// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\pccd\t_pccdbm.cpp
//
//
#include "../mmu/d_sharedchunk.h"
#include <hal.h>
#include <e32test.h>
#include <e32svr.h>
#include <e32hal.h>
#include <e32uid.h>
const TInt K1K = 1024;
const TInt K4K = 4096;
const TInt K1MB = K1K*K1K;
const TInt KMaxTestSize = K1MB; // Redefine to increase test length
const TInt KVeryLongRdWrBufLen=((KMaxTestSize*2)+K4K); // Double Max Test size + 4K
LOCAL_D TPtr8 DataBuf(NULL, KVeryLongRdWrBufLen,KVeryLongRdWrBufLen);
LOCAL_D HBufC8* wrBufH = NULL;
LOCAL_D TInt DriveNumber;
LOCAL_D TBusLocalDrive TheDrive;
LOCAL_D TBool IsReadOnly;
LOCAL_D RSharedChunkLdd Ldd;
LOCAL_D RChunk TheChunk;
const TUint ChunkSize = KVeryLongRdWrBufLen;
const TTimeIntervalMicroSeconds32 KFloatingPointTestTime = 10000000; // 10 seconds
LOCAL_D TInt gFastCounterFreq;
LOCAL_D TBool ChangeFlag;
RTest test(_L("Local Drive BenchMark Test"));
///// Buffer Allocation
void AllocateBuffers()
{
test.Next(_L("Allocate Buffers"));
wrBufH = HBufC8::New(KVeryLongRdWrBufLen);
test(wrBufH != NULL);
}
void AllocateSharedBuffers(TBool Fragmented, TBool Caching)
{
// Setup SharedMemory Buffers
test.Next(_L("Allocate Shared Memory\n"));
RLoader l;
test(l.Connect()==KErrNone);
test(l.CancelLazyDllUnload()==KErrNone);
l.Close();
test.Printf(_L("Initialise\n"));
TInt PageSize = 0;
TInt r = UserHal::PageSizeInBytes(PageSize);
test(r==KErrNone);
test.Printf(_L("Loading test driver\n"));
r = User::LoadLogicalDevice(KSharedChunkLddName);
test(r==KErrNone || r==KErrAlreadyExists);
test.Printf(_L("Opening channel\n"));
r = Ldd.Open();
test(r==KErrNone);
test.Printf(_L("Create chunk\n"));
TUint aCreateFlags = EMultiple|EOwnsMemory;
if (Caching)
{
test.Printf(_L("Chunk Type:Caching\n"));
aCreateFlags |= ECached;
}
else
test.Printf(_L("Chunk Type:Fully Blocking\n"));
TCommitType aCommitType = EContiguous;
TUint TotalChunkSize = ChunkSize; // rounded to nearest Page Size
TUint ChunkAttribs = TotalChunkSize|aCreateFlags;
r = Ldd.CreateChunk(ChunkAttribs);
test(r==KErrNone);
if(Fragmented)
{
test.Printf(_L("Commit Fragmented Memory\n"));
// Allocate Pages in reverse order to maximise memory fragmentation
TUint i = ChunkSize;
do
{
i-=PageSize;
test.Printf(_L("Commit %d\n"), i);
r = Ldd.CommitMemory(aCommitType|i,PageSize);
test(r==KErrNone);
}while (i>0);
}
else
{
test.Printf(_L("Commit Contigouos Memory\n"));
r = Ldd.CommitMemory(aCommitType,TotalChunkSize);
test(r==KErrNone);
}
test.Printf(_L("Open user handle\n"));
r = Ldd.GetChunkHandle(TheChunk);
test(r==KErrNone);
}
void DeAllocateBuffers()
{
delete wrBufH;
}
void DeAllocareSharedMemory()
{
// destory chunk
test.Printf(_L("Shared Memory\n"));
test.Printf(_L("Close user chunk handle\n"));
TheChunk.Close();
test.Printf(_L("Close kernel chunk handle\n"));
TInt r = Ldd.CloseChunk(); // 1==DObject::EObjectDeleted
test(r==1);
test.Printf(_L("Check chunk is destroyed\n"));
r = Ldd.IsDestroyed();
test(r==1);
test.Printf(_L("Close test driver\n"));
Ldd.Close();
}
// end Buffer allocation
LOCAL_C void FillRegion(TInt aBlockSize)
/**
* Fill media starting at pos 0,
* with a pattern of 2*aBlockSize in length
*/
{
test.Printf(_L("Fill Region with Data!\n"));
DataBuf.SetLength(aBlockSize);
//fill up buffer
for (TInt i=0;i<(aBlockSize);i++)
{
DataBuf[i]=(TUint8)(0xFF-i);
}
TInt r = TheDrive.Write(0, DataBuf);
test (r == KErrNone);
}
LOCAL_C void DoTestRead(TInt aBlockSize)
//
// Multiple Read operations of aBlockSize are performed for 10 seconds.
// Average is then displayed.
//
{
DataBuf.SetLength(aBlockSize);
TUint functionCalls = 0;
TUint initTicks = 0;
TUint finalTicks = 0;
RTimer timer;
timer.CreateLocal();
TRequestStatus reqStat;
TInt pos = 0;
timer.After(reqStat, KFloatingPointTestTime);
initTicks = User::FastCounter();
for (TInt i = 0; reqStat==KRequestPending; i++)
{
TInt r = TheDrive.Read(pos, aBlockSize, DataBuf);
test (r == KErrNone);
pos += aBlockSize;
if (pos > KVeryLongRdWrBufLen-aBlockSize)
pos = 0;
functionCalls++;
}
finalTicks = User::FastCounter();
timer.Close();
TTimeIntervalMicroSeconds duration = TInt64(finalTicks - initTicks) * TInt64(1000000) / TInt64(gFastCounterFreq) ;
TInt dataTransferred = functionCalls * aBlockSize;
TReal transferRate = TReal32(dataTransferred) /
TReal(duration.Int64()) * TReal(1000000) / TReal(K1K); // KB/s
test.Printf(_L("Read %7d bytes in %7d byte blocks:\t%11.3f KBytes/s\n"),
dataTransferred, aBlockSize, transferRate);
return;
}
LOCAL_C void TestRead()
/**
* Repeat read test for values between 1Byte and KMaxTestSize, in steps of power of 2
*/
{
FillRegion(KVeryLongRdWrBufLen);
for (TInt i = 1; i<=KMaxTestSize; i*=2)
{
DoTestRead(i);
}
}
LOCAL_C void DoTestWrite(TInt aBlockSize)
//
// Multiple Write operations of aBlockSize are performed for 10 seconds.
// Average is then displayed.
//
{
DataBuf.SetLength(aBlockSize);
//fill up buffer
for (TInt i=0;i<aBlockSize;i++)
{
DataBuf[i]=(TUint8)(0xFF-i);
}
TUint functionCalls = 0;
TUint initTicks = 0;
TUint finalTicks = 0;
RTimer timer;
timer.CreateLocal();
TRequestStatus reqStat;
TInt pos = 0;
timer.After(reqStat, KFloatingPointTestTime);
initTicks = User::FastCounter();
for (TInt j = 0; reqStat==KRequestPending; j++)
{
TInt r = TheDrive.Write(pos, DataBuf);
test (r == KErrNone);
pos += aBlockSize;
if (pos > KVeryLongRdWrBufLen-aBlockSize)
pos = 0;
functionCalls++;
}
finalTicks = User::FastCounter();
timer.Close();
TTimeIntervalMicroSeconds duration = TInt64(finalTicks - initTicks) * TInt64(1000000) / TInt64(gFastCounterFreq) ;
TInt dataTransferred = functionCalls * aBlockSize;
TReal transferRate = TReal32(dataTransferred) /
TReal(duration.Int64()) * TReal(1000000) / TReal(K1K); // KB/s
test.Printf(_L("Write %7d bytes in %7d byte blocks:\t%11.3f KBytes/s\n"),
dataTransferred, aBlockSize, transferRate);
return;
}
LOCAL_C void TestWrite()
/**
* Repeat write test for values between 1Byte and KMaxTestSize, in steps of power of 2
*/
{
for (TInt i = 1; i<=KMaxTestSize; i*=2)
{
DoTestWrite(i);
}
}
TBool TestDriveInfo()
{
test.Next( _L("Test drive info") );
TLocalDriveCapsV6Buf DriveCaps;
TheDrive.Caps( DriveCaps );
test.Printf( _L("Caps V1:\n\tiSize=0x%lx\n\tiType=%d\n\tiConnectionBusType=%d\n\tiDriveAtt=0x%x\n\tiMediaAtt=0x%x\n\tiBaseAddress=0x%x\n\tiFileSystemId=0x%x\n\tiPartitionType=0x%x\n"),
DriveCaps().iSize,
DriveCaps().iType,
DriveCaps().iConnectionBusType,
DriveCaps().iDriveAtt,
DriveCaps().iMediaAtt,
DriveCaps().iBaseAddress,
DriveCaps().iFileSystemId,
DriveCaps().iPartitionType );
test.Printf( _L("Caps V2:\n\tiHiddenSectors=0x%x\n\tiEraseBlockSize=0x%x\nCaps V3:\n\tiExtraInfo=%x\n\tiMaxBytesPerFormat=0x%x\n"),
DriveCaps().iHiddenSectors,
DriveCaps().iEraseBlockSize,
DriveCaps().iExtraInfo,
DriveCaps().iMaxBytesPerFormat );
test.Printf( _L("Format info:\n\tiCapacity=0x%lx\n\tiSectorsPerCluster=0x%x\n\tiSectorsPerTrack=0x%x\n\tiNumberOfSides=0x%x\n\tiFatBits=%d\n"),
DriveCaps().iFormatInfo.iCapacity,
DriveCaps().iFormatInfo.iSectorsPerCluster,
DriveCaps().iFormatInfo.iSectorsPerTrack,
DriveCaps().iFormatInfo.iNumberOfSides,
DriveCaps().iFormatInfo.iFATBits );
test.Printf( _L("Caps V4:\n"));
test.Printf(_L("\tiNumberOfSectors: %d\r\n"),DriveCaps().iNumberOfSectors);
test.Printf(_L("\tiNumPagesPerBlock: %d\r\n"),DriveCaps().iNumPagesPerBlock);
test.Printf(_L("\tiSectorSizeInBytes: %d\r\n"),DriveCaps().iSectorSizeInBytes);
test.Printf(_L("\tiNumBytesSpare: %d\r\n"),DriveCaps().iNumBytesSpare);
test.Printf(_L("\tiEffectiveBlks: %d\r\n"),DriveCaps().iEffectiveBlks);
test.Printf(_L("\tiStartPage: %d\r\n"),DriveCaps().iStartPage);
test.Printf(_L("\tMediaSizeInBytes: %ld\r\n"),DriveCaps().MediaSizeInBytes());
test.Printf( _L("Caps V5:\n"));
if(DriveCaps().iSerialNumLength > 0)
{
test.Printf( _L("\tiSerialNum : ") );
TBuf8<2*KMaxSerialNumLength> snBuf;
TUint i;
for (i=0; i<DriveCaps().iSerialNumLength; i++)
{
snBuf.AppendNumFixedWidth( DriveCaps().iSerialNum[i], EHex, 2 );
test.Printf( _L("%02x"), DriveCaps().iSerialNum[i]);
}
test.Printf( _L("\n") );
}
else
{
test.Printf( _L("\tiSerialNum : Not Supported") );
}
test.Printf(_L("Caps V6:\n"));
test.Printf(_L("\tiBlockSize: %d\r\n"),DriveCaps().iBlockSize);
TBool isReadOnly = DriveCaps().iMediaAtt & KMediaAttWriteProtected;
return(isReadOnly);
}
void ParseCommandLineArgs()
{
TBuf<0x100> buf;
TChar driveToTest;
// Get the list of drives
TDriveInfoV1Buf diBuf;
UserHal::DriveInfo(diBuf);
TDriveInfoV1 &di=diBuf();
TInt driveCount = di.iTotalSupportedDrives;
// Parse command line arguments for the drive to test
User::CommandLine(buf);
TLex lex(buf);
TPtrC token=lex.NextToken();
TFileName thisfile=RProcess().FileName();
if (token.MatchF(thisfile)==0)
{
token.Set(lex.NextToken());
}
if(token.Length()!=0)
{
driveToTest=token[0];
}
else
{
//Print the list of usable drives
test.Printf(_L("\nDRIVES USED AT PRESENT :\r\n"));
for (TInt i=0; i < driveCount; i++)
{
TBool flag=EFalse;
RLocalDrive d;
TInt r=d.Connect(i,flag);
//Not all the drives are used at present
if (r == KErrNotSupported)
continue;
test.Printf(_L("%d : DRIVE NAME :%- 16S\r\n"), i, &di.iDriveName[i]);
}
test.Printf(_L("\r\nWarning - all data on drive will be lost.\r\n"));
test.Printf(_L("<<<Hit drive number to continue>>>\r\n"));
driveToTest=(TUint)test.Getch();
}
DriveNumber=((TUint)driveToTest) - '0';
test(DriveNumber >= 1 && DriveNumber < di.iTotalSupportedDrives);
}
GLDEF_C TInt E32Main()
{
test.Title();
test.Start(_L("Benchmark Testing for Local Media Drivers"));
ParseCommandLineArgs();
AllocateBuffers();
test.Printf(_L("Connect to local drive (%d)\n"),DriveNumber);
ChangeFlag=EFalse;
test(TheDrive.Connect(DriveNumber,ChangeFlag)==KErrNone);
TInt r = HAL::Get(HAL::EFastCounterFrequency, gFastCounterFreq);
test(r == KErrNone);
IsReadOnly = TestDriveInfo();
if (IsReadOnly)
{
test.Printf(_L("Drive is read only - can't run test!!\n"));
DeAllocateBuffers();
test.End();
return(0);
}
// Heap Memory
DataBuf.Set(wrBufH->Des());
test.Next(_L("Read Benchmark - Heap Memory"));
TestRead();
test.Next(_L("Write Benchmark - Heap Memory"));
TestWrite();
DeAllocateBuffers();
// Contiguous Shared Chunk
AllocateSharedBuffers(EFalse, EFalse);
DataBuf.Set(TheChunk.Base(),KVeryLongRdWrBufLen, KVeryLongRdWrBufLen);
test.Next(_L("Read Benchmark - Shared Contiguous Memory"));
TestRead();
test.Next(_L("Write Benchmark - Shared Contiguous Memory"));
TestWrite();
DeAllocareSharedMemory();
// Fragmented Shared Chunk
AllocateSharedBuffers(ETrue, EFalse);
DataBuf.Set(TheChunk.Base(),KVeryLongRdWrBufLen, KVeryLongRdWrBufLen);
test.Next(_L("Read Benchmark - Shared Fragmented Memory"));
TestRead();
test.Next(_L("Write Benchmark - Shared Fragmented Memory"));
TestWrite();
DeAllocareSharedMemory();
test.End();
return(0);
}