Fix for bug 2283 (RVCT 4.0 support is missing from PDK 3.0.h)
Have multiple extension sections in the bld.inf, one for each version
of the compiler. The RVCT version building the tools will build the
runtime libraries for its version, but make sure we extract all the other
versions from zip archives. Also add the archive for RVCT4.
// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\misc\t_bytepair.cpp
//
//
#define __E32TEST_EXTENSION__
#include <e32test.h>
#include <e32math.h>
#include <e32rom.h>
#include <e32svr.h>
#include "decompress.h"
#define BYTE_PAIR_COMPRESS_INCLUDE_IMPLEMENTATION
#include <byte_pair_compress.h>
const TInt KMaxSize = 0x1000;
const TInt KPageSize = 0x1000;
RTest test(_L("T_BYTEPAIR"));
TUint8 InputBuffer[KMaxSize];
TUint8 CompressedBuffer[4*KMaxSize];
TUint8 OutputBuffer[KMaxSize+1];
TRomHeader* RomHeader = NULL;
TInt RomOffset = 0;
TInt FailCount = 0;
TUint32 RandomState;
void PrintHex(TUint8* aBuffer, TInt aSize)
{
const TInt KBytesPerLine = 38;
TBuf<KBytesPerLine * 2 + 3> buf;
for (TInt i = 0 ; i < aSize ; )
{
buf.Zero();
buf.Append(_L(" "));
TInt nextChunk = Min(aSize - i, KBytesPerLine);
for (TInt j = 0 ; j < nextChunk ; ++j, ++i)
buf.AppendFormat(_L("%02x"), aBuffer[i]);
buf.Append(_L("\n"));
RDebug::RawPrint(buf);
}
}
TUint32 Random()
{
RandomState = RandomState * 69069 + 1;
return RandomState;
}
typedef void (*TGenerator)(TUint8* aDest, TInt aSize);
void GenerateUniform(TUint8* aDest, TInt aSize)
{
TInt value = aSize & 255;
Mem::Fill(aDest, aSize, value);
}
void GenerateUniformRandom(TUint8* aDest, TInt aSize)
{
for (TInt i = 0 ; i < aSize ; ++i)
aDest[i] = TUint8(Random());
}
void GenerateZipfRandom(TUint8* aDest, TInt aSize)
{
// Some details from http://www.cs.hut.fi/Opinnot/T-106.4000/K2007/Ohjeet/Zipf.html
const TInt max = 255;
TReal c;
test_KErrNone(Math::Log(c, max + 1.0));
for (TInt i = 0 ; i < aSize ; ++i)
{
int r;
do
{
TReal x = Random() / TReal(KMaxTUint32);
test_KErrNone(Math::Exp(x, x * c));
r = (int)x - 1;
}
while (r > max);
aDest[i] = TUint8(r);
}
}
void GenerateRomPage(TUint8* aDest, TInt aSize)
{
if (TUint(RomOffset + aSize) > RomHeader->iUncompressedSize)
RomOffset = 0;
Mem::Copy(aDest, ((TUint8*)RomHeader) + RomOffset, aSize);
RomOffset += KPageSize;
}
enum TTestMode
{
ENormal,
EOutputBufferTooLong,
EOutputBufferTooShort,
ETruncatedCompressedData,
ECorruptCompressedData,
ERandomCompressedData
};
void TestCompressDecompress(TGenerator aGenFunc, TInt aSize, TTestMode aMode = ENormal)
{
ASSERT(aSize <= KMaxSize);
TInt compressedSize;
if (aMode != ERandomCompressedData)
{
// Prepare intput data
aGenFunc(InputBuffer, aSize);
// Compress input data
compressedSize = BytePairCompress(CompressedBuffer, InputBuffer, aSize);
ASSERT(compressedSize <= KMaxSize+1);
}
else
{
// Generate random compressed data
compressedSize = aSize;
GenerateUniformRandom(CompressedBuffer, compressedSize);
}
if (aMode == ETruncatedCompressedData)
{
// Truncate compressed data by up to half its length
compressedSize -= Math::Random() % (compressedSize / 2);
}
else if (aMode == ECorruptCompressedData)
{
// Corrupt a random byte of the compressed data
TInt pos = Random() % compressedSize;
CompressedBuffer[pos] = TUint8(Random());
}
// Decomress compressed data
Mem::Fill(OutputBuffer, KMaxSize+1, 0);
TUint8* srcNext = NULL;
TInt outputBufferSize = aSize;
if (aMode == EOutputBufferTooLong || aMode == ERandomCompressedData)
outputBufferSize = KMaxSize+1;
else if (aMode == EOutputBufferTooShort)
outputBufferSize = aSize / 2 + 1;
TInt decompressedSize = BytePairDecompress(OutputBuffer, outputBufferSize, CompressedBuffer, compressedSize, srcNext);
TInt srcUsed = srcNext ? srcNext - CompressedBuffer : 0;
// Print stats
RDebug::Printf("%d -> %d -> %d, %d, %d", aSize, compressedSize, outputBufferSize, srcUsed, decompressedSize);
TBool ok = ETrue;
// Check decompressed data not larger than output buffer
if (decompressedSize > outputBufferSize)
ok = EFalse;
// Check output buffer not written beyond what was reported
if (decompressedSize >= 0 && OutputBuffer[decompressedSize] != 0)
ok = EFalse;
if (aMode == ETruncatedCompressedData || aMode == ECorruptCompressedData || aMode == ERandomCompressedData)
{
// Input corrupt, expect error or partial sucess
// If there was an error, check it was KErrCorrupt and srcNext was set to NULL
if (decompressedSize < 0 && (decompressedSize != KErrCorrupt || srcNext != NULL))
ok = EFalse;
}
else if (aMode == EOutputBufferTooShort)
{
// Input consistent, output buffer too short
// Expect error, or initial part correctly decompressed
if (decompressedSize < 0)
{
if (decompressedSize != KErrCorrupt || srcNext != NULL)
ok = EFalse;
}
else
{
if (decompressedSize > aSize ||
srcUsed > compressedSize ||
Mem::Compare(InputBuffer, decompressedSize, OutputBuffer, decompressedSize) != 0)
ok = EFalse;
}
}
else
{
// Input consistent, expect success
// Check no error, correct size, all compressed input used, and output same as orignal data
if (decompressedSize < 0 ||
aSize != decompressedSize ||
srcUsed != compressedSize ||
Mem::Compare(InputBuffer, decompressedSize, OutputBuffer, decompressedSize) != 0)
ok = EFalse;
}
if (!ok)
{
RDebug::Printf("Failure:");
RDebug::Printf("Input");
PrintHex(InputBuffer, aSize);
RDebug::Printf("Compressed");
PrintHex(CompressedBuffer, compressedSize);
RDebug::Printf("Output");
PrintHex(OutputBuffer, decompressedSize);
++FailCount;
}
}
TInt E32Main()
//
// Benchmark for Mem functions
//
{
TInt i;
test.Title();
test.Start(_L("T_BYTEPAIR"));
RandomState = User::FastCounter();
RDebug::Printf("RandomState == %08x", RandomState);
test_Equal(0, FailCount);
const TInt KStartSize = KMaxSize / 2;
// Test correct operation
test.Next(_L("Test compressing uniform data"));
for (i = KStartSize ; i < KMaxSize ; i += 19)
TestCompressDecompress(GenerateUniform, i);
test.Next(_L("Test compressing uniformly distributed random data"));
for (i = KStartSize + 2 ; i < KMaxSize ; i += 19)
TestCompressDecompress(GenerateUniformRandom, i);
test.Next(_L("Test compressing zipf-distributed random data"));
for (i = KStartSize + 3 ; i < KMaxSize ; i += 19)
TestCompressDecompress(GenerateZipfRandom, i);
#ifdef __EPOC32__
RomHeader = (TRomHeader*)UserSvr::RomHeaderAddress();
TGenerator pageGen = GenerateRomPage;
#else
TGenerator pageGen = GenerateZipfRandom;
#endif
test.Next(_L("Test compressing pages"));
for (i = 0 ; i < 100 ; ++i)
TestCompressDecompress(pageGen, KPageSize);
// Test failure modes
test.Next(_L("Test output buffer too short"));
for (i = KStartSize ; i < KMaxSize ; i += 19)
TestCompressDecompress(pageGen, i, EOutputBufferTooShort);
test.Next(_L("Test output buffer too long"));
for (i = KStartSize + 1 ; i < KMaxSize ; i += 19)
TestCompressDecompress(pageGen, i, EOutputBufferTooLong);
test.Next(_L("Test truncated compressed data"));
for (i = KStartSize + 2 ; i < KMaxSize ; i += 19)
TestCompressDecompress(pageGen, i, ETruncatedCompressedData);
test.Next(_L("Test corrupt compressed data "));
for (i = KStartSize + 3 ; i < KMaxSize ; i += 19)
TestCompressDecompress(pageGen, i, ECorruptCompressedData);
test.Next(_L("Test random compressed data"));
for (i = KStartSize + 4 ; i < KMaxSize ; i += 19)
TestCompressDecompress(GenerateUniformRandom, i, ERandomCompressedData);
test_Equal(0, FailCount);
test.End();
return(KErrNone);
}