// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// f32\sfat\sl_bpb.cpp
// Boot sector code, specific for EFat.fsy
//
//
/**
@file
@internalTechnology
*/
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//!!
//!! WARNING!! DO NOT edit this file !! '\sfat' component is obsolete and is not being used. '\sfat32'replaces it
//!!
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#include "sl_std.h"
//-------------------------------------------------------------------------------------------------------------------
TFatBootSector::TFatBootSector()
{
Initialise();
}
/** initialises the boot sector data */
void TFatBootSector::Initialise()
{
Mem::FillZ(this, sizeof(TFatBootSector));
}
//-------------------------------------------------------------------------------------------------------------------
/**
@return ETrue if the boot sector contents seems to be valid
*/
TBool TFatBootSector::IsValid() const
{
const TFatType fatType = FatType();
const TUint32 totSectors = Max(TotalSectors(), HugeSectors());
const TUint32 rootDirStartSec = ReservedSectors() + FatSectors()*NumberOfFats(); //-- root directory start sector
if(fatType == EInvalid || ReservedSectors() < 1 || NumberOfFats() < 1 || FatSectors() < 1 || rootDirStartSec < 3 ||
RootDirEntries() < 1 || totSectors < 5)
goto Invalid;
if(TotalSectors() >0 && HugeSectors() >0 )
goto Invalid; //-- values clash
return ETrue;
Invalid:
__PRINT(_L("TFatBootSector::IsValid() failed!"));
return EFalse;
}
//-------------------------------------------------------------------------------------------------------------------
/**
Initialize boot sector object from the given bufer. Does not validate the data.
@param aBuf buffer with data.
*/
void TFatBootSector::Internalize(const TDesC8& aBuf)
{
ASSERT(aBuf.Size() >= KSizeOfFatBootSector);
Initialise();
TInt pos=0;
Mem::Copy(&iJumpInstruction, &aBuf[pos],3); pos+=3; // 0 TUint8 iJumpInstruction[3]
Mem::Copy(&iVendorId,&aBuf[pos],KVendorIdSize); pos+=KVendorIdSize; // 3 TUint8 iVendorId[KVendorIdSize]
Mem::Copy(&iBytesPerSector,&aBuf[pos],2); pos+=2; // 11 TUint16 iBytesPerSector
Mem::Copy(&iSectorsPerCluster,&aBuf[pos],1); pos+=1; // 13 TUint8 iSectorsPerCluster
Mem::Copy(&iReservedSectors,&aBuf[pos],2); pos+=2; // 14 TUint16 iReservedSectors
Mem::Copy(&iNumberOfFats,&aBuf[pos],1); pos+=1; // 16 TUint8 iNumberOfFats
Mem::Copy(&iRootDirEntries,&aBuf[pos],2); pos+=2; // 17 TUint16 iRootDirEntries
Mem::Copy(&iTotalSectors,&aBuf[pos],2); pos+=2; // 19 TUint16 iTotalSectors
Mem::Copy(&iMediaDescriptor,&aBuf[pos],1); pos+=1; // 21 TUint8 iMediaDescriptor
Mem::Copy(&iFatSectors,&aBuf[pos],2); pos+=2; // 22 TUint16 iFatSectors
Mem::Copy(&iSectorsPerTrack,&aBuf[pos],2); pos+=2; // 24 TUint16 iSectorsPerTrack
Mem::Copy(&iNumberOfHeads,&aBuf[pos],2); pos+=2; // 26 TUint16 iNumberOfHeads
Mem::Copy(&iHiddenSectors,&aBuf[pos],4); pos+=4; // 28 TUint32 iHiddenSectors
Mem::Copy(&iHugeSectors,&aBuf[pos],4); pos+=4; // 32 TUint32 iHugeSectors
Mem::Copy(&iPhysicalDriveNumber,&aBuf[pos],1); pos+=1;// 36|64 TUint8 iPhysicalDriveNumber
Mem::Copy(&iReserved,&aBuf[pos],1); pos+=1;// 37|65 TUint8 iReserved
Mem::Copy(&iExtendedBootSignature,&aBuf[pos],1);pos+=1;// 38|66 TUint8 iExtendedBootSignature
Mem::Copy(&iUniqueID,&aBuf[pos],4); pos+=4;// 39|67 TUint32 iUniqueID
Mem::Copy(&iVolumeLabel,&aBuf[pos],KVolumeLabelSize); // 43|71 TUint8 iVolumeLabel[KVolumeLabelSize]
pos+=KVolumeLabelSize;
// 54|82 TUint8 iFileSysType[KFileSysTypeSize]
ASSERT(aBuf.Size() >= pos+KFileSysTypeSize);
Mem::Copy(&iFileSysType,&aBuf[pos],KFileSysTypeSize);
}
//-------------------------------------------------------------------------------------------------------------------
/**
Externalize boot sector object to the given data buffer.
@param aBuf buffer to externalize.
*/
void TFatBootSector::Externalize(TDes8& aBuf) const
{
ASSERT(aBuf.MaxSize() >= KSizeOfFatBootSector);
if(aBuf.Size() < KSizeOfFatBootSector)
aBuf.SetLength(KSizeOfFatBootSector);
TInt pos=0;
Mem::Copy(&aBuf[pos],&iJumpInstruction,3); pos+=3;
Mem::Copy(&aBuf[pos],&iVendorId,KVendorIdSize); pos+=8;
Mem::Copy(&aBuf[pos],&iBytesPerSector,2); pos+=2;
Mem::Copy(&aBuf[pos],&iSectorsPerCluster,1); pos+=1;
Mem::Copy(&aBuf[pos],&iReservedSectors,2); pos+=2;
Mem::Copy(&aBuf[pos],&iNumberOfFats,1); pos+=1;
Mem::Copy(&aBuf[pos],&iRootDirEntries,2); pos+=2;
Mem::Copy(&aBuf[pos],&iTotalSectors,2); pos+=2;
Mem::Copy(&aBuf[pos],&iMediaDescriptor,1); pos+=1;
Mem::Copy(&aBuf[pos],&iFatSectors,2); pos+=2;
Mem::Copy(&aBuf[pos],&iSectorsPerTrack,2); pos+=2;
Mem::Copy(&aBuf[pos],&iNumberOfHeads,2); pos+=2;
Mem::Copy(&aBuf[pos],&iHiddenSectors,4); pos+=4;
Mem::Copy(&aBuf[pos],&iHugeSectors,4); pos+=4;
Mem::Copy(&aBuf[pos],&iPhysicalDriveNumber,1); pos+=1;
Mem::FillZ(&aBuf[pos],1); pos+=1;
Mem::Copy(&aBuf[pos],&iExtendedBootSignature,1);pos+=1;
Mem::Copy(&aBuf[pos],&iUniqueID,4); pos+=4;
Mem::Copy(&aBuf[pos],&iVolumeLabel,KVolumeLabelSize);
pos+=KVolumeLabelSize;
ASSERT(aBuf.MaxSize() >= pos+KFileSysTypeSize);
Mem::Copy(&aBuf[pos],&iFileSysType,KFileSysTypeSize);
}
//-------------------------------------------------------------------------------------------------------------------
#ifdef _DEBUG
/** replaces all non-printable characters in a buffer with spaces */
static void FixDes(TDes& aDes)
{
for(TInt i=0; i< aDes.Length(); ++i)
{
TChar ch=aDes[i];
if(!ch.IsPrint())
aDes[i]=' ';
}
}
#endif
/**
Print out the boot sector info.
*/
void TFatBootSector::PrintDebugInfo() const
{
#ifdef _DEBUG
__PRINT(_L("\n======== BootSector info: =======\n"));
TBuf<40> buf;
buf.Copy(FileSysType()); FixDes(buf);
__PRINT1(_L("FAT type:%S"), &buf);
buf.Copy(VendorId()); FixDes(buf);
__PRINT1(_L("Vendor ID:%S"), &buf);
__PRINT1(_L("BytesPerSector:%d"),BytesPerSector());
__PRINT1(_L("SectorsPerCluster:%d"),SectorsPerCluster());
__PRINT1(_L("ReservedSectors:%d"),ReservedSectors());
__PRINT1(_L("NumberOfFats:%d"),NumberOfFats());
__PRINT1(_L("RootDirEntries:%d"),RootDirEntries());
__PRINT1(_L("Total Sectors:%d"),TotalSectors());
__PRINT1(_L("MediaDescriptor:0x%x"),MediaDescriptor());
__PRINT1(_L("FatSectors:%d"),FatSectors());
__PRINT1(_L("SectorsPerTrack:%d"),SectorsPerTrack());
__PRINT1(_L("NumberOfHeads:%d"),NumberOfHeads());
__PRINT1(_L("HugeSectors:%d"),HugeSectors());
__PRINT1(_L("Root Cluster Number:%d"),RootClusterNum());
__PRINT1(_L("FSInfo Sector Number:%d"),FSInfoSectorNum());
__PRINT1(_L("Backup Boot Rec Sector Number:%d"),BkBootRecSector());
__PRINT1(_L("PhysicalDriveNumber:%d"),PhysicalDriveNumber());
__PRINT1(_L("ExtendedBootSignature:%d"),ExtendedBootSignature());
__PRINT1(_L("UniqueID:0x%x"),UniqueID());
buf.Copy(VolumeLabel()); FixDes(buf);
__PRINT1(_L("VolumeLabel:%S"), &buf);
__PRINT(_L("=============================\n"));
#endif
}
//-------------------------------------------------------------------------------------------------------------------
/**
Determine FAT type according to the information from boot sector, see FAT32 specs.
@return FAT type.
*/
TFatType TFatBootSector::FatType(void) const
{
//-- check iBytesPerSector validity; it shall be one of: 512,1024,2048,4096
if(!IsPowerOf2(iBytesPerSector) || iBytesPerSector < 512 || iBytesPerSector > 4096)
return EInvalid; //-- invalid iBytesPerSector value
//-- check iSectorsPerCluster validity, it shall be one of: 1,2,4,8...128
if(!IsPowerOf2(iSectorsPerCluster) || iSectorsPerCluster > 128)
return EInvalid; //-- invalid iSectorsPerCluster value
const TUint32 rootDirSectors = (iRootDirEntries*KSizeOfFatDirEntry + (iBytesPerSector-1)) / iBytesPerSector;
const TUint32 totSec = iTotalSectors ? iTotalSectors : iHugeSectors;
const TUint32 dataSec = totSec - (iReservedSectors + (iNumberOfFats * iFatSectors) + rootDirSectors);
const TUint32 clusterCnt = dataSec / iSectorsPerCluster;
//-- magic. see FAT specs for details.
if(clusterCnt < 4085)
return EFat12;
else if(clusterCnt < 65525)
return EFat16;
else
return EInvalid; //-- FAT32 is not supported by this fsy
}
//-------------------------------------------------------------------------------------------------------------------
/** @return The first Fat sector number */
TInt TFatBootSector::FirstFatSector() const
{
__ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter));
return ReservedSectors();
}
/**
@return Number of sectors in root directory. 0 for FAT32
*/
TUint32 TFatBootSector::RootDirSectors() const
{
__ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter));
return ( (RootDirEntries()*KSizeOfFatDirEntry + (BytesPerSector()-1)) / BytesPerSector() );
}
/** @return Start sector number of the root directory */
TInt TFatBootSector::RootDirStartSector() const
{
__ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter));
//-- FAT12/16 root dir starts just after the FATs
return ReservedSectors() + TotalFatSectors()*NumberOfFats();
}
/** @return first data sector number. for FAT32 it includes the root directory */
TInt TFatBootSector::FirstDataSector() const
{
return( ReservedSectors() + NumberOfFats()*TotalFatSectors() + RootDirSectors() );
}
/** @return FAT-type independent sector count on the volume */
TUint32 TFatBootSector::VolumeTotalSectorNumber() const
{
__ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter));
return TotalSectors() >0 ? (TUint32)TotalSectors() : (TUint32)HugeSectors();
}
/** @return FAT-type independent number of sectors in one FAT */
TUint32 TFatBootSector::TotalFatSectors() const
{
__ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter));
return (TUint32)FatSectors();
}