kernel/eka/memmodel/epoc/moving/arm/xmmu.cia
author John Imhofe
Wed, 24 Feb 2010 15:45:41 +0000
changeset 18 6d3ef2aa5c43
parent 0 a41df078684a
permissions -rw-r--r--
Bug 2014: Plus other build fixes

// Copyright (c) 1997-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\memmodel\epoc\moving\arm\xmmu.cia
// 
//

#include <e32cia.h>
#include <arm_mem.h>
#include "execs.h"
#include "cache_maintenance.h"

__NAKED__ void InvalidateTLBForPage(TLinAddr /*aLinAddr*/)
//
// Flush a specified virtual address from the DTLB.
// Flush from the ITLB as well, provided that doesn't require flushing the whole ITLB
// ArmMmu::SyncCodeMappings() should follow this if flushing from the ITLB is essential.
//
	{
#ifdef __CPU_SPLIT_TLB
#if defined(__CPU_HAS_SINGLE_ENTRY_IDTLB_FLUSH)
	FLUSH_IDTLB_ENTRY(,r0);
#elif defined(__CPU_HAS_SINGLE_ENTRY_ITLB_FLUSH)
	FLUSH_DTLB_ENTRY(,r0);
	FLUSH_ITLB_ENTRY(,r0);
#else
	FLUSH_DTLB_ENTRY(,r0);
#endif
#else
	FLUSH_IDTLB_ENTRY(,r0);
#endif
	// don't need CPWAIT since it always happens in the function which calls this one
	__JUMP(,lr);
	}

__NAKED__ void ArmMmu::SyncCodeMappings()
//
// Flush the ITLB if it is not flushed page-by-page during unmapping of pages
//
	{
#if defined(__CPU_SPLIT_TLB) && !defined(__CPU_HAS_SINGLE_ENTRY_ITLB_FLUSH) && !defined(__CPU_HAS_SINGLE_ENTRY_IDTLB_FLUSH)
	asm("mov r2, #0 ");
	FLUSH_ITLB(,r2);
	CPWAIT(,r0);
#endif
	__JUMP(,lr);
	}

__NAKED__ void FlushTLBs()
	{
	asm("mov r0, #0 ");
	FLUSH_IDTLB(,r0);
	CPWAIT(,r0);
	__JUMP(,lr);
	}

__NAKED__ void FlushUnmapShadow(TLinAddr /*aRomAddr*/)
//
// Flush both I and D TLBs and flush page at aRomAddr from both caches
//
	{
	asm("mov r0, #0 ");
	FLUSH_IDTLB(,r0);		// flush both TLBs
	CPWAIT(,r0);
	__JUMP(,lr);
	}

// Generic cache/TLB flush function.
// Which things are flushed is determined by aMask.
// Call this with the system locked. Preemption can occur during this function.
__NAKED__ void ArmMmu::GenericFlush(TUint32 /*aMask*/)
	{
	asm("tst r1, #%a0" : : "i" (EFlushDMove|EFlushDDecommit));
	asm("orrne r1, r1, #%a0" : : "i" (EFlushDCache));
	asm("tst r1, #%a0" : : "i" (EFlushDMove|EFlushDDecommit|EFlushDPermChg));
	asm("orrne r1, r1, #%a0" : : "i" (EFlushDTLB));
	asm("tst r1, #%a0" : : "i" (EFlushIMove));
	asm("orrne r1, r1, #%a0" : : "i" (EFlushICache));
	asm("tst r1, #%a0" : : "i" (EFlushIMove|EFlushIPermChg));
	asm("orrne r1, r1, #%a0" : : "i" (EFlushITLB));
	asm("mov r2, #0 ");
#ifdef __CPU_SPLIT_CACHE
	asm("tst r1, #%a0" : : "i" (EFlushDCache) );
#else
	asm("tst r1, #%a0" : : "i" (EFlushDCache|EFlushICache) );
#endif
	asm("beq 1f ");
	asm("stmfd sp!, {r1,lr} ");
	asm("bl  " CSM_ZN16CacheMaintenance15OnProcessSwitchEv);	// flush data or unified cache
	asm("ldmfd sp!, {r1,lr} ");
	asm("mov r2, #0 ");
	asm("1: ");

#ifdef __CPU_SPLIT_CACHE
	asm("tst r1, #%a0" : : "i" (EFlushICache) );
	FLUSH_ICACHE(ne,r2);
#endif

#ifdef __CPU_SPLIT_TLB
	asm("tst r1, #%a0" : : "i" (EFlushDTLB) );
	FLUSH_DTLB(ne,r2);
	asm("tst r1, #%a0" : : "i" (EFlushITLB) );
	FLUSH_ITLB(ne,r2);
#else
	asm("tst r1, #%a0" : : "i" (EFlushDTLB|EFlushITLB) );
	FLUSH_IDTLB(ne,r2);
#endif
	CPWAIT(,r0);
	__JUMP(,lr);
	}

#if defined(__CPU_XSCALE__)
// Special routine to process minicache attributes
__NAKED__ TUint MiniCacheConfig()
	{
	asm("mrc p15, 0, r0, c1, c0, 1 ");
#if defined (__CPU_XSCALE_MANZANO__)
	asm("and r0, r0, #0x30 ");	// 00=WBRA 01=WBRA 10=WTRA 11=WBRA
	asm("cmp r0, #0x20");		//is it WTRA?
	asm("moveq r0, #8");		// yes
	asm("movne r0, #10");		// no
#else	
	asm("mov r0, r0, lsr #4 ");
	asm("and r0, r0, #3 ");		// 00=WBRA 01=WBWA 10=WTRA 11=UNP
	asm("bic r0, r0, #2 ");		// 10=WBRA 11=WBWA 00=WTRA 01=UNP
	asm("add r0, r0, #8 ");		// WBRA->AWBR, WBWA->AWBW, WTRA->AWTR, UNP->AWTW (can't occur)
#endif	
	__JUMP(,lr);
	}
#endif

__NAKED__ void ExecHandler::UnlockRamDrive()
	{
	asm("ldr r0, [r1, #%a0]" : : "i" (_FOFF(DThread,iOwningProcess)-_FOFF(DThread,iNThread)));
	asm("ldr r0, [r0, #%a0]" : : "i" _FOFF(DProcess,iS.iCaps));
// __KERNEL_CAPABILITY_CHECK
	asm("tst r0, #%a0 " : : "i" ((TInt)(1<<ECapabilityTCB)));
	__JUMP(eq,lr);				// don't unlock the RAM drive if don't have MediaDD capability

	// fall through to unlock
	}

EXPORT_C __NAKED__ void TInternalRamDrive::Unlock()
	{
	asm("mrc p15, 0, r0, c3, c0, 0 ");
	asm("orr r0, r0, #0xc0 ");
	asm("mcr p15, 0, r0, c3, c0, 0 ");
	CPWAIT(,r0);
	__JUMP(,lr);
	}

EXPORT_C __NAKED__ void TInternalRamDrive::Lock()
	{
	asm("mrc p15, 0, r0, c3, c0, 0 ");
	asm("bic r0, r0, #0xc0 ");
	asm("mcr p15, 0, r0, c3, c0, 0 ");
	CPWAIT(,r0);
	__JUMP(,lr);
	}

#if defined(__CPU_WRITE_BACK_CACHE)
#if defined(__CPU_HAS_SINGLE_ENTRY_DCACHE_FLUSH)
__NAKED__ void CopyPageForRemap32(TLinAddr /*aDest*/, TLinAddr /*aSrc*/)
	{
	// Source and destination 4k page aligned (and thus cache aligned)
	// Fixed copy size of 4k
	// But.. after each cache line we need to purge the line from the cache
	// and when we're done we need to drain the write buffer
	// We are assuming 32-byte cache lines here but this function is only used
	// when this is the case, so it's ok.
	
	asm("stmfd sp!, {r4-r9} ");
	asm("1: ");
	PLD_ioff(1, 32);
	asm("mov ip, r1 ");
	asm("ldmia r1!, {r2-r9} ");
	asm("tst r1, #0xff0 ");
	asm("stmia r0!, {r2-r9} ");
	PURGE_DCACHE_LINE(,ip);
	asm("bne 1b ");
	asm("ldmfd sp!, {r4-r9} ");
	DRAIN_WRITE_BUFFER(,r0,r1);
	CPWAIT(,r0);
	__JUMP(,lr);
	}

__NAKED__ void CopyPageForRemap16(TLinAddr /*aDest*/, TLinAddr /*aSrc*/)
	{
	// Source and destination 4k page aligned (and thus cache aligned)
	// Fixed copy size of 4k
	// But.. after each cache line we need to purge the line from the cache
	// and when we're done we need to drain the write buffer
	// We are assuming 16-byte cache lines here but this function is only used
	// when this is the case, so it's ok.
	
	asm("stmfd sp!, {r4-r5} ");
	asm("1: ");
	PLD_ioff(1, 16);
	asm("mov ip, r1 ");
	asm("ldmia r1!, {r2-r5} ");
	asm("tst r1, #0xff0 ");
	asm("stmia r0!, {r2-r5} ");
	PURGE_DCACHE_LINE(,ip);
	asm("bne 1b ");
	asm("ldmfd sp!, {r4-r5} ");
	DRAIN_WRITE_BUFFER(,r0,r1);
	CPWAIT(,r0);
	__JUMP(,lr);
	}
#endif
#else //!__CPU_HAS_WRITE_BACK_CACHE
__NAKED__ void CopyPageForRemapWT(TLinAddr /*aDest*/, TLinAddr /*aSrc*/)
	{
	// Source and destination 4k page aligned (and thus cache aligned)
	// Fixed copy size of 4k
	// Writethrough cache means no purging is required, but
	// when we're done we still need to drain the write buffer
	
	asm("stmfd sp!, {r4-r8} ");
	asm("1: ");
	PLD_ioff(1, 16);
	asm("ldmia r1!, {r2-r8,ip} ");
	asm("tst r1, #0xff0 ");
	asm("stmia r0!, {r2-r8,ip} ");
	asm("bne 1b ");
	asm("ldmfd sp!, {r4-r8,ip} ");
	DRAIN_WRITE_BUFFER(,r0,r1);
	CPWAIT(,r0);
	__JUMP(,lr);
	}
#endif

#ifdef __MMU_MACHINE_CODED__
__NAKED__ void ImpMmu::MapRamPages(TInt /*anId*/, TLinAddr /*anAddr*/, TPhysAddr* /*aPageList*/, TInt /*aNumPages*/, TPte /*aPtePerm*/)
//
// Map a list of physical RAM pages to a specified linear address using a specified page table and
// specified PTE permissions. Call this with the kernel locked.
//
	{
	// enter with r0=&MM::TheMmu, r1=anId, r2=anAddr, r3=aPageList, [sp]=aNumPages, [sp+4]=aPtePerm
	asm("stmfd sp!, {r4-r6,lr} ");
	asm("mov r4, r1 ");						// r4=anId
	asm("mov r5, r2 ");						// r5=anAddr
	asm("mov r6, r3 ");						// r6=aPageList
	asm("bl  " CSM_ZN6ImpMmu16UnlockPageTablesEv);	// unlock page tables
	asm("mov r0, r5, lsr #20 ");			// r0=pdeIndex
	asm("bic r1, r5, r0, lsl #20 ");		// r1=anAddr & 0xfffff
	asm("and r1, r1, #0xff000 ");			// r1=ptOffset<<12
	asm("mov r4, r4, lsl #10 ");
	asm("add r4, r4, #%a0" : : "i" ((TInt)KPageTableLinearBase));	// r4=linear address of page table anId
	asm("add r1, r4, r1, lsr #10 ");		// r1 points to first PTE to add
	asm("ldr r2, [sp, #16] ");				// r2=number of pages to map
	asm("mov r0, r0, lsl #2 ");
	asm("add r0, r0, #%a0" : : "i" ((TInt)KPageDirectoryLinearAddress));
	asm("add r0, r0, #%a0" : : "i" ((TInt)KPageTableInfoOffset));	// r0->page table info entry for anAddr
	asm("ldr r3, [r0] ");
	asm("add r3, r3, r2 ");					// add number of pages to pages present count
	asm("str r3, [r0] ");
	asm("ldr r3, [sp, #20] ");				// r3=PTE permissions
	asm("b map_ram_pages2 ");

	asm("map_ram_pages1: ");
	asm("ldr lr, [r6], #4 ");				// get physical address of page and step to next in list
	asm("orr lr, lr, r3 ");					// OR in permissions to give PTE
	asm("str lr, [r1], #4 ");				// store PTE and step to next

	asm("map_ram_pages2: ");
	asm("subs r2, r2, #1 ");
	asm("bge map_ram_pages1 ");				// loop for all pages
	asm("ldmfd sp!, {r4-r6,lr} ");
	DRAIN_WRITE_BUFFER(,r0,r0);
	CPWAIT(,r0);
	asm("b  " CSM_ZN6ImpMmu14LockPageTablesEv);		// lock page tables and exit
	}

__NAKED__ void ImpMmu::MapPhysicalPages(TInt /*anId*/, TLinAddr /*anAddr*/, TPhysAddr /*aPhysAddr*/, TInt /*aNumPages*/, TPte /*aPtePerm*/)
//
// Map consecutive physical pages to a specified linear address using a specified page table and
// specified PTE permissions. Call this with the kernel locked.
//
	{
	// enter with r0=&MM::TheMmu, r1=anId, r2=anAddr, r3=aPhysAddr, [sp]=aNumPages, [sp+4]=aPtePerm
	asm("stmfd sp!, {r4-r6,lr} ");
	asm("mov r4, r1 ");						// r4=anId
	asm("mov r5, r2 ");						// r5=anAddr
	asm("mov r6, r3 ");						// r6=aPhysAddr
	asm("bl  " CSM_ZN6ImpMmu16UnlockPageTablesEv);	// unlock page tables
	asm("mov r0, r5, lsr #20 ");			// r0=pdeIndex
	asm("bic r1, r5, r0, lsl #20 ");		// r1=anAddr & 0xfffff
	asm("and r1, r1, #0xff000 ");			// r1=ptOffset<<12
	asm("mov r4, r4, lsl #10 ");
	asm("add r4, r4, #%a0" : : "i" ((TInt)KPageTableLinearBase));	// r4=linear address of page table anId
	asm("add r1, r4, r1, lsr #10 ");		// r1 points to first PTE to add
	asm("ldr r2, [sp, #16] ");				// r2=number of pages to map
	asm("mov r0, r0, lsl #2 ");
	asm("add r0, r0, #%a0" : : "i" ((TInt)KPageDirectoryLinearAddress));
	asm("add r0, r0, #%a0" : : "i" ((TInt)KPageTableInfoOffset));	// r0->page table info entry for anAddr
	asm("ldr r3, [r0] ");
	asm("add r3, r3, r2 ");					// add number of pages to pages present count
	asm("str r3, [r0] ");
	asm("ldr r3, [sp, #20] ");				// r3=PTE permissions
	asm("orr r3, r3, r6 ");					// OR in physical address to give first PTE
	asm("b map_phys_pages2 ");

	asm("map_phys_pages1: ");
	asm("str r3, [r1], #4 ");				// store PTE and step to next
	asm("add r3, r3, #0x1000 ");			// step physical address on by page size

	asm("map_phys_pages2: ");
	asm("subs r2, r2, #1 ");
	asm("bge map_phys_pages1 ");			// loop for all pages
	asm("ldmfd sp!, {r4-r6,lr} ");
	DRAIN_WRITE_BUFFER(,r0,r0);
	CPWAIT(,r0);
	asm("b  " CSM_ZN6ImpMmu14LockPageTablesEv);		// lock page tables and exit
	}

__NAKED__ TInt ImpMmu::UnmapPages(TInt /*anId*/, TLinAddr /*anAddr*/, TInt /*aNumPages*/, TPhysAddr* /*aPageList*/, TInt& /*aNumPtes*/)
//
// Unmap a specified area at address anAddr mapped by page table anId. Place physical addresses of unmapped
// RAM pages into aPageList and count of unmapped pages into aNumPtes. Return number of pages still
// mapped using this page table. Call this with the kernel locked.
// Note that a write-back cache may also require flushing after this.
//
	{
	// Enter with r0=this, r1=anId, r2=anAddr, r3=aNumPages, [sp]=aPageList, [sp+4]=&aNumPtes
	asm("stmfd sp!, {r4-r9,lr} ");
	asm("mov r4, r0 ");
	asm("mov r5, r1 ");
	asm("mov r6, r2 ");
	asm("mov r7, r3 ");
	asm("bl  " CSM_ZN6ImpMmu16UnlockPageTablesEv);	// unlock the page tables
	asm("mov r8, r6, lsr #20 ");			// r8=pdeIndex
	asm("bic r0, r6, r8, lsl #20 ");		// r0=anAddr&0xfffff
	asm("and r0, r0, #0xff000 ");			// r0=ptOffset<<12
	asm("mov r5, r5, lsl #10 ");			// convert page table id to linear address
	asm("add r5, r5, r0, lsr #10 ");		// add offset within page table
	asm("add r5, r5, #%a0" : : "i" ((TInt)KPageTableLinearBase));	// r5=pte address
	asm("mov ip, #0 ");						// ip=0 throughout loop
	asm("mov r3, #0 ");						// r3 counts present pages
	asm("ldr r9, [sp, #28] ");				// r9=aPageList
	asm("mov r2, #0xff ");
	asm("orr r2, r2, #0xf00 ");				// r2=BIC mask for PTE->page physical address
	asm("b unmap_pages_2 ");

	asm("unmap_pages_1: ");
	asm("ldr r0, [r5] ");					// fetch PTE
	asm("str ip, [r5], #4 ");				// clear PTE
	asm("tst r0, #3 ");						// test if page present
#ifdef __CPU_SPLIT_TLB
#if defined(__CPU_HAS_SINGLE_ENTRY_IDTLB_FLUSH)
	FLUSH_IDTLB_ENTRY(ne,r6);				// flush page from both TLBs if possible
#elif defined(__CPU_HAS_SINGLE_ENTRY_ITLB_FLUSH)
	FLUSH_DTLB_ENTRY(ne,r6);
	FLUSH_ITLB_ENTRY(ne,r6);
#else
	FLUSH_DTLB_ENTRY(ne,r6);				// no single-entry ITLB flush, complete ITLB flush will be done later
#endif
#else
	FLUSH_IDTLB_ENTRY(ne,r6);
#endif
	asm("bicne r0, r0, r2 ");				// ... r0=page physical address ...
	asm("strne r0, [r9], #4 ");				// ... *aPageList++=r0 ...
	asm("addne r3, r3, #1 ");				// ... increment present pages count
	asm("add r6, r6, #0x1000 ");			// increment address by page size

	asm("unmap_pages_2: ");
	asm("subs r7, r7, #1 ");				// decrement page count
	asm("bge unmap_pages_1 ");

	asm("ldr r0, [sp, #32] ");				// r0=&aNumPtes
	asm("str r3, [r0] ");					// aNumPtes=r3
	asm("mov r0, #%a0" : : "i" ((TInt)KPageDirectoryLinearAddress));
	asm("add r0, r0, #%a0" : : "i" ((TInt)KPageTableInfoOffset));	// r0->base of page table info array
	asm("add r0, r0, r8, lsl #2 ");			// r0 points to PTINFO entry for this pde
	asm("ldr r1, [r0] ");					// r1[31:16]=page table id, r1[15:0]=present pages
	asm("sub r1, r1, r3 ");					// subtract number of pages unmapped
	asm("str r1, [r0] ");					// store new pages present count
	asm("mov r4, r1, lsl #16 ");			// shift out top 16 bits and store in r4
	asm("bl  " CSM_ZN6ImpMmu14LockPageTablesEv);		// lock the page tables
	asm("mov r0, r4, lsr #16 ");			// r0=number of pages remaining
	DRAIN_WRITE_BUFFER(,r0,r1);
	CPWAIT(,r1);
	asm("ldmfd sp!, {r4-r9,pc} ");			// restore registers and return
	}

__NAKED__ TInt Mmu::PageTableId(TLinAddr /*anAddr*/)
	{
	asm("mov r1, r1, lsr #20 ");			// r1=anAddr>>20
	asm("mov r0, #%a0" : : "i" ((TInt)KPageDirectoryLinearAddress));
	asm("add r0, r0, #%a0" : : "i" ((TInt)KPageTableInfoOffset));	// r0->base of page table info array
	asm("mrc p15, 0, r2, c3, c0, 0 ");		// r2=current DACR
	asm("orr r3, r2, #0x30 ");
	asm("mcr p15, 0, r3, c3, c0, 0 ");		// unlock page tables
	CPWAIT(,r3);
	asm("ldr r0, [r0, r1, lsl #2] ");		// fetch page table info entry for anAddr
	asm("mcr p15, 0, r2, c3, c0, 0 ");		// lock page tables
	asm("cmn r0, #0x10000 ");				// test if page table id=0xffff
	asm("movcc r0, r0, lsr #16 ");			// if not, return page table id
	asm("mvncs r0, #0 ");					// else return -1
	__JUMP(,lr);
	}

__NAKED__ void ImpMmu::AssignPageTable(TInt /*anId*/, TLinAddr /*anAddr*/, TPde /*aPdePerm*/)
//
// Assign an allocated page table to map a given linear address with specified permissions.
// This function assumes the page table initially contains no physical RAM page mappings.
// This should be called with the kernel locked.
//
	{
	// on entry r0=&MM::TheMmu, r1=anId, r2=anAddr, r3=aPdePerm
	asm("stmfd sp!, {r4,lr} ");
	asm("and r4, r1, #3 ");					// r4=bottom 2 bits of anId (offset of page table within page)
	asm("orr r3, r3, r4, lsl #10 ");		// combine these bits with PDE permissions
	asm("bic r0, r1, #3 ");					// r0=anId with bottom 2 bits cleared
	asm("add r0, r0, #%a0" : : "i" ((TInt)KPageTableLinearBase));	// r0=address of PTE mapping page table anId
	asm("mov r1, r1, lsl #16 ");			// put ptid into top 16 bits of r1, zero bottom 16 bits
	asm("mov r2, r2, lsr #20 ");			// r2=anAddr>>20
	asm("mov r2, r2, lsl #2 ");				// r2=pdeIndex*4
	asm("add r2, r2, #%a0" : : "i" ((TInt)KPageDirectoryLinearAddress));	// r2 points to PDE for anAddr
	asm("mrc p15, 0, lr, c3, c0, 0 ");		// lr=current DACR
	asm("orr r4, lr, #0x30 ");
	asm("mcr p15, 0, r4, c3, c0, 0 ");		// unlock page tables
	CPWAIT(,r4);
	asm("ldr r0, [r0] ");					// fetch page table PTE
	asm("mov r0, r0, lsr #12 ");			// shift out permission bits, leave phys addr>>12
	asm("orr r3, r3, r0, lsl #12 ");		// r3=PDE word (add PDE permissions and offset within page)
	asm("str r3, [r2] ");					// store PDE
	asm("add r2, r2, #%a0" : : "i" ((TInt)KPageTableInfoOffset));	// r2 points to PT info entry
	asm("str r1, [r2] ");					// PTinfo top 16=page table ID, PT info bottom 16=pages present=0 (assumption)
	asm("mcr p15, 0, lr, c3, c0, 0 ");		// lock page tables
	DRAIN_WRITE_BUFFER(,r0,r0);
	CPWAIT(,r0);
	asm("ldmfd sp!, {r4,pc} ");
	}

__NAKED__ void ImpMmu::UnassignPageTable(TLinAddr /*anAddr*/)
//
// Unassign a now-empty page table currently mapping the specified linear address.
// We assume that TLB and/or cache flushing has been done when any RAM pages were unmapped.
// Call this with the kernel locked.
//
	{
	asm("mov r1, r1, lsr #20 ");			// r1=anAddr>>20
	asm("mov r0, #%a0" : : "i" ((TInt)KPageDirectoryLinearAddress));
	asm("add r0, r0, r1, lsl #2 ");			// r0 points to page directory entry for anAddr
	asm("ldr r1, __NotPresentPtInfo ");		// r1=PTInfo entry for not present PDE
	asm("mrc p15, 0, r2, c3, c0, 0 ");		// r2=current DACR
	asm("orr r3, r2, #0x30 ");
	asm("mcr p15, 0, r3, c3, c0, 0 ");		// unlock page tables
	CPWAIT(,r3);
	asm("mov r3, #0 ");
	asm("str r3, [r0] ");					// clear the PDE
	asm("add r0, r0, #%a0" : : "i" ((TInt)KPageTableInfoOffset));	// step r0 on to PT info entry
	asm("str r1, [r0] ");					// clear the PT info entry
	asm("mcr p15, 0, r2, c3, c0, 0 ");		// lock page tables
	DRAIN_WRITE_BUFFER(,r0,r0);
	CPWAIT(,r0);
	__JUMP(,lr);

	asm("__NotPresentPtInfo: ");
	asm(".word 0xffff0000 ");
	}
#endif