input.
+// - test and verify overrun reads
+// - Test and verify the results of TBitOutput bit writing:
+// - test and verify bitstream padding
+// - test and verify single bit and multiple bit writes
+// - test and verify overflow writes
+// - Test and verify the results of a Huffman decoder using Huffman class
+// static methods, TBitOutput and TBitInput objects.
+// - Test and verify the results of a Huffman generator for known distributions:
+// flat, power-of-2 and Fibonacci.
+// - Test and verify the results of a Huffman generator for random distributions:
+// - generate random frequency distributions and verify:
+// (a) the Huffman generator creates a mathematically 'optimal code'
+// (b) the canonical encoding is canonical
+// (c) the decoding tree correctly decodes each code
+// (d) the encoding can be correctly externalised and internalised
+// Platforms/Drives/Compatibility:
+// All
+// Assumptions/Requirement/Pre-requisites:
+// Failures and causes:
+// Base Port information:
+//
+//
+
+#include <e32test.h>
+#include <e32math.h>
+#include <e32huffman.h>
+
+RTest test(RProcess().FileName());
+
+const Uint64 KTestData=UI64LIT(0x6f1b09a7e8c523d4);
+const TUint8 KTestBuffer[] = {0x6f,0x1b,0x09,0xa7,0xe8,0xc5,0x23,0xd4};
+const TInt KTestBytes=sizeof(KTestBuffer);
+const TInt KTestBits=KTestBytes*8;
+
+// Input stream: bit and multi-bit read tests with exhsautive buffer reload testing
+
+typedef TBool (*TestFn)(TBitInput& aIn, Uint64 aBits, TInt aCount);
+
+class TAlignedBitInput : public TBitInput
+ {
+public:
+ TAlignedBitInput(const TUint8*,TInt,TInt);
+private:
+ void UnderflowL();
+private:
+ const TUint8* iRemainder;
+ TInt iCount;
+ };
+
+TAlignedBitInput::TAlignedBitInput(const TUint8* aPtr,TInt aCount,TInt aOffset)
+ :TBitInput(aPtr,32-aOffset,aOffset), iRemainder(aPtr+4), iCount(aOffset+aCount-32)
+ {}
+
+void TAlignedBitInput::UnderflowL()
+ {
+ if (!iRemainder)
+ User::Leave(KErrUnderflow);
+ else
+ {
+ Set(iRemainder,iCount);
+ iRemainder=0;
+ }
+ }
+
+class TSplitBitInput : public TBitInput
+ {
+public:
+ TSplitBitInput(const TUint8*,TInt,TInt,TInt);
+private:
+ void UnderflowL();
+private:
+ const TUint8* iBase;
+ TInt iBlockSize;
+ TInt iOffset;
+ TInt iAvail;
+ };
+
+TSplitBitInput::TSplitBitInput(const TUint8* aPtr,TInt aLength,TInt aOffset,TInt aSize)
+ :TBitInput(aPtr,aSize,aOffset), iBase(aPtr), iBlockSize(aSize), iOffset(aOffset+aSize), iAvail(aLength-aSize)
+ {}
+
+void TSplitBitInput::UnderflowL()
+ {
+ TInt len=Min(iBlockSize,iAvail);
+ if (len==0)
+ User::Leave(KErrUnderflow);
+ Set(iBase,len,iOffset);
+ iOffset+=len;
+ iAvail-=len;
+ }
+
+class TAlternateBitInput : public TBitInput
+ {
+public:
+ TAlternateBitInput(const TUint8*,TInt,TInt);
+private:
+ void UnderflowL();
+private:
+ const TUint8* iBase;
+ TInt iOffset;
+ TInt iAvail;
+ };
+
+TAlternateBitInput::TAlternateBitInput(const TUint8* aPtr,TInt aLength,TInt aOffset)
+ :TBitInput(aPtr,1,aOffset), iBase(aPtr), iOffset(aOffset+2), iAvail(aLength-2)
+ {}
+
+void TAlternateBitInput::UnderflowL()
+ {
+ if (iAvail<=0)
+ User::Leave(KErrUnderflow);
+ Set(iBase,1,iOffset);
+ iOffset+=2;
+ iAvail-=2;
+ }
+
+void TestReader(TBitInput& aIn, TestFn aFunc, Uint64 aBits, TInt aCount)
+ {
+ TBool eof=EFalse;
+ TRAPD(r,eof=aFunc(aIn,aBits,aCount));
+ test (r==KErrNone);
+ if (eof)
+ {
+ TRAP(r,aIn.ReadL());
+ test (r==KErrUnderflow);
+ }
+ }
+
+void TestBits(TInt aOffset, TInt aCount, TestFn aFunc)
+ {
+ Uint64 bits=KTestData;
+ if (aOffset)
+ bits<<=aOffset;
+ if (aCount<64)
+ bits&=~((Uint64(1)<<(64-aCount))-1);
+ // test with direct input
+ TBitInput in1(KTestBuffer,aCount,aOffset);
+ TestReader(in1,aFunc,bits,aCount);
+ // test with aligned input
+ if (aOffset<32 && aOffset+aCount>32)
+ {
+ TAlignedBitInput in2(KTestBuffer,aCount,aOffset);
+ TestReader(in2,aFunc,bits,aCount);
+ }
+ // test with blocked input
+ for (TInt block=aCount;--block>0;)
+ {
+ TSplitBitInput in3(KTestBuffer,aCount,aOffset,block);
+ TestReader(in3,aFunc,bits,aCount);
+ }
+ }
+
+void TestAlternateBits(TInt aOffset, TInt aCount, TestFn aFunc)
+ {
+ Uint64 bits=0;
+ TInt c=0;
+ for (TInt ix=aOffset;ix<aOffset+aCount;ix+=2)
+ {
+ if (KTestData<<ix>>63)
+ bits|=Uint64(1)<<(63-c);
+ ++c;
+ }
+ // test with alternate input
+ TAlternateBitInput in1(KTestBuffer,aCount,aOffset);
+ TestReader(in1,aFunc,bits,c);
+ }
+
+void PermBits(TestFn aFunc, TInt aMinCount=1, TInt aMaxCount=64)
+ {
+ for (TInt offset=0;offset<KTestBits;++offset)
+ for (TInt count=Min(KTestBits-offset,aMaxCount);count>=aMinCount;--count)
+ TestBits(offset,count,aFunc);
+ }
+
+void AlternateBits(TestFn aFunc, TInt aMinCount=1)
+ {
+ for (TInt offset=0;offset<KTestBits;++offset)
+ for (TInt count=KTestBits-offset;count>=aMinCount;--count)
+ TestAlternateBits(offset,count,aFunc);
+ }
+
+TBool SingleBitRead(TBitInput& aIn, Uint64 aBits, TInt aCount)
+ {
+ while (--aCount>=0)
+ {
+ test (aIn.ReadL() == (aBits>>63));
+ aBits<<=1;
+ }
+ return ETrue;
+ }
+
+TBool MultiBitRead(TBitInput& aIn, Uint64 aBits, TInt aCount)
+ {
+ TInt c=aCount/2;
+ TUint v=aIn.ReadL(c);
+ if (c==0)
+ test (v==0);
+ else
+ {
+ test (v==TUint(aBits>>(64-c)));
+ aBits<<=c;
+ }
+ c=aCount-c;
+ v=aIn.ReadL(c);
+ if (c==0)
+ test (v==0);
+ else
+ test (v==TUint(aBits>>(64-c)));
+ return ETrue;
+ }
+
+TBool LongShortRead(TBitInput& aIn, Uint64 aBits, TInt aCount)
+ {
+ TUint v=aIn.ReadL(32);
+ test (v==TUint(aBits>>32));
+ aBits<<=32;
+ TInt c=aCount-32;
+ v=aIn.ReadL(c);
+ if (c==0)
+ test (v==0);
+ else
+ test (v==TUint(aBits>>(64-c)));
+ return ETrue;
+ }
+
+TBool ShortLongRead(TBitInput& aIn, Uint64 aBits, TInt aCount)
+ {
+ TInt c=aCount-32;
+ TUint v=aIn.ReadL(c);
+ if (c==0)
+ test (v==0);
+ else
+ {
+ test (v==TUint(aBits>>(64-c)));
+ aBits<<=c;
+ }
+ v=aIn.ReadL(32);
+ test (v==TUint(aBits>>32));
+ return ETrue;
+ }
+
+TBool EofRead(TBitInput& aIn, Uint64, TInt aCount)
+ {
+ TRAPD(r,aIn.ReadL(aCount+1));
+ test(r==KErrUnderflow);
+ return EFalse;
+ }
+
+void TestBitReading()
+ {
+ test.Start(_L("Test single bit reads"));
+ PermBits(&SingleBitRead);
+ test.Next(_L("Test multi bit reads"));
+ PermBits(&MultiBitRead);
+ test.Next(_L("Test 32-bit reads"));
+ PermBits(&LongShortRead,32);
+ PermBits(&ShortLongRead,32);
+ test.Next(_L("Test single bit reads (fractured input)"));
+ AlternateBits(&SingleBitRead);
+ test.Next(_L("Test multi bit reads (fractured input)"));
+ AlternateBits(&MultiBitRead);
+ test.Next(_L("Test overrun reads"));
+ PermBits(&EofRead,1,31);
+ test.End();
+ }
+
+// Bit output testing (assumes bit input is correct)
+
+void TestPadding()
+ {
+ TUint8 buffer[4];
+ TBitOutput out(buffer,4);
+ test(out.Ptr()==buffer);
+ test(out.BufferedBits()==0);
+ out.PadL(0);
+ test(out.Ptr()==buffer);
+ test(out.BufferedBits()==0);
+ out.WriteL(0,0);
+ out.PadL(0);
+ test(out.Ptr()==buffer);
+ test(out.BufferedBits()==0);
+
+ TInt i;
+ for (i=1;i<=8;++i)
+ {
+ out.Set(buffer,4);
+ out.WriteL(0,i);
+ test(out.BufferedBits()==(i%8));
+ out.PadL(1);
+ test(out.BufferedBits()==0);
+ out.WriteL(0,i);
+ test(out.BufferedBits()==(i%8));
+ out.PadL(1);
+ test(out.BufferedBits()==0);
+ test (out.Ptr()==buffer+2);
+ test (buffer[0]==(0xff>>i));
+ test (buffer[1]==(0xff>>i));
+ }
+
+ for (i=1;i<=8;++i)
+ {
+ out.Set(buffer,4);
+ out.WriteL(0xff,i);
+ out.PadL(0);
+ test (out.Ptr()==buffer+1);
+ test (buffer[0]==(0xff^(0xff>>i)));
+ }
+ }
+
+void TestBitWrites()
+ {
+ TUint8 buffer[KTestBytes];
+ TBitOutput out(buffer,KTestBytes);
+ TBitInput in(KTestBuffer,KTestBits);
+ TInt i;
+ for (i=KTestBits;--i>=0;)
+ out.WriteL(in.ReadL(),1);
+ test (Mem::Compare(buffer,KTestBytes,KTestBuffer,KTestBytes)==0);
+
+ Mem::FillZ(buffer,KTestBytes);
+ out.Set(buffer,KTestBytes);
+ Uint64 bits=KTestData;
+ for (i=KTestBits;--i>=0;)
+ out.WriteL(TUint(bits>>i),1);
+ test (Mem::Compare(buffer,KTestBytes,KTestBuffer,KTestBytes)==0);
+ }
+
+void TestMultiBitWrites()
+ {
+ TInt i=0;
+ for (TInt j=0;j<32;++j)
+ for (TInt k=0;k<32;++k)
+ {
+ ++i;
+ if (i+j+k>KTestBits)
+ i=0;
+ TUint8 buffer[KTestBytes];
+ TBitInput in(KTestBuffer,KTestBits);
+ TBitOutput out(buffer,KTestBytes);
+ in.ReadL(i);
+ out.WriteL(in.ReadL(j),j);
+ out.WriteL(in.ReadL(k),k);
+ out.PadL(0);
+ const TUint8* p=out.Ptr();
+ test (p-buffer == (j+k+7)/8);
+ Uint64 v=0;
+ while (p>buffer)
+ v=(v>>8) | Uint64(*--p)<<56;
+ Uint64 res=KTestData;
+ if (i+j+k<KTestBits)
+ res>>=KTestBits-i-j-k;
+ if (j+k<KTestBits)
+ res<<=KTestBits-j-k;
+ test (v==res);
+ }
+ }
+
+void TestAlternatingWrites()
+ {
+ const TInt KBufferSize=(1+32)*32;
+ TUint8 buffer[(7+KBufferSize)/8];
+ TBitOutput out(buffer,sizeof(buffer));
+ TInt i;
+ for (i=0;i<=32;++i)
+ out.WriteL(i&1?0xffffffff:0,i);
+ while (--i>=0)
+ out.WriteL(i&1?0:0xffffffff,i);
+ out.PadL(0);
+ TBitInput in(buffer,KBufferSize);
+ for (i=0;i<=32;++i)
+ {
+ TUint v=in.ReadL(i);
+ if (i&1)
+ test (v == (1u<<i)-1u);
+ else
+ test (v == 0);
+ }
+ while (--i>=0)
+ {
+ TUint v=in.ReadL(i);
+ if (i&1)
+ test (v == 0);
+ else if (i==32)
+ test (v == 0xffffffffu);
+ else
+ test (v == (1u<<i)-1u);
+ }
+ }
+
+class TOverflowOutput : public TBitOutput
+ {
+public:
+ TOverflowOutput();
+private:
+ void OverflowL();
+private:
+ TUint8 iBuf[1];
+ TInt iIx;
+ };
+
+TOverflowOutput::TOverflowOutput()
+ :iIx(0)
+ {}
+
+void TOverflowOutput::OverflowL()
+ {
+ if (Ptr()!=0)
+ {
+ test (Ptr()-iBuf == 1);
+ test (iBuf[0] == KTestBuffer[iIx]);
+ if (++iIx==KTestBytes)
+ User::Leave(KErrOverflow);
+ }
+ Set(iBuf,1);
+ }
+
+void OverflowTestL(TBitOutput& out, TInt j)
+ {
+ for (;;) out.WriteL(0xffffffffu,j);
+ }
+
+void TestOverflow()
+ {
+ test.Start(_L("Test default constructed output"));
+ TBitOutput out;
+ TInt i;
+ for (i=1;i<=8;++i)
+ {
+ TRAPD(r,out.WriteL(1,1));
+ if (i<8)
+ {
+ test (out.BufferedBits() == i);
+ test (r == KErrNone);
+ }
+ else
+ test (r == KErrOverflow);
+ }
+
+ test.Next(_L("Test overflow does not overrun the buffer"));
+ i=0;
+ for (TInt j=1;j<=32;++j)
+ {
+ if (++i>KTestBytes)
+ i=1;
+ TUint8 buffer[KTestBytes+1];
+ Mem::FillZ(buffer,sizeof(buffer));
+ out.Set(buffer,i);
+ TRAPD(r,OverflowTestL(out,j));
+ test (r == KErrOverflow);
+ TInt k=0;
+ while (buffer[k]==0xff)
+ {
+ ++k;
+ test (k<TInt(sizeof(buffer)));
+ }
+ test (k <= i);
+ test ((i-k)*8 < j);
+ while (k<TInt(sizeof(buffer)))
+ {
+ test (buffer[k]==0);
+ ++k;
+ }
+ }
+
+ test.Next(_L("Test overflow handler"));
+ TOverflowOutput vout;
+ TBitInput in(KTestBuffer,KTestBits);
+ for (i=KTestBits;--i>=0;)
+ vout.WriteL(in.ReadL(),1);
+ test(vout.BufferedBits() == 0);
+ TRAPD(r,vout.WriteL(0,1));
+ test (r == KErrNone);
+ TRAP(r,vout.PadL(0));
+ test (r == KErrOverflow);
+ test.End();
+ }
+
+void TestBitWriting()
+ {
+ test.Start(_L("Test padding"));
+ TestPadding();
+ test.Next(_L("Test bit writes"));
+ TestBitWrites();
+ test.Next(_L("Test multi-bit writes"));
+ TestMultiBitWrites();
+ TestAlternatingWrites();
+ test.Next(_L("Test overflow writes"));
+ TestOverflow();
+ test.End();
+ }
+
+// Huffman decode testing
+#ifdef __ARMCC__
+#pragma Onoinline
+#endif
+void Dummy(volatile TInt & /*x*/)
+ {
+ }
+
+void TestHuffmanL()
+ {
+ const TInt KTestBits=32*32;
+
+ // build the huffman decoding tree for
+ // 0: '0'
+ // 1: '10'
+ // 2: '110' etc
+ TUint32 huffman[Huffman::KMaxCodeLength+1];
+ TInt i;
+ for (i=0;i<Huffman::KMaxCodeLength;++i)
+ huffman[i]=i+1;
+ huffman[Huffman::KMaxCodeLength]=Huffman::KMaxCodeLength;
+ Huffman::Decoding(huffman,Huffman::KMaxCodeLength+1,huffman);
+
+ TUint8 buffer[KTestBits/8];
+ for (TInt sz=0;sz<Huffman::KMaxCodeLength;++sz)
+ {
+ const TInt rep=KTestBits/(sz+1);
+ TBitOutput out(buffer,sizeof(buffer));
+ for (i=0;i<rep;++i)
+ {
+ out.WriteL(0xffffffff,sz);
+ out.WriteL(0,1);
+ }
+ out.PadL(1);
+ for (TInt blk=1;blk<=64;++blk)
+ {
+ TSplitBitInput in(buffer,rep*(sz+1)-1,0,blk);
+ for (i=0;i<rep-1;++i)
+ {
+ TInt v=-1;
+ TRAPD(r,v=in.HuffmanL(huffman));
+ test (r==KErrNone);
+ test (sz==v);
+ }
+ volatile TInt v=-1;
+ Dummy(v);
+ TRAPD(r, v=in.HuffmanL(huffman));
+ test (v==-1);
+ test (r==KErrUnderflow);
+ }
+ }
+ }
+
+// Huffman generator testing with known but atypical distributions
+
+void FlatHuffman(TInt aMaxCount)
+ {
+ TUint32* tab=new TUint32[aMaxCount];
+ test (tab!=NULL);
+
+ // test empty distribution
+ Mem::FillZ(tab,sizeof(TUint32)*aMaxCount);
+ TRAPD(r, Huffman::HuffmanL(tab,aMaxCount,tab));
+ test (r==KErrNone);
+ TInt i;
+ for (i=0;i<aMaxCount;++i)
+ test (tab[i]==0);
+ Huffman::Decoding(tab,aMaxCount,tab);
+
+ // test single-symbol distribution
+ Mem::FillZ(tab,sizeof(TUint32)*aMaxCount);
+ tab[0]=100;
+ TRAP(r, Huffman::HuffmanL(tab,aMaxCount,tab));
+ test (r==KErrNone);
+ test (tab[0]==1);
+ for (i=1;i<aMaxCount;++i)
+ test (tab[i]==0);
+ Huffman::Decoding(tab,aMaxCount,tab,200);
+ TUint8 bits=0;
+ TBitInput in(&bits,1);
+ test (in.HuffmanL(tab)==200);
+
+ // test flat distributions with 2..aMaxCount symbols
+ TInt len=0;
+ for (TInt c=2;c<aMaxCount;++c)
+ {
+ if ((2<<len)==c)
+ ++len;
+ Mem::FillZ(tab,sizeof(TUint32)*aMaxCount);
+ for (i=0;i<c;++i)
+ tab[i]=100;
+ TRAP(r, Huffman::HuffmanL(tab,aMaxCount,tab));
+ test (r==KErrNone);
+ TInt small=0;
+ for (i=0;i<c;++i)
+ {
+ if (TInt(tab[i])==len)
+ ++small;
+ else
+ test (TInt(tab[i])==len+1);
+ }
+ for (;i<aMaxCount;++i)
+ test (tab[i]==0);
+ test (small == (2<<len)-c);
+ }
+
+ delete [] tab;
+ }
+
+void Power2Huffman()
+//
+// Test Huffman generator for the distribution 2^0,2^0,2^1,2^2,2^3,...
+//
+ {
+ TUint32 tab[Huffman::KMaxCodeLength+2];
+
+ for (TInt c=1;c<=Huffman::KMaxCodeLength+1;c++)
+ {
+ tab[c]=tab[c-1]=1;
+ TInt i;
+ for (i=c-1;--i>=0;)
+ tab[i]=2*tab[i+1];
+
+ TRAPD(r,Huffman::HuffmanL(tab,c+1,tab));
+ if (c>Huffman::KMaxCodeLength)
+ {
+ test (r==KErrOverflow);
+ continue;
+ }
+
+ test (TInt(tab[c]) == c);
+ for (i=0;i<c;++i)
+ test (TInt(tab[i]) == i+1);
+
+ Huffman::Decoding(tab,c+1,tab);
+ for (i=0;i<=c;++i)
+ {
+ TUint8 buf[4];
+ TBitOutput out(buf,4);
+ out.WriteL(0xffffffff,i);
+ out.WriteL(0,1);
+ out.PadL(1);
+ TBitInput in(buf,Min(i+1,c));
+ TInt ix=-1;
+ TRAP(r, ix=in.HuffmanL(tab));
+ test (r==KErrNone);
+ test (ix==i);
+ TRAP(r, in.HuffmanL(tab));
+ test (r==KErrUnderflow);
+ }
+ }
+ }
+
+void FibonacciHuffman()
+//
+// Test Huffman generator for the distribution 1,1,2,3,5,8,13,21,...
+//
+ {
+ TUint32 tab[Huffman::KMaxCodeLength+2];
+
+ for (TInt c=1;c<=Huffman::KMaxCodeLength+1;c++)
+ {
+ tab[c]=tab[c-1]=1;
+ TInt i;
+ for (i=c-1;--i>=0;)
+ tab[i]=tab[i+1]+tab[i+2];
+
+ TRAPD(r,Huffman::HuffmanL(tab,c+1,tab));
+ if (c>Huffman::KMaxCodeLength)
+ {
+ test (r==KErrOverflow);
+ continue;
+ }
+
+ test (TInt(tab[c]) == c);
+ for (i=0;i<c;++i)
+ test (TInt(tab[i]) == i+1);
+
+ Huffman::Decoding(tab,c+1,tab);
+ for (i=0;i<=c;++i)
+ {
+ TUint8 buf[4];
+ TBitOutput out(buf,4);
+ out.WriteL(0xffffffff,i);
+ out.WriteL(0,1);
+ out.PadL(1);
+ TBitInput in(buf,Min(i+1,c));
+ TInt ix=-1;
+ TRAP(r, ix=in.HuffmanL(tab));
+ test (r==KErrNone);
+ test (ix==i);
+ TRAP(r, in.HuffmanL(tab));
+ test (r==KErrUnderflow);
+ }
+ }
+ }
+
+void SpecificHuffman(TInt aMaxCount)
+ {
+ test.Start(_L("Flat distributions"));
+ FlatHuffman(aMaxCount);
+ test.Next(_L("Power-of-2 distributions"));
+ Power2Huffman();
+ test.Next(_L("Fibonacci distributions"));
+ FibonacciHuffman();
+ test.End();
+ }
+
+// Huffman generator validity testing. Checking code properties for a sequence of random
+// frequency distributions.
+
+TInt64 RSeed(KTestData);
+
+inline TInt Random(TInt aLimit)
+ {return aLimit>0 ? (Math::Rand(RSeed)%aLimit) : 0;}
+
+void GenerateFreq(TUint32* aTable, TInt aCount, TInt aTotalFreq, TInt aVariance, TInt aZeros)
+//
+// Generate a random frequency table
+//
+ {
+ for (TInt i=0;i<aCount;++i)
+ {
+ if (aZeros && Random(aCount-i)<aZeros)
+ {
+ aTable[i]=0;
+ --aZeros;
+ }
+ else if (aCount-aZeros-i == 1)
+ {
+ aTable[i]=aTotalFreq;
+ aTotalFreq=0;
+ }
+ else
+ {
+ TInt ave=aTotalFreq/(aCount-aZeros-i);
+ if (aVariance==0)
+ {
+ aTable[i]=ave;
+ aTotalFreq-=ave;
+ }
+ else
+ {
+ TInt var=I64INT(TInt64(ave)<<aVariance>>8);
+ TInt min=Max(1,ave-var);
+ TInt max=Min(1+aTotalFreq-(aCount-aZeros-i),ave+var);
+ TInt f = max<=min ? ave : min+Random(max-min);
+ aTable[i] = f;
+ aTotalFreq-=f;
+ }
+ }
+ }
+ }
+
+TInt NumericalSort(const TUint32& aLeft, const TUint32& aRight)
+ {
+ return aLeft-aRight;
+ }
+
+TInt64 VerifyOptimalCode(const TUint32* aFreq, const TUint32* aCode, TInt aCount, TInt aTotalFreqLog2)
+//
+// We can show tht the expected code length is at least as short as a Shannon-Fano encoding
+//
+ {
+ TInt64 totalHuff=0;
+ TInt64 totalSF=0;
+ TInt i;
+ for (i=0;i<aCount;++i)
+ {
+ TInt f=aFreq[i];
+ TInt l=aCode[i];
+ if (f == 0)
+ {
+ test (l == 0);
+ continue;
+ }
+ totalHuff+=f*l;
+ TInt s=1;
+ while ((f<<s>>aTotalFreqLog2)!=1)
+ ++s;
+ totalSF+=f*s;
+ }
+ test (totalHuff<=totalSF);
+
+ RPointerArray<TUint32> index(aCount);
+ CleanupClosePushL(index);
+ for (i=0;i<aCount;++i)
+ {
+ if (aFreq[i] != 0)
+ User::LeaveIfError(index.InsertInOrderAllowRepeats(aFreq+i,&NumericalSort));
+ }
+
+ TInt smin,smax;
+ smin=smax=aCode[index[0]-aFreq];
+ for (i=1;i<index.Count();++i)
+ {
+ TInt pix=index[i-1]-aFreq;
+ TInt nix=index[i]-aFreq;
+ TInt pf=aFreq[pix];
+ TInt nf=aFreq[nix];
+ TInt ps=aCode[pix];
+ TInt ns=aCode[nix];
+
+ if (nf==pf)
+ {
+ smin=Min(smin,ns);
+ smax=Max(smax,ns);
+ test (smin==smax || smin+1==smax);
+ }
+ else
+ {
+ test (nf>pf);
+ test (ns<=ps);
+ smin=smax=ns;
+ }
+ }
+ CleanupStack::PopAndDestroy();
+
+ return totalHuff;
+ }
+
+TInt LexicalSort(const TUint32& aLeft, const TUint32& aRight)
+ {
+ const TUint32 KCodeMask=(1<<Huffman::KMaxCodeLength)-1;
+ return (aLeft&KCodeMask)-(aRight&KCodeMask);
+ }
+
+void VerifyCanonicalEncodingL(const TUint32* aCode, const TUint32* aEncode, TInt aCount)
+//
+// A canonical encoding assigns codes from '0' in increasing code length order, and
+// in increasing index in the table for equal code length.
+//
+// Huffman is also a 'prefix-free' code, so we check this property of the encoding
+//
+ {
+ TInt i;
+ for (i=0;i<aCount;++i)
+ test (aCode[i] == aEncode[i]>>Huffman::KMaxCodeLength);
+
+ RPointerArray<TUint32> index(aCount);
+ CleanupClosePushL(index);
+ for (i=0;i<aCount;++i)
+ {
+ if (aCode[i] != 0)
+ User::LeaveIfError(index.InsertInOrder(aEncode+i,&LexicalSort));
+ }
+
+ for (i=1;i<index.Count();++i)
+ {
+ TInt pix=index[i-1]-aEncode;
+ TInt nix=index[i]-aEncode;
+ test (aCode[pix]<=aCode[nix]); // code lengths are always increasing
+ test (aCode[pix]<aCode[nix] || pix<nix); // same code length => index order preserved
+
+ // check that a code is not a prefix of the next one. This is sufficent for checking the
+ // prefix condition as we have already sorted the codes in lexicographical order
+ TUint32 pc=aEncode[pix]<<(32-Huffman::KMaxCodeLength);
+ TUint32 nc=aEncode[nix]<<(32-Huffman::KMaxCodeLength);
+ TInt plen=aCode[pix];
+ test ((pc>>(32-plen)) != (nc>>(32-plen))); // pc is not a prefix for nc
+ }
+ CleanupStack::PopAndDestroy(&index);
+ }
+
+void VerifyCanonicalDecoding(const TUint32* aEncode, const TUint32* aDecode, TInt aCount, TInt aBase)
+//
+// We've checked the encoding is valid, so now we check that the decoding can correctly
+// decode every code
+//
+ {
+ TUint8 buffer[(Huffman::KMaxCodeLength+7)/8];
+ TBitInput in;
+ TBitOutput out;
+
+ while (--aCount>=0)
+ {
+ if (aEncode[aCount])
+ {
+ out.Set(buffer,sizeof(buffer));
+ out.HuffmanL(aEncode[aCount]);
+ out.PadL(0);
+ in.Set(buffer,aEncode[aCount]>>Huffman::KMaxCodeLength);
+ TInt v=-1;
+ TRAPD(r,v=in.HuffmanL(aDecode));
+ test (r==KErrNone);
+ test (v==aCount+aBase);
+ TRAP(r,in.ReadL());
+ test (r==KErrUnderflow);
+ }
+ }
+ }
+
+TInt TestExternalizeL(const TUint32* aCode, TUint8* aExtern, TUint32* aIntern, TInt aCount)
+ {
+ TBitOutput out(aExtern,aCount*4);
+ Huffman::ExternalizeL(out,aCode,aCount);
+ TInt bits=out.BufferedBits()+8*(out.Ptr()-aExtern);
+ out.PadL(0);
+ TBitInput in(aExtern,bits);
+ TRAPD(r,Huffman::InternalizeL(in,aIntern,aCount));
+ test (r == KErrNone);
+ test (Mem::Compare((TUint8*)aCode,aCount*sizeof(TUint32),(TUint8*)aIntern,aCount*sizeof(TUint32)) == 0);
+ TRAP(r,in.ReadL());
+ test (r == KErrUnderflow);
+ return bits;
+ }
+
+void RandomHuffmanL(TInt aIter, TInt aMaxSymbols)
+//
+// generate random frequency distributions and verify
+// (a) the Huffman generator creates a mathematically 'optimal code'
+// (b) the canonical encoding is the canonical encoding
+// (c) the decoding tree correctly decodes each code.
+// (d) the encoding can be correctly externalised and internalised
+//
+ {
+ TReal KLog2;
+ Math::Ln(KLog2,2);
+ const TInt KTotalFreqLog2=24;
+ const TInt KTotalFreq=1<<KTotalFreqLog2;
+
+ while (--aIter >= 0)
+ {
+ TInt num=2+Random(aMaxSymbols-1);
+
+ TUint32* const freq = new(ELeave) TUint32[num*3];
+ CleanupArrayDeletePushL(freq);
+ TUint32* const code = freq+num;
+ TUint32* const encoding = code+num;
+ TUint32* const decoding = freq;
+ TUint8* const exter = (TUint8*)encoding;
+ TUint32* const intern = freq;
+
+ TInt var=Random(24);
+ TInt zero=Random(num-2);
+ GenerateFreq(freq,num,KTotalFreq,var,zero);
+
+ Huffman::HuffmanL(freq,num,code);
+ VerifyOptimalCode(freq,code,num,KTotalFreqLog2);
+
+ Huffman::Encoding(code,num,encoding);
+ VerifyCanonicalEncodingL(code,encoding,num);
+
+ TInt base=Random(Huffman::KMaxCodes-num);
+ Huffman::Decoding(code,num,decoding,base);
+ VerifyCanonicalDecoding(encoding,decoding,num,base);
+
+ TestExternalizeL(code,exter,intern,num);
+ CleanupStack::PopAndDestroy();
+ }
+ }
+
+///
+
+void MainL()
+ {
+ test.Start(_L("Test Bit reader"));
+ TestBitReading();
+ test.Next(_L("Test Bit writer"));
+ TestBitWriting();
+ test.Next(_L("Test Huffman decoder"));
+ TestHuffmanL();
+ test.Next(_L("Test Huffman generator for known distributions"));
+ SpecificHuffman(800);
+ test.Next(_L("Test Huffman generator for random distributions"));
+ TRAPD(r,RandomHuffmanL(1000,800));
+ test (r==KErrNone);
+ test.End();
+ }
+
+TInt E32Main()
+ {
+ test.Title();
+ CTrapCleanup* c=CTrapCleanup::New();
+ test (c!=0);
+ TRAPD(r,MainL());
+ test (r==KErrNone);
+ delete c;
+ test.Close();
+ return r;
+ }