Fix for bug 2630 (Build on Linux - Incorrect slash in #include)
- Change backslash to forward slash in sf_sys.cpp
// Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\personality\example\personality.cpp
// Example RTOS personality.
//
//
#include "personality_int.h"
/******************************************************************************
* Memory pool management
******************************************************************************/
// Create a single memory pool consisting of a specified number of equal sized blocks.
TInt PMemPool::Create(const poolinfo* aInfo)
{
iBlockSize = aInfo->block_size;
TUint bsize = iBlockSize + sizeof(PMemPool*);
TInt n = (TInt)aInfo->block_count;
__KTRACE_OPT(KBOOT, Kern::Printf("PMemPool::Create %08x iBlockSize=%04x bsize=%04x n=%04x", this, iBlockSize, bsize, n));
if (bsize < sizeof(SMemBlock) || (bsize & 3))
return KErrArgument;
TInt total_size = n * bsize;
iFirstFree = (SMemBlock*)Kern::Alloc(total_size);
__KTRACE_OPT(KBOOT, Kern::Printf("PMemPool::Create %08x iFirstFree=%08x", this, iFirstFree));
if (!iFirstFree)
return KErrNoMemory;
TInt i;
for (i=0; i<n; ++i)
{
SMemBlock* p = (SMemBlock*)(TLinAddr(iFirstFree) + i*bsize);
SMemBlock* q = (i<n-1) ? (SMemBlock*)(TLinAddr(p) + bsize) : NULL;
p->iPool = this;
p->iNext = q;
}
__KTRACE_OPT(KBOOT, Kern::Printf("PMemPool::Create OK"));
return KErrNone;
}
// Call with interrupts disabled
void* PMemPool::Alloc()
{
SMemBlock* p = iFirstFree;
if (p)
{
iFirstFree = p->iNext;
__KTRACE_OPT(KBOOT, Kern::Printf("AL:%08x->%08x", this, &p->iNext));
return &p->iNext;
}
__KTRACE_OPT(KBOOT, Kern::Printf("AL:%08x->0", this));
return NULL;
}
// Call with interrupts disabled
void PMemPool::Free(void* aBlock)
{
__KTRACE_OPT(KBOOT, Kern::Printf("FR:%08x<-%08x", this, aBlock));
SMemBlock* b = (SMemBlock*)aBlock;
__NK_ASSERT_DEBUG(b->iPool==this);
b->iNext = iFirstFree;
iFirstFree = b;
}
PMemMgr* PMemMgr::TheMgr;
// Create a 'size bucket' memory manager consisting of a number of memory pools
// each containing blocks of the same size. The block size increases from one
// pool to the next.
void PMemMgr::Create(const poolinfo* aInfo)
{
TInt n;
for (n=0; aInfo[n].block_size; ++n) {}
PMemMgr* m = (PMemMgr*)Kern::Alloc(sizeof(PMemMgr) + (n-1)*sizeof(PMemPool));
__KTRACE_OPT(KBOOT, Kern::Printf("PMemMgr::Create %08x NumPools=%d", m, n));
__NK_ASSERT_ALWAYS(m!=NULL);
m->iPoolCount = n;
TInt i;
size_t prev_sz=0;
for (i=0; i<n; ++i)
{
__NK_ASSERT_ALWAYS(aInfo[i].block_size > prev_sz);
prev_sz = aInfo[i].block_size;
TInt r = m->iPools[i].Create(aInfo+i);
__NK_ASSERT_ALWAYS(r==KErrNone);
}
TheMgr = m;
}
// Allocate a memory block of the requested size (or the next larger size if necessary).
void* PMemMgr::Alloc(size_t aSize)
{
__KTRACE_OPT(KBOOT, Kern::Printf("MA:%04x", aSize));
void* b = NULL;
PMemPool* p = &TheMgr->iPools[0];
PMemPool* q = p + TheMgr->iPoolCount;
for (; p<q && p->iBlockSize < aSize; ++p) {}
if (p < q)
{
TInt irq = NKern::DisableAllInterrupts();
b = p->Alloc();
NKern::RestoreInterrupts(irq);
}
return b;
}
// Free a memory block
void PMemMgr::Free(void* aPtr)
{
__KTRACE_OPT(KBOOT, Kern::Printf("MF:%08x", aPtr));
SMemBlock* b = _LOFF(aPtr, SMemBlock, iNext);
TInt irq = NKern::DisableAllInterrupts();
b->iPool->Free(b);
NKern::RestoreInterrupts(irq);
}
/* Memory management APIs */
extern "C" {
void* alloc_mem_block(size_t size)
{
return PMemMgr::Alloc(size);
}
void free_mem_block(void* block)
{
PMemMgr::Free(block);
}
}
/******************************************************************************
* Task management
******************************************************************************/
TInt PThread::NumTasks;
TInt PThread::MaxTaskId;
PThread** PThread::TaskTable;
// RTOS priority to nanokernel priority mapping
const TUint8 PThread::NThreadPriorityTable[MAX_TASK_PRIORITY+1] =
{
0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03,
0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x06, 0x07, 0x07, 0x07, 0x07,
0x08, 0x08, 0x08, 0x08, 0x09, 0x09, 0x09, 0x09, 0x0a, 0x0a, 0x0a, 0x0a, 0x0b, 0x0b, 0x0b, 0x0b,
0x0c, 0x0c, 0x0c, 0x0c, 0x0d, 0x0d, 0x0d, 0x0d, 0x0e, 0x0e, 0x0e, 0x0e, 0x0f, 0x0f, 0x0f, 0x0f,
0x10, 0x10, 0x10, 0x10, 0x11, 0x11, 0x11, 0x11, 0x12, 0x12, 0x12, 0x12, 0x13, 0x13, 0x13, 0x13,
0x14, 0x14, 0x14, 0x14, 0x15, 0x15, 0x15, 0x15, 0x16, 0x16, 0x16, 0x16, 0x17, 0x17, 0x17, 0x17,
0x18, 0x18, 0x18, 0x18, 0x19, 0x19, 0x19, 0x19, 0x1a, 0x1a, 0x1a, 0x1a, 0x1b, 0x1b, 0x1b, 0x1b,
0x1c, 0x1c, 0x1c, 0x1c, 0x1d, 0x1d, 0x1d, 0x1d, 0x1e, 0x1e, 0x1e, 0x1e, 0x1f, 0x1f, 0x1f, 0x1f,
0x20, 0x20, 0x20, 0x20, 0x21, 0x21, 0x21, 0x21, 0x22, 0x22, 0x22, 0x22, 0x23, 0x23, 0x23, 0x23,
0x24, 0x24, 0x24, 0x24, 0x25, 0x25, 0x25, 0x25, 0x26, 0x26, 0x26, 0x26, 0x27, 0x27, 0x27, 0x27,
0x28, 0x28, 0x28, 0x28, 0x29, 0x29, 0x29, 0x29, 0x2a, 0x2a, 0x2a, 0x2a, 0x2b, 0x2b, 0x2b, 0x2b,
0x2c, 0x2c, 0x2c, 0x2c, 0x2d, 0x2d, 0x2d, 0x2d, 0x2e, 0x2e, 0x2e, 0x2e, 0x2f, 0x2f, 0x2f, 0x2f,
0x30, 0x30, 0x30, 0x30, 0x31, 0x31, 0x31, 0x31, 0x32, 0x32, 0x32, 0x32, 0x33, 0x33, 0x33, 0x33,
0x34, 0x34, 0x34, 0x34, 0x35, 0x35, 0x35, 0x35, 0x36, 0x36, 0x36, 0x36, 0x37, 0x37, 0x37, 0x37,
0x38, 0x38, 0x38, 0x38, 0x39, 0x39, 0x39, 0x39, 0x3a, 0x3a, 0x3a, 0x3a, 0x3b, 0x3b, 0x3b, 0x3b,
0x3c, 0x3c, 0x3c, 0x3c, 0x3d, 0x3d, 0x3d, 0x3d, 0x3e, 0x3e, 0x3e, 0x3e, 0x3f, 0x3f, 0x3f, 0x3f
};
// Handlers for personality layer threads
const SNThreadHandlers PThread::Handlers =
{
NULL, // no exit handler
&StateHandler,
&ExceptionHandler,
NULL // no timeout handler
};
// Create a personality layer thread
TInt PThread::Create(PThread*& aThread, const taskinfo* a)
{
if (!a->entry_pt)
return BAD_ENTRY_POINT;
if (a->priority < MIN_TASK_PRIORITY || a->priority > MAX_TASK_PRIORITY)
return BAD_PRIORITY;
if (a->stack_size & 3 || a->stack_size < MIN_STACK_SIZE)
return BAD_STACK_SIZE;
if (a->task_id < 0)
return BAD_TASK_ID;
TInt memsize = sizeof(PThread) + a->stack_size;
PThread* t = (PThread*)Kern::Alloc(memsize);
if (!t)
return OUT_OF_MEMORY;
t->iTaskId = a->task_id;
t->iSetPriority = a->priority;
t->iFirstMsg = NULL;
t->iLastMsg = NULL;
t->iISRFirstMsg = NULL;
t->iISRLastMsg = NULL;
new (&t->iMsgQIDfc) TDfc(&MsgQIDfcFn, t);
TAny* stack = t + 1;
memset(stack, 0xbb, a->stack_size);
SNThreadCreateInfo info;
info.iFunction = (NThreadFunction)a->entry_pt;
info.iStackBase = stack;
info.iStackSize = a->stack_size;
info.iPriority = NThreadPriorityTable[a->priority];
info.iTimeslice = -1; // no timeslicing
info.iAttributes = 0;
info.iHandlers = &Handlers;
info.iFastExecTable = NULL;
info.iSlowExecTable = NULL;
info.iParameterBlock = NULL;
info.iParameterBlockSize = 0;
TInt r = NKern::ThreadCreate(t, info);
__NK_ASSERT_ALWAYS(r==KErrNone);
aThread = t;
return OK;
}
// Create all required personality layer threads
void PThread::CreateAll(const taskinfo* a)
{
TInt n = 0;
TInt maxid = -1;
for (; a[n].entry_pt; ++n)
{
if (a[n].task_id > maxid)
maxid = a[n].task_id;
}
NumTasks = n;
MaxTaskId = maxid;
TaskTable = (PThread**)Kern::AllocZ((maxid+1) * sizeof(PThread*));
__NK_ASSERT_ALWAYS(TaskTable != NULL);
TInt i;
for (i=0; i<NumTasks; ++i)
{
TInt r = Create(TaskTable[a[i].task_id], a+i);
__NK_ASSERT_ALWAYS(r == KErrNone);
}
// resume the tasks
for (i=0; i<NumTasks; ++i)
{
if (a[i].auto_start)
NKern::ThreadResume(TaskTable[i]);
}
}
// State handler
void PThread::StateHandler(NThread* aThread, TInt aOp, TInt aParam)
{
PThread* t = (PThread*)aThread;
switch (aOp)
{
case NThreadBase::ESuspend:
t->HandleSuspend();
break;
case NThreadBase::EResume:
case NThreadBase::EForceResume:
t->HandleResume();
break;
case NThreadBase::ERelease:
t->HandleRelease(aParam);
break;
case NThreadBase::EChangePriority:
t->HandlePriorityChange(aParam);
break;
case NThreadBase::ETimeout:
t->HandleTimeout();
break;
case NThreadBase::ELeaveCS:
default:
__NK_ASSERT_ALWAYS(0);
}
}
// Exception handler - just fault
void PThread::ExceptionHandler(TAny* aContext, NThread* aThread)
{
(void)aThread;
Exc::Fault(aContext);
}
// Post a message to this thread from an ISR
void PThread::ISRPost(msghdr* aM)
{
aM->next = NULL;
aM->sending_task_id = TASK_ID_ISR;
msghdr* prev = (msghdr*)__e32_atomic_swp_ord_ptr(&iISRLastMsg, aM);
if (prev)
prev->next = aM;
else
{
iISRFirstMsg = aM;
iMsgQIDfc.Add();
}
}
// IDFC used to post message from ISR
void PThread::MsgQIDfcFn(TAny* aPtr)
{
PThread* t = (PThread*)aPtr;
TInt irq = NKern::DisableAllInterrupts();
msghdr* m = t->iISRFirstMsg;
msghdr* l = t->iISRLastMsg;
t->iISRFirstMsg = NULL;
t->iISRLastMsg = NULL;
NKern::RestoreInterrupts(irq);
t->Post(m, l);
}
// Post a chain of messages to this thread from an IDFC or thread
// Enter and return with preemption disabled
void PThread::Post(msghdr* aFirst, msghdr* aLast)
{
msghdr* l = iLastMsg;
iLastMsg = aLast;
if (l)
{
l->next = aFirst;
return; // queue was not empty so thread can't be waiting
}
iFirstMsg = aFirst;
if (iNState == EWaitMsgQ)
Release(KErrNone);
}
// Dequeue and return the first message if there is one
// Return NULL if no messages waiting
// Enter and return with preemption disabled
msghdr* PThread::GetMsg()
{
msghdr* m = iFirstMsg;
if (m)
{
iFirstMsg = m->next;
if (!iFirstMsg)
iLastMsg = NULL;
}
return m;
}
void PThread::HandleSuspend()
{
switch(iNState)
{
case EWaitMsgQ:
break;
case EWaitSemaphore:
((PSemaphore*)iWaitObj)->SuspendWaitingThread(this);
break;
default:
__NK_ASSERT_ALWAYS(0);
}
}
void PThread::HandleResume()
{
switch(iNState)
{
case EWaitMsgQ:
break;
case EWaitSemaphore:
((PSemaphore*)iWaitObj)->ResumeWaitingThread(this);
break;
default:
__NK_ASSERT_ALWAYS(0);
}
}
void PThread::HandleRelease(TInt aReturnCode)
{
(void)aReturnCode;
switch(iNState)
{
case EWaitMsgQ:
CheckSuspendThenReady();
break;
case EWaitSemaphore:
if (aReturnCode<0)
((PSemaphore*)iWaitObj)->WaitCancel(this);
else
CheckSuspendThenReady();
break;
default:
__NK_ASSERT_ALWAYS(0);
}
}
void PThread::HandlePriorityChange(TInt aNewPriority)
{
(void)aNewPriority;
switch(iNState)
{
case EWaitMsgQ:
iPriority = (TUint8)aNewPriority;
break;
case EWaitSemaphore:
((PSemaphore*)iWaitObj)->ChangeWaitingThreadPriority(this, aNewPriority);
break;
default:
__NK_ASSERT_ALWAYS(0);
}
}
void PThread::HandleTimeout()
{
switch(iNState)
{
case EWaitMsgQ:
CheckSuspendThenReady();
break;
case EWaitSemaphore:
((PSemaphore*)iWaitObj)->WaitCancel(this);
break;
default:
__NK_ASSERT_ALWAYS(0);
}
}
/* Task APIs */
extern "C" {
int suspend_task(int id)
{
if (TUint(id) > TUint(PThread::MaxTaskId))
return BAD_TASK_ID;
PThread* t = PThread::TaskTable[id];
if (!t)
return BAD_TASK_ID;
NKern::ThreadSuspend(t, 1);
return OK;
}
int resume_task(int id)
{
if (TUint(id) > TUint(PThread::MaxTaskId))
return BAD_TASK_ID;
PThread* t = PThread::TaskTable[id];
if (!t)
return BAD_TASK_ID;
NKern::ThreadResume(t);
return OK;
}
int get_task_priority(int id)
{
if (TUint(id) > TUint(PThread::MaxTaskId))
return BAD_TASK_ID;
PThread* t = PThread::TaskTable[id];
if (!t)
return BAD_TASK_ID;
return t->iSetPriority;
}
int set_task_priority(int id, int priority)
{
if (TUint(id) > TUint(PThread::MaxTaskId))
return BAD_TASK_ID;
PThread* t = PThread::TaskTable[id];
if (!t)
return BAD_TASK_ID;
if (priority < MIN_TASK_PRIORITY || priority > MAX_TASK_PRIORITY)
return BAD_PRIORITY;
NKern::Lock();
t->iSetPriority = priority;
t->SetPriority(PThread::NThreadPriorityTable[priority]);
NKern::Unlock();
return OK;
}
int current_task_id(void)
{
TInt c = NKern::CurrentContext();
if (c == NKern::EInterrupt)
return TASK_ID_ISR;
PThread* t = (PThread*)NKern::CurrentThread();
if (t->iHandlers == &PThread::Handlers)
return t->iTaskId;
return TASK_ID_UNKNOWN;
}
void disable_preemption(void)
{
NKern::Lock();
}
void enable_preemption(void)
{
NKern::Unlock();
}
int disable_interrupts(void)
{
return NKern::DisableAllInterrupts();
}
void restore_interrupts(int level)
{
NKern::RestoreInterrupts(level);
}
/* Message APIs */
int send_msg(int task_id, msghdr* msg)
{
if (TUint(task_id) > TUint(PThread::MaxTaskId))
return BAD_TASK_ID;
PThread* t = PThread::TaskTable[task_id];
if (!t)
return BAD_TASK_ID;
TInt c = NKern::CurrentContext();
if (c == NKern::EInterrupt)
{
t->ISRPost(msg);
return OK;
}
msg->next = NULL;
PThread* st = (PThread*)NKern::CurrentThread();
msg->sending_task_id = (st->iHandlers == &PThread::Handlers) ? st->iTaskId : TASK_ID_UNKNOWN;
NKern::Lock();
t->Post(msg, msg);
NKern::Unlock();
return OK;
}
int recv_msg(msghdr** msgptr, int time_ticks)
{
if (time_ticks < WAIT_FOREVER)
return BAD_TIME_INTERVAL;
PThread* t = (PThread*)NKern::CurrentThread();
NKern::Lock();
msghdr* m = t->GetMsg();
if (!m && time_ticks != NO_WAIT)
{
NKern::NanoBlock(time_ticks>0 ? time_ticks : 0, PThread::EWaitMsgQ, NULL);
NKern::PreemptionPoint();
m = t->GetMsg();
}
NKern::Unlock();
*msgptr = m;
return m ? OK : TIMED_OUT;
}
}
/******************************************************************************
* Timer management
******************************************************************************/
TInt PTimer::NumTimers;
PTimer* PTimer::TimerTable;
// Create all required timers
void PTimer::CreateAll()
{
NumTimers = timer_count;
TimerTable = new PTimer[timer_count];
__NK_ASSERT_ALWAYS(TimerTable != NULL);
}
PTimer::PTimer()
: NTimer(NTimerExpired, this),
iPeriod(0),
iCookie(0),
iThread(0),
iExpiryCount(0)
{
}
void PTimer::NTimerExpired(TAny* aPtr)
{
timer_msg* m = (timer_msg*)alloc_mem_block(sizeof(timer_msg));
m->header.next = 0;
m->header.msg_id = MSG_ID_TIMEOUT;
PTimer* p = (PTimer*)aPtr;
TInt irq = NKern::DisableAllInterrupts();
PThread* t = p->iThread;
m->count = ++p->iExpiryCount;
m->cookie = p->iCookie;
if (p->iPeriod > 0)
p->Again(p->iPeriod);
NKern::RestoreInterrupts(irq);
t->ISRPost(&m->header);
}
/* Timer APIs */
extern "C" {
unsigned tick_count(void)
{
return NKern::TickCount();
}
void delay(int time_interval)
{
__NK_ASSERT_ALWAYS(time_interval > 0);
NKern::Sleep(time_interval);
}
int start_one_shot_timer(int timer_id, int task_id, int time_ticks, void* cookie)
{
if (time_ticks <= 0)
return BAD_TIME_INTERVAL;
if (TUint(timer_id) >= TUint(PTimer::NumTimers))
return BAD_TIMER_ID;
PTimer* tmr = PTimer::TimerTable + timer_id;
if (TUint(task_id) > TUint(PThread::MaxTaskId))
return BAD_TASK_ID;
PThread* t = PThread::TaskTable[task_id];
if (!t)
return BAD_TASK_ID;
TInt r = OK;
TInt irq = NKern::DisableAllInterrupts();
if (tmr->iThread)
r = TIMER_IN_USE;
else
{
tmr->iPeriod = 0;
tmr->iCookie = cookie;
tmr->iThread = t;
tmr->iExpiryCount = 0;
tmr->OneShot(time_ticks, EFalse);
}
NKern::RestoreInterrupts(irq);
return r;
}
int start_periodic_timer(int timer_id, int task_id, int initial_time_ticks, int period_ticks, void* cookie)
{
if (initial_time_ticks <= 0 || period_ticks <= 0)
return BAD_TIME_INTERVAL;
if (TUint(timer_id) >= TUint(PTimer::NumTimers))
return BAD_TIMER_ID;
PTimer* tmr = PTimer::TimerTable + timer_id;
if (TUint(task_id) > TUint(PThread::MaxTaskId))
return BAD_TASK_ID;
PThread* t = PThread::TaskTable[task_id];
if (!t)
return BAD_TASK_ID;
TInt r = OK;
TInt irq = NKern::DisableAllInterrupts();
if (tmr->iThread)
r = TIMER_IN_USE;
else
{
tmr->iPeriod = period_ticks;
tmr->iCookie = cookie;
tmr->iThread = t;
tmr->iExpiryCount = 0;
tmr->OneShot(initial_time_ticks, EFalse);
}
NKern::RestoreInterrupts(irq);
return r;
}
int stop_timer(int timer_id)
{
if (TUint(timer_id) >= TUint(PTimer::NumTimers))
return BAD_TIMER_ID;
PTimer* tmr = PTimer::TimerTable + timer_id;
TInt irq = NKern::DisableAllInterrupts();
tmr->Cancel();
tmr->iThread = NULL;
NKern::RestoreInterrupts(irq);
return OK;
}
}
/******************************************************************************
* Semaphore management
******************************************************************************/
TInt PSemaphore::NumSemaphores;
PSemaphore* PSemaphore::SemaphoreTable;
void PSemaphore::CreateAll()
{
NumSemaphores = semaphore_count;
SemaphoreTable = new PSemaphore[semaphore_count];
__NK_ASSERT_ALWAYS(SemaphoreTable != NULL);
}
PSemaphore::PSemaphore()
: iCount(0),
iISRCount(0),
iIDfc(IDfcFn, this)
{
}
void PSemaphore::WaitCancel(PThread* aThread)
{
if (aThread->iSuspendCount == 0)
{
iWaitQ.Remove(aThread);
++iCount;
}
else
aThread->Deque();
aThread->CheckSuspendThenReady();
}
void PSemaphore::SuspendWaitingThread(PThread* aThread)
{
// do nothing if already suspended
if (aThread->iSuspendCount == 0)
{
iWaitQ.Remove(aThread);
++iCount;
iSuspendedQ.Add(aThread);
}
}
void PSemaphore::ResumeWaitingThread(PThread* aThread)
{
aThread->Deque();
if (--iCount<0)
{
iWaitQ.Add(aThread);
}
else
{
aThread->iWaitObj=NULL;
aThread->Ready();
}
}
void PSemaphore::ChangeWaitingThreadPriority(PThread* aThread, TInt aNewPriority)
{
if (aThread->iSuspendCount == 0)
iWaitQ.ChangePriority(aThread, aNewPriority);
else
aThread->iPriority = (TUint8)aNewPriority;
}
void PSemaphore::Signal()
{
if (++iCount <= 0)
{
// must wake up next thread
PThread* t = iWaitQ.First();
iWaitQ.Remove(t);
t->Release(KErrNone);
}
}
void PSemaphore::ISRSignal()
{
if (__e32_atomic_add_ord32(&iISRCount, 1) == 0)
iIDfc.Add();
}
void PSemaphore::IDfcFn(TAny* aPtr)
{
PSemaphore* s = (PSemaphore*)aPtr;
TInt count = (TInt)__e32_atomic_swp_ord32(&s->iISRCount, 0);
while (count--)
s->Signal();
}
/* Semaphore APIs */
extern "C" {
int semaphore_wait(int sem_id, int time_ticks)
{
if (time_ticks < WAIT_FOREVER)
return BAD_TIME_INTERVAL;
if (TUint(sem_id) >= TUint(PSemaphore::NumSemaphores))
return BAD_SEM_ID;
PSemaphore* s = PSemaphore::SemaphoreTable + sem_id;
PThread* t = (PThread*)NKern::CurrentThread();
TInt r = OK;
NKern::Lock();
if (time_ticks == NO_WAIT)
{
if (s->iCount <= 0)
r = TIMED_OUT;
else
--s->iCount;
NKern::Unlock();
return r;
}
if (--s->iCount < 0)
{
NKern::NanoBlock(time_ticks>0 ? time_ticks : 0, PThread::EWaitSemaphore, s);
s->iWaitQ.Add(t);
NKern::PreemptionPoint();
if (t->iReturnValue == KErrTimedOut)
r = TIMED_OUT;
}
NKern::Unlock();
return r;
}
int semaphore_signal(int sem_id)
{
if (TUint(sem_id) >= TUint(PSemaphore::NumSemaphores))
return BAD_SEM_ID;
PSemaphore* s = PSemaphore::SemaphoreTable + sem_id;
TInt c = NKern::CurrentContext();
if (c == NKern::EInterrupt)
{
s->ISRSignal();
return OK;
}
NKern::Lock();
s->Signal();
NKern::Unlock();
return OK;
}
void init_personality(void)
{
__KTRACE_OPT(KBOOT,Kern::Printf("Starting example personality"));
PMemMgr::Create(pool_list);
PTimer::CreateAll();
PSemaphore::CreateAll();
PThread::CreateAll(task_list);
}
}
/******************************************************************************
* Communication with EPOC
******************************************************************************/
TPMsgQ* TPMsgQ::ThePMsgQ;
TPMsgQ::TPMsgQ(TDfcFn aFunction, TAny* aPtr, TDfcQue* aDfcQ, TInt aPriority)
: TDfc(aFunction, aPtr, aDfcQ, aPriority),
iFirstMsg(NULL),
iLastMsg(NULL),
iReady(EFalse)
{
}
extern "C" void send_to_epoc(msghdr* m)
{
TPMsgQ* q = TPMsgQ::ThePMsgQ;
m->next = NULL;
m->sending_task_id = current_task_id();
NKern::Lock();
msghdr* l = q->iLastMsg;
q->iLastMsg = m;
if (l)
{
l->next = m;
NKern::Unlock();
return; // queue was not empty so thread can't be waiting
}
q->iFirstMsg = m;
if (q->iReady)
{
q->iReady = EFalse;
q->DoEnque();
}
NKern::Unlock();
}
void TPMsgQ::Receive()
{
NKern::Lock();
if (iFirstMsg)
DoEnque();
else
iReady = ETrue;
NKern::Unlock();
}
msghdr* TPMsgQ::Get()
{
NKern::Lock();
msghdr* m = iFirstMsg;
if (m)
{
iFirstMsg = m->next;
if (!iFirstMsg)
iLastMsg = NULL;
}
NKern::Unlock();
return m;
}
void TPMsgQ::CancelReceive()
{
iReady = EFalse;
Cancel();
}