kerneltest/e32test/system/t_atomic.cpp
author Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
Wed, 23 Dec 2009 11:43:31 +0000
changeset 4 56f325a607ea
parent 0 a41df078684a
permissions -rw-r--r--
Revision: 200951 Kit: 200951

// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\system\t_atomic.cpp
// 
//

#define	__E32TEST_EXTENSION__

#include <e32test.h>
#include <e32atomics.h>
#include <u32hal.h>
#include "u32std.h"
#include <e32svr.h>
#include <hal.h>

RTest test(_L("T_ATOMIC"));

#include "t_atomic.h"

#ifdef __EPOC32__
RTestAtomic	DD;
#endif

extern "C" {
extern const char* FuncName[];
extern const PFV AtomicFuncPtr[];
extern const PFV ControlFuncPtr[];
extern const TUint FuncAttr[];
}

class TestOverflowTruncate2 : public TDes16Overflow
	{
public:
	virtual void Overflow(TDes16 &aDes);
	};

void TestOverflowTruncate2::Overflow(TDes16& /*aDes*/)
	{
	}

void UPrintf(const char* aFmt, ...)
	{
	// Print to a console screen.
	TestOverflowTruncate2 overflow;
	VA_LIST list;
	VA_START(list, aFmt);
	TBuf8<256> fmtBuf8((const TUint8*)aFmt);
	TBuf<256> buf;
	buf.AppendFormatList(fmtBuf8.Expand(), list, &overflow);
	test.Printf(_L("%S\n"),&buf);
	}

/******************************************************************************
 * Single thread normal operation tests
 ******************************************************************************/
template<class T>
struct TD
	{
	T		i0;
	T		i1;
	T		i2;
	T		i3;
	TInt	iF;
	TInt	iPadding;
	};

struct TDG : public TDGBase
	{
	void Set(const TD<TUint8>	aTD8,	TInt aOrd);
	void Set(const TD<TUint16>	aTD16,	TInt aOrd);
	void Set(const TD<TUint32>	aTD32,	TInt aOrd);
	void Set(const TD<TUint64>	aTD64,	TInt aOrd);

	TInt ExecuteUser();
	TInt ExecuteKernel();
	};

TInt GetAtomicFuncIndex(TInt aFunc, TInt aSize, TInt aOrd)
	{
	test_NotNegative(aFunc);
	test_Compare(aFunc,<,EAtomicFuncN);
	test_NotNegative(aOrd);
	test_Compare(aOrd,<,4);
	aFunc *= 4;
	switch(aSize)
		{
		case 1:	break;
		case 2:	aFunc += INDEXES_PER_SIZE; break;
		case 4:	aFunc += 2*INDEXES_PER_SIZE; break;
		case 8:	aFunc += 3*INDEXES_PER_SIZE; break;
		default: test_Equal(8,aSize); break;
		}
	aFunc += aOrd;
	if (AtomicFuncPtr[aFunc])
		return aFunc;
	return -1;
	}

void TDG::Set(const TD<TUint8> aTD8, TInt aOrd)
	{
	i0 = aTD8.i0;
	i1 = aTD8.i1;
	i2 = aTD8.i2;
	i3 = aTD8.i3;
	iIndex = GetAtomicFuncIndex(aTD8.iF, 1, aOrd);
#ifdef __EXTRA_DEBUG__
	DEBUGPRINT(" 8: iF=%2d aOrd=%1d -> %d", aTD8.iF, aOrd, iIndex);
#endif
	}

void TDG::Set(const TD<TUint16> aTD16, TInt aOrd)
	{
	i0 = aTD16.i0;
	i1 = aTD16.i1;
	i2 = aTD16.i2;
	i3 = aTD16.i3;
	iIndex = GetAtomicFuncIndex(aTD16.iF, 2, aOrd);
#ifdef __EXTRA_DEBUG__
	DEBUGPRINT("16: iF=%2d aOrd=%1d -> %d", aTD16.iF, aOrd, iIndex);
#endif
	}

void TDG::Set(const TD<TUint32> aTD32, TInt aOrd)
	{
	i0 = aTD32.i0;
	i1 = aTD32.i1;
	i2 = aTD32.i2;
	i3 = aTD32.i3;
	iIndex = GetAtomicFuncIndex(aTD32.iF, 4, aOrd);
#ifdef __EXTRA_DEBUG__
	DEBUGPRINT("32: iF=%2d aOrd=%1d -> %d", aTD32.iF, aOrd, iIndex);
#endif
	}

void TDG::Set(const TD<TUint64> aTD64, TInt aOrd)
	{
	i0 = aTD64.i0;
	i1 = aTD64.i1;
	i2 = aTD64.i2;
	i3 = aTD64.i3;
	iIndex = GetAtomicFuncIndex(aTD64.iF, 8, aOrd);
#ifdef __EXTRA_DEBUG__
	DEBUGPRINT("64: iF=%2d aOrd=%1d -> %d", aTD64.iF, aOrd, iIndex);
#endif
	}

TInt TDG::ExecuteUser()
	{
	return Execute();
	}

#ifdef __EPOC32__
TInt TDG::ExecuteKernel()
	{
	return DD.TDGExecuteK(*this);
	}
#endif


#define	DCL_TEST_BLOCK(type,name)			\
	static const TD<type> name[] =
#define	DCL_TEST1(type,func,a0)				\
	{	(type)(a0),	(type)(0),	(type)(0),	(type)(0),	(EAtomicFunc##func),	0	}
#define	DCL_TEST2(type,func,a0,a1)			\
	{	(type)(a0),	(type)(a1),	(type)(0),	(type)(0),	(EAtomicFunc##func),	0	}
#define	DCL_TEST3(type,func,a0,a1,a2)		\
	{	(type)(a0),	(type)(a1),	(type)(a2),	(type)(0),	(EAtomicFunc##func),	0	}
#define	DCL_TEST4(type,func,a0,a1,a2,a3)	\
	{	(type)(a0),	(type)(a1),	(type)(a2),	(type)(a3),	(EAtomicFunc##func),	0	}

DCL_TEST_BLOCK(TUint8,TestData8)
	{
	DCL_TEST1(TUint8,	LOAD,	0x00),
	DCL_TEST1(TUint8,	LOAD,	0xFF),

	DCL_TEST2(TUint8,	STORE,	0xBB, 0x00),
	DCL_TEST2(TUint8,	STORE,	0xBB, 0xFF),

	DCL_TEST2(TUint8,	SWP,	0xBB, 0x00),
	DCL_TEST2(TUint8,	SWP,	0xBB, 0xFF),
	DCL_TEST2(TUint8,	SWP,	0x55, 0x00),
	DCL_TEST2(TUint8,	SWP,	0x55, 0xFF),

	DCL_TEST2(TUint8,	ADD,	0x00, 0x01),
	DCL_TEST2(TUint8,	ADD,	0xFF, 0x01),
	DCL_TEST2(TUint8,	ADD,	0xFE, 0x01),
	DCL_TEST2(TUint8,	ADD,	0xFE, 0x02),
	DCL_TEST2(TUint8,	ADD,	0xFE, 0x03),
	DCL_TEST2(TUint8,	ADD,	0x12, 0x23),

	DCL_TEST2(TUint8,	AND,	0x00, 0x01),
	DCL_TEST2(TUint8,	AND,	0xFF, 0x01),
	DCL_TEST2(TUint8,	AND,	0xFE, 0x01),
	DCL_TEST2(TUint8,	AND,	0xFE, 0xFF),
	DCL_TEST2(TUint8,	AND,	0xFE, 0x03),
	DCL_TEST2(TUint8,	AND,	0x5F, 0xAF),

	DCL_TEST2(TUint8,	IOR,	0x00, 0x01),
	DCL_TEST2(TUint8,	IOR,	0xFF, 0x01),
	DCL_TEST2(TUint8,	IOR,	0xFE, 0x01),
	DCL_TEST2(TUint8,	IOR,	0x0D, 0x5F),
	DCL_TEST2(TUint8,	IOR,	0x30, 0x03),
	DCL_TEST2(TUint8,	IOR,	0x5F, 0xAF),

	DCL_TEST2(TUint8,	XOR,	0x00, 0x01),
	DCL_TEST2(TUint8,	XOR,	0xFF, 0x01),
	DCL_TEST2(TUint8,	XOR,	0xFE, 0x01),
	DCL_TEST2(TUint8,	XOR,	0xFE, 0xFF),
	DCL_TEST2(TUint8,	XOR,	0xFE, 0x03),
	DCL_TEST2(TUint8,	XOR,	0x5F, 0xAF),

	DCL_TEST3(TUint8,	AXO,	0x00, 0xFF,	0x00),
	DCL_TEST3(TUint8,	AXO,	0x00, 0xFF,	0x33),
	DCL_TEST3(TUint8,	AXO,	0x00, 0xFF,	0x7D),
	DCL_TEST3(TUint8,	AXO,	0x00, 0xFF,	0xBB),
	DCL_TEST3(TUint8,	AXO,	0xAA, 0x00,	0x00),
	DCL_TEST3(TUint8,	AXO,	0xAA, 0x00,	0x33),
	DCL_TEST3(TUint8,	AXO,	0xAA, 0x00,	0x7D),
	DCL_TEST3(TUint8,	AXO,	0xAA, 0x00,	0xBB),
	DCL_TEST3(TUint8,	AXO,	0xAA, 0x33,	0xF0),
	DCL_TEST3(TUint8,	AXO,	0xAA, 0x33,	0x0F),
	DCL_TEST3(TUint8,	AXO,	0xAA, 0xCC,	0xF0),
	DCL_TEST3(TUint8,	AXO,	0xAA, 0xCC,	0x0F),

	DCL_TEST3(TUint8,	CAS,	0x00, 0xFF,	0xEE),
	DCL_TEST3(TUint8,	CAS,	0x00, 0x01,	0x11),
	DCL_TEST3(TUint8,	CAS,	0x00, 0x00,	0xEE),
	DCL_TEST3(TUint8,	CAS,	0x00, 0x00,	0x23),
	DCL_TEST3(TUint8,	CAS,	0x2A, 0xFF,	0x2B),
	DCL_TEST3(TUint8,	CAS,	0x2A, 0x01,	0x2B),
	DCL_TEST3(TUint8,	CAS,	0x2A, 0x2A,	0x2B),
	DCL_TEST3(TUint8,	CAS,	0x2A, 0x2A,	0x3B),

	DCL_TEST4(TUint8,	TAU,	0x00, 0x00,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAU,	0x01, 0x00,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAU,	0xFF, 0x00,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAU,	0x00, 0x01,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAU,	0x01, 0x01,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAU,	0x02, 0x01,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAU,	0xFF, 0x01,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAU,	0xFE, 0xFE,	0x23, 0x0B),
	DCL_TEST4(TUint8,	TAU,	0xEE, 0xFE,	0x23, 0x0B),
	DCL_TEST4(TUint8,	TAU,	0xFF, 0xFE,	0x23, 0x0B),
	DCL_TEST4(TUint8,	TAU,	0x00, 0xFE,	0x23, 0x0B),
	DCL_TEST4(TUint8,	TAU,	0xFE, 0xFE,	0x80, 0x7F),
	DCL_TEST4(TUint8,	TAU,	0xEE, 0xFE,	0x80, 0x7F),
	DCL_TEST4(TUint8,	TAU,	0xFF, 0xFE,	0x80, 0x7F),
	DCL_TEST4(TUint8,	TAU,	0x00, 0xFE,	0x80, 0x7F),
	DCL_TEST4(TUint8,	TAU,	0xFE, 0x80,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAU,	0x7F, 0x80,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAU,	0x80, 0x80,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAU,	0x81, 0x80,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAU,	0x00, 0x80,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAU,	0x7E, 0x7F,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAU,	0x7F, 0x7F,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAU,	0x80, 0x7F,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAU,	0x81, 0x7F,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAU,	0x00, 0x7F,	0x81, 0x7E),

	DCL_TEST4(TUint8,	TAS,	0x00, 0x00,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAS,	0x01, 0x00,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAS,	0xFF, 0x00,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAS,	0x00, 0x01,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAS,	0x01, 0x01,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAS,	0x02, 0x01,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAS,	0xFF, 0x01,	0x02, 0x03),
	DCL_TEST4(TUint8,	TAS,	0xFE, 0xFE,	0x23, 0x0B),
	DCL_TEST4(TUint8,	TAS,	0xEE, 0xFE,	0x23, 0x0B),
	DCL_TEST4(TUint8,	TAS,	0xFF, 0xFE,	0x23, 0x0B),
	DCL_TEST4(TUint8,	TAS,	0x00, 0xFE,	0x23, 0x0B),
	DCL_TEST4(TUint8,	TAS,	0xFE, 0xFE,	0x80, 0x7F),
	DCL_TEST4(TUint8,	TAS,	0xEE, 0xFE,	0x80, 0x7F),
	DCL_TEST4(TUint8,	TAS,	0xFF, 0xFE,	0x80, 0x7F),
	DCL_TEST4(TUint8,	TAS,	0x00, 0xFE,	0x80, 0x7F),
	DCL_TEST4(TUint8,	TAS,	0xFE, 0x80,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAS,	0x7F, 0x80,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAS,	0x80, 0x80,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAS,	0x81, 0x80,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAS,	0x00, 0x80,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAS,	0x7E, 0x7F,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAS,	0x7F, 0x7F,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAS,	0x80, 0x7F,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAS,	0x81, 0x7F,	0x81, 0x7E),
	DCL_TEST4(TUint8,	TAS,	0x00, 0x7F,	0x81, 0x7E)
	};

DCL_TEST_BLOCK(TUint16,TestData16)
	{
	DCL_TEST1(TUint16,	LOAD,	0x0055),
	DCL_TEST1(TUint16,	LOAD,	0xFFAA),

	DCL_TEST2(TUint16,	STORE,	0xBBBB, 0x0055),
	DCL_TEST2(TUint16,	STORE,	0xBBBB, 0xFFAA),

	DCL_TEST2(TUint16,	SWP,	0xBBCC, 0x0055),
	DCL_TEST2(TUint16,	SWP,	0xBBCC, 0xFFAA),
	DCL_TEST2(TUint16,	SWP,	0x55AA, 0x0033),
	DCL_TEST2(TUint16,	SWP,	0x55AA, 0xFFCC),

	DCL_TEST2(TUint16,	ADD,	0x0000, 0x0001),
	DCL_TEST2(TUint16,	ADD,	0xFFFF, 0x0001),
	DCL_TEST2(TUint16,	ADD,	0xFFFE, 0x0001),
	DCL_TEST2(TUint16,	ADD,	0xFFFE, 0x0002),
	DCL_TEST2(TUint16,	ADD,	0xFFFE, 0x0003),
	DCL_TEST2(TUint16,	ADD,	0x0012, 0x0023),
	DCL_TEST2(TUint16,	ADD,	0x0012, 0xBCFF),

	DCL_TEST2(TUint16,	AND,	0x0000, 0x0001),
	DCL_TEST2(TUint16,	AND,	0xFFFF, 0x0001),
	DCL_TEST2(TUint16,	AND,	0xFFFE, 0x0001),
	DCL_TEST2(TUint16,	AND,	0xFFFE, 0xFFFF),
	DCL_TEST2(TUint16,	AND,	0xFFFE, 0x0F03),
	DCL_TEST2(TUint16,	AND,	0xBC5F, 0x14AF),

	DCL_TEST2(TUint16,	IOR,	0x0000, 0x0001),
	DCL_TEST2(TUint16,	IOR,	0xFFFF, 0x0001),
	DCL_TEST2(TUint16,	IOR,	0xFFFE, 0x0001),
	DCL_TEST2(TUint16,	IOR,	0x000D, 0x005F),
	DCL_TEST2(TUint16,	IOR,	0x8030, 0x0803),
	DCL_TEST2(TUint16,	IOR,	0x145F, 0x56AF),

	DCL_TEST2(TUint16,	XOR,	0x0000, 0x0001),
	DCL_TEST2(TUint16,	XOR,	0xFFFF, 0x0001),
	DCL_TEST2(TUint16,	XOR,	0xFFFE, 0x0001),
	DCL_TEST2(TUint16,	XOR,	0xFFFE, 0xFFFF),
	DCL_TEST2(TUint16,	XOR,	0xFFFE, 0x0003),
	DCL_TEST2(TUint16,	XOR,	0x145F, 0xBCAF),

	DCL_TEST3(TUint16,	AXO,	0x0000, 0xFFFF,	0x0000),
	DCL_TEST3(TUint16,	AXO,	0x0000, 0xFFFF,	0x6633),
	DCL_TEST3(TUint16,	AXO,	0x0000, 0xFFFF,	0x827D),
	DCL_TEST3(TUint16,	AXO,	0x0000, 0xFFFF,	0xCCBB),
	DCL_TEST3(TUint16,	AXO,	0xAAAA, 0x0000,	0x0000),
	DCL_TEST3(TUint16,	AXO,	0xAAAA, 0x0000,	0x6633),
	DCL_TEST3(TUint16,	AXO,	0xAAAA, 0x0000,	0x827D),
	DCL_TEST3(TUint16,	AXO,	0xAAAA, 0x0000,	0xCCBB),
	DCL_TEST3(TUint16,	AXO,	0xAAAA, 0xCC33,	0x0FF0),
	DCL_TEST3(TUint16,	AXO,	0xAAAA, 0xCC33,	0xF00F),
	DCL_TEST3(TUint16,	AXO,	0xAAAA, 0x33CC,	0x0FF0),
	DCL_TEST3(TUint16,	AXO,	0xAAAA, 0x33CC,	0xF00F),

	DCL_TEST3(TUint16,	CAS,	0x0000, 0x00FF,	0x99EE),
	DCL_TEST3(TUint16,	CAS,	0x0000, 0x0001,	0x7711),
	DCL_TEST3(TUint16,	CAS,	0x0000, 0x0000,	0x99EE),
	DCL_TEST3(TUint16,	CAS,	0x0000, 0x0000,	0x1123),
	DCL_TEST3(TUint16,	CAS,	0x832A, 0xFFFF,	0x832B),
	DCL_TEST3(TUint16,	CAS,	0x832A, 0x0001,	0x832B),
	DCL_TEST3(TUint16,	CAS,	0x832A, 0x822A,	0x832B),
	DCL_TEST3(TUint16,	CAS,	0x832A, 0x832B,	0x943B),
	DCL_TEST3(TUint16,	CAS,	0x832A, 0x832A,	0x832B),
	DCL_TEST3(TUint16,	CAS,	0x832A, 0x832A,	0x943B),

	DCL_TEST4(TUint16,	TAU,	0x0000, 0x0000,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAU,	0x0001, 0x0000,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAU,	0xFFFF, 0x0000,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAU,	0x0000, 0x0001,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAU,	0x0001, 0x0001,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAU,	0x0002, 0x0001,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAU,	0xFFFF, 0x0001,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAU,	0xFFFE, 0xFFFE,	0x1023, 0x000B),
	DCL_TEST4(TUint16,	TAU,	0xFFEE, 0xFFFE,	0x1423, 0x000B),
	DCL_TEST4(TUint16,	TAU,	0xFFFF, 0xFFFE,	0x1423, 0x000B),
	DCL_TEST4(TUint16,	TAU,	0x0000, 0xFFFE,	0x1423, 0x000B),
	DCL_TEST4(TUint16,	TAU,	0xFFFE, 0xFFFE,	0x8000, 0x7FFF),
	DCL_TEST4(TUint16,	TAU,	0xFFEE, 0xFFFE,	0x8000, 0x7FFF),
	DCL_TEST4(TUint16,	TAU,	0xFFFF, 0xFFFE,	0x8000, 0x7FFF),
	DCL_TEST4(TUint16,	TAU,	0x0000, 0xFFFE,	0x8000, 0x7FFF),
	DCL_TEST4(TUint16,	TAU,	0xFFFE, 0x8000,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAU,	0x7FFF, 0x8000,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAU,	0x8000, 0x8000,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAU,	0x8001, 0x8000,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAU,	0x0000, 0x8000,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAU,	0x7FFE, 0x7FFF,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAU,	0x7FFF, 0x7FFF,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAU,	0x8000, 0x7FFF,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAU,	0x8001, 0x7FFF,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAU,	0x0000, 0x7FFF,	0x8001, 0x7FFE),

	DCL_TEST4(TUint16,	TAS,	0x0000, 0x0000,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAS,	0x0001, 0x0000,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAS,	0xFFFF, 0x0000,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAS,	0x0000, 0x0001,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAS,	0x0001, 0x0001,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAS,	0x0002, 0x0001,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAS,	0xFFFF, 0x0001,	0x0002, 0x0003),
	DCL_TEST4(TUint16,	TAS,	0xFFFE, 0xFFFE,	0x1023, 0x000B),
	DCL_TEST4(TUint16,	TAS,	0xFFEE, 0xFFFE,	0x1423, 0x000B),
	DCL_TEST4(TUint16,	TAS,	0xFFFF, 0xFFFE,	0x1423, 0x000B),
	DCL_TEST4(TUint16,	TAS,	0x0000, 0xFFFE,	0x1423, 0x000B),
	DCL_TEST4(TUint16,	TAS,	0xFFFE, 0xFFFE,	0x8000, 0x7FFF),
	DCL_TEST4(TUint16,	TAS,	0xFFEE, 0xFFFE,	0x8000, 0x7FFF),
	DCL_TEST4(TUint16,	TAS,	0xFFFF, 0xFFFE,	0x8000, 0x7FFF),
	DCL_TEST4(TUint16,	TAS,	0x0000, 0xFFFE,	0x8000, 0x7FFF),
	DCL_TEST4(TUint16,	TAS,	0xFFFE, 0x8000,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAS,	0x7FFF, 0x8000,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAS,	0x8000, 0x8000,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAS,	0x8001, 0x8000,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAS,	0x0000, 0x8000,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAS,	0x7FFE, 0x7FFF,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAS,	0x7FFF, 0x7FFF,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAS,	0x8000, 0x7FFF,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAS,	0x8001, 0x7FFF,	0x8001, 0x7FFE),
	DCL_TEST4(TUint16,	TAS,	0x0000, 0x7FFF,	0x8001, 0x7FFE)
	};

DCL_TEST_BLOCK(TUint32,TestData32)
	{
	DCL_TEST1(TUint32,	LOAD,	0x00334455),
	DCL_TEST1(TUint32,	LOAD,	0xFFCCBBAA),

	DCL_TEST2(TUint32,	STORE,	0xBBBBBBBB, 0x00334455),
	DCL_TEST2(TUint32,	STORE,	0xBBBBBBBB, 0xFFCCBBAA),

	DCL_TEST2(TUint32,	SWP,	0xBB1234CC, 0x00EDCB55),
	DCL_TEST2(TUint32,	SWP,	0xBB1234CC, 0xFF9876AA),
	DCL_TEST2(TUint32,	SWP,	0x551971AA, 0x00112233),
	DCL_TEST2(TUint32,	SWP,	0x551971AA, 0xFFEEDDCC),

	DCL_TEST2(TUint32,	ADD,	0x00000000, 0x00000001),
	DCL_TEST2(TUint32,	ADD,	0xFFFFFFFF, 0x00000001),
	DCL_TEST2(TUint32,	ADD,	0xFFFFFFFE, 0x00000001),
	DCL_TEST2(TUint32,	ADD,	0xFFFFFFFE, 0x00000002),
	DCL_TEST2(TUint32,	ADD,	0xFFFFFFFE, 0x00000003),
	DCL_TEST2(TUint32,	ADD,	0x00009912, 0x00000023),
	DCL_TEST2(TUint32,	ADD,	0x00009912, 0x4937BCFF),

	DCL_TEST2(TUint32,	AND,	0x00000000, 0x00000001),
	DCL_TEST2(TUint32,	AND,	0xFFFFFFFF, 0x00000001),
	DCL_TEST2(TUint32,	AND,	0xFFFFFFFE, 0x00000001),
	DCL_TEST2(TUint32,	AND,	0xFFFFFFFE, 0xFFFFFFFF),
	DCL_TEST2(TUint32,	AND,	0xFFFFFFFE, 0x00000F03),
	DCL_TEST2(TUint32,	AND,	0xEDCBBC5F, 0xDCBA14AF),

	DCL_TEST2(TUint32,	IOR,	0x00000000, 0x00000001),
	DCL_TEST2(TUint32,	IOR,	0xFFFFFFFF, 0x00000001),
	DCL_TEST2(TUint32,	IOR,	0xFFFFFFFE, 0x00000001),
	DCL_TEST2(TUint32,	IOR,	0x0000000D, 0x0000005F),
	DCL_TEST2(TUint32,	IOR,	0x80000030, 0x00000803),
	DCL_TEST2(TUint32,	IOR,	0x89AB145F, 0x415256AF),

	DCL_TEST2(TUint32,	XOR,	0x00000000, 0x00000001),
	DCL_TEST2(TUint32,	XOR,	0xFFFFFFFF, 0x00000001),
	DCL_TEST2(TUint32,	XOR,	0xFFFFFFFE, 0x00000001),
	DCL_TEST2(TUint32,	XOR,	0xFFFFFFFE, 0xFFFFFFFF),
	DCL_TEST2(TUint32,	XOR,	0xFFFFFFFE, 0x00000003),
	DCL_TEST2(TUint32,	XOR,	0x89AB145F, 0x4152BCAF),

	DCL_TEST3(TUint32,	AXO,	0x00000000, 0xFFFFFFFF,	0x00000000),
	DCL_TEST3(TUint32,	AXO,	0x00000000, 0xFFFFFFFF,	0x99CC6633),
	DCL_TEST3(TUint32,	AXO,	0x00000000, 0xFFFFFFFF,	0x8000027D),
	DCL_TEST3(TUint32,	AXO,	0x00000000, 0xFFFFFFFF,	0xEEDDCCBB),
	DCL_TEST3(TUint32,	AXO,	0xAAAAAAAA, 0x00000000,	0x00000000),
	DCL_TEST3(TUint32,	AXO,	0xAAAAAAAA, 0x00000000,	0x99CC6633),
	DCL_TEST3(TUint32,	AXO,	0xAAAAAAAA, 0x00000000,	0x8000027D),
	DCL_TEST3(TUint32,	AXO,	0xAAAAAAAA, 0x00000000,	0xEEDDCCBB),
	DCL_TEST3(TUint32,	AXO,	0xAAAAAAAA, 0x9966CC33,	0x0FF00FF0),
	DCL_TEST3(TUint32,	AXO,	0xAAAAAAAA, 0x9966CC33,	0xF00FF00F),
	DCL_TEST3(TUint32,	AXO,	0xAAAAAAAA, 0x669933CC,	0x0FF00FF0),
	DCL_TEST3(TUint32,	AXO,	0xAAAAAAAA, 0x669933CC,	0xF00FF00F),

	DCL_TEST3(TUint32,	CAS,	0x00000000, 0x000000FF,	0x99ABCDEE),
	DCL_TEST3(TUint32,	CAS,	0x00000000, 0x00000001,	0x7FFFF711),
	DCL_TEST3(TUint32,	CAS,	0x00000000, 0x00000000,	0x99ABCDEE),
	DCL_TEST3(TUint32,	CAS,	0x00000000, 0x00000000,	0x11234567),
	DCL_TEST3(TUint32,	CAS,	0x8000032A, 0xFFFFFFFF,	0x8000032B),
	DCL_TEST3(TUint32,	CAS,	0x8000032A, 0x00000001,	0x8000032B),
	DCL_TEST3(TUint32,	CAS,	0x8000032A, 0x8000022A,	0x8000032B),
	DCL_TEST3(TUint32,	CAS,	0x8000032A, 0x8000032B,	0x943BFCD1),
	DCL_TEST3(TUint32,	CAS,	0x8000032A, 0x8000032A,	0x8000032B),
	DCL_TEST3(TUint32,	CAS,	0x8000032A, 0x8000032A,	0x943BFCD1),

	DCL_TEST4(TUint32,	TAU,	0x00000000, 0x00000000,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAU,	0x00000001, 0x00000000,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAU,	0xFFFFFFFF, 0x00000000,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAU,	0x00000000, 0x00000001,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAU,	0x00000001, 0x00000001,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAU,	0x00000002, 0x00000001,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAU,	0xFFFFFFFF, 0x00000001,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAU,	0xFFFFFFFE, 0xFFFFFFFE,	0x1023144F, 0x0000000B),
	DCL_TEST4(TUint32,	TAU,	0xFFFFFFEE, 0xFFFFFFFE,	0x1423144F, 0x0000000B),
	DCL_TEST4(TUint32,	TAU,	0xFFFFFFFF, 0xFFFFFFFE,	0x1423144F, 0x0000000B),
	DCL_TEST4(TUint32,	TAU,	0x00000000, 0xFFFFFFFE,	0x1423144F, 0x0000000B),
	DCL_TEST4(TUint32,	TAU,	0xFFFFFFFE, 0xFFFFFFFE,	0x80000000, 0x7FFFFFFF),
	DCL_TEST4(TUint32,	TAU,	0xFFFFFFEE, 0xFFFFFFFE,	0x80000000, 0x7FFFFFFF),
	DCL_TEST4(TUint32,	TAU,	0xFFFFFFFF, 0xFFFFFFFE,	0x80000000, 0x7FFFFFFF),
	DCL_TEST4(TUint32,	TAU,	0x00000000, 0xFFFFFFFE,	0x80000000, 0x7FFFFFFF),
	DCL_TEST4(TUint32,	TAU,	0xFFFFFFFE, 0x80000000,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAU,	0x7FFFFFFF, 0x80000000,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAU,	0x80000000, 0x80000000,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAU,	0x80000001, 0x80000000,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAU,	0x00000000, 0x80000000,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAU,	0x7FFFFFFE, 0x7FFFFFFF,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAU,	0x7FFFFFFF, 0x7FFFFFFF,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAU,	0x80000000, 0x7FFFFFFF,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAU,	0x80000001, 0x7FFFFFFF,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAU,	0x00000000, 0x7FFFFFFF,	0x80000001, 0x7FFFFFFE),

	DCL_TEST4(TUint32,	TAS,	0x00000000, 0x00000000,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAS,	0x00000001, 0x00000000,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAS,	0xFFFFFFFF, 0x00000000,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAS,	0x00000000, 0x00000001,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAS,	0x00000001, 0x00000001,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAS,	0x00000002, 0x00000001,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAS,	0xFFFFFFFF, 0x00000001,	0x00000002, 0x00000003),
	DCL_TEST4(TUint32,	TAS,	0xFFFFFFFE, 0xFFFFFFFE,	0x1023144F, 0x0000000B),
	DCL_TEST4(TUint32,	TAS,	0xFFFFFFEE, 0xFFFFFFFE,	0x1423144F, 0x0000000B),
	DCL_TEST4(TUint32,	TAS,	0xFFFFFFFF, 0xFFFFFFFE,	0x1423144F, 0x0000000B),
	DCL_TEST4(TUint32,	TAS,	0x00000000, 0xFFFFFFFE,	0x1423144F, 0x0000000B),
	DCL_TEST4(TUint32,	TAS,	0xFFFFFFFE, 0xFFFFFFFE,	0x80000000, 0x7FFFFFFF),
	DCL_TEST4(TUint32,	TAS,	0xFFFFFFEE, 0xFFFFFFFE,	0x80000000, 0x7FFFFFFF),
	DCL_TEST4(TUint32,	TAS,	0xFFFFFFFF, 0xFFFFFFFE,	0x80000000, 0x7FFFFFFF),
	DCL_TEST4(TUint32,	TAS,	0x00000000, 0xFFFFFFFE,	0x80000000, 0x7FFFFFFF),
	DCL_TEST4(TUint32,	TAS,	0xFFFFFFFE, 0x80000000,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAS,	0x7FFFFFFF, 0x80000000,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAS,	0x80000000, 0x80000000,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAS,	0x80000001, 0x80000000,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAS,	0x00000000, 0x80000000,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAS,	0x7FFFFFFE, 0x7FFFFFFF,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAS,	0x7FFFFFFF, 0x7FFFFFFF,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAS,	0x80000000, 0x7FFFFFFF,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAS,	0x80000001, 0x7FFFFFFF,	0x80000001, 0x7FFFFFFE),
	DCL_TEST4(TUint32,	TAS,	0x00000000, 0x7FFFFFFF,	0x80000001, 0x7FFFFFFE)
	};

DCL_TEST_BLOCK(TUint64,TestData64)
	{
	DCL_TEST1(TUint64,	LOAD,	MAKE_TUINT64(0x00000000,0x00000000)),
	DCL_TEST1(TUint64,	LOAD,	MAKE_TUINT64(0xFEDCBA98,0x76543210)),

	DCL_TEST2(TUint64,	STORE,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
	DCL_TEST2(TUint64,	STORE,	MAKE_TUINT64(0xFEDCBA98,0x76543210), MAKE_TUINT64(0x06931471,0x80559945)),

	DCL_TEST2(TUint64,	SWP,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
	DCL_TEST2(TUint64,	SWP,	MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
	DCL_TEST2(TUint64,	SWP,	MAKE_TUINT64(0xDEADBEEF,0xBAD0BEEF), MAKE_TUINT64(0x06931471,0x80559945)),
	DCL_TEST2(TUint64,	SWP,	MAKE_TUINT64(0xFEDCBA98,0x76543210), MAKE_TUINT64(0x06931471,0x80559945)),

	DCL_TEST2(TUint64,	ADD,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001)),
	DCL_TEST2(TUint64,	ADD,	MAKE_TUINT64(0x00000000,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001)),
	DCL_TEST2(TUint64,	ADD,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
	DCL_TEST2(TUint64,	ADD,	MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),

	DCL_TEST2(TUint64,	AND,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001)),
	DCL_TEST2(TUint64,	AND,	MAKE_TUINT64(0x00000000,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001)),
	DCL_TEST2(TUint64,	AND,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
	DCL_TEST2(TUint64,	AND,	MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),

	DCL_TEST2(TUint64,	IOR,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001)),
	DCL_TEST2(TUint64,	IOR,	MAKE_TUINT64(0x00000000,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001)),
	DCL_TEST2(TUint64,	IOR,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
	DCL_TEST2(TUint64,	IOR,	MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
	DCL_TEST2(TUint64,	IOR,	MAKE_TUINT64(0x11111111,0x22222222), MAKE_TUINT64(0x44444444,0x55555555)),

	DCL_TEST2(TUint64,	XOR,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001)),
	DCL_TEST2(TUint64,	XOR,	MAKE_TUINT64(0x00000000,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001)),
	DCL_TEST2(TUint64,	XOR,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
	DCL_TEST2(TUint64,	XOR,	MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
	DCL_TEST2(TUint64,	XOR,	MAKE_TUINT64(0x11111111,0x22222222), MAKE_TUINT64(0x44444444,0x77777777)),

	DCL_TEST3(TUint64,	AXO,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001)),
	DCL_TEST3(TUint64,	AXO,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
	DCL_TEST3(TUint64,	AXO,	MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
	DCL_TEST3(TUint64,	AXO,	MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
	DCL_TEST3(TUint64,	AXO,	MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0xFACEFEED,0xFEEDFACE), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
	DCL_TEST3(TUint64,	AXO,	MAKE_TUINT64(0xBAD8BEEF,0xDEADDEAD), MAKE_TUINT64(0xFACEFEED,0xFEEDFACE), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),

	DCL_TEST3(TUint64,	CAS,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
	DCL_TEST3(TUint64,	CAS,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000001,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
	DCL_TEST3(TUint64,	CAS,	MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
	DCL_TEST3(TUint64,	CAS,	MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0x00000001,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
	DCL_TEST3(TUint64,	CAS,	MAKE_TUINT64(0x00000001,0x00000000), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
	DCL_TEST3(TUint64,	CAS,	MAKE_TUINT64(0x00000001,0x00000000), MAKE_TUINT64(0x00000001,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),

	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x00000000,0x00000002), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0xFFFFFFFF,0x00000000), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x80000000,0x00000000), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x80000000,0x00000002), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x7FFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x7FFFFFFF,0x00000000), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x7FFFFFFF,0x80000000), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x7FFFFFFF,0x80000002), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x7FFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x7FFFFFFF,0x7FFFFFFF), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x80000000,0x00000000), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x80000000,0x80000000), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x80000000,0x80000001), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAU,	MAKE_TUINT64(0x80000000,0x80000002), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),

	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x00000000,0x00000002), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0xFFFFFFFF,0x00000000), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x80000000,0x00000000), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x80000000,0x00000002), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x7FFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x7FFFFFFF,0x00000000), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x7FFFFFFF,0x80000000), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x7FFFFFFF,0x80000002), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x7FFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x7FFFFFFF,0x7FFFFFFF), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x80000000,0x00000000), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x80000000,0x80000000), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x80000000,0x80000001), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
	DCL_TEST4(TUint64,	TAS,	MAKE_TUINT64(0x80000000,0x80000002), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5))
	};



template<class T>
void DoTestBlock(const TD<T>* aTests, TInt aCount)
	{
	const TD<T>* p = aTests;
	const TD<T>* e = aTests + aCount;
	for (; p<e; ++p)
		{
		TInt ord;
		for (ord=EOrderRelaxed; ord<=EOrderOrdered; ++ord)
			{
			TDG tdg;
			tdg.Set(*p, ord);
			if (tdg.iIndex<0)
				continue;
#ifdef __EXTRA_DEBUG__
			TPtrC8 fname8((const TText8*)FuncName[tdg.iIndex]);
			TBuf<64> fname;
			fname.Copy(fname8);
			test.Printf(_L("%S\n"), &fname);
#endif
			TInt res;
			res = tdg.ExecuteUser();
			if (res!=0)
				{
				tdg.Dump("ExecuteUser");
				test.Printf(_L("FAIL %d\n"),res);
				test(0);
				}
#ifdef __EPOC32__
#ifdef __EXTRA_DEBUG__
			test.Printf(_L("%S K\n"), &fname);
#endif
			res = tdg.ExecuteKernel();
			if (res!=0)
				{
				tdg.Dump("ExecuteKernel");
				test.Printf(_L("FAIL %d\n"),res);
				test(0);
				}
#endif
			}
		}
	}

#define DO_TEST_BLOCK(type,array)	\
	DoTestBlock<type>(&(array)[0],(TInt)(sizeof(array)/sizeof(TD<type>)))

void TestSingleThread()
	{
	test.Next(_L("8 bit, single thread"));
	DO_TEST_BLOCK(TUint8, TestData8);
	test.Next(_L("16 bit, single thread"));
	DO_TEST_BLOCK(TUint16, TestData16);
	test.Next(_L("32 bit, single thread"));
	DO_TEST_BLOCK(TUint32, TestData32);
	test.Next(_L("64 bit, single thread"));
	DO_TEST_BLOCK(TUint64, TestData64);
	}



/******************************************************************************
 * Test invalid address handling when called from user mode
 ******************************************************************************/
const TLinAddr KSpecialAddr = 0x100u;
const TInt KIndexRead = -1;
const TInt KIndexReadWrite = -2;

struct TE
	{
	static TInt Execute(TInt aIndex, TAny* aPtr1, TAny* aPtr2, TInt aResult);
	TInt DoExecute();
	static TInt ThreadFn(TAny*);

	TInt	iIndex;
	TAny*	iPtr1;
	TAny*	iPtr2;
	};

template<class T> TInt DoLoadErrorTest(TInt aIndex, const T* aPtr)
	{
	typename TLoadFn<T>::F atomic = (typename TLoadFn<T>::F)AtomicFuncPtr[aIndex];
	atomic(aPtr);
	return 0;
	}

template<class T> TInt DoRmw1ErrorTest(TInt aIndex, T* aPtr)
	{
	typename TRmw1Fn<T>::F atomic = (typename TRmw1Fn<T>::F)AtomicFuncPtr[aIndex];
	T a1 = 0;
	atomic(aPtr, a1);
	return 0;
	}

template<class T> TInt DoRmw2ErrorTest(TInt aIndex, T* aPtr)
	{
	typename TRmw2Fn<T>::F atomic = (typename TRmw2Fn<T>::F)AtomicFuncPtr[aIndex];
	T a1 = 0;
	T a2 = 0;
	atomic(aPtr, a1, a2);
	return 0;
	}

template<class T> TInt DoRmw3ErrorTest(TInt aIndex, T* aPtr)
	{
	typename TRmw3Fn<T>::F atomic = (typename TRmw3Fn<T>::F)AtomicFuncPtr[aIndex];
	T a1 = 0;
	T a2 = 0;
	T a3 = 0;
	atomic(aPtr, a1, a2, a3);
	return 0;
	}

template<class T> TInt DoCasErrorTest(TInt aIndex, T* aPtr1, T* aPtr2)
	{
	typename TCasFn<T>::F atomic = (typename TCasFn<T>::F)AtomicFuncPtr[aIndex];
	TLinAddr a1 = (TLinAddr)aPtr1;
	TLinAddr a2 = (TLinAddr)aPtr2;
	T reg;
	T exp;
	T f;
	memset(&f, 0xbb, sizeof(T));
	if ((a1&~0xff)==KSpecialAddr)
		{
		memset(&reg, (a1&0xff), sizeof(T));
		aPtr1 = &reg;
		}
	if ((a2&~0xff)==KSpecialAddr)
		{
		memset(&exp, (a2&0xff), sizeof(T));
		aPtr2 = &exp;
		}
	TInt r = atomic(aPtr1, aPtr2, f);
	return r ? 1 : 0;
	}

TInt TE::DoExecute()
	{
	if (iIndex == KIndexRead)
		{
		return *(volatile TUint8*)iPtr1;
		}
	if (iIndex == KIndexReadWrite)
		{
		volatile TUint8* p = (volatile TUint8*)iPtr1;
		TUint8 x = *p;
		*p = x;
		return 0;
		}
	TUint attr = FuncAttr[iIndex];
	TInt type = ATTR_TO_TYPE(attr);
	TInt size = ATTR_TO_SIZE(attr);
	if (type==EFuncTypeInvalid)
		return KErrNotSupported;
	TInt res;
	switch (type)
		{
		case EFuncTypeLoad:
			{
			switch (size)
				{
				case 1:	res = DoLoadErrorTest<TUint8>(iIndex, (TUint8*)iPtr1); break;
				case 2:	res = DoLoadErrorTest<TUint16>(iIndex, (TUint16*)iPtr1); break;
				case 4:	res = DoLoadErrorTest<TUint32>(iIndex, (TUint32*)iPtr1); break;
				case 8:	res = DoLoadErrorTest<TUint64>(iIndex, (TUint64*)iPtr1); break;
				default: res = KErrNotSupported; break;
				}
			break;
			}
		case EFuncTypeRmw1:
			{
			switch (size)
				{
				case 1:	res = DoRmw1ErrorTest<TUint8>(iIndex, (TUint8*)iPtr1); break;
				case 2:	res = DoRmw1ErrorTest<TUint16>(iIndex, (TUint16*)iPtr1); break;
				case 4:	res = DoRmw1ErrorTest<TUint32>(iIndex, (TUint32*)iPtr1); break;
				case 8:	res = DoRmw1ErrorTest<TUint64>(iIndex, (TUint64*)iPtr1); break;
				default: res = KErrNotSupported; break;
				}
			break;
			}
		case EFuncTypeRmw2:
			{
			switch (size)
				{
				case 1:	res = DoRmw2ErrorTest<TUint8>(iIndex, (TUint8*)iPtr1); break;
				case 2:	res = DoRmw2ErrorTest<TUint16>(iIndex, (TUint16*)iPtr1); break;
				case 4:	res = DoRmw2ErrorTest<TUint32>(iIndex, (TUint32*)iPtr1); break;
				case 8:	res = DoRmw2ErrorTest<TUint64>(iIndex, (TUint64*)iPtr1); break;
				default: res = KErrNotSupported; break;
				}
			break;
			}
		case EFuncTypeRmw3:
			{
			switch (size)
				{
				case 1:	res = DoRmw3ErrorTest<TUint8>(iIndex, (TUint8*)iPtr1); break;
				case 2:	res = DoRmw3ErrorTest<TUint16>(iIndex, (TUint16*)iPtr1); break;
				case 4:	res = DoRmw3ErrorTest<TUint32>(iIndex, (TUint32*)iPtr1); break;
				case 8:	res = DoRmw3ErrorTest<TUint64>(iIndex, (TUint64*)iPtr1); break;
				default: res = KErrNotSupported; break;
				}
			break;
			}
		case EFuncTypeCas:
			{
			switch (size)
				{
				case 1:	res = DoCasErrorTest<TUint8>(iIndex, (TUint8*)iPtr1, (TUint8*)iPtr2); break;
				case 2:	res = DoCasErrorTest<TUint16>(iIndex, (TUint16*)iPtr1, (TUint16*)iPtr2); break;
				case 4:	res = DoCasErrorTest<TUint32>(iIndex, (TUint32*)iPtr1, (TUint32*)iPtr2); break;
				case 8:	res = DoCasErrorTest<TUint64>(iIndex, (TUint64*)iPtr1, (TUint64*)iPtr2); break;
				default: res = KErrNotSupported; break;
				}
			break;
			}
		default:
			res = KErrNotSupported;
			break;
		}
	return res;
	}

TInt TE::ThreadFn(TAny* aPtr)
	{
	return ((TE*)aPtr)->DoExecute();
	}

_LIT(KLitKERNEXEC,"KERN-EXEC");
TInt TE::Execute(TInt aIndex, TAny* aPtr1, TAny* aPtr2, TInt aResult)
	{
	DEBUGPRINT("I=%3d P1=%08x P2=%08x R=%d", aIndex, aPtr1, aPtr2, aResult);
	TE te;
	te.iIndex = aIndex;
	te.iPtr1 = aPtr1;
	te.iPtr2 = aPtr2;
	RThread t;
	TInt r = t.Create(KNullDesC, &ThreadFn, 0x1000, 0, &te);
	test_KErrNone(r);
	TRequestStatus s;
	t.Logon(s);
	test_Equal(KRequestPending, s.Int());
	TBool jit = User::JustInTime();
	User::SetJustInTime(EFalse);
	t.Resume();
	User::WaitForRequest(s);
	User::SetJustInTime(jit);
	TInt xt = t.ExitType();
	TInt xr = t.ExitReason();
	const TDesC& xc = t.ExitCategory();
	DEBUGPRINT("Exit type: %d,%d,%S", xt, xr, &xc);
	TInt res = KErrNone;
	if (aResult == KErrUnknown)
		{
		if (xt==EExitPanic)
			{
			test_Equal(ECausedException, xr);
			test(xc==KLitKERNEXEC);
			res = KErrDied;
			}
		else
			test_Equal(EExitKill, xt);
		}
	else if (aResult == KErrDied)
		{
		test_Equal(EExitPanic, xt);
		test_Equal(ECausedException, xr);
		test(xc==KLitKERNEXEC);
		}
	else
		{
		test_Equal(EExitKill, xt);
		test_Equal(aResult, xr);
		}
	CLOSE_AND_WAIT(t);
	return res;
	}

TInt ThreadAlign(TAny*)
	{
	TUint32 array[2];
	TUint32* p = (TUint32*)(((TLinAddr)array)+1);
	*p = 5;
	return KErrNone;
	}

const TUint64 Zero = UI64LIT(0);
const TUint64 BFBF = UI64LIT(0xbfbfbfbfbfbfbfbf);

void TestInvalidAddresses()
	{
	TAny* bad_addr[11];
	TInt c = 0;
	TInt read_only = 0;
	TInt alignmentEnd = 0;
	TInt mminfo = UserSvr::HalFunction(EHalGroupKernel, EKernelHalMemModelInfo, 0, 0);
//	TInt mmtype = mminfo & EMemModelTypeMask;
#ifdef __EPOC32__
	if (mminfo & EMemModelAttrWriteProt)
		{
		bad_addr[c++] = (TAny*)UserSvr::RomHeaderAddress();
		bad_addr[c++] = (TAny*)&Zero;
		bad_addr[c++] = (TAny*)&BFBF;
		read_only = c;
		}
#endif
	if (mminfo & EMemModelAttrNonExProt)
		{
		bad_addr[c++] = 0;	// address 0 is read only on ARM7 cores, nonexistent on others
		if (TE::Execute(KIndexRead, 0, 0, KErrUnknown)==KErrNone)
			read_only = c;	// address 0 is readable
		TLinAddr nonex = 0;
		do	{
			nonex += 0x1000;
			} while (TE::Execute(KIndexRead, (TAny*)nonex, 0, KErrUnknown)==KErrNone);
		bad_addr[c++] = (TAny*)nonex;
		}
#ifdef __EPOC32__
	if (mminfo & EMemModelAttrKernProt)
		{
		bad_addr[c++] = DD.KernelMemoryAddress();
		}
	// If alignment checking is enabled add alignment tests for 64 bit.
	TUint64A alignArray[2];
	RThread t;
	TInt r = t.Create(KNullDesC, &ThreadAlign, 0x1000, 0, NULL);
	test_KErrNone(r);
	TRequestStatus s;
	t.Logon(s);
	test_Equal(KRequestPending, s.Int());
	TBool jit = User::JustInTime();
	User::SetJustInTime(EFalse);
	t.Resume();
	User::WaitForRequest(s);
	User::SetJustInTime(jit);
	TInt xt = t.ExitType();
	TInt xr = t.ExitReason();
	const TDesC& xc = t.ExitCategory();
	if (EExitPanic == xt)
		{// Took an alignment fault so add alignment test.
		test_Equal(ECausedException, xr);
		test(xc==KLitKERNEXEC);
		alignmentEnd = c;
		bad_addr[alignmentEnd++] = (TAny*)(((TUint)&alignArray[0]) + 1);
		bad_addr[alignmentEnd++] = (TAny*)(((TUint)&alignArray[0]) + 2);
		bad_addr[alignmentEnd++] = (TAny*)(((TUint)&alignArray[0]) + 4);
		}
	
#endif
	TInt i;
	TInt allBadAddr = (alignmentEnd)? c+3 : c;
	DEBUGPRINT("%d invalid addresses", allBadAddr);
	for (i=0; i < allBadAddr; ++i)
		{
		if (i<read_only)
			{
			DEBUGPRINT("bad_addr[%d]=%08x (RO)", i, bad_addr[i]);
			}
		else
			{
			DEBUGPRINT("bad_addr[%d]=%08x", i, bad_addr[i]);
			}
		}
	if (c==0)
		return;
	TInt ix;
	for (ix=0; ix<TOTAL_INDEXES; ++ix)
		{
		TUint attr = FuncAttr[ix];
		TUint func = ATTR_TO_FUNC(attr);
		TUint type = ATTR_TO_TYPE(attr);
		if (type==EFuncTypeInvalid)
			continue;
		if (func==TUint(EAtomicFuncCAS))
			{
			// both addresses OK
			TE::Execute(ix, (TAny*)(KSpecialAddr+0), (TAny*)(KSpecialAddr+0), 1);	// should do the swap
			TE::Execute(ix, (TAny*)(KSpecialAddr+0), (TAny*)(KSpecialAddr+1), 0);	// should not do the swap

			// RMW address OK, expected bad
			for (i=0; i<c; ++i)
				{
				TAny* p = bad_addr[i];
				TInt res = (bad_addr[i]==(TAny*)&BFBF) ? 1 : KErrDied;
				TE::Execute(ix, (TAny*)(KSpecialAddr+0xbf), p, res);
				}

			// RMW address bad, expected OK
			for (i=0; i<c; ++i)
				{
				TAny* p = bad_addr[i];
#if defined(__CPU_X86)
				TInt res = KErrDied;	// on X86 location must be writeable
#elif defined(__CPU_ARM)
				TInt res = (i<read_only && bad_addr[i]!=(TAny*)&BFBF) ? 0 : KErrDied;
				// 64-bit operations on platforms that use a slow exec for 64 bit 
				// will always write to bad_addr[i] but other platforms won't.
				if (ATTR_TO_SIZE(attr) == 8)
					res = KErrUnknown;
#else
#error CPU?
#endif
				TE::Execute(ix, p, (TAny*)(KSpecialAddr+0xbf), res);
				}

			// Both addresses bad
			TInt j;
			for (i=0; i<c; ++i)
				{
				for (j=0; j<c; ++j)
					{
					TE::Execute(ix, bad_addr[i], bad_addr[j], KErrDied);
					}
				}
			}
		else
			{
			// just run through all the bad addresses
			for (i=0; i<c; ++i)
				{
				TAny* p = bad_addr[i];
				TBool ro = (i<read_only);
				TInt res = ((func == TUint(EAtomicFuncLOAD)) && ro) ? KErrNone : KErrDied;
				if (func==TUint(EAtomicFuncLOAD) && ATTR_TO_SIZE(attr)==8)
					res = KErrUnknown;	// 64-bit atomic loads may or may not write as well
				TE::Execute(ix, p, 0, res);
				}
			}
// Checks for 8 byte alignment not enabled on old gcc (arm4) as it is not eabi compliant.
#if (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__EABI__)
		if (ATTR_TO_SIZE(attr) == 8)
			{
			for (i = c; i < alignmentEnd; i++)
				{// 64 bit unaligned accesses should cause exceptions if 
				// alignment checking is enabled.
				TE::Execute(ix, bad_addr[i], 0, KErrDied);
				}
			}
#endif
		}
	}



/******************************************************************************
 * Multiple thread normal operation tests
 ******************************************************************************/
class CThread;
class CThreads : public CBase
	{
public:
	static CThreads* New();
	CThreads();
	~CThreads();
	CThread* NewThread(TInt aId);
	void StartTest(TInt aIndex, TBool aKernel);
	void StopTest();
	void Finish();
	TUint32 DoCasTest(TInt aIndex, TBool aKernel, TUint32 aFailLimit);
	void DoRmwTest(TInt aIndex, TBool aKernel, TInt aTime);
	inline TInt NumCpus() const {return iNumCpus;}
private:
	TInt			iNumCpus;
	TInt			iNumThreads;
	CThread*		iThreads[KMaxThreads];
	RSemaphore		iSem;
	volatile TInt	iIndex;
	volatile TBool	iKernel;
	volatile TBool	iStop;
	volatile TUint64 iReg;
	TInt			iFailCount;
	TInt			iTimeslice;
private:
	friend class CThread;
	};

class CThread : public CBase
	{
private:
	CThread();
	~CThread();
	static TInt ThreadFunction(TAny*);
	TInt Run();
	TInt Create();
	void Start();
	void DoTest();
	TUint64 Random();
	void Kick();
private:
	RThread			iThread;
	TInt			iId;
	CThreads*		iThreads;
	TRequestStatus	iStatus;
	TBool			iStarted;
	TPerThread		iPerThread;
	TUint64			iSeed;
private:
	friend class CThreads;
	};

CThreads::CThreads()
	{
	iNumCpus = UserSvr::HalFunction(EHalGroupKernel, EKernelHalNumLogicalCpus, 0, 0);
	iNumThreads = iNumCpus;
	if (iNumThreads<2)
		iNumThreads=2;
	TInt khz;
	TInt r = HAL::Get(HAL::ECPUSpeed, khz);
	if (r==KErrNone)
		iTimeslice = Max(10000000/khz, 100);
	else if (r==KErrNotSupported)
		iTimeslice = 227;
	else
		User::Panic(_L("TIMESLICE"),r);
	}

CThreads::~CThreads()
	{
	TInt i;
	for (i=0; i<iNumThreads; ++i)
		delete iThreads[i];
	iSem.Close();
	}

CThreads* CThreads::New()
	{
	CThreads* p = new CThreads;
	if (p)
		{
		TInt r;
		r = p->iSem.CreateLocal(0);
		TInt i;
		for (i=0; i<p->iNumThreads && r==KErrNone; ++i)
			{
			p->iThreads[i] = p->NewThread(i);
			if (!p->iThreads[i])
				r = KErrNoMemory;
			}
		if (r!=KErrNone)
			{
			delete p;
			return 0;
			}
		p->iStop = ETrue;
		for (i=0; i<p->iNumThreads; ++i)
			p->iThreads[i]->Start();
		}
	return p;
	}

CThread* CThreads::NewThread(TInt aId)
	{
	CThread* t = new CThread;
	if (t)
		{
		t->iId = aId;
		t->iThreads = this;
		TInt r = t->Create();
		if (r!=KErrNone)
			{
			delete t;
			t = 0;
			}
		}
	return t;
	}

void CThreads::StartTest(TInt aIndex, TBool aKernel)
	{
	iIndex = aIndex;
	iKernel = aKernel;
	iReg = 0;
	iStop = EFalse;
#ifdef __EPOC32__
	if (iKernel)
		DD.Initialise(iReg);
#endif
	TInt i;
	for (i=0; i<iNumThreads; ++i)
		iThreads[i]->Kick();
	}

void CThreads::StopTest()
	{
	iStop = ETrue;
	TInt i;
	for (i=0; i<iNumThreads; ++i)
		iSem.Wait();
#ifdef __EPOC32__
	if (iKernel)
		iReg = DD.Retrieve();
#endif
	}

void CThreads::Finish()
	{
	iStop = EFalse;
	iIndex = -1;
	TInt i;
	for (i=0; i<iNumThreads; ++i)
		{
		iThreads[i]->Kick();
		iSem.Wait();
		}
	test(iFailCount==0);
	}

TUint32 CThreads::DoCasTest(TInt aIndex, TBool aKernel, TUint32 aFailLimit)
	{
	TInt i;
	test.Printf(_L("DoCasTest I=%d K=%1d F=%d\n"), aIndex, aKernel, aFailLimit);
	TUint32 initial = User::FastCounter();
	StartTest(aIndex, aKernel);
	FOREVER
		{
		User::AfterHighRes(1000000);
		TUint64 minf = 0;
		--minf;
		for (i=0; i<iNumThreads; ++i)
			{
			CThread* t = iThreads[i];
			test.Printf(_L("T%1d: C=%lu R=%lu\n"), i, t->iPerThread.iDiff, t->iPerThread.iFailCount);
			TUint64 f = t->iPerThread.iFailCount;
			if (f<minf)
				minf=f;
			}
		if (minf>=TUint64(aFailLimit))
			break;
		if (iNumCpus>1)	// 1 second is enough for SMP, except on VMPlayer
			break;
		}
	StopTest();
	TUint32 final = User::FastCounter();
	TUint32 time = final - initial;
	test.Printf(_L("Time %d\n"), time);
	TUint64 total = 0;
	TUint64 txor = 0;
	for (i=0; i<iNumThreads; ++i)
		{
		CThread* t = iThreads[i];
		test.Printf(_L("T%1d: %lu completed %lu retries\n"), i, t->iPerThread.iDiff, t->iPerThread.iFailCount);
		total += t->iPerThread.iDiff;
		txor ^= t->iPerThread.iXor;
		}
	TUint size = ATTR_TO_SIZE(FuncAttr[aIndex]);
	TUint64 expected = 0;
	switch (size)
		{
		case 1:	expected = Transform<TUint8>::F_iter(0, total); break;
		case 2:	expected = Transform<TUint16>::F_iter(0, total); break;
		case 4:	expected = Transform<TUint32>::F_iter(0, total); break;
		case 8:	expected = Transform<TUint64>::F_iter(0, total); break;
		}
	test.Printf(_L("Total iterations %lu\n"), total);
	test.Printf(_L("Expected result %08x %08x\n"), I64HIGH(expected), I64LOW(expected));
	test.Printf(_L("Actual   result %08x %08x\n"), I64HIGH(iReg), I64LOW(iReg));
	test.Printf(_L("Tot. XOR result %08x %08x\n"), I64HIGH(txor), I64LOW(txor));
//	test(expected==iReg);
//	test(expected==txor);
	if (expected!=iReg || expected!=txor)
		{
		test.Printf(_L("***FAIL***\n"));
		++iFailCount;
		}
	return time;
	}

void CThreads::DoRmwTest(TInt aIndex, TBool aKernel, TInt aTime)
	{
	TInt i;
	test.Printf(_L("DoRmwTest I=%d K=%1d T=%d\n"), aIndex, aKernel, aTime);
	StartTest(aIndex, aKernel);
	User::AfterHighRes(aTime);
	StopTest();
	TUint64 total = 0;
	TUint64 txor = 0;
	for (i=0; i<iNumThreads; ++i)
		{
		CThread* t = iThreads[i];
		test.Printf(_L("T%1d: C=%10lu D=%lx X=%lx\n"), i, t->iPerThread.iCount, t->iPerThread.iDiff, t->iPerThread.iXor);
		total += t->iPerThread.iDiff;
		txor ^= t->iPerThread.iXor;
		}
	TUint size = ATTR_TO_SIZE(FuncAttr[aIndex]);
	switch (size)
		{
		case 1:
			{
			TUint8 expected = (TUint8)total;
			TUint8 exor = (TUint8)txor;
			TUint8 got = (TUint8)iReg;
			test.Printf(_L("Expected %02x Got %02x XOR %02x\n"), expected, got, exor);
//			test(expected==got && exor==got);
			if (expected!=got || exor!=got)
				{
				test.Printf(_L("***FAIL***\n"));
				++iFailCount;
				}
			break;
			}
		case 2:
			{
			TUint16 expected = (TUint16)total;
			TUint16 exor = (TUint16)txor;
			TUint16 got = (TUint16)iReg;
			test.Printf(_L("Expected %04x Got %04x XOR %04x\n"), expected, got, exor);
//			test(expected==got && exor==got);
			if (expected!=got || exor!=got)
				{
				test.Printf(_L("***FAIL***\n"));
				++iFailCount;
				}
			break;
			}
		case 4:
			{
			TUint32 expected = (TUint32)total;
			TUint32 exor = (TUint32)txor;
			TUint32 got = (TUint32)iReg;
			test.Printf(_L("Expected %08x Got %08x XOR %08x\n"), expected, got, exor);
//			test(expected==got && exor==got);
			if (expected!=got || exor!=got)
				{
				test.Printf(_L("***FAIL***\n"));
				++iFailCount;
				}
			break;
			}
		case 8:
			{
			TUint64 expected = total;
			test.Printf(_L("Expected result %08x %08x\n"), I64HIGH(expected), I64LOW(expected));
			test.Printf(_L("Actual   result %08x %08x\n"), I64HIGH(iReg), I64LOW(iReg));
			test.Printf(_L("Tot. XOR result %08x %08x\n"), I64HIGH(txor), I64LOW(txor));
//			test(expected==iReg && expected==txor);
			if (expected!=iReg || expected!=txor)
				{
				test.Printf(_L("***FAIL***\n"));
				++iFailCount;
				}
			break;
			}
		}
	}

CThread::CThread()
	{
	}

CThread::~CThread()
	{
	TInt h = iThread.Handle();
	if (h && h!=KCurrentThreadHandle)
		{
		if (!iStarted)
			iThread.Kill(0);
		User::WaitForRequest(iStatus);
		}
	iThread.Close();
	}

TInt CThread::Create()
	{
	TInt r = iThread.Create(KNullDesC, &ThreadFunction, 0x2000, 0, this);
	if (r==KErrNone)
		{
		iThread.Logon(iStatus);
		if (iStatus.Int() != KRequestPending)
			r = iStatus.Int();
		}
	return r;
	}

void CThread::Start()
	{
	iThread.Resume();
	iThreads->iSem.Wait();
	}

void CThread::Kick()
	{
	TRequestStatus s;
	TRequestStatus* pS = &s;
	iThread.RequestComplete(pS,0);
	}

TInt CThread::ThreadFunction(TAny* aPtr)
	{
	return ((CThread*)aPtr)->Run();
	}

TInt CThread::Run()
	{
#ifdef __EPOC32__
	DD.SetCurrentThreadTimeslice(iThreads->iTimeslice);
#endif
	RThread().SetPriority(EPriorityLess);
	FOREVER
		{
		if (iThreads->iStop)
			{
			iThreads->iSem.Signal();
			if (iThreads->iNumCpus > 1)
				RThread().SetPriority(EPriorityAbsoluteHigh);	// encourage spreading out of threads between CPUs
			User::WaitForAnyRequest();
			if (iThreads->iIndex<0)
				break;
			if (iThreads->iNumCpus > 1)
				{
				TUint32 tick = User::NTickCount();
				while(User::NTickCount()-tick < 2) {}	// spin to discourage putting other threads on this CPU
				RThread().SetPriority(EPriorityLess);
				}
			}
		DoTest();
		}
	iThreads->iSem.Signal();
	return 0;
	}

TUint64 CThread::Random()
	{
	iSeed = Transform<TUint64>::F(iSeed);
	return iSeed;
	}

void CThread::DoTest()
	{
	iPerThread.iDiff = 0;
	iPerThread.iXor = 0;
	iPerThread.iFailCount = 0;
	iPerThread.iCount = 0;
	TInt index = iThreads->iIndex;
	TAny* p = (TAny*)&iThreads->iReg;
#ifdef __EPOC32__
	TBool kernel = iThreads->iKernel;
	if (kernel)
		{
		DD.SwitchExecTables(iId);
		RTestAtomic::SetThreadInfo(iPerThread);
		}
	TInt iter = 0;
#endif
	iSeed = iId;
	while (!iThreads->iStop)
		{
		TAtomicAction action;
		action.i0 = Random();
		action.i1 = Random();
		action.i2 = Random();
		action.iIndex = index;
		action.iThread = iId;
#ifdef __EPOC32__
		if (kernel)
			{
			RTestAtomic::AtomicAction(action);
			}
		else
#endif
			DoAtomicAction(p, &iPerThread, action);
#ifdef __EPOC32__
		if (kernel && ++iter==1024)
			{
			iter = 0;
			RTestAtomic::GetThreadInfo(iPerThread);
			}
#endif
		}
#ifdef __EPOC32__
	if (kernel)
		{
		RTestAtomic::GetThreadInfo(iPerThread);
		RTestAtomic::RestoreExecTable();
		}
#endif
	}

void TestMultipleThreads()
	{
	CThreads* p = CThreads::New();
	test(p!=0);

	TInt KRequiredRetries = 1000;
	if (p->NumCpus()==1)
		KRequiredRetries = 10;

	TUint32 time;
	TUint32 total_time = 0;
	TUint32 total_time_k = 0;
	TUint32 count = 0;
	TInt ix;
	for (ix=0; ix<TOTAL_INDEXES; ++ix)
		{
		TUint attr = FuncAttr[ix];
		TUint func = ATTR_TO_FUNC(attr);
		TUint type = ATTR_TO_TYPE(attr);
		if (p->NumCpus()==1)
			{
			TUint ord = ATTR_TO_ORD(attr);
			if (ord != EOrderOrdered)
				continue;
			}
		if (type==EFuncTypeInvalid)
			continue;
		if (func!=TUint(EAtomicFuncCAS))
			continue;
		time = p->DoCasTest(ix, EFalse, KRequiredRetries);
		total_time += time;
		++count;
		time = p->DoCasTest(ix, ETrue, KRequiredRetries);
		total_time_k += time;
		}
	TUint32 avg_time = total_time / count;
	TUint32 avg_time_k = total_time_k / count;
	TUint32 fcf=0;
	TInt r = HAL::Get(HAL::EFastCounterFrequency, (TInt&)fcf);
	test_KErrNone(r);
	test.Printf(_L("FastCounterFrequency = %u\n"), fcf);
	TUint64 avg_time_us64(avg_time);
	avg_time_us64*=UI64LIT(1000000);
	avg_time_us64/=TUint64(fcf);
	TInt avg_time_us = KMaxTInt;
	TInt avg_time_k_us = KMaxTInt;
	if (avg_time_us64<TUint64(KMaxTInt))
		avg_time_us = (TInt)avg_time_us64;
	TUint64 avg_time_k_us64(avg_time);
	avg_time_k_us64*=UI64LIT(1000000);
	avg_time_k_us64/=TUint64(fcf);
	if (avg_time_k_us64<TUint64(KMaxTInt))
		avg_time_k_us = (TInt)avg_time_k_us64;

	test.Printf(_L("Average time (user) %u (%dus)\n"), avg_time, avg_time_us);
	test.Printf(_L("Average time (kernel) %u (%dus)\n"), avg_time_k, avg_time_k_us);

	TInt limit_us = (p->NumCpus()==1) ? 15*1000*1000 : 4*1000*1000;

	for (ix=0; ix<TOTAL_INDEXES; ++ix)
		{
		TUint attr = FuncAttr[ix];
		TUint func = ATTR_TO_FUNC(attr);
		TUint type = ATTR_TO_TYPE(attr);
		if (p->NumCpus()==1)
			{
			TUint ord = ATTR_TO_ORD(attr);
			if (ord != EOrderOrdered)
				continue;
			}
		if (type==EFuncTypeInvalid)
			continue;
		if (func<TUint(EAtomicFuncSWP) || func>=TUint(EAtomicFuncCAS))
			continue;
		if (func==TUint(EAtomicFuncIOR))	// can only test AND and IOR together
			continue;
		p->DoRmwTest(ix, EFalse, Min(avg_time_us,limit_us));
		p->DoRmwTest(ix, ETrue, Min(avg_time_k_us,limit_us));
		}

	p->Finish();
	delete p;
	}



/******************************************************************************
 * Main
 ******************************************************************************/
TInt E32Main()
	{
	test.Title();
	test.Start(_L("Opening device driver"));
#ifdef __EPOC32__
	TInt r;
	r = User::LoadLogicalDevice(KAtomicTestLddName);
	test(r==KErrNone||r==KErrAlreadyExists);
	r = DD.Open();
	test_KErrNone(r);
#endif
	test.Next(_L("Testing atomic operations ..."));
	test.Next(_L("Single thread, normal operation"));
	TestSingleThread();
	test.Next(_L("Single thread, bad addresses"));
	TestInvalidAddresses();
	test.Next(_L("Multiple threads"));
	TestMultipleThreads();
	test.End();
	return 0;
	}