kernel/eka/euser/maths/um_exp.cpp
author Tom Cosgrove <tom.cosgrove@nokia.com>
Fri, 28 May 2010 16:26:05 +0100
branchRCL_3
changeset 29 743008598095
parent 0 a41df078684a
permissions -rw-r--r--
Fix for bug 2283 (RVCT 4.0 support is missing from PDK 3.0.h) Have multiple extension sections in the bld.inf, one for each version of the compiler. The RVCT version building the tools will build the runtime libraries for its version, but make sure we extract all the other versions from zip archives. Also add the archive for RVCT4.

// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\euser\maths\um_exp.cpp
// Floating point exponentiation
// 
//

#include "um_std.h"

#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
#error	__USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh 
#endif

#ifndef __USE_VFP_MATH

LOCAL_D const TUint32 ExpCoeffs[] =
	{
	0x00000000,0x80000000,0x7FFF0000,	// polynomial approximation to 2^(x/8)
	0xD1CF79AC,0xB17217F7,0x7FFB0000,	// for 0<=x<=1
	0x1591EF2B,0xF5FDEFFC,0x7FF60000,
	0x23B940A9,0xE35846B9,0x7FF10000,
	0xDD73C23F,0x9D955ADE,0x7FEC0000,
	0x8728EBE7,0xAEC4616C,0x7FE60000,
	0xAF177130,0xA1646F7D,0x7FE00000,
	0xC44EAC22,0x8542C46E,0x7FDA0000
	};

LOCAL_D const TUint32 TwoToNover8[] =
	{
	0xEA8BD6E7,0x8B95C1E3,0x7FFF0000,	// 2^0.125
	0x8DB8A96F,0x9837F051,0x7FFF0000,	// 2^0.250
	0xB15138EA,0xA5FED6A9,0x7FFF0000,	// 2^0.375
	0xF9DE6484,0xB504F333,0x7FFF0000,	// 2^0.500
	0x5506DADD,0xC5672A11,0x7FFF0000,	// 2^0.625
	0xD69D6AF4,0xD744FCCA,0x7FFF0000,	// 2^0.750
	0xDD24392F,0xEAC0C6E7,0x7FFF0000	// 2^0.875
	};

LOCAL_D const TUint32 EightLog2edata[] = {0x5C17F0BC,0xB8AA3B29,0x80020000};	// 8/ln2




EXPORT_C TInt Math::Exp(TReal& aTrg, const TReal& aSrc)
/**
Calculates the value of e to the power of x.

@param aTrg A reference containing the result. 
@param aSrc The power to which e is to be raised. 

@return KErrNone if successful, otherwise another of
        the system-wide error codes. 
*/	
	{
	// Calculate exp(aSrc) and write result to aTrg
	// Algorithm:
	//		Let x=aSrc/ln2 and calculate 2^x
	//		2^x = 2^int(x).2^frac(x)
	//		2^int(x) just adds int(x) to the final result exponent
	//		Reduce frac(x) to the range [0,0.125] (modulo 0.125)
	//		Use polynomial to calculate 2^x for 0<=x<=0.125
	//		Multiply by 2^(n/8) for n=0,1,2,3,4,5,6,7 to give 2^frac(x)

	const TRealX& EightLog2e=*(const TRealX*)EightLog2edata;

	TRealX x;
	TRealX y;
	TInt r=x.Set(aSrc);
	if (r==KErrNone)
		{
		x*=EightLog2e;
		TInt n=(TInt)x;
		if (n<16384 && n>-16384)
			{
			if (x.iSign&1)
				n--;
			x-=TRealX(n);
			PolyX(y,x,7,(const TRealX*)ExpCoeffs);
			y.iExp=TUint16(TInt(y.iExp)+(n>>3));
			n&=7;
			if (n)
				y*= (*(const TRealX*)(TwoToNover8+3*n-3));
			return y.GetTReal(aTrg);
			}
		else
			{
			if (n<0)
				{
				SetZero(aTrg);
				r=KErrUnderflow;
				}
			else
				{
				SetInfinite(aTrg,0);
				r=KErrOverflow;
				}
			return r;
			}
		}
	else
		{
		if (r==KErrArgument)
			SetNaN(aTrg);
		if (r==KErrOverflow)
			{
			if (x.iSign&1)
				{
				SetZero(aTrg);
				r=KErrUnderflow;
				}
			else
				{
				SetInfinite(aTrg,0);
				}
			}
		return r;
		}
	}

#else // __USE_VFP_MATH

// definitions come from RVCT math library
extern "C" TReal exp(TReal);

EXPORT_C TInt Math::Exp(TReal& aTrg, const TReal& aSrc)
	{
	aTrg = exp(aSrc);
	if (Math::IsZero(aTrg))
		return KErrUnderflow;
	if (Math::IsFinite(aTrg))
		return KErrNone;
	if (Math::IsInfinite(aTrg))
		return KErrOverflow;
	SetNaN(aTrg);
	return KErrArgument;
	}

#endif