--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/kerneltest/e32test/mmu/d_cache.cpp Mon Oct 19 15:55:17 2009 +0100
@@ -0,0 +1,1176 @@
+// Copyright (c) 2006-2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the License "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+// e32test\debug\d_cache.cpp
+// See e32test\mmu\t_cache.cpp for details
+//
+//
+
+#include "d_cache.h"
+#include <kernel/kern_priv.h>
+#include <kernel/cache.h>
+
+extern TUint32 GetCacheType();
+extern void TestCodeFunc();
+extern TInt TestCodeFuncSize();
+extern void DataSegmetTestFunct(void* aBase, TInt aSize);
+
+#ifdef __XSCALE_L2_CACHE__
+extern TUint32 L2CacheTypeReg();
+#endif
+
+#if defined(__CPU_MEMORY_TYPE_REMAPPING)
+extern TUint32 CtrlRegister();
+extern TUint32 PRRRRegister();
+extern TUint32 NRRRRegister();
+extern void SetPRRR(TUint32);
+extern void SetNRRR(TUint32);
+#endif
+
+
+typedef void(CodeTest) ();
+
+class DCacheTest : public DLogicalChannelBase
+ {
+public:
+ DCacheTest();
+ ~DCacheTest();
+protected:
+ virtual TInt DoCreate(TInt aUnit, const TDesC8* anInfo, const TVersion& aVer);
+ virtual TInt Request(TInt aFunction, TAny* a1, TAny* a2);
+private:
+ TInt GetCacheInfo(TAny* a1);
+ TInt TestDataChunk(TAny* a1);
+ TInt TestCodeChunk(TAny* a1);
+ TInt TestWriteBackMode(TAny* a1, TBool aWriteAlloc);
+ TInt TestL2Maintenance();
+ TInt GetThreshold(TAny* a1);
+ TInt SetThreshold(TAny* a1);
+ TInt TestUseCase(TAny* a1);
+ void LoopTestCodeFunc(CodeTest* f);
+
+
+ void GetExternalCacheInfo(RCacheTestDevice::TCacheInfo& info);
+
+ void CheckRemapping(RCacheTestDevice::TCacheInfo& info);
+ void Remap(RCacheTestDevice::TCacheAttr aCacheAttr);
+
+ TInt UseCase_ReadFromChunk(RCacheTestDevice::TChunkTest& info);
+ TInt UseCase_ReadFromChunk_ReadFromHeap(RCacheTestDevice::TChunkTest& info);
+ TInt UseCase_WriteToChunk(RCacheTestDevice::TChunkTest& info);
+ TInt UseCase_WriteToChunk_ReadFromHeap(RCacheTestDevice::TChunkTest& info);
+
+
+ //Phys. memory and shared chunk alloc/dealloc primitives
+ TInt AllocPhysicalRam(TInt aSize);
+ void FreePhysicalRam();
+ TInt CreateSharedChunk(TInt aMapAttr, TUint32& aActualMapAttr);
+ void CloseSharedChunk();
+
+private:
+ DChunk* iSharedChunk; // Shared chunk used in the test
+ TPhysAddr iPhysAddr; // Physical address of the allocated memory assigned to the chunk
+ TUint iSize; // The size of the allocated memory.
+ TLinAddr iChunkBase; // Base linear address of the shared chunk.
+
+ TInt* iHeap1;
+ TInt* iHeap2;
+ TUint32 iDummy;
+ };
+
+DCacheTest* CacheTestDriver;
+
+DCacheTest::DCacheTest() {}
+
+DCacheTest::~DCacheTest() {CacheTestDriver = NULL;}
+
+/**Creates the channel*/
+TInt DCacheTest::DoCreate(TInt /*aUnit*/, const TDesC8* /*anInfo*/, const TVersion& /*aVer*/) {return KErrNone;}
+
+/** Allocates physical memory and sets iPhysAddr & iSize accordingly.*/
+TInt DCacheTest::AllocPhysicalRam(TInt aSize)
+ {
+ iSize = aSize;
+ NKern::ThreadEnterCS();
+ TInt r = Epoc::AllocPhysicalRam(aSize, iPhysAddr, 0); //Allocate physical RAM. This will set iPhysAddr
+ NKern::ThreadLeaveCS();
+ return r;
+ }
+
+/** Frees physical memory.*/
+void DCacheTest::FreePhysicalRam()
+ {
+ NKern::ThreadEnterCS();
+ Epoc::FreePhysicalRam(iPhysAddr, iSize);
+ NKern::ThreadLeaveCS();
+ }
+
+/**
+Creates shared chunks with allocated physical memory and sets iChunkBase accordingly.
+@pre Physical memory is allocated (iPhysAddr & iSize are set accordingly).
+*/
+TInt DCacheTest::CreateSharedChunk(TInt aMapAttr, TUint32& aActualMapAttr)
+ {
+ TInt r;
+ TChunkCreateInfo chunkInfo;
+ chunkInfo.iType = TChunkCreateInfo::ESharedKernelSingle;
+ chunkInfo.iMaxSize = iSize;
+ chunkInfo.iMapAttr = aMapAttr;
+ chunkInfo.iOwnsMemory = EFalse;
+ chunkInfo.iDestroyedDfc = NULL;
+
+ NKern::ThreadEnterCS();
+ if (KErrNone != (r = Kern::ChunkCreate(chunkInfo, iSharedChunk, iChunkBase, aActualMapAttr)))
+ {
+ FreePhysicalRam();
+ NKern::ThreadLeaveCS();
+ return r;
+ }
+ r = Kern::ChunkCommitPhysical(iSharedChunk,0,iSize, iPhysAddr);
+ if(r!=KErrNone)
+ {
+ CloseSharedChunk();
+ FreePhysicalRam();
+ NKern::ThreadLeaveCS();
+ return r;
+ }
+ NKern::ThreadLeaveCS();
+ return KErrNone;
+ }
+
+/** Closes shared chunk.*/
+void DCacheTest::CloseSharedChunk()
+ {
+ NKern::ThreadEnterCS();
+ Kern::ChunkClose(iSharedChunk);
+ Kern::HalFunction(EHalGroupKernel, EKernelHalSupervisorBarrier, 0, 0); // make sure async close has happened
+ NKern::ThreadLeaveCS();
+ }
+
+
+#if defined(__CPU_ARMV7)
+extern TUint32 CacheTypeRegister();
+extern TUint32 CacheLevelIDRegister();
+extern TUint32 CacheSizeIdRegister(TUint32 aType/*0-1*/, TUint32 aLevel/*0-7*/);
+
+void ParseCacheLevelInfo(TInt aCacheSizeIDReg, RCacheTestDevice::TCacheSingle& aCS)
+ {
+ aCS.iSets = ((aCacheSizeIDReg>>13)& 0x7fff)+1;
+ aCS.iWays = ((aCacheSizeIDReg>>3)& 0x3ff)+1;
+ aCS.iLineSize =1<<((aCacheSizeIDReg & 0x7)+4);//+2 (and +2 as we count in bytes)
+ aCS.iSize = aCS.iSets * aCS.iWays * aCS.iLineSize;
+ }
+#endif
+
+
+void AppendTo(TDes8& aDes, const char* aFmt, ...)
+ {
+ VA_LIST list;
+ VA_START(list,aFmt);
+ Kern::AppendFormat(aDes,aFmt,list);
+ }
+
+/** Checks Memory Remap settings (both memory type and access permission remapping).*/
+void DCacheTest::CheckRemapping(RCacheTestDevice::TCacheInfo& info)
+ {
+#if defined(__CPU_MEMORY_TYPE_REMAPPING)
+ TUint32 cr = CtrlRegister();
+ TUint32 prrr =PRRRRegister();
+ TUint32 nrrr =NRRRRegister();
+ AppendTo(info.iDesc,"Memory Remapping: CtrlReg:%xH, PRRR:%xH NRRR:%xH\n", cr, prrr, nrrr);
+
+ if ( (cr&0x30000000) == 0x30000000)
+ info.iMemoryRemapping = 1;
+ else
+ AppendTo(info.iDesc,"Error:Memory Remapping is OFF \n");
+#endif
+ }
+
+//Remaps aCacheAttr memory type into EMemAttKernelInternal4
+void DCacheTest::Remap(RCacheTestDevice::TCacheAttr aCacheAttr)
+ {
+#if defined(__CPU_MEMORY_TYPE_REMAPPING)
+ TInt inner, outer;
+ switch(aCacheAttr)
+ {
+ case RCacheTestDevice::E_InnerWT_Remapped: inner=2;outer=0;break;
+ case RCacheTestDevice::E_InnerWBRA_Remapped:inner=3;outer=0;break;
+ case RCacheTestDevice::E_InnerWB_Remapped: inner=1;outer=0;break;
+ case RCacheTestDevice::E_OuterWT_Remapped: inner=0;outer=2;break;
+ case RCacheTestDevice::E_OuterWBRA_Remapped:inner=0;outer=3;break;
+ case RCacheTestDevice::E_OuterWB_Remapped: inner=0;outer=1;break;
+ case RCacheTestDevice::E_InOutWT_Remapped: inner=2;outer=2;break;
+ case RCacheTestDevice::E_InOutWBRA_Remapped:inner=3;outer=3;break;
+ case RCacheTestDevice::E_InOutWB_Remapped: inner=1;outer=1;break;
+ default:Kern::PanicCurrentThread(_L("d_cache driver error"),0);return;
+ }
+
+ TUint32 prrr =PRRRRegister();
+ TUint32 nrrr =NRRRRegister();
+ prrr &= ~(3<<8); // Clear EMemAttKernelInternal4 setting for memory type
+ nrrr &= ~(3<<8); // Clear EMemAttKernelInternal4 setting for normal memory type, inner cache
+ nrrr &= ~(3<<24); // Clear EMemAttKernelInternal4 setting for normal memory type, outer cache
+ prrr |= 2 <<8; // Set EMemAttKernelInternal4 as normal memory
+ nrrr |= inner <<8; // Set inner cache for EMemAttKernelInternal4
+ nrrr |= outer << 24;// Set outer cache for EMemAttKernelInternal4
+
+ SetPRRR(prrr);
+ SetNRRR(nrrr);
+#endif
+ }
+
+
+
+/** Fills in info structure with external cache parameters. */
+void DCacheTest::GetExternalCacheInfo(RCacheTestDevice::TCacheInfo& info)
+ {
+#if defined(__HAS_EXTERNAL_CACHE__)
+ info.iOuterCache=1;
+
+#if defined(__ARM_L210_CACHE__)
+ AppendTo(info.iDesc,"Built as L210 Cache;\n");
+#elif defined(__ARM_L220_CACHE__)
+ AppendTo(info.iDesc,"Built as L220 Cache:\n");
+#elif defined(__ARM_PL310_CACHE__)
+ AppendTo(info.iDesc,"Built as PL310 Cache:\n");
+#endif
+
+ TInt cacheController = Kern::SuperPage().iArmL2CacheBase;
+ if (!cacheController)
+ {
+ AppendTo(info.iDesc,"Warning:No CCB Address in Super Page?\n");
+ return;
+ }
+
+ TInt rawData = *(TInt*)(cacheController); //reg 0 in controller is Cache ID Register
+ AppendTo(info.iDesc,"L2 ID Reg:%xH\n", rawData);
+
+ rawData = *(TInt*)(cacheController+4); //reg 4 in controller is Cache Type Register
+ AppendTo(info.iDesc,"L2 Type Reg:%xH\n", rawData);
+
+ RCacheTestDevice::TCacheSingle& cs = info.iCache[info.iCacheCount];
+
+ cs.iLineSize=32; //always
+#if defined(__ARM_L210_CACHE__) || defined(__ARM_L220_CACHE__)
+ cs.iWays = (rawData>>3)&0x0f; if (cs.iWays > 8) cs.iWays = 8;
+#elif defined(__ARM_PL310_CACHE__)
+ cs.iWays = (rawData&0x40) ? 16:8;
+#endif
+ TInt waySize;
+ switch((rawData>>8)&7)
+ {
+ case 0: waySize = 0x4000; break;
+ case 1: waySize = 0x4000; break;
+ case 2: waySize = 0x8000; break;
+ case 3: waySize = 0x10000; break;
+ case 4: waySize = 0x20000; break;
+#if defined(__ARM_L210_CACHE__) || defined(__ARM_L220_CACHE__)
+ default: waySize = 0x40000; break;
+#elif defined(__ARM_PL310_CACHE__)
+ case 5: waySize = 0x40000; break;
+ default: waySize = 0x80000; break;
+#endif
+ }
+ cs.iSize = waySize * cs.iWays;
+ cs.iSets = waySize >> 5; // = waySize / lineLen
+
+
+ cs.iLevel = 2;
+ cs.iCode = 1;
+ cs.iData = 1;
+ cs.iDesc.SetLength(0);
+ AppendTo(cs.iDesc,"Outer Unified PAPT");
+
+ info.iMaxCacheSize = Max(info.iMaxCacheSize, cs.iSize);
+ info.iCacheCount++;
+#endif //defined(__HAS_EXTERNAL_CACHE__)
+ }
+
+
+/** Passes cache configuration parameters to the user side*/
+TInt DCacheTest::GetCacheInfo(TAny* a1)
+ {
+ TInt ret = KErrNone;
+ RCacheTestDevice::TCacheInfo info;
+
+ info.iDesc.SetLength(0);
+ info.iCacheCount=0;
+ info.iMaxCacheSize=0;
+ info.iMemoryRemapping=0;
+ info.iOuterCache=0;
+
+////////////////////////
+#if defined(__CPU_ARMV7)
+////////////////////////
+ info.iOuterCache=1;
+
+ TUint32 ctr=CacheTypeRegister();
+ TUint32 clr=CacheLevelIDRegister();
+ TInt LoC = (clr>>24)&7; //The number of levels to be purged/clean to Point-to-Coherency
+ TInt LoU = (clr>>27)&7; //The number of levels to be purged/clean to Point-to-Unification
+ AppendTo(info.iDesc,"ARMv7 cache - CTR:%xH CLR:%xH LoC:%d LoU:%d\n", ctr, clr, LoC, LoU);
+
+ RCacheTestDevice::TCacheSingle* cs = &info.iCache[info.iCacheCount];
+ TInt level;
+ for (level=0;level<LoC;level++)
+ {
+ TInt type = (clr >> (level*3)) & 7; //000:NoCache 001:ICache 010:DCache 011:Both 100:Unified
+
+ if (type==0) // No Cache. Also no cache below this level
+ break;
+
+ if(type & 1) // Instruction Cache
+ {
+ TInt csr = CacheSizeIdRegister(1,level);
+ ParseCacheLevelInfo(csr, *cs);
+ cs->iLevel = level+1;
+ cs->iCode = 1;
+ cs->iData = 0;
+ AppendTo(cs->iDesc,"ICache CSR:%xH",csr);
+ info.iMaxCacheSize = Max(info.iMaxCacheSize, cs->iSize);
+ cs = &info.iCache[++info.iCacheCount];
+ }
+
+ if(type & 2) // Data Cache
+ {
+ TInt csr = CacheSizeIdRegister(0,level);
+ ParseCacheLevelInfo(csr, *cs);
+ cs->iLevel = level+1;
+ cs->iCode = 0;
+ cs->iData = 1;
+ AppendTo(cs->iDesc,"DCache CSR:%xH",csr);
+ info.iMaxCacheSize = Max(info.iMaxCacheSize, cs->iSize);
+ cs = &info.iCache[++info.iCacheCount];
+ }
+
+ if(type & 4) // Unified Cache
+ {
+ TInt csr = CacheSizeIdRegister(0,level);
+ ParseCacheLevelInfo(csr, *cs);
+ cs->iLevel = level+1;
+ cs->iCode = 1;
+ cs->iData = 1;
+ AppendTo(cs->iDesc,"Unified CSR:%xH",csr);
+ info.iMaxCacheSize = Max(info.iMaxCacheSize, cs->iSize);
+ cs = &info.iCache[++info.iCacheCount];
+ }
+ }
+
+///////////////////////////////////
+#elif defined(__CPU_HAS_CACHE_TYPE_REGISTER)
+///////////////////////////////////
+
+ TInt rawData=GetCacheType();
+ TInt splitCache=rawData&0x01000000;
+ AppendTo(info.iDesc,"L1 Cache TypeReg=%xH\n", rawData);
+
+ //Cache #1
+ TUint32 s=(rawData>>12)&0xfff; //s = P[11]:0:size[9:5]:assoc[5:3]:M[2]:len[1:0]
+ info.iCache[info.iCacheCount].iLineSize = 1 << ((s&2) + 3); //1<<(len+3)
+ info.iCache[info.iCacheCount].iWays = (2 + ((s>>2)&1)) << (((s>>3)&0x7) - 1); //(2+M) << (assoc-1)
+ info.iCache[info.iCacheCount].iSize = (2 + ((s>>2)&1)) << (((s>>6)&0xf) + 8); //(2+M) << (size+8)
+ info.iCache[info.iCacheCount].iSets = 1 << (((s>>6)&0xf) + 6 - ((s>>3)&0x7) - (s&2)); //(2+M) <<(size + 6 -assoc - len)
+ info.iCache[info.iCacheCount].iData = 1;
+ info.iCache[info.iCacheCount].iLevel = 1;
+
+ if (splitCache)
+ {
+ info.iCache[info.iCacheCount].iCode = 0;
+ info.iCache[info.iCacheCount].iDesc.SetLength(0);
+ AppendTo(info.iCache[info.iCacheCount].iDesc,"Inner DCache");
+
+ #if defined(__CPU_ARMV6)
+ AppendTo(info.iCache[info.iCacheCount].iDesc," VAPT");
+ #else
+ AppendTo(info.iCache[info.iCacheCount].iDesc," VAVT");
+ #endif
+ info.iMaxCacheSize = Max(info.iMaxCacheSize, info.iCache[info.iCacheCount].iSize);
+ info.iCacheCount++;
+
+ // Cache #2
+ s=rawData&0xfff; //s = P[11]:0:size[9:5]:assoc[5:3]:M[2]:len[1:0]
+ info.iCache[info.iCacheCount].iLineSize = 1 << ((s&2) + 3); //1<<(len+3)
+ info.iCache[info.iCacheCount].iWays = (2 + ((s>>2)&1)) << (((s>>3)&0x7) - 1); //(2+M) << (assoc-1)
+ info.iCache[info.iCacheCount].iSize = (2 + ((s>>2)&1)) << (((s>>6)&0xf) + 8); //(2+M) << (size+8)
+ info.iCache[info.iCacheCount].iSets = 1 << (((s>>6)&0xf) + 6 - ((s>>3)&0x7) - (s&2)); //(2+M) <<(size + 6 -assoc - len)
+ info.iCache[info.iCacheCount].iLevel = 1;
+ info.iCache[info.iCacheCount].iCode = 1;
+ info.iCache[info.iCacheCount].iData = 0;
+ info.iCache[info.iCacheCount].iDesc.SetLength(0);
+ AppendTo(info.iCache[info.iCacheCount].iDesc,"Inner ICache");
+ #if defined(__CPU_ARMV6)
+ AppendTo(info.iCache[info.iCacheCount].iDesc," VAPT");
+ #else
+ AppendTo(info.iCache[info.iCacheCount].iDesc," VAVT");
+ #endif
+ }
+ else
+ {
+ info.iCache[info.iCacheCount].iCode = 1;
+ info.iCache[info.iCacheCount].iDesc.SetLength(0);
+ AppendTo(info.iCache[info.iCacheCount].iDesc,"Inner Unified");
+ #if defined(__CPU_ARMV6)
+ AppendTo(info.iCache[info.iCacheCount].iDesc," VAPT");
+ #else
+ AppendTo(info.iCache[info.iCacheCount].iDesc," VAVT");
+ #endif
+ }
+ info.iMaxCacheSize = Max(info.iMaxCacheSize, info.iCache[info.iCacheCount].iSize);
+ info.iCacheCount++;
+
+/////
+#else
+/////
+
+ ret = KErrNotSupported;
+
+#endif
+
+ GetExternalCacheInfo(info); // Get ARMl210/20 info
+ CheckRemapping(info); // Get memory remapping info
+
+ info.iDmaBufferAlignment = Cache::DmaBufferAlignment();
+ kumemput(a1,&info,sizeof(info));
+ return ret;
+ }
+
+/** Get cache thresholds.*/
+TInt DCacheTest::GetThreshold(TAny* a1)
+ {
+ RCacheTestDevice::TThresholdInfo info;
+ kumemget(&info,a1,sizeof(info));
+
+ TCacheThresholds thresholds;
+ TInt r = Cache::GetThresholds(thresholds, info.iCacheType);
+ if (r==KErrNone)
+ {
+ info.iPurge = thresholds.iPurge;
+ info.iClean = thresholds.iClean;
+ info.iFlush = thresholds.iFlush;
+ kumemput(a1,&info,sizeof(info));
+ }
+ return r;
+ }
+
+/** Set cache thresholds.*/
+TInt DCacheTest::SetThreshold(TAny* a1)
+ {
+ RCacheTestDevice::TThresholdInfo info;
+ kumemget(&info,a1,sizeof(info));
+
+ TCacheThresholds thresholds;
+ thresholds.iPurge = info.iPurge;
+ thresholds.iClean = info.iClean;
+ thresholds.iFlush = info.iFlush;
+ return Cache::SetThresholds(thresholds, info.iCacheType);
+ }
+
+// Runs DataSegmetTestFunct against data from a chunk.
+// Chunk cache attributes and its size are specified in input arguments.
+// Measures and returns the time spent.
+TInt DCacheTest::TestDataChunk(TAny* a1)
+ {
+ TInt r = KErrNone;
+ TInt time;
+
+ RCacheTestDevice::TChunkTest info;
+ kumemget(&info,a1,sizeof(info));
+
+
+ TUint32 chunkAttr = EMapAttrSupRw;
+ if (info.iShared) chunkAttr |= EMapAttrShared;
+#ifdef __SMP__
+ TUint32 force_shared = EMapAttrShared;
+#else
+ TUint32 force_shared = 0;
+#endif
+
+ switch (info.iCacheAttr)
+ {
+
+ case RCacheTestDevice::E_FullyBlocking: chunkAttr |= EMapAttrFullyBlocking; break;
+ case RCacheTestDevice::E_Buffered_NC: chunkAttr |= EMapAttrBufferedNC; break;
+ case RCacheTestDevice::E_Buffered_C: chunkAttr |= EMapAttrBufferedC; break;
+
+ case RCacheTestDevice::E_InnerWT: chunkAttr |= EMapAttrCachedWTRA|force_shared; break;
+ case RCacheTestDevice::E_InnerWBRA: chunkAttr |= EMapAttrCachedWBRA|force_shared; break;
+ case RCacheTestDevice::E_InnerWB: chunkAttr |= EMapAttrCachedWBWA|force_shared; break;
+
+ case RCacheTestDevice::E_OuterWT: chunkAttr |= EMapAttrL2CachedWTRA; break;
+ case RCacheTestDevice::E_OuterWBRA: chunkAttr |= EMapAttrL2CachedWBRA; break;
+ case RCacheTestDevice::E_OuterWB: chunkAttr |= EMapAttrL2CachedWBWA; break;
+
+ case RCacheTestDevice::E_InOutWT: chunkAttr |= EMapAttrCachedWTRA|EMapAttrL2CachedWTRA|force_shared; break;
+ case RCacheTestDevice::E_InOutWBRA: chunkAttr |= EMapAttrCachedWBRA|EMapAttrL2CachedWBRA|force_shared; break;
+ case RCacheTestDevice::E_InOutWB: chunkAttr |= EMapAttrCachedWBWA|EMapAttrL2CachedWBWA|force_shared; break;
+
+ case RCacheTestDevice::E_StronglyOrder:
+ new (&chunkAttr) TMappingAttributes2(EMemAttStronglyOrdered,EFalse,ETrue,EFalse,info.iShared?ETrue:EFalse);
+ break;
+ case RCacheTestDevice::E_Device:
+ new (&chunkAttr) TMappingAttributes2(EMemAttDevice,EFalse,ETrue,EFalse,info.iShared?ETrue:EFalse);
+ break;
+ case RCacheTestDevice::E_Normal_Uncached:
+ new (&chunkAttr) TMappingAttributes2(EMemAttNormalUncached,EFalse,ETrue,EFalse,info.iShared?ETrue:EFalse);
+ break;
+ case RCacheTestDevice::E_Normal_Cached:
+ new (&chunkAttr) TMappingAttributes2(EMemAttNormalCached,EFalse,ETrue,EFalse,(info.iShared|force_shared)?ETrue:EFalse);
+ break;
+ case RCacheTestDevice::E_KernelInternal4:
+ new (&chunkAttr) TMappingAttributes2(EMemAttKernelInternal4,EFalse,ETrue,ETrue,(info.iShared|force_shared)?ETrue:EFalse);
+ break;
+ case RCacheTestDevice::E_PlatformSpecific5:
+ new (&chunkAttr) TMappingAttributes2(EMemAttPlatformSpecific5,EFalse,ETrue,ETrue,(info.iShared|force_shared)?ETrue:EFalse);
+ break;
+ case RCacheTestDevice::E_PlatformSpecific6:
+ new (&chunkAttr) TMappingAttributes2(EMemAttPlatformSpecific6,EFalse,ETrue,ETrue,(info.iShared|force_shared)?ETrue:EFalse);
+ break;
+ case RCacheTestDevice::E_PlatformSpecific7:
+ new (&chunkAttr) TMappingAttributes2(EMemAttPlatformSpecific7,EFalse,ETrue,ETrue,(info.iShared|force_shared)?ETrue:EFalse);
+ break;
+
+#if defined(__CPU_MEMORY_TYPE_REMAPPING)
+ case RCacheTestDevice::E_InnerWT_Remapped:
+ case RCacheTestDevice::E_InnerWBRA_Remapped:
+ case RCacheTestDevice::E_InnerWB_Remapped:
+ case RCacheTestDevice::E_InOutWT_Remapped:
+ case RCacheTestDevice::E_InOutWBRA_Remapped:
+ case RCacheTestDevice::E_InOutWB_Remapped:
+#ifdef __SMP__
+ info.iShared = ETrue;
+#endif
+ case RCacheTestDevice::E_OuterWT_Remapped:
+ case RCacheTestDevice::E_OuterWBRA_Remapped:
+ case RCacheTestDevice::E_OuterWB_Remapped:
+ Remap(info.iCacheAttr);
+ new (&chunkAttr) TMappingAttributes2(EMemAttKernelInternal4,EFalse,ETrue,EFalse,info.iShared?ETrue:EFalse);
+ break;
+#endif
+
+ case RCacheTestDevice::E_Default:
+ {
+ // Run the test against memory from kernel heap (no need for extra memory chunks)
+ NKern::ThreadEnterCS();
+ TLinAddr bufferBase = (TLinAddr)Kern::Alloc(info.iSize);
+ NKern::ThreadLeaveCS();
+ if (!bufferBase)
+ return KErrNoMemory;
+
+ //You can't purge allocated heap memory as it will invalidate other data from the same cache line.
+ //Cache::SyncMemoryAfterDmaRead((TLinAddr)bufferBase, info.iSize);
+
+ // Execute the test
+ time = NKern::TickCount();
+ DataSegmetTestFunct((void*)bufferBase, info.iSize);
+ info.iTime = NKern::TickCount() - time;
+ info.iActualMapAttr = 0;
+ kumemput(a1,&info,sizeof(info));
+
+ NKern::ThreadEnterCS();
+ Kern::Free((TAny*)bufferBase);
+ NKern::ThreadLeaveCS();
+
+ return KErrNone;
+ }
+ default:
+ return KErrArgument;
+ }
+
+ // Run the test against chunk with cache attributes as specified in info.iCacheState.
+ if (KErrNone!=(r=AllocPhysicalRam(Kern::RoundToPageSize(info.iSize)))) return r;
+ if (KErrNone!=(r=CreateSharedChunk(chunkAttr, info.iActualMapAttr))) return r;
+
+ Cache::SyncMemoryAfterDmaRead(iChunkBase, info.iSize); // Invalidate (aka purge) cache.
+
+ time = NKern::TickCount();
+ DataSegmetTestFunct((void*)iChunkBase, info.iSize);
+ info.iTime = NKern::TickCount() - time;
+
+ CloseSharedChunk();
+ FreePhysicalRam();
+
+ kumemput(a1,&info,sizeof(info));
+ return KErrNone;
+ }
+
+void DCacheTest::LoopTestCodeFunc(CodeTest* f)
+ {
+ for (TInt x = 0;x<5000;x++)
+ (*f)();
+ }
+
+// Runs TestCodeFunc (contains nops with ret at the end) from a chunk.
+// Chunk cache attributes and the size of function are specified in input arguments
+// Measures and returns the time spent.
+TInt DCacheTest::TestCodeChunk(TAny* a1)
+ {
+ TInt r = KErrNone;
+ TInt time;
+
+ RCacheTestDevice::TChunkTest info;
+ kumemget(&info,a1,sizeof(info));
+
+
+ info.iActualMapAttr = EMapAttrSupRwx;
+ if (info.iShared) info.iActualMapAttr |= EMapAttrShared;
+#ifdef __SMP__
+ TUint32 force_shared = EMapAttrShared;
+#else
+ TUint32 force_shared = 0;
+#endif
+
+ switch (info.iCacheAttr)
+ {
+ case RCacheTestDevice::E_FullyBlocking: info.iActualMapAttr |= EMapAttrFullyBlocking; break;
+ case RCacheTestDevice::E_Buffered_NC: info.iActualMapAttr |= EMapAttrBufferedNC; break;
+ case RCacheTestDevice::E_Buffered_C: info.iActualMapAttr |= EMapAttrBufferedC; break;
+
+ case RCacheTestDevice::E_InnerWT: info.iActualMapAttr |= EMapAttrCachedWTRA|force_shared; break;
+ case RCacheTestDevice::E_InnerWBRA: info.iActualMapAttr |= EMapAttrCachedWBRA|force_shared; break;
+ case RCacheTestDevice::E_InnerWB: info.iActualMapAttr |= EMapAttrCachedWBWA|force_shared; break;
+
+ case RCacheTestDevice::E_OuterWT: info.iActualMapAttr |= EMapAttrL2CachedWTRA; break;
+ case RCacheTestDevice::E_OuterWBRA: info.iActualMapAttr |= EMapAttrL2CachedWBRA; break;
+ case RCacheTestDevice::E_OuterWB: info.iActualMapAttr |= EMapAttrL2CachedWBWA; break;
+
+ case RCacheTestDevice::E_InOutWT: info.iActualMapAttr |= EMapAttrCachedWTRA|EMapAttrL2CachedWTRA|force_shared; break;
+ case RCacheTestDevice::E_InOutWBRA: info.iActualMapAttr |= EMapAttrCachedWBRA|EMapAttrL2CachedWBRA|force_shared; break;
+ case RCacheTestDevice::E_InOutWB: info.iActualMapAttr |= EMapAttrCachedWBWA|EMapAttrL2CachedWBWA|force_shared; break;
+
+ case RCacheTestDevice::E_StronglyOrder:
+ new (&info.iActualMapAttr) TMappingAttributes2(EMemAttStronglyOrdered,EFalse,ETrue,ETrue,info.iShared?ETrue:EFalse);
+ break;
+ case RCacheTestDevice::E_Device:
+ new (&info.iActualMapAttr) TMappingAttributes2(EMemAttDevice,EFalse,ETrue,ETrue,info.iShared?ETrue:EFalse);
+ break;
+ case RCacheTestDevice::E_Normal_Uncached:
+ new (&info.iActualMapAttr) TMappingAttributes2(EMemAttNormalUncached,EFalse,ETrue,ETrue,info.iShared?ETrue:EFalse);
+ break;
+ case RCacheTestDevice::E_Normal_Cached:
+ new (&info.iActualMapAttr) TMappingAttributes2(EMemAttNormalCached,EFalse,ETrue,ETrue,info.iShared?ETrue:EFalse);
+ break;
+
+#if defined(__CPU_MEMORY_TYPE_REMAPPING)
+ case RCacheTestDevice::E_InnerWT_Remapped:
+ case RCacheTestDevice::E_InnerWBRA_Remapped:
+ case RCacheTestDevice::E_InnerWB_Remapped:
+ case RCacheTestDevice::E_InOutWT_Remapped:
+ case RCacheTestDevice::E_InOutWBRA_Remapped:
+ case RCacheTestDevice::E_InOutWB_Remapped:
+#ifdef __SMP__
+ info.iShared = ETrue;
+#endif
+ case RCacheTestDevice::E_OuterWT_Remapped:
+ case RCacheTestDevice::E_OuterWBRA_Remapped:
+ case RCacheTestDevice::E_OuterWB_Remapped:
+ Remap(info.iCacheAttr);
+ new (&info.iActualMapAttr) TMappingAttributes2(EMemAttKernelInternal4,EFalse,ETrue,ETrue,info.iShared?ETrue:EFalse);
+ break;
+#endif
+
+ case RCacheTestDevice::E_Default:
+ {
+ // Run the test against test function from rom image (no need for extra memory chunks)
+ if (info.iSize > TestCodeFuncSize())
+ return KErrNoMemory; // TestCodeFunc is not big enough to conduct the test.
+
+ TInt startAddr = (TInt)TestCodeFunc + TestCodeFuncSize() - info.iSize;
+
+ // This will invalidate (aka purge) test function from L2 cache.
+ Cache::SyncMemoryAfterDmaRead((TLinAddr)startAddr, info.iSize);
+
+ // Execute the test
+ time = NKern::TickCount();
+ LoopTestCodeFunc((CodeTest*)startAddr);
+ info.iTime = NKern::TickCount() - time;
+
+ info.iActualMapAttr = 0; //Not relevant.
+ kumemput(a1,&info,sizeof(info));
+ return KErrNone;
+ }
+ default:
+ return KErrArgument;
+ }
+
+ // Run the test against test function from memory chunk with cache attributes as specified in info.iCacheState.
+ // As we need a chunk with eXecutable permission attribute, can't use shared chunk. Take HwChunk instead.
+ DPlatChunkHw* chunk;
+ TPhysAddr physBase; // This will be base physical address of the chunk
+ TLinAddr linearBase; // This will be base linear address of the chunk
+ NKern::ThreadEnterCS();
+ r = Epoc::AllocPhysicalRam(Kern::RoundToPageSize(info.iSize), physBase, 0);//Allocate RAM. This will set aPhysAddr
+ if (r)
+ {
+ NKern::ThreadLeaveCS();
+ return r;
+ }
+ r = DPlatChunkHw::New (chunk, physBase, Kern::RoundToPageSize(info.iSize), info.iActualMapAttr);//Create chunk
+ if (r)
+ {
+ Epoc::FreePhysicalRam(physBase, Kern::RoundToPageSize(info.iSize));
+ NKern::ThreadLeaveCS();
+ return r;
+ }
+ NKern::ThreadLeaveCS();
+
+ linearBase = chunk->LinearAddress();
+
+ // Create nop,nop,...,nop,ret sequence at the start of the chunk with size = info.iSize
+ TInt nopInstr = ((TInt*)TestCodeFunc)[0]; // NOP is the first instruction from TestCodeFunc
+ TInt retInstr = ((TInt*)TestCodeFunc)[TestCodeFuncSize()/4-1]; // RET is the last instruction in TestCodeFunc
+ for (TInt i = 0; i < (info.iSize/4-1) ; i++) // Put all NOPs...
+ ((TInt*)linearBase)[i] = nopInstr; // ...
+ ((TInt*)linearBase)[info.iSize/4-1] = retInstr; // ... and add RET at the end.
+
+ Cache::IMB_Range((TLinAddr)linearBase, info.iSize); // Sync L1 Instruction & Data cache
+ //Fluch the memory from which the test funcion executes. This will give fair chance to all test cases.
+ Cache::SyncMemoryBeforeDmaWrite(linearBase, info.iSize); // This will clean L1&L2 cache.
+ Cache::SyncMemoryAfterDmaRead(linearBase, info.iSize); // This will invalidate (aka purge) L1&L2 cache.
+
+ // Execute the test
+ time = NKern::TickCount();
+ LoopTestCodeFunc((CodeTest*)linearBase);
+ info.iTime = NKern::TickCount() - time;
+
+ kumemput(a1,&info,sizeof(info));
+
+ NKern::ThreadEnterCS();
+ chunk->Close(NULL);
+ Epoc::FreePhysicalRam(physBase, Kern::RoundToPageSize(info.iSize));
+ NKern::ThreadLeaveCS();
+ return KErrNone;
+ }
+
+/**
+Tests WriteBack mode:
+ (1)Writes down data into BW cached memory.
+ (2)Purge the cache.
+ (3)Counts the bytes that reach the main memory.
+@param aWriteAlloc True if WriteAllocate to test, EFalse if ReadAllocate
+*/
+TInt DCacheTest::TestWriteBackMode(TAny* a1, TBool aWriteAlloc)
+ {
+ TInt r, cacheAttr = EMapAttrSupRw;
+ TUint i, counter = 0;
+ const TInt pattern = 0xabcdef12;
+
+ RCacheTestDevice::TChunkTest info;
+ kumemget(&info,a1,sizeof(info));
+#ifdef __SMP__
+ TUint32 force_shared = EMapAttrShared;
+#else
+ TUint32 force_shared = 0;
+#endif
+
+ switch (info.iCacheAttr)
+ {
+#if defined(__CPU_MEMORY_TYPE_REMAPPING)
+ case RCacheTestDevice::E_InnerWBRA_Remapped:
+ case RCacheTestDevice::E_InnerWB_Remapped:
+ case RCacheTestDevice::E_OuterWBRA_Remapped:
+ case RCacheTestDevice::E_OuterWB_Remapped:
+ Remap(info.iCacheAttr);
+ new (&cacheAttr) TMappingAttributes2(EMemAttKernelInternal4,EFalse,ETrue,ETrue,force_shared);
+ break;
+#endif
+ case RCacheTestDevice::E_InnerWBRA: cacheAttr |= EMapAttrCachedWBRA|force_shared; break;
+ case RCacheTestDevice::E_InnerWB: cacheAttr |= EMapAttrCachedWBWA|force_shared; break;
+ case RCacheTestDevice::E_OuterWBRA: cacheAttr |= EMapAttrL2CachedWBRA|force_shared; break;
+ case RCacheTestDevice::E_OuterWB: cacheAttr |= EMapAttrL2CachedWBWA|force_shared; break;
+ default: return KErrArgument;
+ }
+ // Create chunk
+ if (KErrNone!=(r=AllocPhysicalRam(info.iSize))) return r;
+ if (KErrNone!=(r=CreateSharedChunk(cacheAttr, info.iActualMapAttr))) return r;
+
+ for (i=0; i<(iSize>>2) ; i++) ((TInt*)iChunkBase)[i] = 0; //Zero-fill cache and...
+ Cache::SyncMemoryBeforeDmaWrite(iChunkBase, iSize); //... clean the cache down to memory
+
+ Cache::SyncMemoryAfterDmaRead(iChunkBase, iSize); //Invalidate (aka purge).
+
+ // Fill in cached region with the pattern.
+ for (i=0; i<(iSize>>2); i++)
+ {
+ if (!aWriteAlloc) iDummy = ((TInt*)iChunkBase)[i]; // Don't read if WriteAllocate is tested
+ ((TInt*)iChunkBase)[i] = pattern;
+ }
+
+ Cache::SyncMemoryAfterDmaRead(iChunkBase, iSize); //Invalidate (aka purge) cache. Data in cache should be destroyed
+ CloseSharedChunk(); // Close cached chunk.
+
+ //Create non-cached chunk over the same physical memory
+ if (KErrNone!=(r=CreateSharedChunk(EMapAttrSupRw , iDummy))) return r;
+
+ // Counts out how many bytes have reached RAM
+ for (i=0; i<(iSize>>2); i++) if (((TInt*)iChunkBase)[i] == pattern) counter++;
+
+ info.iSize = counter<<2; //Return the number of bytes that reached the main memory
+ CloseSharedChunk();
+ FreePhysicalRam();
+
+ kumemput(a1,&info,sizeof(info));
+ return r;
+ }
+
+/**
+Exercises SyncMemoryBeforeDmaWrite & SyncMemoryAfterDmaRead (that call L1/L2 Cache Clean & Purge methods)
+This just ensures that they do not panic (doesn't do any functional test).
+*/
+TInt DCacheTest::TestL2Maintenance()
+ {
+ // Create 20000h big chunk with the the memory commited as:
+ // |0| NotCommited |64K| Commited |128K| NotCommited |192K| Commited |256K|
+#ifdef __SMP__
+ TUint32 force_shared = EMapAttrShared;
+#else
+ TUint32 force_shared = 0;
+#endif
+ TInt r;
+ TChunkCreateInfo info;
+ info.iType = TChunkCreateInfo::ESharedKernelSingle;
+ info.iMaxSize = 0x40000;
+ info.iMapAttr = EMapAttrSupRw | EMapAttrCachedWBWA | EMapAttrL2CachedWBWA | force_shared;
+ info.iOwnsMemory = ETrue; // Use memory from system's free pool
+ info.iDestroyedDfc = NULL;
+
+ TLinAddr chunkAddr;
+ TUint32 mapAttr;
+ DChunk* chunk;
+ TInt pageSize = 0x1000; //4K
+
+ NKern::ThreadEnterCS();
+ if (KErrNone != (r = Kern::ChunkCreate(info, chunk, chunkAddr, mapAttr)))
+ {
+ NKern::ThreadLeaveCS();
+ return r;
+ }
+ r = Kern::ChunkCommit(chunk,0x10000,0x10000);
+ if(r!=KErrNone)
+ {
+ Kern::ChunkClose(chunk);
+ NKern::ThreadLeaveCS();
+ return r;
+ }
+ r = Kern::ChunkCommit(chunk,0x30000,0x10000);
+ if(r!=KErrNone)
+ {
+ Kern::ChunkClose(chunk);
+ NKern::ThreadLeaveCS();
+ return r;
+ }
+
+ NKern::ThreadLeaveCS();
+
+ TInt valid = chunkAddr+0x10000;
+
+ #if defined(__ARM_L220_CACHE__) || defined(__ARM_L210_CACHE__)
+ // Check L2 cache maintenance for invalid addresses.
+ // On ARMv6, clean/purge L1 cache of the region with invalid addresses panics.
+ // However, cleaning/purging a large region above the threshold will clean/purge entire L1 cache(which doesn't panic).
+ // That is why the following calls run against 256KB.
+ //We cannot do that on XScale L2 cache as it would generate page walk data abort.
+ TInt invalid = chunkAddr;
+ Cache::SyncMemoryBeforeDmaWrite(invalid+20, 0x40000-20);
+ Cache::SyncMemoryAfterDmaRead(invalid+100,0x40000-101);
+ #endif
+
+
+ // The following calls operate against valid memory regions.
+ Cache::SyncMemoryAfterDmaRead(valid+1, 0);
+ Cache::SyncMemoryAfterDmaRead(valid+32, 12);
+ Cache::SyncMemoryAfterDmaRead(valid+1, 0);
+ Cache::SyncMemoryBeforeDmaWrite(valid+2, 1);
+ Cache::SyncMemoryAfterDmaRead(valid+3, 2);
+ Cache::SyncMemoryBeforeDmaWrite(valid+4, 3);
+ Cache::SyncMemoryAfterDmaRead(valid+5, 4);
+ Cache::SyncMemoryBeforeDmaWrite(valid+6, 5);
+ Cache::SyncMemoryAfterDmaRead(valid+7, 6);
+ Cache::SyncMemoryBeforeDmaWrite(valid+8, 7);
+ Cache::SyncMemoryAfterDmaRead(valid+9, 8);
+ Cache::SyncMemoryBeforeDmaWrite(valid+10, 9);
+ Cache::SyncMemoryAfterDmaRead(valid+11, 10);
+ Cache::SyncMemoryBeforeDmaWrite(valid+12, 11);
+ Cache::SyncMemoryAfterDmaRead(valid+13, 12);
+ Cache::SyncMemoryBeforeDmaWrite(valid+14, 13);
+ Cache::SyncMemoryAfterDmaRead(valid+15, 14);
+
+ TLinAddr page = (valid+2*pageSize);
+ Cache::SyncMemoryBeforeDmaWrite(page, 0);
+ Cache::SyncMemoryAfterDmaRead(page, 0);
+ Cache::SyncMemoryBeforeDmaWrite(page-1, 2);
+ Cache::SyncMemoryAfterDmaRead(page-2, 4);
+ Cache::SyncMemoryBeforeDmaWrite(page-3, 6);
+ Cache::SyncMemoryAfterDmaRead(page-4, 8);
+ Cache::SyncMemoryBeforeDmaWrite(page-5, 10);
+ Cache::SyncMemoryAfterDmaRead(page-6, 12);
+
+ Cache::SyncMemoryBeforeDmaWrite(page, 2*pageSize);
+ Cache::SyncMemoryAfterDmaRead(page-1, 2*pageSize);
+ Cache::SyncMemoryBeforeDmaWrite(page+1, 2*pageSize);
+ Cache::SyncMemoryAfterDmaRead(page+3, 2*pageSize);
+ Cache::SyncMemoryBeforeDmaWrite(page-3, 2*pageSize);
+
+ Cache::SyncMemoryBeforeDmaWrite(valid, 64, EMapAttrCachedMax);
+ Cache::SyncMemoryBeforeDmaRead(valid, 64, EMapAttrCachedMax);
+ Cache::SyncMemoryAfterDmaRead(valid, 64, EMapAttrCachedMax);
+
+
+ Cache::IMB_Range(0, 0xffffffff);//will cause: Clean all DCache & Purge all ICache
+ // Close the chunk
+ NKern::ThreadEnterCS();
+ Kern::ChunkClose(chunk);
+ NKern::ThreadLeaveCS();
+
+
+ //Check maintenance functions against entire cache (we need memory region >=8*cache size)
+ info.iType = TChunkCreateInfo::ESharedKernelSingle;
+ info.iMaxSize = 0x100000; //1MB will do
+ info.iMapAttr = EMapAttrSupRw | EMapAttrCachedWBWA | EMapAttrL2CachedWBWA | force_shared;
+ info.iOwnsMemory = ETrue; // Use memory from system's free pool
+ info.iDestroyedDfc = NULL;
+
+ NKern::ThreadEnterCS();
+ if (KErrNone != (r = Kern::ChunkCreate(info, chunk, chunkAddr, mapAttr)))
+ {
+ NKern::ThreadLeaveCS();
+ return r;
+ }
+ r = Kern::ChunkCommit(chunk,0x0,0x100000);
+ if(r!=KErrNone)
+ {
+ Kern::ChunkClose(chunk);
+ NKern::ThreadLeaveCS();
+ return r;
+ }
+ NKern::ThreadLeaveCS();
+
+ Cache::SyncMemoryBeforeDmaWrite(chunkAddr, 0x100000);
+ Cache::SyncMemoryAfterDmaRead(chunkAddr, 0x100000);
+
+ // Close the chunk
+ NKern::ThreadEnterCS();
+ Kern::ChunkClose(chunk);
+ NKern::ThreadLeaveCS();
+
+ return KErrNone;
+ }
+
+
+TInt DCacheTest::TestUseCase(TAny* a1)
+ {
+ TInt r = KErrNone;
+ TInt time;
+
+ RCacheTestDevice::TChunkTest info;
+ kumemget(&info,a1,sizeof(info));
+
+ TUint32 chunkAttr = EMapAttrSupRw;
+#ifdef __SMP__
+ TUint32 force_shared = EMapAttrShared;
+#else
+ TUint32 force_shared = 0;
+#endif
+ if (info.iShared) chunkAttr |= EMapAttrShared;
+
+ switch (info.iCacheAttr)
+ {
+ case RCacheTestDevice::E_StronglyOrder:
+ new (&chunkAttr) TMappingAttributes2(EMemAttStronglyOrdered,EFalse,ETrue,EFalse,info.iShared?ETrue:EFalse);
+ break;
+ case RCacheTestDevice::E_Device:
+ new (&chunkAttr) TMappingAttributes2(EMemAttDevice,EFalse,ETrue,EFalse,info.iShared?ETrue:EFalse);
+ break;
+ case RCacheTestDevice::E_Normal_Uncached:
+ new (&chunkAttr) TMappingAttributes2(EMemAttNormalUncached,EFalse,ETrue,EFalse,info.iShared?ETrue:EFalse);
+ break;
+ case RCacheTestDevice::E_Normal_Cached:
+ new (&chunkAttr) TMappingAttributes2(EMemAttNormalCached,EFalse,ETrue,EFalse,info.iShared?ETrue:EFalse);
+ break;
+ #if defined(__CPU_MEMORY_TYPE_REMAPPING)
+ case RCacheTestDevice::E_InOutWT_Remapped:
+ Remap(info.iCacheAttr);
+ new (&chunkAttr) TMappingAttributes2(EMemAttKernelInternal4,EFalse,ETrue,EFalse,(info.iShared|force_shared)?ETrue:EFalse);
+ #else
+ case RCacheTestDevice::E_InOutWT: chunkAttr |= EMapAttrCachedWTRA|EMapAttrL2CachedWTRA|force_shared;
+ #endif
+ break;
+ default:
+ return KErrArgument;
+ }
+
+ // Create chunk
+ if (KErrNone!=(r=AllocPhysicalRam(Kern::RoundToPageSize(info.iSize)))) return r;
+ if (KErrNone!=(r=CreateSharedChunk(chunkAttr, info.iActualMapAttr))) return r;
+
+ //Alloc from the heap
+ NKern::ThreadEnterCS();
+ iHeap1 = (TInt*)Kern::Alloc(Max(info.iSize,0x8000));
+ if (iHeap1==NULL) {NKern::ThreadLeaveCS();return KErrNoMemory;}
+ iHeap2 = (TInt*)Kern::Alloc(0x8000);
+ if (iHeap2==NULL) {Kern::Free((TAny*)iHeap1);NKern::ThreadLeaveCS();return KErrNoMemory;}
+ NKern::ThreadLeaveCS();
+
+ Cache::SyncMemoryAfterDmaRead(iChunkBase, info.iSize); // Invalidate (aka purge) cache.
+ time = NKern::TickCount();
+ switch(info.iUseCase)
+ {
+ case 0: r = UseCase_ReadFromChunk(info);break;
+ case 1: r = UseCase_ReadFromChunk_ReadFromHeap(info);break;
+ case 2: r = UseCase_WriteToChunk(info);break;
+ case 3: r = UseCase_WriteToChunk_ReadFromHeap(info);break;
+ default: r = KErrArgument;
+ }
+ info.iTime = NKern::TickCount() - time;
+
+ NKern::ThreadEnterCS();
+ Kern::Free((TAny*)iHeap1);
+ Kern::Free((TAny*)iHeap2);
+ NKern::ThreadLeaveCS();
+
+ CloseSharedChunk();
+ FreePhysicalRam();
+
+ kumemput(a1,&info,sizeof(info));
+ return r;
+ }
+
+TInt DCacheTest::UseCase_ReadFromChunk(RCacheTestDevice::TChunkTest& info)
+ {
+ TInt i;
+ for (i=0; i< info.iLoops; i++)
+ {
+ //Simulate - evict the chunk from the cache)
+ Cache::SyncMemoryBeforeDmaRead(iChunkBase, info.iSize, info.iActualMapAttr); // Invalidate (aka purge) cache.
+
+ //Read DMA data
+ memcpy((TAny*)iHeap1, (const TAny*)iChunkBase, info.iSize);
+ //for (j=0; j < info.iSize>>2; j++) iDummy = *((TInt*)iChunkBase+j);
+ }
+ return KErrNone;
+ }
+
+TInt DCacheTest::UseCase_ReadFromChunk_ReadFromHeap(RCacheTestDevice::TChunkTest& info)
+ {
+ TInt i;
+ for (i=0; i< info.iLoops; i++)
+ {
+ //Simulate - evict the chunk memory from the cache
+ Cache::SyncMemoryBeforeDmaRead(iChunkBase, info.iSize, info.iActualMapAttr); // Invalidate (aka purge) cache.
+
+ //Read DMA memory
+ memcpy((TAny*)iHeap1, (const TAny*)iChunkBase, info.iSize);
+
+ //Simulate Kernel activities - reading heap2
+ memcpy((TAny*)iHeap1, (const TAny*)iHeap2, 0x8000);
+ }
+ return KErrNone;
+ }
+
+TInt DCacheTest::UseCase_WriteToChunk(RCacheTestDevice::TChunkTest& info)
+ {
+ TInt i;
+ for (i=0; i< info.iLoops; i++)
+ {
+ //Simulate - evict the chunk memory from the cache
+ Cache::SyncMemoryBeforeDmaRead(iChunkBase, info.iSize, info.iActualMapAttr); // Invalidate (aka purge) cache.
+
+ //Write DMA memory
+ memcpy((TAny*)iChunkBase, (const TAny*)iHeap1, info.iSize);
+ Cache::SyncMemoryBeforeDmaWrite(iChunkBase, info.iSize, info.iActualMapAttr); // Clean cache.
+
+ }
+ return KErrNone;
+ }
+
+TInt DCacheTest::UseCase_WriteToChunk_ReadFromHeap(RCacheTestDevice::TChunkTest& info)
+ {
+ TInt i;
+ for (i=0; i< info.iLoops; i++)
+ {
+ //Simulate - evict the chunk memory from the cache
+ Cache::SyncMemoryBeforeDmaRead(iChunkBase, info.iSize, info.iActualMapAttr); // Invalidate (aka purge) cache.
+
+ //Write DMA memory
+ memcpy((TAny*)iChunkBase, (const TAny*)iHeap1, info.iSize);
+ Cache::SyncMemoryBeforeDmaWrite(iChunkBase, info.iSize, info.iActualMapAttr); // Clean cache.
+
+ //Simulate Kernel activities - reading heap2
+ memcpy((TAny*)iHeap1, (const TAny*)iHeap2, 0x8000);
+ }
+ return KErrNone;
+ }
+
+
+// Entry point
+TInt DCacheTest::Request(TInt aFunction, TAny* a1, TAny* a2)
+ {
+ TInt r = KErrNone;
+#ifdef __SMP__
+ TUint32 affinity = NKern::ThreadSetCpuAffinity(NKern::CurrentThread(), 0);
+#endif
+ switch (aFunction)
+ {
+ case RCacheTestDevice::EGetCacheInfo: r = GetCacheInfo(a1); break;
+ case RCacheTestDevice::ETestDataChunk: r = TestDataChunk(a1); break;
+ case RCacheTestDevice::ETestCodeChunk: r = TestCodeChunk(a1); break;
+ case RCacheTestDevice::ETestWriteBackReadAllocate: r = TestWriteBackMode(a1, EFalse); break;
+ case RCacheTestDevice::ETestWriteBackWriteAllocate: r = TestWriteBackMode(a1, ETrue); break;
+ case RCacheTestDevice::ETesL2Maintenance: r = TestL2Maintenance(); break;
+ case RCacheTestDevice::EGetThreshold: r = GetThreshold(a1); break;
+ case RCacheTestDevice::ESetThreshold: r = SetThreshold(a1); break;
+ case RCacheTestDevice::ETestUseCase: r = TestUseCase(a1); break;
+ default: r=KErrNotSupported;
+ }
+#ifdef __SMP__
+ NKern::ThreadSetCpuAffinity(NKern::CurrentThread(), affinity);
+#endif
+ return r;
+ }
+
+//////////////////////////////////////////
+class DTestFactory : public DLogicalDevice
+ {
+public:
+ DTestFactory();
+ // from DLogicalDevice
+ virtual TInt Install();
+ virtual void GetCaps(TDes8& aDes) const;
+ virtual TInt Create(DLogicalChannelBase*& aChannel);
+ };
+
+DTestFactory::DTestFactory()
+ {
+ iParseMask = KDeviceAllowUnit;
+ iUnitsMask = 0x3;
+ }
+
+TInt DTestFactory::Create(DLogicalChannelBase*& aChannel)
+ {
+ CacheTestDriver = new DCacheTest;
+ aChannel = CacheTestDriver;
+ return (aChannel ? KErrNone : KErrNoMemory);
+ }
+
+TInt DTestFactory::Install()
+ {
+ return SetName(&KCacheTestDriverName);
+ }
+
+void DTestFactory::GetCaps(TDes8& /*aDes*/) const
+ {
+ }
+
+DECLARE_STANDARD_LDD()
+ {
+ return new DTestFactory;
+ }