// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\euser\maths\um_tan.cpp
// Tangent.
//
//
#include "um_std.h"
#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
#error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh
#endif
#ifndef __USE_VFP_MATH
LOCAL_D const TUint32 TanCoeffs[] =
{
0x2168C235,0xC90FDAA2,0x7FFF0000, // polynomial approximation to tan((pi/2)*x)
0x2DF4707D,0xA55DE731,0x7FFF0000, // for |x|<=0.25
0xA9A1A71A,0xA335E33B,0x7FFF0000,
0x0BB9E431,0xA2FFFCDD,0x7FFF0000,
0x3E523A39,0xA2FA3863,0x7FFF0000,
0x8A35C401,0xA2F9D38B,0x7FFF0000,
0x91269411,0xA2F16003,0x7FFF0000,
0xDA32CC78,0xA3A93B13,0x7FFF0000,
0x4FB88317,0x9A146197,0x7FFF0000,
0x0D787ECE,0xE131DEE5,0x7FFF0000
};
LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000}; // 1.0
LOCAL_D const TUint32 Halfdata[] = {0x00000000,0x80000000,0x7FFE0000}; // 0.5
LOCAL_D const TUint32 PiBy2Invdata[] = {0x4E44152A,0xA2F9836E,0x7FFE0000}; // 2/pi
EXPORT_C TInt Math::Tan(TReal& aTrg, const TReal& aSrc)
/**
Calculates the tangent of a number.
@param aTrg A reference containing the result.
@param aSrc The argument of the tan function in radians.
@return KErrNone if successful, otherwise another of
the system-wide error codes.
*/
{
// Calculate tan(aSrc) and write result to aTrg.
// Algorithm:
// Let x=aSrc/(pi/2). Throw away integer part, but if integer part odd
// then replace final result y with -1/y
// ( use identities tan(x+n*pi)=tan(x), tan(x+pi/2)=-1/tan(x) )
// Replace x with fractional part after division.
// If x>=0.5, replace x with 1-x and replace result y with 1/y
// ( use identity tan(pi/2-x)=1/tan(x) )
// If x>=0.25, replace x with 0.5-x and replace result y with (1-y)/(1+y)
// ( use identity tan(pi/4-x)=(1-tan(x))/(1+tan(x)) )
// Use polynomial approximation to calculate tan(pi*x/2) for |x|<=0.25
const TRealX& One = *(const TRealX*)Onedata;
const TRealX& Half = *(const TRealX*)Halfdata;
const TRealX& PiBy2Inv = *(const TRealX*)PiBy2Invdata;
TRealX x;
TInt r=x.Set(aSrc);
if (r==KErrNone)
{
TInt8 sign=x.iSign;
x.iSign=0;
x*=PiBy2Inv;
TInt n=(TInt)x;
if (n<KMaxTInt && n>KMinTInt)
{
TInt flags=(n&1)<<1;
x-=TRealX(n);
if (x.iExp>=0x7FFE)
{
x=One-x;
flags^=2;
}
if (x.iExp>=0x7FFD)
{
x=Half-x;
flags^=1;
}
TRealX y;
PolyX(y,x*x,9,(const TRealX*)TanCoeffs);
y*=x;
if (flags==3)
y=(One+y)/(One-y);
else if (flags==2)
y=One/y;
else if (flags==1)
y=(One-y)/(One+y);
y.iSign=TInt8(sign ^ (n&1));
return y.GetTReal(aTrg);
}
}
SetNaN(aTrg);
return KErrArgument;
}
#else // __USE_VFP_MATH
// definitions come from RVCT math library
extern "C" TReal tan(TReal);
EXPORT_C TInt Math::Tan(TReal& aTrg, const TReal& aSrc)
{
if (aSrc<KMaxTInt && aSrc>KMinTInt)
{
aTrg = tan(aSrc);
if (Math::IsFinite(aTrg))
return KErrNone;
}
SetNaN(aTrg);
return KErrArgument;
}
#endif