// Copyright (c) 2002-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// Overview:
// Test and benchmark kernel-side utility operations
// API Information:
// RBusLogicalChannel
// Details:
// - Create a list of benchmark modules and start running them one by one;
// each module contains a set of measurement units, each unit runs for a fixed
// amount of time in a series of iterations; the results, minimum, maximum and
// average times are displayed on the screen;
// The tests use a high resolution timer implemented kernel side in a device
// driver.
// - The test contains the following benchmark modules:
// - Real-time latency module measures:
// - interrupt latency by calculating the time taken from when an
// interrupt is generated until the ISR starts
// - kernel thread latency by calculating the time taken from an ISR
// scheduling a DFC to signal the kernel thread until the kernel thread
// starts running
// - kernel thread latency as above while a CPU intensive low priority
// user thread runs at the same time
// - user thread latency by calculating the time taken from an ISR
// scheduling a DFC to signal the user thread until the user thread
// starts running
// - user thread latency as above while a CPU intensive low priority
// user thread runs at the same time
// - NTimer period jitter by calculating the actual period as the delta
// between two consecutive NTimer callbacks that store the current time;
// the jitter is the difference between the actual period and a theoretical
// period.
// - timer overhead by calculating the delta of time between two consecutive
// timestamps requested from the high precision timer implemented in the
// device driver; the calls are made from kernel side code
// - Overhead module measures:
// - timer overhead by calculating the delta of time between two consecutive
// timestamps requested from the high precision timer implemented in the
// device driver; the calls are made from user side code
// - Synchronization module measures:
// - mutex passing, local mutex contention, remote mutex contention,
// local semaphore latency, remote semaphore latency,
// local thread semaphore latency, remote thread semaphore latency.
// - Client-server framework module measures:
// - For local high priority, local low priority, remote high priority
// and remote low priority: connection request latency, connection
// reply latency, request latency, request response time, reply latency.
// - Threads modules measures:
// - Thread creation latency, thread creation suicide, thread suicide,
// thread killing, setting per thread data, getting per thread data.
// - Properties module measures:
// - Local int notification latency, remote int notification latency,
// local byte(1) notification latency, remote byte(1) notification latency,
// local byte(8) notification latency, remote byte(8) notification latency,
// local byte(512) notification latency, remote byte(512) notification latency,
// int set overhead, byte(1) set overhead, byte(8) set overhead, byte(512) set
// overhead, int get overhead, byte(1) get overhead, byte(8) get overhead,
// byte(512) get overhead.
// Platforms/Drives/Compatibility:
// All.
// Assumptions/Requirement/Pre-requisites:
// Failures and causes:
// Base Port information:
//
//
#include "bm_suite.h"
#include <e32svr.h>
#include <u32hal.h>
RTest test(_L("Benchmark Suite"));
//
// The default value of the time allocated for one benchmark program.
//
static TInt KBMSecondsPerProgram = 30;
//
// The initial number of iterations to estimate the acctual number of iteration.
//
static TInt KBMCalibrationIter = 64;
//
// Global handle to high-resolution timer.
//
RBMTimer bmTimer;
//
// The head of the benchmark programs' list
//
BMProgram* bmSuite;
//
// Global handle to the kernel side benchmark utilty API
//
static RBMDriver bmDriver;
TBMResult::TBMResult(const TDesC& aName) : iName(aName)
{
Reset();
}
void TBMResult::Reset()
{
::bmTimer.Period(&iMinTicks);
iMaxTicks = 0;
iCumulatedTicks = 0;
iCumulatedIterations = 0;
iIterations = 0;
iMin = 0;
iMax = 0;
iAverage = 0;
}
void TBMResult::Reset(const TDesC& aName)
{
Reset();
iName.Set(aName);
}
void TBMResult::Cumulate(TBMTicks aTicks)
{
if (aTicks < iMinTicks) iMinTicks = aTicks;
if (iMaxTicks < aTicks) iMaxTicks = aTicks;
iCumulatedTicks += aTicks;
if (iCumulatedIterations < KHeadSize)
{
iHeadTicks[iCumulatedIterations] = aTicks;
}
// use the array as a circular buufer to store last KTailSize results
// (would not really know which one was actually the last)
iTailTicks[iCumulatedIterations % KTailSize] = aTicks;
++iCumulatedIterations;
}
void TBMResult::Cumulate(TBMTicks aTicks, TBMUInt64 aIter)
{
iCumulatedIterations += aIter;
iCumulatedTicks += aTicks;
}
void TBMResult::Update()
{
if (iCumulatedIterations == 0) return;
iIterations = iCumulatedIterations;
::bmTimer.TicksToNs(&iMinTicks, &iMin);
::bmTimer.TicksToNs(&iMaxTicks, &iMax);
TBMTicks averageTicks = iCumulatedTicks/TBMUInt64(iCumulatedIterations);
::bmTimer.TicksToNs(&averageTicks, &iAverage);
TInt i;
for (i = 0; i < KHeadSize; ++i)
{
::bmTimer.TicksToNs(&iHeadTicks[i], &iHead[i]);
}
for (i = 0; i < KTailSize; ++i)
{
::bmTimer.TicksToNs(&iTailTicks[i], &iTail[i]);
}
}
inline TBMNs TTimeIntervalMicroSecondsToTBMNs(TTimeIntervalMicroSeconds us)
{
return BMUsToNs(*(TBMUInt64*)&us);
}
TBMNs TBMTimeInterval::iStampPeriodNs;
TBMTicks TBMTimeInterval::iStampPeriod;
void TBMTimeInterval::Init()
{
::bmTimer.Period(&iStampPeriod);
::bmTimer.TicksToNs(&iStampPeriod, &iStampPeriodNs);
}
void TBMTimeInterval::Begin()
{
//
// Order is important: read first low-precision timer, then the high-precision one.
// Therefore, two high-precision timer reads will be accounted in the low-precision interval,
// that's better than the opposite.
//
iTime.HomeTime();
::bmTimer.Stamp(&iStamp);
}
TBMNs TBMTimeInterval::EndNs()
{
//
// Now, in the reverse order
//
TBMTicks stamp;
::bmTimer.Stamp(&stamp);
TTime time;
time.HomeTime();
TBMNs ns = TTimeIntervalMicroSecondsToTBMNs(time.MicroSecondsFrom(iTime));
//
// If the interval fits in the high-precision timer period we can use it;
// otherwise, use the low-precision timer.
//
if (ns < iStampPeriodNs)
{
stamp = TBMTicksDelta(iStamp, stamp);
::bmTimer.TicksToNs(&stamp, &ns);
}
return ns;
}
TBMTicks TBMTimeInterval::End()
{
//
// The same as the previous one but returns ticks
//
TBMTicks stamp;
::bmTimer.Stamp(&stamp);
TTime time;
time.HomeTime();
TBMNs ns = TTimeIntervalMicroSecondsToTBMNs(time.MicroSecondsFrom(iTime));
if (ns < iStampPeriodNs)
{
stamp = TBMTicksDelta(iStamp, stamp);
}
else
{
// multiply first - privileging precision to improbable overflow.
stamp = (ns * iStampPeriod) / iStampPeriodNs;
}
return stamp;
}
TInt BMProgram::SetAbsPriority(RThread aThread, TInt aNewPrio)
{
TInt aOldPrio=0;
TInt r = ::bmDriver.SetAbsPriority(aThread, aNewPrio, &aOldPrio);
BM_ERROR(r, r == KErrNone);
return aOldPrio;
}
const TInt TBMSpawnArgs::KMagic = 0xdeadbeef;
TBMSpawnArgs::TBMSpawnArgs(TThreadFunction aChildFunc, TInt aChildPrio, TBool aRemote, TInt aSize)
{
iMagic = KMagic;
iParentId = RThread().Id();
// get a thread handle meaningful in the context of any other thread.
// (RThread() doesn't work since contextual!)
TInt r = iParent.Open(iParentId);
BM_ERROR(r, r == KErrNone);
iRemote = aRemote;
iChildFunc = aChildFunc;
iChildPrio = aChildPrio;
iSize = aSize;
}
TBMSpawnArgs::~TBMSpawnArgs()
{
iParent.Close();
}
//
// An object of CLocalChild class represents a "child" thread created by its "parent" thread
// in the parent's process through BmProgram::SpawnChild() interface.
//
// CLocalChild class is typically used (invoked) by the parent's thread.
//
class CLocalChild : public CBase, public MBMChild
{
private:
BMProgram* iProg;
public:
RThread iChild;
TRequestStatus iExitStatus;
CLocalChild(BMProgram* aProg)
{
iProg = aProg;
}
virtual void WaitChildExit();
virtual void Kill();
};
void CLocalChild::Kill()
{
iChild.Kill(KErrCancel);
}
void CLocalChild::WaitChildExit()
{
User::WaitForRequest(iExitStatus);
CLOSE_AND_WAIT(iChild);
//
// Lower the parent thread prioirty and then restore the current one
// to make sure that the kernel-side thread destruction DFC had a chance to complete.
//
TInt prio = BMProgram::SetAbsPriority(RThread(), iProg->iOrigAbsPriority);
BMProgram::SetAbsPriority(RThread(), prio);
delete this;
}
//
// Local (i.e. sharing the parent's process) child's entry point
//
TInt LocalChildEntry(void* ptr)
{
TBMSpawnArgs* args = (TBMSpawnArgs*) ptr;
args->iChildOrigPriority = BMProgram::SetAbsPriority(RThread(), args->iChildPrio);
return args->iChildFunc(args);
}
MBMChild* BMProgram::SpawnLocalChild(TBMSpawnArgs* args)
{
CLocalChild* child = new CLocalChild(this);
BM_ERROR(KErrNoMemory, child);
TInt r = child->iChild.Create(KNullDesC, ::LocalChildEntry, 0x2000, NULL, args);
BM_ERROR(r, r == KErrNone);
child->iChild.Logon(child->iExitStatus);
child->iChild.Resume();
return child;
}
//
// An object of CRemoteChild class represents a "child" thread created by its "parent" thread
// as a separate process through BmProgram::SpawnChild() interface.
//
// CRemoteChild class is typically used (invoked) by the parent's thread.
//
class CRemoteChild : public CBase, public MBMChild
{
private:
BMProgram* iProg;
public:
RProcess iChild;
TRequestStatus iExitStatus;
CRemoteChild(BMProgram* aProg)
{
iProg = aProg;
}
virtual void WaitChildExit();
virtual void Kill();
};
void CRemoteChild::Kill()
{
iChild.Kill(KErrCancel);
}
void CRemoteChild::WaitChildExit()
{
User::WaitForRequest(iExitStatus);
CLOSE_AND_WAIT(iChild);
//
// Lower the parent thread prioirty and then restore the current one
// to make sure that the kernel-side thread destruction DFC had a chance to complete.
//
TInt prio = BMProgram::SetAbsPriority(RThread(), iProg->iOrigAbsPriority);
BMProgram::SetAbsPriority(RThread(), prio);
delete this;
}
//
// Remote (i.e. running in its own process) child's entry point.
// Note that the child's process entry point is still E32Main() process (see below)
//
TInt ChildMain(TBMSpawnArgs* args)
{
args->iChildOrigPriority = BMProgram::SetAbsPriority(RThread(), args->iChildPrio);
// get a handle to the parent's thread in the child's context.
TInt r = args->iParent.Open(args->iParentId);
BM_ERROR(r, r == KErrNone);
return args->iChildFunc(args);
}
MBMChild* BMProgram::SpawnRemoteChild(TBMSpawnArgs* args)
{
CRemoteChild* child = new CRemoteChild(this);
BM_ERROR(KErrNoMemory, child);
//
// Create the child process and pass args as a UNICODE command line.
// (we suppose that the args size is multiple of sizeof(TUint16))
//
BM_ASSERT((args->iSize % sizeof(TUint16)) == 0);
TInt r = child->iChild.Create(RProcess().FileName(), TPtrC((TUint16*) args, args->iSize/sizeof(TUint16)));
BM_ERROR(r, (r == KErrNone) );
child->iChild.Logon(child->iExitStatus);
child->iChild.Resume();
return child;
}
MBMChild* BMProgram::SpawnChild(TBMSpawnArgs* args)
{
MBMChild* child;
if (args->iRemote)
{
child = SpawnRemoteChild(args);
}
else
{
child = SpawnLocalChild(args);
}
return child;
}
//
// The benchmark-suite entry point.
//
GLDEF_C TInt E32Main()
{
test.Title();
TInt r = UserSvr::HalFunction(EHalGroupKernel, EKernelHalNumLogicalCpus, 0, 0);
if (r != 1)
{
test.Printf(_L("%d CPUs detected ... test not run\n"), r);
return r;
}
AddProperty();
AddThread();
AddIpc();
AddSync();
AddOverhead();
AddrtLatency();
r = User::LoadPhysicalDevice(KBMPddFileName);
BM_ERROR(r, (r == KErrNone) || (r == KErrAlreadyExists));
r = User::LoadLogicalDevice(KBMLddFileName);
BM_ERROR(r, (r == KErrNone) || (r == KErrAlreadyExists));
r = ::bmTimer.Open();
BM_ERROR(r, (r == KErrNone));
r = ::bmDriver.Open();
BM_ERROR(r, (r == KErrNone));
TBMTimeInterval::Init();
TInt seconds = KBMSecondsPerProgram;
TInt len = User::CommandLineLength();
if (len)
{
//
// Copy the command line in a buffer
//
TInt size = len * sizeof(TUint16);
HBufC8* hb = HBufC8::NewMax(size);
BM_ERROR(KErrNoMemory, hb);
TPtr cmd((TUint16*) hb->Ptr(), len);
User::CommandLine(cmd);
//
// Check for the TBMSpawnArgs magic number.
//
TBMSpawnArgs* args = (TBMSpawnArgs*) hb->Ptr();
if (args->iMagic == TBMSpawnArgs::KMagic)
{
//
// This is a child process - call it's entry point
//
return ::ChildMain(args);
}
else
{
//
// A real command line - the time (in seconds) for each benchmark program.
//
TLex l(cmd);
r = l.Val(seconds);
if (r != KErrNone)
{
test.Printf(_L("Usage: bm_suite <seconds>\n"));
BM_ERROR(r, 0);
}
}
delete hb;
}
{
TBMTicks ticks = 1;
TBMNs ns;
::bmTimer.TicksToNs(&ticks, &ns);
test.Printf(_L("High resolution timer tick %dns\n"), TInt(ns));
test.Printf(_L("High resolution timer period %dms\n"), BMNsToMs(TBMTimeInterval::iStampPeriodNs));
}
test.Start(_L("Performance Benchmark Suite"));
BMProgram* prog = ::bmSuite;
while (prog) {
//
// For each program from the benchmark-suite's list
//
//
// Remember the number of open handles. Just for a sanity check ....
//
TInt start_thc, start_phc;
RThread().HandleCount(start_phc, start_thc);
test.Printf(_L("%S\n"), &prog->Name());
//
// A benchmark-suite's thread can run at any of three possible absolute priorities:
// KBMPriorityLow, KBMPriorityMid and KBMPriorityHigh.
// The main thread starts individual benchmark programs at KBMPriorityMid
//
prog->iOrigAbsPriority = BMProgram::SetAbsPriority(RThread(), KBMPriorityMid);
//
// First of all figure out how many iteration would be required to run this program
// for the given number of seconds.
//
TInt count;
TBMNs ns = 0;
TBMUInt64 iter = KBMCalibrationIter;
for (;;)
{
TBMTimeInterval ti;
ti.Begin();
prog->Run(iter, &count);
ns = ti.EndNs();
// run at least 100ms (otherwise, could be too much impricise ...)
if (ns > BMMsToNs(100)) break;
iter *= 2;
}
test.Printf(_L("%d iterations in %dms\n"), TInt(iter), BMNsToMs(ns));
iter = (BMSecondsToNs(seconds) * iter) / ns;
test.Printf(_L("Go for %d iterations ...\n"), TInt(iter));
//
// Now the real run ...
//
TBMResult* results = prog->Run(iter, &count);
// Restore the original prioirty
BMProgram::SetAbsPriority(RThread(), prog->iOrigAbsPriority);
//
// Now print out the results
//
for (TInt i = 0; i < count; ++i)
{
if (results[i].iMax)
{
test.Printf(_L("%S. %d iterations; Avr: %dns; Min: %dns; Max: %dns\n"),
&results[i].iName, TInt(results[i].iIterations),
TInt(results[i].iAverage), TInt(results[i].iMin), TInt(results[i].iMax));
TInt j;
BM_ASSERT((TBMResult::KHeadSize % 4) == 0);
test.Printf(_L("Head:"));
for (j = 0; j < TBMResult::KHeadSize; j += 4)
{
test.Printf(_L(" %d %d %d %d "),
TInt(results[i].iHead[j]), TInt(results[i].iHead[j+1]),
TInt(results[i].iHead[j+2]), TInt(results[i].iHead[j+3]));
}
test.Printf(_L("\n"));
BM_ASSERT((TBMResult::KTailSize % 4) == 0);
test.Printf(_L("Tail:"));
for (j = 0; j < TBMResult::KTailSize; j += 4)
{
test.Printf(_L(" %d %d %d %d "),
TInt(results[i].iTail[j]), TInt(results[i].iTail[j+1]),
TInt(results[i].iTail[j+2]), TInt(results[i].iTail[j+3]));
}
test.Printf(_L("\n"));
}
else
{
test.Printf(_L("%S. %d iterations; Avr: %dns\n"),
&results[i].iName, TInt(results[i].iIterations), TInt(results[i].iAverage));
}
}
//
// Sanity check for open handles
//
TInt end_thc, end_phc;
RThread().HandleCount(end_phc, end_thc);
BM_ASSERT(start_thc == end_thc);
BM_ASSERT(start_phc == end_phc);
// and also for pending requests ...
BM_ASSERT(RThread().RequestCount() == 0);
prog = prog->Next();
//
// This can be used to run forever ...
//
// if (prog == NULL)
// prog = ::bmSuite;
//
}
test.End();
::bmDriver.Close();
::bmTimer.Close();
return 0;
}
void bm_assert_failed(char* aCond, char* aFile, TInt aLine)
{
TPtrC8 fd((TUint8*)aFile);
TPtrC8 cd((TUint8*)aCond);
HBufC* fhb = HBufC::NewMax(fd.Length());
test(fhb != 0);
HBufC* chb = HBufC::NewMax(cd.Length());
test(chb != 0);
fhb->Des().Copy(fd);
chb->Des().Copy(cd);
test.Printf(_L("Assertion %S failed; File: %S; Line %d;\n"), chb, fhb, aLine);
test(0);
}
void bm_error_detected(TInt aError, char* aCond, char* aFile, TInt aLine)
{
TPtrC8 fd((TUint8*)aFile);
TPtrC8 cd((TUint8*)aCond);
HBufC* fhb = HBufC::NewMax(fd.Length());
test(fhb != 0);
HBufC* chb = HBufC::NewMax(cd.Length());
test(chb != 0);
fhb->Des().Copy(fd);
chb->Des().Copy(cd);
test.Printf(_L("Error: %d; Cond: %S; File: %S; Line %d;\n"), aError, chb, fhb, aLine);
test(0);
}