Fix for bug 2283 (RVCT 4.0 support is missing from PDK 3.0.h)
Have multiple extension sections in the bld.inf, one for each version
of the compiler. The RVCT version building the tools will build the
runtime libraries for its version, but make sure we extract all the other
versions from zip archives. Also add the archive for RVCT4.
// Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\buffer\bin_srch.cpp
//
//
#include <e32test.h>
#include <e32math.h>
GLREF_D RTest test;
#define KEEP_RUNNING 100
struct TestMe
{
TBuf<0x10> name;
TInt32 key1;
TUint32 key2;
};
LOCAL_C void fillArray(RArray<TestMe>& arr, TInt size)
{
TInt32 seed = 1 + Math::Random() % size;
TestMe testMe;
for(TInt i=0;i<size;i++)
{
testMe.key1 = seed;
arr.Append(testMe);
seed += 2 + Math::Random() % (2 + size%5);
}
}
LOCAL_C void fillArray(RArray<TInt32>& arr, TInt size)
{
TInt32 seed = 1 + Math::Random() % size;
for(TInt i=0;i<size;i++)
{
arr.Append(seed);
seed += 2 + Math::Random() % (2 + size%5);
}
}
LOCAL_C void fillArray(RArray<TInt32>& arr, RPointerArray<TUint32>& parr, TInt size)
{
TInt32 seed = 1 + Math::Random() % size;
TInt i;
for(i=0;i<size;i++)
{
arr.Append(seed);
seed += 2 + Math::Random() % (2 + size%5);
}
for(i=0;i<size;i++)
{
parr.Append((const TUint32*)&arr[i]);
}
}
LOCAL_C void fillArray(RPointerArray<TUint32>& arr, TInt size)
{
TUint32 seed = 1 + Math::Random() % size;
TUint32 dummy;
for(TInt i=0;i<size;i++)
{
arr.Append((&dummy) + seed);
seed += 2 + Math::Random() % (2 + size%5);
}
}
LOCAL_C TInt simpleOrder(const TInt32& a1, const TInt32& a2)
{
return a1 - a2;
}
LOCAL_C TInt simpleOrder2(const TUint32& a1, const TUint32& a2)
{
return (a1==a2)?0:(a1>a2?1:-1);
}
GLDEF_C void DoRArrayTests()
{
{
RArray<TInt32>* rArr1 = new RArray<TInt32>(0x10);
test(rArr1!=NULL);
RPointerArray<TUint32>* rpArr1 = new RPointerArray<TUint32>(0x10);
test(rpArr1!=NULL);
TInt i;
TInt size = 25;
test.Next(_L("Testing RArray::FindInOrder, RPointerArray::FindInOrder, RArrayBase::BinarySearch and RPointerArrayBase::BinarySearch with arrays of different sizes\r\n"));
for(i=0;i<KEEP_RUNNING;i++)
{
test.Printf(_L("Testing with a random array of size %d \r\n"), size);
fillArray(*rArr1,*rpArr1,size);
test(rArr1->Count()==rpArr1->Count());
TInt index;
//test(KErrNotFound==rArr1->BinarySearch((TAny*)(rArr1->operator[](0)-1),index,(TGeneralLinearOrder)simpleOrder));
test(KErrNotFound==rArr1->FindInOrder(rArr1->operator[](0)-1,index,TLinearOrder<TInt32>(simpleOrder)));
test(index==0);
TUint32 t = *rpArr1->operator[](0)-1;
test(KErrNotFound==rpArr1->FindInOrder(&t,index,TLinearOrder<TUint32>(simpleOrder2)));
test(index==0);
for(TInt k=0;k<rArr1->Count();k++)
{
test(KErrNone==rArr1->FindInOrder(rArr1->operator[](k),index,TLinearOrder<TInt32>(simpleOrder)));
test(index==k);
test(KErrNone==rpArr1->FindInOrder(rpArr1->operator[](k),index,TLinearOrder<TUint32>(simpleOrder2)));
test(index==k);
if(k<rArr1->Count()-1)
{
test(KErrNotFound==rArr1->FindInOrder((rArr1->operator[](k)+rArr1->operator[](k+1))>>1,index,TLinearOrder<TInt32>(simpleOrder)));
test(index==k+1);
t = (*rpArr1->operator[](k)+*rpArr1->operator[](k+1))>>1;
test(KErrNotFound==rpArr1->FindInOrder(&t,index,TLinearOrder<TUint32>(simpleOrder2)));
test(index==k+1);
}
}
test(KErrNotFound==rArr1->FindInOrder(rArr1->operator[](rArr1->Count()-1)+5,index,TLinearOrder<TInt32>(simpleOrder)));
test(index==rArr1->Count());
t = *rpArr1->operator[](rpArr1->Count()-1) + 5;
test(KErrNotFound==rpArr1->FindInOrder(&t,index,TLinearOrder<TUint32>(simpleOrder2)));
test(index==rpArr1->Count());
size += 2 + Math::Random() % (2 + size%5);
rArr1->Reset();
rpArr1->Reset();
}
delete rpArr1;
test.Next(_L("Testing RArray::FindInSignedKeyOrder and RArrayBase::BinarySignedSearch with arrays of different sizes\r\n"));
for(i=0;i<KEEP_RUNNING;i++)
{
test.Printf(_L("Testing with a random array of size %d \r\n"), size);
fillArray(*rArr1,size);
TInt index;
//test(KErrNotFound==rArr1->BinarySearch((TAny*)(rArr1->operator[](0)-1),index,(TGeneralLinearOrder)simpleOrder));
test(KErrNotFound==rArr1->FindInSignedKeyOrder(rArr1->operator[](0)-1,index));
test(index==0);
for(TInt k=0;k<rArr1->Count();k++)
{
test(KErrNone==rArr1->FindInSignedKeyOrder(rArr1->operator[](k),index));
test(index==k);
if(k<rArr1->Count()-1)
{
test(KErrNotFound==rArr1->FindInSignedKeyOrder((rArr1->operator[](k)+rArr1->operator[](k+1))>>1,index));
test(index==k+1);
}
}
test(KErrNotFound==rArr1->FindInSignedKeyOrder(rArr1->operator[](rArr1->Count()-1)+5,index));
test(index==rArr1->Count());
size += 2 + Math::Random() % (2 + size%5);
rArr1->Reset();
}
size=25;
test.Next(_L("Testing RArray::FindInUnsignedKeyOrder and RArrayBase::BinaryUnsignedSearch with arrays of different sizes\r\n"));
for(i=0;i<KEEP_RUNNING;i++)
{
test.Printf(_L("Testing with a random array of size %d \r\n"), size);
fillArray(*rArr1,size);
TInt index;
//test(KErrNotFound==rArr1->BinarySearch((TAny*)(rArr1->operator[](0)-1),index,(TGeneralLinearOrder)simpleOrder));
test(KErrNotFound==rArr1->FindInUnsignedKeyOrder(rArr1->operator[](0)-1,index));
test(index==0);
for(TInt k=0;k<rArr1->Count();k++)
{
test(KErrNone==rArr1->FindInUnsignedKeyOrder(rArr1->operator[](k),index));
test(index==k);
if(k<rArr1->Count()-1)
{
test(KErrNotFound==rArr1->FindInUnsignedKeyOrder((rArr1->operator[](k)+rArr1->operator[](k+1))>>1,index));
test(index==k+1);
}
}
test(KErrNotFound==rArr1->FindInUnsignedKeyOrder(rArr1->operator[](rArr1->Count()-1)+5,index));
test(index==rArr1->Count());
size += 2 + Math::Random() % (2 + size%5);
rArr1->Reset();
}
delete rArr1;
}
{
RArray<TestMe>* rArr1 = new RArray<TestMe>(0x10,_FOFF(TestMe,key1));
test(rArr1!=NULL);
TInt i;
TInt size = 25;
test.Next(_L("Testing RArray::FindInSignedOrder and RArrayBase::BinarySignedSearch with a structure + key\r\n"));
TestMe testMe;
for(i=0;i<KEEP_RUNNING;i++)
{
test.Printf(_L("Testing with a random array of size %d \r\n"), size);
fillArray(*rArr1,size);
TInt index;
//test(KErrNotFound==rArr1->BinarySearch((TAny*)(rArr1->operator[](0)-1),index,(TGeneralLinearOrder)simpleOrder));
testMe=rArr1->operator[](0);
testMe.key1 = rArr1->operator[](0).key1-1;
test(KErrNotFound==rArr1->FindInSignedKeyOrder(testMe,index));
test(index==0);
for(TInt k=0;k<rArr1->Count();k++)
{
testMe.key1 = rArr1->operator[](k).key1;
test(KErrNone==rArr1->FindInSignedKeyOrder(testMe,index));
test(index==k);
if(k<rArr1->Count()-1)
{
testMe.key1 = (rArr1->operator[](k).key1+rArr1->operator[](k+1).key1)>>1;
test(KErrNotFound==rArr1->FindInSignedKeyOrder(testMe,index));
test(index==k+1);
}
}
testMe.key1 = rArr1->operator[](rArr1->Count()-1).key1+5;
test(KErrNotFound==rArr1->FindInSignedKeyOrder(testMe,index));
test(index==rArr1->Count());
size += 2 + Math::Random() % (2 + size%5);
rArr1->Reset();
}
size=25;
test.Next(_L("Testing RArray::FindInUnsignedKeyOrder and RArrayBase::BinaryUnsignedSearch with arrays of different sizes\r\n"));
for(i=0;i<KEEP_RUNNING;i++)
{
test.Printf(_L("Testing with a random array of size %d \r\n"), size);
fillArray(*rArr1,size);
TInt index;
//test(KErrNotFound==rArr1->BinarySearch((TAny*)(rArr1->operator[](0)-1),index,(TGeneralLinearOrder)simpleOrder));
testMe.key1 = rArr1->operator[](0).key1-1;
test(KErrNotFound==rArr1->FindInUnsignedKeyOrder(testMe,index));
test(index==0);
for(TInt k=0;k<rArr1->Count();k++)
{
testMe.key1 = rArr1->operator[](k).key1;
test(KErrNone==rArr1->FindInUnsignedKeyOrder(testMe,index));
test(index==k);
if(k<rArr1->Count()-1)
{
testMe.key1 = (rArr1->operator[](k).key1+rArr1->operator[](k+1).key1)>>1;
test(KErrNotFound==rArr1->FindInUnsignedKeyOrder(testMe,index));
test(index==k+1);
}
}
testMe.key1 = rArr1->operator[](rArr1->Count()-1).key1+5;
test(KErrNotFound==rArr1->FindInUnsignedKeyOrder(testMe,index));
test(index==rArr1->Count());
size += 2 + Math::Random() % (2 + size%5);
rArr1->Reset();
}
delete rArr1;
}
{
RPointerArray<TUint32>* rArr1 = new RPointerArray<TUint32>(0x10);
test(rArr1!=NULL);
TInt i;
TInt size = 25;
test.Next(_L("Testing RPointerArray::FindInAddressOrder and RPointerArrayBase::BinaryUnsignedSearch with arrays of different sizes\r\n"));
for(i=0;i<KEEP_RUNNING;i++)
{
test.Printf(_L("Testing with a random array of size %d \r\n"), size);
fillArray(*rArr1,size);
TInt index;
//test(KErrNotFound==rArr1->BinarySearch((TAny*)(rArr1->operator[](0)-1),index,(TGeneralLinearOrder)simpleOrder));
test(KErrNotFound==rArr1->FindInAddressOrder(rArr1->operator[](0)-1,index));
test(index==0);
for(TInt k=0;k<rArr1->Count();k++)
{
test(KErrNone==rArr1->FindInAddressOrder(rArr1->operator[](k),index));
test(index==k);
if(k<rArr1->Count()-1)
{
test(KErrNotFound==rArr1->FindInAddressOrder((const TUint32*)(((TUint32)rArr1->operator[](k))/2+((TUint32)rArr1->operator[](k+1))/2 + (((TUint32)rArr1->operator[](k))%2 + ((TUint32)rArr1->operator[](k+1))%2)/2),index));
test(index==k+1);
}
}
test(KErrNotFound==rArr1->FindInAddressOrder(rArr1->operator[](rArr1->Count()-1)+5,index));
test(index==rArr1->Count());
size += 2 + Math::Random() % (2 + size%5);
rArr1->Reset();
}
delete rArr1;
}
}